SlideShare una empresa de Scribd logo
1 de 7
Descargar para leer sin conexión
Synergism between paracetamol and nonsteroidal
anti-inflammatory drugs in experimental acute pain
Hugo F. Miranda a,*, Margarita M. Puig b
, Juan Carlos Prieto a
, Gianni Pinardi a
a
Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Clasificador 70.000, Santiago 7, Chile
b
Department of Anesthesiology, Hospital del Mar, Paseo Marı´timo 25, 08003 Barcelona, Spain
Abstract
The antinociception induced by the intraperitoneal coadministration of combinations of paracetamol with the nonsteroidal anti-
inflammatory drugs (NSAIDs) diclofenac, ibuprofen, ketoprofen, meloxicam, metamizol, naproxen, nimesulide, parecoxib and pir-
oxicam was studied by isobolographic analysis in the acetic acid abdominal constriction test of mice (writhing test). The effective
dose that produced 50% antinociception (ED50) was calculated from the log dose–response curves of fixed ratio combinations of
paracetamol with each NSAID. By isobolographic analysis, this ED50 was compared to the theoretical additive ED50 calculated
from the ED50 of paracetamol and of each NSAID alone obtained from ED50 dose–response curves. As shown by isobolographic
analysis, all the combinations were synergistic, the experimental ED50s being significantly smaller than the theoretically calculated
ED50s. The results of this study demonstrate potent interactions between paracetamol and NSAIDs and validate the clinical use of
combinations of these drugs in the treatment of pain conditions.
Keywords: Antinociception; NSAIDs; Paracetamol; Synergy; Abdominal constriction test; Writhing test; Isobologram
1. Introduction
The combination of analgesics of proven efficacy is a
strategy intended to achieve one or more therapeutic
goals, such as facilitating patient compliance, simplifying
prescribing, improving efficacy without increasing
adverse effects or decreasing adverse effects without loss
of efficacy (Raffa, 2001; Hyllested et al., 2002). In certain
cases, the coadministration of antinociceptive agents
results in synergistic effects and the doses of the individ-
ual drugs can be substantially reduced (Maves et al.,
1994; Salazar et al., 1995; Fairbanks and Wilcox, 1999;
Kolesnikov et al., 2002; Miranda and Pinardi, 2004).
The antinociceptive action of nonsteroidal anti-in-
flammatory drugs (NSAIDs) is primarily due to the
inhibition of prostaglandin biosynthesis through the
inhibition of cyclooxygenase enzymes: COX-1 (constitu-
tive) and COX-2 (inducible in inflammatory processes),
even if alternative mechanisms have to be considered
(Mitchell and Warner, 1999; Smith et al., 2000; Miranda
et al., 2002; Warner and Mitchell, 2004). However, the
absolute separation between the physiological and path-
ological roles of COX-1 and COX-2 is becoming less
tenable and indeed their activities overlap to a consider-
able degree (Wallace, 1999). On the other hand, the
mechanism of action of one of the most widely used
analgesics, paracetamol or acetaminophen, remains
largely unknown and at most the drug is considered to
be an atypical NSAID, since it is a weak inhibitor of
COXs (Botting, 2003). The following mechanisms have
been postulated to explain paracetamol-induced
*
Corresponding author. Tel.: +56 2 678 6237; fax: +56 2 737 2783.
E-mail address: hmiranda@med.uchile.cl (H.F. Miranda).
analgesia: selective inhibition of cyclooxygenase activity
in the CNS, interaction with spinal 5-HT3 receptors,
interference with spinal substance P receptors or
inhibition of neurons excited by substance P, activation
of suprasegmental descending inhibitory pathways,
increase in pituitary b-endorphin secretion, direct effects
on neuronal membrane potentials (Bannwarth et al.,
1995; Pelissier et al., 1995; Pini et al., 1996; Raffa and
Codd, 1996; Breivik et al., 1999).
NSAIDs and paracetamol are drugs widely used to
treat moderate to mild pain, but they are often inad-
equate against severe pain. Clinical studies on patients
with musculoskeletal conditions, dental pain or post-
operative pain have shown that combinations of para-
cetamol and NSAIDs may provide additive pain-relief
(Altman, 2004). However, a detailed evaluation of dif-
ferent combinations of paracetamol with commonly
used NSAIDs has not been reported. The purpose
of the present study was to assess the nature of the
interaction between the systemic administration of
combinations of paracetamol and several NSAIDs in
a rodent model of visceral pain. A broad number of
clinical relevant NSAIDs are included because they
are the most frequently used agents for the treatment
of pain (Møiniche et al., 2003; Rømsing and Møini-
che, 2004).
2. Materials and methods
2.1. Animals
Male CF-1 mice (28–30 g), housed on a 12 h light–dark
cycle at 22 ± 2 °C and with access to food and water ad libi-
tum, were used. Experiments were performed in accordance
with current Guidelines for The Care of Laboratory Animals
and Ethical Guidelines for investigation of experimental pain
approved by the Animal Care and Use Committee of the Fac-
ulty of Medicine, University of Chile. Animals were acclima-
tized to the laboratory for at least 2 h before testing, were
used only once during the protocol and were killed by cervical
dislocation immediately after the algesiometric test. The num-
ber of animals was kept at a minimum compatible with consis-
tent effects of the drug treatments.
2.2. Measurement of analgesic activity
Analgesic activity was assessed by the acetic acid abdominal
constriction test (writhing test), a chemical visceral pain model
(Hayashi and Takemori, 1971). Mice were injected i.p. with
10 mL/kg of 0.6% acetic acid solution 30 min after the i.p.
administration of the drugs, a time at which preliminary exper-
iments showed occurrence of the maximum effect. A writhe is
characterized by a wave of contraction of the abdominal mus-
culature followed by the extension of the hind limbs. The num-
ber of writhes in a 5 min period was counted, starting 5 min
after acetic acid administration. Antinociceptive activity was
expressed as percent inhibition of the usual number of writhes
observed in control animals in this study.
2.3. Control animals
Physiological salt solution (10 mL/kg) was injected intra-
peritoneally (i.p.) or given orally and control animals were
run interspersed concurrently with the drug treatments, which
prevented the controls being run on a single group of mice at
one time (19.7 ± 0.28, n = 92 i.p.; 20.1 ± 0.33, n = 12 p.o.).
2.4. Protocol
Dose–response curves for the antinociceptive effect of dic-
lofenac, ibuprofen, ketoprofen, meloxicam, metamizol,
naproxen, nimesulide, paracetamol, parecoxib, and piroxicam
were obtained using at least six animals at each of at least
four doses. The drugs were injected intraperitoneally. Dose–
response curves were also obtained by the oral administration
of paracetamol and diclofenac. A least-squares linear regres-
sion analysis of the log dose–response curves allowed the cal-
culation of the dose that produced 50% of antinociception
(ED50) for each drug. A dose–response curve was also
obtained by the intraperitoneal coadministration of paraceta-
mol with each NSAID in fixed ratio combinations of frac-
tions of their respective ED50 values: 1/2, 1/4, 1/8, 1/16
(ratio values given in Table 2). A dose–response curve for
the combination of paracetamol and diclofenac administered
orally by gavage was also obtained with the same scheme.
Isobolographic analysis was used to determine drug interac-
tions. The method has been described previously in detail
(Miranda et al., 2002). Supra-additivity or synergistic effect
is defined as the effect of a drug combination that is higher
and statistically different (ED50 significantly lower) than the
theoretically calculated equieffect of a drug combination with
the same proportions. If the ED50s are not statistically differ-
ent, the effect of the combination is additive and additivity
means that each constituent contributes with its own potency
to the total effect. The interaction index was calculated as
experimental ED50/theoretical ED50. If the value is close to
1, the interaction is additive. Values lower than 1 are an indi-
cation of the magnitude of supra-additive or synergistic inter-
actions and values higher than 1 correspond to sub-additive
or antagonistic interactions (Tallarida, 2001).
2.5. Drugs
The drugs were freshly dissolved in a physiological salt solu-
tion. Paracetamol was provided by Bristol-Myers-Squibb,
France. The NSAIDs were provided by local pharmaceutical
companies: diclofenac by Novartis Chile S.A., ibuprofen by
Laboratorio Chile S.A., ketoprofen by Rhone-Poulenc Ror-
er, meloxicam and naproxen by Laboratorios Saval S.A.,
metamizol by Sanderson S.A., nimesulide by Gru¨nenthal
Chilena Ltda, parecoxib and piroxicam by Pfizer Chile.
Doses were expressed on the basis of the salts.
2.6. Statistical analysis
Results are presented as means ± SEM or as ED50 values
with 95% confidence limits (95% CL). Isobolographic calcula-
tions were performed with the program Pharm Tools Pro (ver-
sion 1.27, The McCary Group Inc.), based on Tallarida (2000).
The statistical difference between theoretical and experimental
H.F. Miranda et al.
values was assessed by Student’s t test for independent means
and P values less than 0.05 (P < 0.05) were considered
significant.
3. Results
3.1. Antinociception induced by paracetamol and NSAIDs
The i.p. administration of paracetamol, diclofenac,
ibuprofen, ketoprofen, meloxicam, metamizol, naprox-
en, nimesulide, parecoxib and piroxicam showed dose-
dependent antinociceptive effects with different potencies
in the abdominal constriction test of mice. In Fig. 1,
data showing dose–response curves obtained for several
NSAIDs injected intraperitoneally (A) and for diclofe-
nac and paracetamol given by the oral route (p.o., B)
are displayed as an example. The curves were statistical-
ly parallel. The ED50 values and 95% CL for the antin-
ociceptive effects of i.p. paracetamol and NSAIDs are
shown in Table 1.
3.2. Interactions between paracetamol and NSAIDs
The antinociceptive activity of the i.p. coadministra-
tion of fixed ratio combinations of ED50 fractions of
each NSAID with paracetamol was assessed by calculat-
ing the ED50 of the mixtures from the corresponding
dose–response curves.
The isobolographic analysis of all combinations of
NSAIDs with paracetamol, administered i.p., resulted
Fig. 1. Examples of dose–response curves for the antinociception
induced by the intraperitoneal (A) and oral (B) administration of
paracetamol (s), diclofenac (d), metamizol (j), parecoxib (m) and
piroxicam (h). Each point is the mean ± SEM of 6–8 animals.
Table 1
ED50 values and 95% CL for the antinociceptive effect of NSAIDs in
the writhing test of mice
Drugs ED50
mg/kg i.p.
CL ED50
mg/kg p.o.
CL
Ibuprofen 0.8 0.12–6.1
Parecoxib 1.6 1.0–2.6
Meloxicam 6.5 4.9–8.4
Nimesulide 7.6 5.8–9.8
Diclofenac 8.1 5.7–10.8 17.9 17.6–18.5
Piroxicam 8.5 6.4–11.2
Metamizol 28.5 21.8–37.6
Ketoprofen 30.3 25.5–36.1
Naproxen 46.4 35.7–60.5
Paracetamol 49.4 33.4–59.1 127.2 112.2–143.6
Values are ranked in descending order of potency.
Fig. 2. Isobolograms for the intraperitoneal administration of the
combinations nimesulide/paracetamol (A), naproxen/paracetamol (B)
and diclofenac/paracetamol (C). Filled circles correspond to the
theoretical ED50 with 95% CL and open circles correspond to the
experimental ED50 with 95% CL.
H.F. Miranda et al.
in synergistic interactions of different magnitude, as
can be seen in Figs. 2–4. The synergy was also present
when the drug combination was administered orally
(Fig. 5). Table 2 shows the theoretical additive and
the experimental observed ED50 values for the
combinations, with their 95% CL and their fixed ratios.
Furthermore, the interaction index values of the i.p.
combinations demonstrated the following rank
of potencies: nimesulide/paracetamol > naproxen/
paracetamol > diclofenac/paracetamol > metamizol/
paracetamol > ibuprofen/paracetamol > meloxicam/
paracetamol > piroxicam/paracetamol > parecoxib/
paracetamol > ketoprofen/paracetamol (Table 3).
4. Discussion
The intraperitoneal coadministration of paracetamol
with the following NSAIDs, diclofenac, ibuprofen, keto-
profen, meloxicam, metamizol, naproxen, nimesulide,
parecoxib and piroxicam, produced a dose-dependent
antinociceptive effect in the chemical viscero-somatic
assay of the acetic acid abdominal constriction test.
The oral administration of paracetamol and diclofenac
showed similar results. The parallelism of the dose–re-
sponse curves is consistent with a common mechanism
of action. These results confirm previous findings in
which either paracetamol or the above-mentioned NSA-
IDs showed antinociceptive activity in this algesiometric
test (Miranda et al., 2001, 2002, 2003; Pinardi et al.,
2001; Botting, 2003; Miranda and Pinardi, 2004).
Every combination tested showed a synergic interac-
tion. The differences in the magnitude of the observed
Fig. 3. Isobolograms for the intraperitoneal administration of the
combinations metamizol/paracetamol (A), ibuprofen/paracetamol (B)
and meloxicam/paracetamol (C). Symbols as in Fig. 2.
Fig. 4. Isobolograms for the intraperitoneal administration of the
combinations piroxicam/paracetamol (A), parecoxib/paracetamol (B)
and ketoprofen/paracetamol (C). Symbols as in Fig. 2.
Fig. 5. Isobologram for the oral administration of the combination
diclofenac/paracetamol. Interaction index = 0.445. Symbols as in
Fig. 2.
H.F. Miranda et al.
interactions with the different NSAIDs, expressed by the
interaction index, may be related with their COX selec-
tivity, the potency of COX inhibition, pharmacokinetic
properties or with additional mechanisms of action.
Compared to the salicylates, NSAIDs are highly lipo-
philic substances able to cross the blood–brain barrier
(Bannwarth et al., 1989; Mehanna, 2003) and this factor
does not seem to contribute significantly to the interac-
tion. There is no evident relationship between NSAIDs
ED50 values (Table 1) reflecting relative potency and
the interaction index. COX-2 selectivity (parecox-
ib > meloxicam > nimesulide, Warner and Mitchell,
2004) may be inversely related to the interaction index
(Table 3), but this apparent relationship needs further
studies. Additional mechanisms of action other than
COX inhibition may strongly influence the interaction.
NSAIDs are eliminated primarily by hepatic glucu-
ronidation and an inverse relationship may exist
between glucuronidation and NSAIDs’ efficacy, since
an increase in the metabolism of these drugs results in
a decrease of their pharmacological effect. The relative
rates of NSAIDs glucuronidation are ketoprofen > ibu-
profen > diclofenac > naproxen (Kuehl et al., 2005).
This order of metabolic inactivation seems to be inverse-
ly related with the strength of the interaction index
observed, since ketoprofen has the higher value and
naproxen the lowest (Table 3).
The findings of the present work are important,
because they are concordant with several clinical stud-
ies in which, in different surgical procedures, the com-
binations of paracetamol with ketoprofen or diclofenac
were associated with lower pain scores than paraceta-
mol alone (Hyllested et al., 2002). Clinical information
comparing the degree of analgesia induced by paracet-
amol/NSAIDs combinations versus that induced by the
NSAIDs alone, however sparse the available data
might be, suggests that standard doses of paracetamol
enhance the analgesic efficacy when added to ketopro-
fen, diclofenac or naproxen (Seideman, 1993; Breivik
et al., 1999).
The analgesic effect of NSAIDs may not simply
reflect a common mechanism of action, namely inhibi-
tion of prostaglandin biosynthesis (Vane et al., 1998;
Smith et al., 2000; Chandrasekharan et al., 2002;
Warner and Mitchell, 2004). Additional mechanisms
have been suggested for the antinociceptive effect of
different NSAIDs (Granados-Soto et al., 1995; Cash-
man, 1996; Papworth et al., 1999; Miranda et al.,
2001). It is interesting to note that COX-3, a splice var-
iant of COX-1, was considered to be the central site of
action of paracetamol, but this selective interaction is
unlikely to be clinically relevant (Graham and Scott,
2005) and the mechanism of paracetamol-induced anal-
gesia in some way must affect COX-1 and/or COX-2
Table 2
Theoretical and experimental ED50 values with 95% CL and ratios for combinations of NSAIDs with paracetamol (PARA) in the writhing test of
mice
Combinations ED50 (95% CL) mg/kg i.p. Ratio NSAID:PARA
Theoretical Experimental
Naproxen/paracetamol 47.9 (35.3–64.9) 13.9*
(9.9–18.3) 1:1.06
Metamizol/paracetamol 38.9 (30.7–49.3) 13.8*
(10.3–18.8) 1:1.73
Piroxicam/paracetamol 28.9 (21.4–39.0) 11.9*
(8.8–17.1) 1:5.81
Diclofenac/paracetamol 28.8 (20.6–40.1) 7.4*
(4.4–15.4) 1:6.03
Nimesulide/paracetamol 28.5 (20.8–38.9) 7.4*
(4.4–10.6) 1:6.50
Meloxicam/paracetamol 27.9 (20.8–37.5) 11.4*
(8.3–16.5) 1:7.60
Parecoxib/paracetamol 26.5 (19.2–33.8) 12.2*
(10.0–14.8) 1:30.1
Ketoprofen/paracetamol 39.3 (33.5–47.4) 20.4*
(15.8–25.6) 1:31.6
Ibuprofen/paracetamol 25.1 (19.2–32.8) 9.6*
(8.3–11.1) 1:58.1
Combinations ED50 (95% CL) mg/kg p.o. Ratio NSAID:PARA
Theoretical Experimental
Diclofenac/paracetamol 72.6 (63.3–83.1) 32.3*
(21.6–53.3) 1:7.11
*
P < 0.05.
Table 3
Interaction index (I.I.) of the combinations of NSAIDs with Paracet-
amol in the writhing test
Combination Interaction index i.p.
Nimesulide/paracetamol 0.280
Naproxen/paracetamol 0.291
Diclofenac/paracetamol 0.311
Metamizol/paracetamol 0.356
Ibuprofen/paracetamol 0.380
Meloxicam/paracetamol 0.408
Piroxicam/paracetamol 0.413
Parecoxib/paracetamol 0.477
Ketoprofen/paracetamol 0.511
Combination Interaction index p.o.
Diclofenac/paracetamol 0.445
Interaction index values i.p. are listed in ascending order. Lower values
indicate higher potency of the combinations.
H.F. Miranda et al.
(Schwab et al., 2003). The study of Koppert et al.
(2004) supports the assumption that additional mecha-
nisms are involved in the antihyperalgesic action of
paracetamol, since this drug is a nonspecific and weak
inhibitor of COX-3. Recent data from Lucas et al.
(2005) suggest that paracetamol interferes only with
the oxidation state of COX-3. A mechanism of action
has been recently suggested for paracetamol-induced
analgesia in the mouse abdominal constriction test
through a central action paralleled by a reduction in
brain PGE2 concentrations (Cashman, 1996; Botting
and Ayoub, 2005).
Other findings suggested that paracetamol elicits the
activation of one or more endogenous opioid path-
ways (Raffa et al., 2000, 2004). Furthermore, paracet-
amol may stimulate the activity of descending 5-HT
pathways that inhibit nociceptive signal transmission
in the spinal cord (Bonnefont et al., 2003). Taken
together, these observations suggest that several mech-
anisms are probably implicated in the antinociceptive
activities of paracetamol and of NSAIDs, many of
them at central levels, all of which contribute to the
synergy of the combinations, and justify the differenc-
es in the interaction index of paracetamol/NSAID
mixtures observed in the present work. The mecha-
nisms responsible for the synergism in the analgesic
activity of paracetamol/NSAIDs combinations are
not clear; however, according to the information in
the literature, different systems are partially involved
and further experiments are required to completely
characterize the pharmacological basis of the synergic
effect.
In conclusion, the data of the present study demon-
strated that paracetamol combined with NSAIDs pro-
duces a supra-additive or synergic analgesic effect. It
may be noted that the doses of paracetamol and
NSAIDs are very small and if they are compared with
those referred in the literature, it is possible to suggest
that the combinations of paracetamol and NSAIDs
will be effective for the clinical treatment of pain. In
addition, it is demonstrated that the effect of the com-
binations paracetamol/NSAIDs is superior to that of
either component alone. Therefore, these mixtures
are a viable alternative to clinical pain management,
especially because the low doses of the components
may be a potential index of lower incidence of adverse
effects.
Acknowledgements
This work was partially supported by Project No.
1040873 from FONDECYT, Chile, and by a grant from
Fondo de Investigaciones Sanitarias # 03/0245, Madrid,
Spain. The expert technical assistance of J. Lo´pez and
A. Correa is gratefully acknowledged.
References
Altman RD. A rationale for combining acetaminophen and NSAIDs
for mild-to-moderate pain. Clin Exp Reumatol 2004;22:110–7.
Bannwarth B, Netter P, Pourel J, Rover RJ, Gaucher A. Clinical
pharmacokinetics of nonsteroidal anti-inflammatory drugs in the
cerebrospinal fluid. Biomed Pharmacother 1989;43:121–6.
Bannwarth B, Demotes-Mainard F, Schaeverbeke T, Labat L, Dehais
J. Central analgesic effects of aspirin-like drugs. Fundam Clin
Pharmacol 1995;9:1–7.
Bonnefont J, Courade JP, Alloui A, Eschalier A. Antinociceptive
mechanism of action of paracetamol. Drugs 2003;63:1–4.
Botting R. COX-1 and COX-3 inhibitors. Thrombosis Res
2003;110:269–72.
Botting R, Ayoub SS. COX-3 and the mechanism of action of
paracetamol / acetaminophen. Prostagland Leukot Essent Fatty
Acids 2005;72:85–7.
Breivik EK, Barkvoll P, Skovlund E. Combined diclofenac with
acetaminophen or acetominophen-codeine after oral surgery: a
randomized, double-blind single-dose study. Clin Pharmacol Ther
1999;66:625–35.
Cashman JN. The mechanisms of action of NSAIDs in analgesia.
Drugs 1996;52(Suppl. 5):13–23.
Chandrasekharan NV, Dai H, Roos LT, Evanson NK, Tomsik J,
Elton TS, Simmons DL. COX-3, a cyclooxygenase-1 variant
inhibited by acetaminophen and other analgesic/antipyretic drugs:
cloning, structure, and expression. Proc Natl Acad Sci USA
2002;99:13926–31.
Fairbanks CA, Wilcox GL. Spinal antinociceptive synergism between
morphine and clonidine persists in mice made acutely or chronically
tolerant to morphine. J Pharmacol Exp Ther 1999;288:1107–16.
Graham GG, Scott K. Mechanism of action of paracetamol. Am J
Therap 2005;12:46–55.
Granados-Soto V, Flores-Murrieta FJ, Castan˜eda-Herna´ndez G,
Lopez-Mun˜oz FJ. Evidence for the involvement of nitric oxide in
the antinociceptive effect of ketorolac. Eur J Pharmacol
1995;277:281–4.
Hayashi G, Takemori AE. The type of analgesic receptor interaction
involved in cartain analgesic assays. Eur J Pharnacol 1971;16:63–6.
Hyllested M, Jones S, Pedersen JL, Kehlet H. Comparative effect
of paracetamol, NSAIDs or their combination in postoperative
pain management: a qualitative review. Br J Anaesth 2002;
88:199–214.
Kolesnikov YA, Wilson RS, Pasternak GW. Synergistic analgesic
interactions between hydrocodone and ibuprofen. Anesth Analg
2002;97:1721–3.
Koppert W, Wehrfritz A, Korber N, Sittl R, Albrecht S, Schuttler J,
Schmelz M. The cyclooxygenase isozyme inhibitors parecoxib and
paracetamol reduce central hyperalgesia in humans. Pain
2004;108:148–53.
Kuehl GE, Lampe JW, Potter JD, Bigler J. Glucuronidation of
nonsteroidal anti-inflammatory drugs: identifying the enzymes
responsible in human liver microsomes. Drug Metab Dispos
2005;33:1027–35.
Lucas R, Warner TD, Vujnovic I, Mitchell JA. Cellular mechanisms of
acetaminophen: role of cyclo-oxygenase. FASEB J 2005;19:635–57.
Maves TJ, Pechman PS, Meller ST, Gebhart GF. Ketorolac poten-
tiates morphine antinociception during visceral nociception in the
rat. Anesthesiology 1994;80:1094–101.
Mehanna AS. NSAIDs: chemistry and pharmacological actions. Am J
Pharm Educ 2003;67:1–7.
Miranda HF, Sierralta F, Pinardi G. An isobolographic analysis of the
adrenergic modulation of diclofenac antinociception. Anesth Analg
2001;93:430–5.
Miranda HF, Sierralta F, Pinardi G. Neostigmine interactions with non
steroidal anti-inflammatory drugs. Br J Pharmacol 2002;135:1591–7.
H.F. Miranda et al.
Miranda HF, Lemus I, Pinardi G. Effect of the inhibition of
serotonin biosynthesis on the antinociception induced by non-
steroidal anti-inflammatory drugs. Brain Res Bull 2003;
61:417–25.
Miranda HF, Pinardi G. Isobolographic analysis of the antinociceptive
interactions of clonidine with nonsteroidal anti-inflammatory
drugs. Pharmacol Res 2004;50:273–8.
Mitchell JA, Warner TD. Cyclo-oxygenase 2: pharmacology, physiol-
ogy, biochemistry and relevance to NSAID therapy. Br J Pharma-
col 1999;128:1121–32.
Møiniche S, Rømsing J, Dahl JB, Tramer MR. Nonsteroidal anti-
inflammatory drugs and the risk of operative site bleeding after
tonsillectomy: a quantitative systematic review. Anesth Analg
2003;96:68–77.
Papworth J, Colville-Nash P, Alam C, Seed M, Willoughby S. The
depletion of substance P by diclofenac in the mouse. Eur J
Pharmacol 1999;325:R1–2.
Pelissier T, Alloui A, Paeile C, Eschalier A. Evidence of a central
antinociceptive effect of paracetamol involving spinal 5-HT3
receptors. Neuro Report 1995;6:1546–8.
Pinardi G, Sierralta F, Miranda HF. Interaction between the antin-
ociceptive effect of ketoprofen and adrenergic modulatory systems.
Inflammation 2001;25:233–69.
Pini LA, Sandrini M, Vitale G. The antinociceptive action of
paracetamol is associated with changes in the serotonergic system
in the rat brain. Eur J Pharmacol 1996;308:31–40.
Raffa RB, Codd E. Lack of binding of acetaminophen to 5-HT
receptor or uptake sites (or eleven other binding/uptake assays).
Life Sci 1996;59:PL37–40.
Raffa RB, Stone Jr DJ, Tallarida RJ. Discovery of self synergistic
spinal/supraspinal antinociception produced by acetaminophen
(paracetamol). J Pharmacol Exp Ther 2000;295:291–4.
Raffa RB. Pharmacology of oral combination analgesics: rational
therapy for pain. J Clin Pharm Ther 2001;26:257–64.
Raffa RB, Walker EA, Sterious SN. Opioid receptors and acetamino-
phen (paracetamol). Eur J Pharmacol 2004;503:209–10.
Rømsing J, Møiniche SA. Systematic review of COX-2 inhibitors
compared with traditional NSAIDs, or different COX-2 inhibitors
for post-operative pain. Acta Anaesthesiol Scand 2004;48:525–46.
Salazar LA, Martı´nez RV, Lo´pez-Mun˜oz FJ. Synergistic antinocicep-
tive interaction between aspirin and tramadol, the atypical opioid
analgesic in the rat. Drug Dev Res 1995;36:119–24.
Schwab JM, Schluesener J, Laufer S. COX-3: just another COX or the
solitary elusive target of paracetamol. Lancet 2003;361:981–2.
Seideman P. Paracetamol in rheumatoid arthritis. Agent Actions
1993;44:7–12.
Smith AL, Dewitt DL, Garavito RM. Cyclooxygenases: structural,
cellular, and molecular biology. Ann Rev Biochem 2000;69:145–82.
Tallarida RJ. Drug synergism and dose–effect data analysis. New
York: Chapman & Hall/CRC; 2000.
Tallarida RJ. Drug synergism: its detection and applications. J
Pharmacol Exp Ther 2001;298:865–72.
Vane JR, Bakhle YS, Botting RM. Cyclooxygenases 1 and 2. Annu
Rev Pharmacol Toxicol 1998;38:97–120.
Wallace JL. Selective COX-2 inhibitors: is the water becoming muddy?
Trends Pharmacol Sci 1999;20:4–6.
Warner TD, Mitchell JA. Cyclooxygenases: new forms, new inhibitors,
and lessons from the clinic. FASEB J. 2004;18:790–804.
H.F. Miranda et al.

Más contenido relacionado

La actualidad más candente

Isolation of anxiolytic principle from ethanolic root extract of Cardiospermu...
Isolation of anxiolytic principle from ethanolic root extract of Cardiospermu...Isolation of anxiolytic principle from ethanolic root extract of Cardiospermu...
Isolation of anxiolytic principle from ethanolic root extract of Cardiospermu...
Rajesh Bhalla
 
Lecture 1 6 2010-1
Lecture 1 6 2010-1Lecture 1 6 2010-1
Lecture 1 6 2010-1
mobb2x
 
Behavioural sensitisation to mk 801 is dose-dependent and
Behavioural sensitisation to mk 801 is dose-dependent andBehavioural sensitisation to mk 801 is dose-dependent and
Behavioural sensitisation to mk 801 is dose-dependent and
joaomarcos2013
 
臨床研究文獻 Human clinical studies with mora devices Dr. Michael Galle
臨床研究文獻 Human clinical studies with mora devices Dr. Michael Galle臨床研究文獻 Human clinical studies with mora devices Dr. Michael Galle
臨床研究文獻 Human clinical studies with mora devices Dr. Michael Galle
Wei Chung Chang
 
In vivo and in-vitro anti-inflammatory study
In vivo and in-vitro anti-inflammatory studyIn vivo and in-vitro anti-inflammatory study
In vivo and in-vitro anti-inflammatory study
Arijit Chakraborty
 

La actualidad más candente (20)

Screening of analgesic and antipyretic properties on ethanolic extract of arg...
Screening of analgesic and antipyretic properties on ethanolic extract of arg...Screening of analgesic and antipyretic properties on ethanolic extract of arg...
Screening of analgesic and antipyretic properties on ethanolic extract of arg...
 
Quality of life effects of Various Transdermal Pain Therapies including compo...
Quality of life effects of Various Transdermal Pain Therapies including compo...Quality of life effects of Various Transdermal Pain Therapies including compo...
Quality of life effects of Various Transdermal Pain Therapies including compo...
 
Modeling Dose Response for Risk Assessment, George Gray
Modeling Dose Response for Risk Assessment, George GrayModeling Dose Response for Risk Assessment, George Gray
Modeling Dose Response for Risk Assessment, George Gray
 
Dose selection
Dose selectionDose selection
Dose selection
 
Class dose response curve
Class dose response curveClass dose response curve
Class dose response curve
 
Isolation of anxiolytic principle from ethanolic root extract of Cardiospermu...
Isolation of anxiolytic principle from ethanolic root extract of Cardiospermu...Isolation of anxiolytic principle from ethanolic root extract of Cardiospermu...
Isolation of anxiolytic principle from ethanolic root extract of Cardiospermu...
 
IOSR Journal of Pharmacy (IOSRPHR)
IOSR Journal of Pharmacy (IOSRPHR)IOSR Journal of Pharmacy (IOSRPHR)
IOSR Journal of Pharmacy (IOSRPHR)
 
Lecture 1 6 2010-1
Lecture 1 6 2010-1Lecture 1 6 2010-1
Lecture 1 6 2010-1
 
In-vitro anti-inflammatory activity of oral poly herbal formulations rashmi y...
In-vitro anti-inflammatory activity of oral poly herbal formulations rashmi y...In-vitro anti-inflammatory activity of oral poly herbal formulations rashmi y...
In-vitro anti-inflammatory activity of oral poly herbal formulations rashmi y...
 
Pharmacodynamics 2
Pharmacodynamics 2Pharmacodynamics 2
Pharmacodynamics 2
 
International Journal of Pharmaceutical Science Invention (IJPSI)
International Journal of Pharmaceutical Science Invention (IJPSI)International Journal of Pharmaceutical Science Invention (IJPSI)
International Journal of Pharmaceutical Science Invention (IJPSI)
 
Inflamation ppt
Inflamation pptInflamation ppt
Inflamation ppt
 
Ijbcp20130313 (1)
Ijbcp20130313 (1)Ijbcp20130313 (1)
Ijbcp20130313 (1)
 
Corticosteroids in dentistry and endodontics
Corticosteroids in dentistry and endodonticsCorticosteroids in dentistry and endodontics
Corticosteroids in dentistry and endodontics
 
Behavioural sensitisation to mk 801 is dose-dependent and
Behavioural sensitisation to mk 801 is dose-dependent andBehavioural sensitisation to mk 801 is dose-dependent and
Behavioural sensitisation to mk 801 is dose-dependent and
 
Oecd guide line2
Oecd guide line2Oecd guide line2
Oecd guide line2
 
臨床研究文獻 Human clinical studies with mora devices Dr. Michael Galle
臨床研究文獻 Human clinical studies with mora devices Dr. Michael Galle臨床研究文獻 Human clinical studies with mora devices Dr. Michael Galle
臨床研究文獻 Human clinical studies with mora devices Dr. Michael Galle
 
Local analgesia
Local analgesiaLocal analgesia
Local analgesia
 
In vivo and in-vitro anti-inflammatory study
In vivo and in-vitro anti-inflammatory studyIn vivo and in-vitro anti-inflammatory study
In vivo and in-vitro anti-inflammatory study
 
omar 1st
omar 1stomar 1st
omar 1st
 

Destacado (12)

Plethysmometer article 002
Plethysmometer article 002Plethysmometer article 002
Plethysmometer article 002
 
Plethysmometer article 002
Plethysmometer  article 002Plethysmometer  article 002
Plethysmometer article 002
 
Plethysmometer article 001
Plethysmometer article 001Plethysmometer article 001
Plethysmometer article 001
 
Non invasive
Non invasiveNon invasive
Non invasive
 
Plethysmometer
PlethysmometerPlethysmometer
Plethysmometer
 
Digital plethysmometer
Digital plethysmometerDigital plethysmometer
Digital plethysmometer
 
NIBP
NIBPNIBP
NIBP
 
Plethysmometer article 001
Plethysmometer article 001Plethysmometer article 001
Plethysmometer article 001
 
Invivo pharmacology
Invivo pharmacologyInvivo pharmacology
Invivo pharmacology
 
Anti Inflammatory test
Anti Inflammatory testAnti Inflammatory test
Anti Inflammatory test
 
Experimental evaluation of anti inflammatory agents
Experimental evaluation of anti inflammatory agentsExperimental evaluation of anti inflammatory agents
Experimental evaluation of anti inflammatory agents
 
Experimental research design
Experimental research designExperimental research design
Experimental research design
 

Similar a Plethysmometer article 004

In-Vitro and In-Vivo Assessment of Anti-Asthmatic Activity of Polyherbal Ayur...
In-Vitro and In-Vivo Assessment of Anti-Asthmatic Activity of Polyherbal Ayur...In-Vitro and In-Vivo Assessment of Anti-Asthmatic Activity of Polyherbal Ayur...
In-Vitro and In-Vivo Assessment of Anti-Asthmatic Activity of Polyherbal Ayur...
IOSR Journals
 
Comparing outcomes of meropenem administration strategies 2010
Comparing outcomes of meropenem administration strategies 2010Comparing outcomes of meropenem administration strategies 2010
Comparing outcomes of meropenem administration strategies 2010
eduardo de avila
 
Gentamicin, drug for treatment of early on set sepsis
Gentamicin, drug for treatment of early on set sepsisGentamicin, drug for treatment of early on set sepsis
Gentamicin, drug for treatment of early on set sepsis
uimo
 
A comparative bioavailability study of aceclofenac products in healthy human ...
A comparative bioavailability study of aceclofenac products in healthy human ...A comparative bioavailability study of aceclofenac products in healthy human ...
A comparative bioavailability study of aceclofenac products in healthy human ...
Alexander Decker
 
A comparative bioavailability study of aceclofenac products in healthy human ...
A comparative bioavailability study of aceclofenac products in healthy human ...A comparative bioavailability study of aceclofenac products in healthy human ...
A comparative bioavailability study of aceclofenac products in healthy human ...
Alexander Decker
 
Advances in pharmacology applied to maxillofacial anaesthesia
Advances in pharmacology applied to maxillofacial anaesthesiaAdvances in pharmacology applied to maxillofacial anaesthesia
Advances in pharmacology applied to maxillofacial anaesthesia
shabeel pn
 
Wright-Williams et al (2013) Effects of vasectomy & buprenorphine on cort and...
Wright-Williams et al (2013) Effects of vasectomy & buprenorphine on cort and...Wright-Williams et al (2013) Effects of vasectomy & buprenorphine on cort and...
Wright-Williams et al (2013) Effects of vasectomy & buprenorphine on cort and...
Johnny Roughan
 
ANTI-INFLAMMATORY AND ANALGESIC EFFECTS OF METHANOLIC EXTRACT OF Afrofritomia...
ANTI-INFLAMMATORY AND ANALGESIC EFFECTS OF METHANOLIC EXTRACT OF Afrofritomia...ANTI-INFLAMMATORY AND ANALGESIC EFFECTS OF METHANOLIC EXTRACT OF Afrofritomia...
ANTI-INFLAMMATORY AND ANALGESIC EFFECTS OF METHANOLIC EXTRACT OF Afrofritomia...
paperpublications3
 
EXTRAPOLATION OF IN VITRO DATA TO PRECLINICAL
EXTRAPOLATION OF IN VITRO DATA TO PRECLINICALEXTRAPOLATION OF IN VITRO DATA TO PRECLINICAL
EXTRAPOLATION OF IN VITRO DATA TO PRECLINICAL
TMU
 

Similar a Plethysmometer article 004 (20)

01_IJPBA_1959_22.pdf
01_IJPBA_1959_22.pdf01_IJPBA_1959_22.pdf
01_IJPBA_1959_22.pdf
 
In-Vitro and In-Vivo Assessment of Anti-Asthmatic Activity of Polyherbal Ayur...
In-Vitro and In-Vivo Assessment of Anti-Asthmatic Activity of Polyherbal Ayur...In-Vitro and In-Vivo Assessment of Anti-Asthmatic Activity of Polyherbal Ayur...
In-Vitro and In-Vivo Assessment of Anti-Asthmatic Activity of Polyherbal Ayur...
 
Clinic Efficacy of the Piper Ottonoides Based Ointment for the Topical Anesth...
Clinic Efficacy of the Piper Ottonoides Based Ointment for the Topical Anesth...Clinic Efficacy of the Piper Ottonoides Based Ointment for the Topical Anesth...
Clinic Efficacy of the Piper Ottonoides Based Ointment for the Topical Anesth...
 
Multimodal Regiments for Acute Pain Management - Prof. A. Husni Tanra
Multimodal Regiments for Acute  Pain Management - Prof. A. Husni TanraMultimodal Regiments for Acute  Pain Management - Prof. A. Husni Tanra
Multimodal Regiments for Acute Pain Management - Prof. A. Husni Tanra
 
Comparing outcomes of meropenem administration strategies 2010
Comparing outcomes of meropenem administration strategies 2010Comparing outcomes of meropenem administration strategies 2010
Comparing outcomes of meropenem administration strategies 2010
 
Cochrane review 2015
Cochrane review 2015Cochrane review 2015
Cochrane review 2015
 
Effect of ginger infusion on chemotherapy induced nausea
Effect of ginger infusion on chemotherapy induced nauseaEffect of ginger infusion on chemotherapy induced nausea
Effect of ginger infusion on chemotherapy induced nausea
 
UG THESIS SUPERVISION
UG THESIS SUPERVISIONUG THESIS SUPERVISION
UG THESIS SUPERVISION
 
Gentamicin, drug for treatment of early on set sepsis
Gentamicin, drug for treatment of early on set sepsisGentamicin, drug for treatment of early on set sepsis
Gentamicin, drug for treatment of early on set sepsis
 
various approaches to drug discovery
various approaches to drug discoveryvarious approaches to drug discovery
various approaches to drug discovery
 
Sumary of thesis 1
Sumary of thesis  1Sumary of thesis  1
Sumary of thesis 1
 
A comparative bioavailability study of aceclofenac products in healthy human ...
A comparative bioavailability study of aceclofenac products in healthy human ...A comparative bioavailability study of aceclofenac products in healthy human ...
A comparative bioavailability study of aceclofenac products in healthy human ...
 
A comparative bioavailability study of aceclofenac products in healthy human ...
A comparative bioavailability study of aceclofenac products in healthy human ...A comparative bioavailability study of aceclofenac products in healthy human ...
A comparative bioavailability study of aceclofenac products in healthy human ...
 
Advances in pharmacology applied to maxillofacial anaesthesia
Advances in pharmacology applied to maxillofacial anaesthesiaAdvances in pharmacology applied to maxillofacial anaesthesia
Advances in pharmacology applied to maxillofacial anaesthesia
 
neuropathic pain
neuropathic painneuropathic pain
neuropathic pain
 
Wright-Williams et al (2013) Effects of vasectomy & buprenorphine on cort and...
Wright-Williams et al (2013) Effects of vasectomy & buprenorphine on cort and...Wright-Williams et al (2013) Effects of vasectomy & buprenorphine on cort and...
Wright-Williams et al (2013) Effects of vasectomy & buprenorphine on cort and...
 
Extrapolation of in vitro data to preclinical and.pptx
Extrapolation of in vitro data to preclinical and.pptxExtrapolation of in vitro data to preclinical and.pptx
Extrapolation of in vitro data to preclinical and.pptx
 
ANTI-INFLAMMATORY AND ANALGESIC EFFECTS OF METHANOLIC EXTRACT OF Afrofritomia...
ANTI-INFLAMMATORY AND ANALGESIC EFFECTS OF METHANOLIC EXTRACT OF Afrofritomia...ANTI-INFLAMMATORY AND ANALGESIC EFFECTS OF METHANOLIC EXTRACT OF Afrofritomia...
ANTI-INFLAMMATORY AND ANALGESIC EFFECTS OF METHANOLIC EXTRACT OF Afrofritomia...
 
EXTRAPOLATION OF IN VITRO DATA TO PRECLINICAL
EXTRAPOLATION OF IN VITRO DATA TO PRECLINICALEXTRAPOLATION OF IN VITRO DATA TO PRECLINICAL
EXTRAPOLATION OF IN VITRO DATA TO PRECLINICAL
 
Abstracts of different published research related to homoeopathy medical scie...
Abstracts of different published research related to homoeopathy medical scie...Abstracts of different published research related to homoeopathy medical scie...
Abstracts of different published research related to homoeopathy medical scie...
 

Último

Russian Escorts Girls Nehru Place ZINATHI 🔝9711199012 ☪ 24/7 Call Girls Delhi
Russian Escorts Girls  Nehru Place ZINATHI 🔝9711199012 ☪ 24/7 Call Girls DelhiRussian Escorts Girls  Nehru Place ZINATHI 🔝9711199012 ☪ 24/7 Call Girls Delhi
Russian Escorts Girls Nehru Place ZINATHI 🔝9711199012 ☪ 24/7 Call Girls Delhi
AlinaDevecerski
 
Call Girls Bhubaneswar Just Call 9907093804 Top Class Call Girl Service Avail...
Call Girls Bhubaneswar Just Call 9907093804 Top Class Call Girl Service Avail...Call Girls Bhubaneswar Just Call 9907093804 Top Class Call Girl Service Avail...
Call Girls Bhubaneswar Just Call 9907093804 Top Class Call Girl Service Avail...
Dipal Arora
 

Último (20)

Lucknow Call girls - 8800925952 - 24x7 service with hotel room
Lucknow Call girls - 8800925952 - 24x7 service with hotel roomLucknow Call girls - 8800925952 - 24x7 service with hotel room
Lucknow Call girls - 8800925952 - 24x7 service with hotel room
 
Premium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort Service
Premium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort ServicePremium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort Service
Premium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort Service
 
Call Girls Siliguri Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Siliguri Just Call 8250077686 Top Class Call Girl Service AvailableCall Girls Siliguri Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Siliguri Just Call 8250077686 Top Class Call Girl Service Available
 
Top Rated Bangalore Call Girls Mg Road ⟟ 9332606886 ⟟ Call Me For Genuine S...
Top Rated Bangalore Call Girls Mg Road ⟟   9332606886 ⟟ Call Me For Genuine S...Top Rated Bangalore Call Girls Mg Road ⟟   9332606886 ⟟ Call Me For Genuine S...
Top Rated Bangalore Call Girls Mg Road ⟟ 9332606886 ⟟ Call Me For Genuine S...
 
Call Girls Tirupati Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Tirupati Just Call 8250077686 Top Class Call Girl Service AvailableCall Girls Tirupati Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Tirupati Just Call 8250077686 Top Class Call Girl Service Available
 
Top Rated Hyderabad Call Girls Erragadda ⟟ 6297143586 ⟟ Call Me For Genuine ...
Top Rated  Hyderabad Call Girls Erragadda ⟟ 6297143586 ⟟ Call Me For Genuine ...Top Rated  Hyderabad Call Girls Erragadda ⟟ 6297143586 ⟟ Call Me For Genuine ...
Top Rated Hyderabad Call Girls Erragadda ⟟ 6297143586 ⟟ Call Me For Genuine ...
 
Manyata Tech Park ( Call Girls ) Bangalore ✔ 6297143586 ✔ Hot Model With Sexy...
Manyata Tech Park ( Call Girls ) Bangalore ✔ 6297143586 ✔ Hot Model With Sexy...Manyata Tech Park ( Call Girls ) Bangalore ✔ 6297143586 ✔ Hot Model With Sexy...
Manyata Tech Park ( Call Girls ) Bangalore ✔ 6297143586 ✔ Hot Model With Sexy...
 
Best Rate (Hyderabad) Call Girls Jahanuma ⟟ 8250192130 ⟟ High Class Call Girl...
Best Rate (Hyderabad) Call Girls Jahanuma ⟟ 8250192130 ⟟ High Class Call Girl...Best Rate (Hyderabad) Call Girls Jahanuma ⟟ 8250192130 ⟟ High Class Call Girl...
Best Rate (Hyderabad) Call Girls Jahanuma ⟟ 8250192130 ⟟ High Class Call Girl...
 
Call Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore Escorts
Call Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore EscortsCall Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore Escorts
Call Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore Escorts
 
Pondicherry Call Girls Book Now 9630942363 Top Class Pondicherry Escort Servi...
Pondicherry Call Girls Book Now 9630942363 Top Class Pondicherry Escort Servi...Pondicherry Call Girls Book Now 9630942363 Top Class Pondicherry Escort Servi...
Pondicherry Call Girls Book Now 9630942363 Top Class Pondicherry Escort Servi...
 
Russian Escorts Girls Nehru Place ZINATHI 🔝9711199012 ☪ 24/7 Call Girls Delhi
Russian Escorts Girls  Nehru Place ZINATHI 🔝9711199012 ☪ 24/7 Call Girls DelhiRussian Escorts Girls  Nehru Place ZINATHI 🔝9711199012 ☪ 24/7 Call Girls Delhi
Russian Escorts Girls Nehru Place ZINATHI 🔝9711199012 ☪ 24/7 Call Girls Delhi
 
Call Girls Visakhapatnam Just Call 9907093804 Top Class Call Girl Service Ava...
Call Girls Visakhapatnam Just Call 9907093804 Top Class Call Girl Service Ava...Call Girls Visakhapatnam Just Call 9907093804 Top Class Call Girl Service Ava...
Call Girls Visakhapatnam Just Call 9907093804 Top Class Call Girl Service Ava...
 
Book Paid Powai Call Girls Mumbai 𖠋 9930245274 𖠋Low Budget Full Independent H...
Book Paid Powai Call Girls Mumbai 𖠋 9930245274 𖠋Low Budget Full Independent H...Book Paid Powai Call Girls Mumbai 𖠋 9930245274 𖠋Low Budget Full Independent H...
Book Paid Powai Call Girls Mumbai 𖠋 9930245274 𖠋Low Budget Full Independent H...
 
Top Rated Bangalore Call Girls Richmond Circle ⟟ 9332606886 ⟟ Call Me For Ge...
Top Rated Bangalore Call Girls Richmond Circle ⟟  9332606886 ⟟ Call Me For Ge...Top Rated Bangalore Call Girls Richmond Circle ⟟  9332606886 ⟟ Call Me For Ge...
Top Rated Bangalore Call Girls Richmond Circle ⟟ 9332606886 ⟟ Call Me For Ge...
 
Call Girls Ludhiana Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Ludhiana Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Ludhiana Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Ludhiana Just Call 9907093804 Top Class Call Girl Service Available
 
Call Girls Bhubaneswar Just Call 9907093804 Top Class Call Girl Service Avail...
Call Girls Bhubaneswar Just Call 9907093804 Top Class Call Girl Service Avail...Call Girls Bhubaneswar Just Call 9907093804 Top Class Call Girl Service Avail...
Call Girls Bhubaneswar Just Call 9907093804 Top Class Call Girl Service Avail...
 
♛VVIP Hyderabad Call Girls Chintalkunta🖕7001035870🖕Riya Kappor Top Call Girl ...
♛VVIP Hyderabad Call Girls Chintalkunta🖕7001035870🖕Riya Kappor Top Call Girl ...♛VVIP Hyderabad Call Girls Chintalkunta🖕7001035870🖕Riya Kappor Top Call Girl ...
♛VVIP Hyderabad Call Girls Chintalkunta🖕7001035870🖕Riya Kappor Top Call Girl ...
 
Call Girls Bangalore Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Bangalore Just Call 8250077686 Top Class Call Girl Service AvailableCall Girls Bangalore Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Bangalore Just Call 8250077686 Top Class Call Girl Service Available
 
Call Girls Cuttack Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Cuttack Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Cuttack Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Cuttack Just Call 9907093804 Top Class Call Girl Service Available
 
(Rocky) Jaipur Call Girl - 09521753030 Escorts Service 50% Off with Cash ON D...
(Rocky) Jaipur Call Girl - 09521753030 Escorts Service 50% Off with Cash ON D...(Rocky) Jaipur Call Girl - 09521753030 Escorts Service 50% Off with Cash ON D...
(Rocky) Jaipur Call Girl - 09521753030 Escorts Service 50% Off with Cash ON D...
 

Plethysmometer article 004

  • 1. Synergism between paracetamol and nonsteroidal anti-inflammatory drugs in experimental acute pain Hugo F. Miranda a,*, Margarita M. Puig b , Juan Carlos Prieto a , Gianni Pinardi a a Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Clasificador 70.000, Santiago 7, Chile b Department of Anesthesiology, Hospital del Mar, Paseo Marı´timo 25, 08003 Barcelona, Spain Abstract The antinociception induced by the intraperitoneal coadministration of combinations of paracetamol with the nonsteroidal anti- inflammatory drugs (NSAIDs) diclofenac, ibuprofen, ketoprofen, meloxicam, metamizol, naproxen, nimesulide, parecoxib and pir- oxicam was studied by isobolographic analysis in the acetic acid abdominal constriction test of mice (writhing test). The effective dose that produced 50% antinociception (ED50) was calculated from the log dose–response curves of fixed ratio combinations of paracetamol with each NSAID. By isobolographic analysis, this ED50 was compared to the theoretical additive ED50 calculated from the ED50 of paracetamol and of each NSAID alone obtained from ED50 dose–response curves. As shown by isobolographic analysis, all the combinations were synergistic, the experimental ED50s being significantly smaller than the theoretically calculated ED50s. The results of this study demonstrate potent interactions between paracetamol and NSAIDs and validate the clinical use of combinations of these drugs in the treatment of pain conditions. Keywords: Antinociception; NSAIDs; Paracetamol; Synergy; Abdominal constriction test; Writhing test; Isobologram 1. Introduction The combination of analgesics of proven efficacy is a strategy intended to achieve one or more therapeutic goals, such as facilitating patient compliance, simplifying prescribing, improving efficacy without increasing adverse effects or decreasing adverse effects without loss of efficacy (Raffa, 2001; Hyllested et al., 2002). In certain cases, the coadministration of antinociceptive agents results in synergistic effects and the doses of the individ- ual drugs can be substantially reduced (Maves et al., 1994; Salazar et al., 1995; Fairbanks and Wilcox, 1999; Kolesnikov et al., 2002; Miranda and Pinardi, 2004). The antinociceptive action of nonsteroidal anti-in- flammatory drugs (NSAIDs) is primarily due to the inhibition of prostaglandin biosynthesis through the inhibition of cyclooxygenase enzymes: COX-1 (constitu- tive) and COX-2 (inducible in inflammatory processes), even if alternative mechanisms have to be considered (Mitchell and Warner, 1999; Smith et al., 2000; Miranda et al., 2002; Warner and Mitchell, 2004). However, the absolute separation between the physiological and path- ological roles of COX-1 and COX-2 is becoming less tenable and indeed their activities overlap to a consider- able degree (Wallace, 1999). On the other hand, the mechanism of action of one of the most widely used analgesics, paracetamol or acetaminophen, remains largely unknown and at most the drug is considered to be an atypical NSAID, since it is a weak inhibitor of COXs (Botting, 2003). The following mechanisms have been postulated to explain paracetamol-induced * Corresponding author. Tel.: +56 2 678 6237; fax: +56 2 737 2783. E-mail address: hmiranda@med.uchile.cl (H.F. Miranda).
  • 2. analgesia: selective inhibition of cyclooxygenase activity in the CNS, interaction with spinal 5-HT3 receptors, interference with spinal substance P receptors or inhibition of neurons excited by substance P, activation of suprasegmental descending inhibitory pathways, increase in pituitary b-endorphin secretion, direct effects on neuronal membrane potentials (Bannwarth et al., 1995; Pelissier et al., 1995; Pini et al., 1996; Raffa and Codd, 1996; Breivik et al., 1999). NSAIDs and paracetamol are drugs widely used to treat moderate to mild pain, but they are often inad- equate against severe pain. Clinical studies on patients with musculoskeletal conditions, dental pain or post- operative pain have shown that combinations of para- cetamol and NSAIDs may provide additive pain-relief (Altman, 2004). However, a detailed evaluation of dif- ferent combinations of paracetamol with commonly used NSAIDs has not been reported. The purpose of the present study was to assess the nature of the interaction between the systemic administration of combinations of paracetamol and several NSAIDs in a rodent model of visceral pain. A broad number of clinical relevant NSAIDs are included because they are the most frequently used agents for the treatment of pain (Møiniche et al., 2003; Rømsing and Møini- che, 2004). 2. Materials and methods 2.1. Animals Male CF-1 mice (28–30 g), housed on a 12 h light–dark cycle at 22 ± 2 °C and with access to food and water ad libi- tum, were used. Experiments were performed in accordance with current Guidelines for The Care of Laboratory Animals and Ethical Guidelines for investigation of experimental pain approved by the Animal Care and Use Committee of the Fac- ulty of Medicine, University of Chile. Animals were acclima- tized to the laboratory for at least 2 h before testing, were used only once during the protocol and were killed by cervical dislocation immediately after the algesiometric test. The num- ber of animals was kept at a minimum compatible with consis- tent effects of the drug treatments. 2.2. Measurement of analgesic activity Analgesic activity was assessed by the acetic acid abdominal constriction test (writhing test), a chemical visceral pain model (Hayashi and Takemori, 1971). Mice were injected i.p. with 10 mL/kg of 0.6% acetic acid solution 30 min after the i.p. administration of the drugs, a time at which preliminary exper- iments showed occurrence of the maximum effect. A writhe is characterized by a wave of contraction of the abdominal mus- culature followed by the extension of the hind limbs. The num- ber of writhes in a 5 min period was counted, starting 5 min after acetic acid administration. Antinociceptive activity was expressed as percent inhibition of the usual number of writhes observed in control animals in this study. 2.3. Control animals Physiological salt solution (10 mL/kg) was injected intra- peritoneally (i.p.) or given orally and control animals were run interspersed concurrently with the drug treatments, which prevented the controls being run on a single group of mice at one time (19.7 ± 0.28, n = 92 i.p.; 20.1 ± 0.33, n = 12 p.o.). 2.4. Protocol Dose–response curves for the antinociceptive effect of dic- lofenac, ibuprofen, ketoprofen, meloxicam, metamizol, naproxen, nimesulide, paracetamol, parecoxib, and piroxicam were obtained using at least six animals at each of at least four doses. The drugs were injected intraperitoneally. Dose– response curves were also obtained by the oral administration of paracetamol and diclofenac. A least-squares linear regres- sion analysis of the log dose–response curves allowed the cal- culation of the dose that produced 50% of antinociception (ED50) for each drug. A dose–response curve was also obtained by the intraperitoneal coadministration of paraceta- mol with each NSAID in fixed ratio combinations of frac- tions of their respective ED50 values: 1/2, 1/4, 1/8, 1/16 (ratio values given in Table 2). A dose–response curve for the combination of paracetamol and diclofenac administered orally by gavage was also obtained with the same scheme. Isobolographic analysis was used to determine drug interac- tions. The method has been described previously in detail (Miranda et al., 2002). Supra-additivity or synergistic effect is defined as the effect of a drug combination that is higher and statistically different (ED50 significantly lower) than the theoretically calculated equieffect of a drug combination with the same proportions. If the ED50s are not statistically differ- ent, the effect of the combination is additive and additivity means that each constituent contributes with its own potency to the total effect. The interaction index was calculated as experimental ED50/theoretical ED50. If the value is close to 1, the interaction is additive. Values lower than 1 are an indi- cation of the magnitude of supra-additive or synergistic inter- actions and values higher than 1 correspond to sub-additive or antagonistic interactions (Tallarida, 2001). 2.5. Drugs The drugs were freshly dissolved in a physiological salt solu- tion. Paracetamol was provided by Bristol-Myers-Squibb, France. The NSAIDs were provided by local pharmaceutical companies: diclofenac by Novartis Chile S.A., ibuprofen by Laboratorio Chile S.A., ketoprofen by Rhone-Poulenc Ror- er, meloxicam and naproxen by Laboratorios Saval S.A., metamizol by Sanderson S.A., nimesulide by Gru¨nenthal Chilena Ltda, parecoxib and piroxicam by Pfizer Chile. Doses were expressed on the basis of the salts. 2.6. Statistical analysis Results are presented as means ± SEM or as ED50 values with 95% confidence limits (95% CL). Isobolographic calcula- tions were performed with the program Pharm Tools Pro (ver- sion 1.27, The McCary Group Inc.), based on Tallarida (2000). The statistical difference between theoretical and experimental H.F. Miranda et al.
  • 3. values was assessed by Student’s t test for independent means and P values less than 0.05 (P < 0.05) were considered significant. 3. Results 3.1. Antinociception induced by paracetamol and NSAIDs The i.p. administration of paracetamol, diclofenac, ibuprofen, ketoprofen, meloxicam, metamizol, naprox- en, nimesulide, parecoxib and piroxicam showed dose- dependent antinociceptive effects with different potencies in the abdominal constriction test of mice. In Fig. 1, data showing dose–response curves obtained for several NSAIDs injected intraperitoneally (A) and for diclofe- nac and paracetamol given by the oral route (p.o., B) are displayed as an example. The curves were statistical- ly parallel. The ED50 values and 95% CL for the antin- ociceptive effects of i.p. paracetamol and NSAIDs are shown in Table 1. 3.2. Interactions between paracetamol and NSAIDs The antinociceptive activity of the i.p. coadministra- tion of fixed ratio combinations of ED50 fractions of each NSAID with paracetamol was assessed by calculat- ing the ED50 of the mixtures from the corresponding dose–response curves. The isobolographic analysis of all combinations of NSAIDs with paracetamol, administered i.p., resulted Fig. 1. Examples of dose–response curves for the antinociception induced by the intraperitoneal (A) and oral (B) administration of paracetamol (s), diclofenac (d), metamizol (j), parecoxib (m) and piroxicam (h). Each point is the mean ± SEM of 6–8 animals. Table 1 ED50 values and 95% CL for the antinociceptive effect of NSAIDs in the writhing test of mice Drugs ED50 mg/kg i.p. CL ED50 mg/kg p.o. CL Ibuprofen 0.8 0.12–6.1 Parecoxib 1.6 1.0–2.6 Meloxicam 6.5 4.9–8.4 Nimesulide 7.6 5.8–9.8 Diclofenac 8.1 5.7–10.8 17.9 17.6–18.5 Piroxicam 8.5 6.4–11.2 Metamizol 28.5 21.8–37.6 Ketoprofen 30.3 25.5–36.1 Naproxen 46.4 35.7–60.5 Paracetamol 49.4 33.4–59.1 127.2 112.2–143.6 Values are ranked in descending order of potency. Fig. 2. Isobolograms for the intraperitoneal administration of the combinations nimesulide/paracetamol (A), naproxen/paracetamol (B) and diclofenac/paracetamol (C). Filled circles correspond to the theoretical ED50 with 95% CL and open circles correspond to the experimental ED50 with 95% CL. H.F. Miranda et al.
  • 4. in synergistic interactions of different magnitude, as can be seen in Figs. 2–4. The synergy was also present when the drug combination was administered orally (Fig. 5). Table 2 shows the theoretical additive and the experimental observed ED50 values for the combinations, with their 95% CL and their fixed ratios. Furthermore, the interaction index values of the i.p. combinations demonstrated the following rank of potencies: nimesulide/paracetamol > naproxen/ paracetamol > diclofenac/paracetamol > metamizol/ paracetamol > ibuprofen/paracetamol > meloxicam/ paracetamol > piroxicam/paracetamol > parecoxib/ paracetamol > ketoprofen/paracetamol (Table 3). 4. Discussion The intraperitoneal coadministration of paracetamol with the following NSAIDs, diclofenac, ibuprofen, keto- profen, meloxicam, metamizol, naproxen, nimesulide, parecoxib and piroxicam, produced a dose-dependent antinociceptive effect in the chemical viscero-somatic assay of the acetic acid abdominal constriction test. The oral administration of paracetamol and diclofenac showed similar results. The parallelism of the dose–re- sponse curves is consistent with a common mechanism of action. These results confirm previous findings in which either paracetamol or the above-mentioned NSA- IDs showed antinociceptive activity in this algesiometric test (Miranda et al., 2001, 2002, 2003; Pinardi et al., 2001; Botting, 2003; Miranda and Pinardi, 2004). Every combination tested showed a synergic interac- tion. The differences in the magnitude of the observed Fig. 3. Isobolograms for the intraperitoneal administration of the combinations metamizol/paracetamol (A), ibuprofen/paracetamol (B) and meloxicam/paracetamol (C). Symbols as in Fig. 2. Fig. 4. Isobolograms for the intraperitoneal administration of the combinations piroxicam/paracetamol (A), parecoxib/paracetamol (B) and ketoprofen/paracetamol (C). Symbols as in Fig. 2. Fig. 5. Isobologram for the oral administration of the combination diclofenac/paracetamol. Interaction index = 0.445. Symbols as in Fig. 2. H.F. Miranda et al.
  • 5. interactions with the different NSAIDs, expressed by the interaction index, may be related with their COX selec- tivity, the potency of COX inhibition, pharmacokinetic properties or with additional mechanisms of action. Compared to the salicylates, NSAIDs are highly lipo- philic substances able to cross the blood–brain barrier (Bannwarth et al., 1989; Mehanna, 2003) and this factor does not seem to contribute significantly to the interac- tion. There is no evident relationship between NSAIDs ED50 values (Table 1) reflecting relative potency and the interaction index. COX-2 selectivity (parecox- ib > meloxicam > nimesulide, Warner and Mitchell, 2004) may be inversely related to the interaction index (Table 3), but this apparent relationship needs further studies. Additional mechanisms of action other than COX inhibition may strongly influence the interaction. NSAIDs are eliminated primarily by hepatic glucu- ronidation and an inverse relationship may exist between glucuronidation and NSAIDs’ efficacy, since an increase in the metabolism of these drugs results in a decrease of their pharmacological effect. The relative rates of NSAIDs glucuronidation are ketoprofen > ibu- profen > diclofenac > naproxen (Kuehl et al., 2005). This order of metabolic inactivation seems to be inverse- ly related with the strength of the interaction index observed, since ketoprofen has the higher value and naproxen the lowest (Table 3). The findings of the present work are important, because they are concordant with several clinical stud- ies in which, in different surgical procedures, the com- binations of paracetamol with ketoprofen or diclofenac were associated with lower pain scores than paraceta- mol alone (Hyllested et al., 2002). Clinical information comparing the degree of analgesia induced by paracet- amol/NSAIDs combinations versus that induced by the NSAIDs alone, however sparse the available data might be, suggests that standard doses of paracetamol enhance the analgesic efficacy when added to ketopro- fen, diclofenac or naproxen (Seideman, 1993; Breivik et al., 1999). The analgesic effect of NSAIDs may not simply reflect a common mechanism of action, namely inhibi- tion of prostaglandin biosynthesis (Vane et al., 1998; Smith et al., 2000; Chandrasekharan et al., 2002; Warner and Mitchell, 2004). Additional mechanisms have been suggested for the antinociceptive effect of different NSAIDs (Granados-Soto et al., 1995; Cash- man, 1996; Papworth et al., 1999; Miranda et al., 2001). It is interesting to note that COX-3, a splice var- iant of COX-1, was considered to be the central site of action of paracetamol, but this selective interaction is unlikely to be clinically relevant (Graham and Scott, 2005) and the mechanism of paracetamol-induced anal- gesia in some way must affect COX-1 and/or COX-2 Table 2 Theoretical and experimental ED50 values with 95% CL and ratios for combinations of NSAIDs with paracetamol (PARA) in the writhing test of mice Combinations ED50 (95% CL) mg/kg i.p. Ratio NSAID:PARA Theoretical Experimental Naproxen/paracetamol 47.9 (35.3–64.9) 13.9* (9.9–18.3) 1:1.06 Metamizol/paracetamol 38.9 (30.7–49.3) 13.8* (10.3–18.8) 1:1.73 Piroxicam/paracetamol 28.9 (21.4–39.0) 11.9* (8.8–17.1) 1:5.81 Diclofenac/paracetamol 28.8 (20.6–40.1) 7.4* (4.4–15.4) 1:6.03 Nimesulide/paracetamol 28.5 (20.8–38.9) 7.4* (4.4–10.6) 1:6.50 Meloxicam/paracetamol 27.9 (20.8–37.5) 11.4* (8.3–16.5) 1:7.60 Parecoxib/paracetamol 26.5 (19.2–33.8) 12.2* (10.0–14.8) 1:30.1 Ketoprofen/paracetamol 39.3 (33.5–47.4) 20.4* (15.8–25.6) 1:31.6 Ibuprofen/paracetamol 25.1 (19.2–32.8) 9.6* (8.3–11.1) 1:58.1 Combinations ED50 (95% CL) mg/kg p.o. Ratio NSAID:PARA Theoretical Experimental Diclofenac/paracetamol 72.6 (63.3–83.1) 32.3* (21.6–53.3) 1:7.11 * P < 0.05. Table 3 Interaction index (I.I.) of the combinations of NSAIDs with Paracet- amol in the writhing test Combination Interaction index i.p. Nimesulide/paracetamol 0.280 Naproxen/paracetamol 0.291 Diclofenac/paracetamol 0.311 Metamizol/paracetamol 0.356 Ibuprofen/paracetamol 0.380 Meloxicam/paracetamol 0.408 Piroxicam/paracetamol 0.413 Parecoxib/paracetamol 0.477 Ketoprofen/paracetamol 0.511 Combination Interaction index p.o. Diclofenac/paracetamol 0.445 Interaction index values i.p. are listed in ascending order. Lower values indicate higher potency of the combinations. H.F. Miranda et al.
  • 6. (Schwab et al., 2003). The study of Koppert et al. (2004) supports the assumption that additional mecha- nisms are involved in the antihyperalgesic action of paracetamol, since this drug is a nonspecific and weak inhibitor of COX-3. Recent data from Lucas et al. (2005) suggest that paracetamol interferes only with the oxidation state of COX-3. A mechanism of action has been recently suggested for paracetamol-induced analgesia in the mouse abdominal constriction test through a central action paralleled by a reduction in brain PGE2 concentrations (Cashman, 1996; Botting and Ayoub, 2005). Other findings suggested that paracetamol elicits the activation of one or more endogenous opioid path- ways (Raffa et al., 2000, 2004). Furthermore, paracet- amol may stimulate the activity of descending 5-HT pathways that inhibit nociceptive signal transmission in the spinal cord (Bonnefont et al., 2003). Taken together, these observations suggest that several mech- anisms are probably implicated in the antinociceptive activities of paracetamol and of NSAIDs, many of them at central levels, all of which contribute to the synergy of the combinations, and justify the differenc- es in the interaction index of paracetamol/NSAID mixtures observed in the present work. The mecha- nisms responsible for the synergism in the analgesic activity of paracetamol/NSAIDs combinations are not clear; however, according to the information in the literature, different systems are partially involved and further experiments are required to completely characterize the pharmacological basis of the synergic effect. In conclusion, the data of the present study demon- strated that paracetamol combined with NSAIDs pro- duces a supra-additive or synergic analgesic effect. It may be noted that the doses of paracetamol and NSAIDs are very small and if they are compared with those referred in the literature, it is possible to suggest that the combinations of paracetamol and NSAIDs will be effective for the clinical treatment of pain. In addition, it is demonstrated that the effect of the com- binations paracetamol/NSAIDs is superior to that of either component alone. Therefore, these mixtures are a viable alternative to clinical pain management, especially because the low doses of the components may be a potential index of lower incidence of adverse effects. Acknowledgements This work was partially supported by Project No. 1040873 from FONDECYT, Chile, and by a grant from Fondo de Investigaciones Sanitarias # 03/0245, Madrid, Spain. The expert technical assistance of J. Lo´pez and A. Correa is gratefully acknowledged. References Altman RD. A rationale for combining acetaminophen and NSAIDs for mild-to-moderate pain. Clin Exp Reumatol 2004;22:110–7. Bannwarth B, Netter P, Pourel J, Rover RJ, Gaucher A. Clinical pharmacokinetics of nonsteroidal anti-inflammatory drugs in the cerebrospinal fluid. Biomed Pharmacother 1989;43:121–6. Bannwarth B, Demotes-Mainard F, Schaeverbeke T, Labat L, Dehais J. Central analgesic effects of aspirin-like drugs. Fundam Clin Pharmacol 1995;9:1–7. Bonnefont J, Courade JP, Alloui A, Eschalier A. Antinociceptive mechanism of action of paracetamol. Drugs 2003;63:1–4. Botting R. COX-1 and COX-3 inhibitors. Thrombosis Res 2003;110:269–72. Botting R, Ayoub SS. COX-3 and the mechanism of action of paracetamol / acetaminophen. Prostagland Leukot Essent Fatty Acids 2005;72:85–7. Breivik EK, Barkvoll P, Skovlund E. Combined diclofenac with acetaminophen or acetominophen-codeine after oral surgery: a randomized, double-blind single-dose study. Clin Pharmacol Ther 1999;66:625–35. Cashman JN. The mechanisms of action of NSAIDs in analgesia. Drugs 1996;52(Suppl. 5):13–23. Chandrasekharan NV, Dai H, Roos LT, Evanson NK, Tomsik J, Elton TS, Simmons DL. COX-3, a cyclooxygenase-1 variant inhibited by acetaminophen and other analgesic/antipyretic drugs: cloning, structure, and expression. Proc Natl Acad Sci USA 2002;99:13926–31. Fairbanks CA, Wilcox GL. Spinal antinociceptive synergism between morphine and clonidine persists in mice made acutely or chronically tolerant to morphine. J Pharmacol Exp Ther 1999;288:1107–16. Graham GG, Scott K. Mechanism of action of paracetamol. Am J Therap 2005;12:46–55. Granados-Soto V, Flores-Murrieta FJ, Castan˜eda-Herna´ndez G, Lopez-Mun˜oz FJ. Evidence for the involvement of nitric oxide in the antinociceptive effect of ketorolac. Eur J Pharmacol 1995;277:281–4. Hayashi G, Takemori AE. The type of analgesic receptor interaction involved in cartain analgesic assays. Eur J Pharnacol 1971;16:63–6. Hyllested M, Jones S, Pedersen JL, Kehlet H. Comparative effect of paracetamol, NSAIDs or their combination in postoperative pain management: a qualitative review. Br J Anaesth 2002; 88:199–214. Kolesnikov YA, Wilson RS, Pasternak GW. Synergistic analgesic interactions between hydrocodone and ibuprofen. Anesth Analg 2002;97:1721–3. Koppert W, Wehrfritz A, Korber N, Sittl R, Albrecht S, Schuttler J, Schmelz M. The cyclooxygenase isozyme inhibitors parecoxib and paracetamol reduce central hyperalgesia in humans. Pain 2004;108:148–53. Kuehl GE, Lampe JW, Potter JD, Bigler J. Glucuronidation of nonsteroidal anti-inflammatory drugs: identifying the enzymes responsible in human liver microsomes. Drug Metab Dispos 2005;33:1027–35. Lucas R, Warner TD, Vujnovic I, Mitchell JA. Cellular mechanisms of acetaminophen: role of cyclo-oxygenase. FASEB J 2005;19:635–57. Maves TJ, Pechman PS, Meller ST, Gebhart GF. Ketorolac poten- tiates morphine antinociception during visceral nociception in the rat. Anesthesiology 1994;80:1094–101. Mehanna AS. NSAIDs: chemistry and pharmacological actions. Am J Pharm Educ 2003;67:1–7. Miranda HF, Sierralta F, Pinardi G. An isobolographic analysis of the adrenergic modulation of diclofenac antinociception. Anesth Analg 2001;93:430–5. Miranda HF, Sierralta F, Pinardi G. Neostigmine interactions with non steroidal anti-inflammatory drugs. Br J Pharmacol 2002;135:1591–7. H.F. Miranda et al.
  • 7. Miranda HF, Lemus I, Pinardi G. Effect of the inhibition of serotonin biosynthesis on the antinociception induced by non- steroidal anti-inflammatory drugs. Brain Res Bull 2003; 61:417–25. Miranda HF, Pinardi G. Isobolographic analysis of the antinociceptive interactions of clonidine with nonsteroidal anti-inflammatory drugs. Pharmacol Res 2004;50:273–8. Mitchell JA, Warner TD. Cyclo-oxygenase 2: pharmacology, physiol- ogy, biochemistry and relevance to NSAID therapy. Br J Pharma- col 1999;128:1121–32. Møiniche S, Rømsing J, Dahl JB, Tramer MR. Nonsteroidal anti- inflammatory drugs and the risk of operative site bleeding after tonsillectomy: a quantitative systematic review. Anesth Analg 2003;96:68–77. Papworth J, Colville-Nash P, Alam C, Seed M, Willoughby S. The depletion of substance P by diclofenac in the mouse. Eur J Pharmacol 1999;325:R1–2. Pelissier T, Alloui A, Paeile C, Eschalier A. Evidence of a central antinociceptive effect of paracetamol involving spinal 5-HT3 receptors. Neuro Report 1995;6:1546–8. Pinardi G, Sierralta F, Miranda HF. Interaction between the antin- ociceptive effect of ketoprofen and adrenergic modulatory systems. Inflammation 2001;25:233–69. Pini LA, Sandrini M, Vitale G. The antinociceptive action of paracetamol is associated with changes in the serotonergic system in the rat brain. Eur J Pharmacol 1996;308:31–40. Raffa RB, Codd E. Lack of binding of acetaminophen to 5-HT receptor or uptake sites (or eleven other binding/uptake assays). Life Sci 1996;59:PL37–40. Raffa RB, Stone Jr DJ, Tallarida RJ. Discovery of self synergistic spinal/supraspinal antinociception produced by acetaminophen (paracetamol). J Pharmacol Exp Ther 2000;295:291–4. Raffa RB. Pharmacology of oral combination analgesics: rational therapy for pain. J Clin Pharm Ther 2001;26:257–64. Raffa RB, Walker EA, Sterious SN. Opioid receptors and acetamino- phen (paracetamol). Eur J Pharmacol 2004;503:209–10. Rømsing J, Møiniche SA. Systematic review of COX-2 inhibitors compared with traditional NSAIDs, or different COX-2 inhibitors for post-operative pain. Acta Anaesthesiol Scand 2004;48:525–46. Salazar LA, Martı´nez RV, Lo´pez-Mun˜oz FJ. Synergistic antinocicep- tive interaction between aspirin and tramadol, the atypical opioid analgesic in the rat. Drug Dev Res 1995;36:119–24. Schwab JM, Schluesener J, Laufer S. COX-3: just another COX or the solitary elusive target of paracetamol. Lancet 2003;361:981–2. Seideman P. Paracetamol in rheumatoid arthritis. Agent Actions 1993;44:7–12. Smith AL, Dewitt DL, Garavito RM. Cyclooxygenases: structural, cellular, and molecular biology. Ann Rev Biochem 2000;69:145–82. Tallarida RJ. Drug synergism and dose–effect data analysis. New York: Chapman & Hall/CRC; 2000. Tallarida RJ. Drug synergism: its detection and applications. J Pharmacol Exp Ther 2001;298:865–72. Vane JR, Bakhle YS, Botting RM. Cyclooxygenases 1 and 2. Annu Rev Pharmacol Toxicol 1998;38:97–120. Wallace JL. Selective COX-2 inhibitors: is the water becoming muddy? Trends Pharmacol Sci 1999;20:4–6. Warner TD, Mitchell JA. Cyclooxygenases: new forms, new inhibitors, and lessons from the clinic. FASEB J. 2004;18:790–804. H.F. Miranda et al.