SlideShare una empresa de Scribd logo
1 de 36
Acid-Base Systems
Simple Analytical Formulas
aqion.de
updated 2017-08-30
Acids can be investigated
• in the lab (titrations)
• with modern hydrochemistry software
(one click  pH)
• by chemical thermodynamics
(derive equations, plot pH curves)
• ...
Motivation
that’s our aim
Aim:
Simple closed-form equations for
• titration curves
• buffer intensity β
• 1st derivative of β
Motivation
examples on next slides
for any N-protic
acid HNA
pK1 pK2
pH
titration curve
buffer intensity β
1st derivative of β
Input • thermodynamic data: K1, K2
• amount of acid: CT = 100 mM
Outputequivalentfraction
Example
H2CO3
pK1 pK2 pK2
pK2 pK3pK1
HA (acetic acid)
H2A (carbonic acid) H3A (phosphoric acid)
H3A (citric acid)
pHpH
CT = 100 mM pK1
titration curve
buffer intensity β
1st derivative of β
T
1
C
w
Y 





 

T
2
12
C
x2w
YY303.2







T
3
1213
2
C
w
Y2YY3Y303.2
titration
curve
buffer
intensity β
1st derivative
of 
amount of acidthe building blocks
Y1 , Y2 , Y3
... and these are the formulas:
Building-Block Hierarchy
K1 , K2 , ... KN
k0 =1, k1=K1 , k2=K1K2 , ...
aj(x) =
YL(x) =moments (sums of aj)
x = 10-pH
)x(a
x
k
0j
j






)x(aj j
LN
0j
AcidHNA
ionization fractions
titration curves buffer intensity β 1st derivative of β
H2O: w = Kw/x – x
amount of acid CT
1
N
N
2
21
0
x
k
...
x
k
x
k
1a








acidity constants
cumulative constants
The Elegance of
Ionization
Fractions aj
(as the smallest
Building Blocks)
pK2 pK3
H3A (citric acid)
pH
pK1
pK2 pK3pK1
H3A (phosphoric acid)
Let’s start
with the derivation ..
Polyprotic Acid HNA
(The complete Set of Equations)
Part 1
the general case
(N = 1, 2, 3, ...)
Warm-Up Example: Triprotic Acid (N=3)
1st dissociation step: H3A = H+ + H2A- K1
2nd dissociation step: H2A- = H+ + HA-2 K2
3rd dissociation step: HA-2 = H+ + A-3 K3
stepwise equilibrium constants
cumulative equilibrium constants
total amount: CT  [H3A]T = [H3A] + [H2A-] + [HA-2] + [A-3]
H3A = H+ + H2A- k1 = K1
H3A = 2H+ + HA-2 k2 = K1K2
H3A = 3H+ + A-3 k3 = K1K2K3
number of variables (unknowns): N+3
H+ OH- H3A H2A- HA-2 A-3
requires N+3
equations
0 = [H+] – [OH-] – [H2A-] – 2[A-2] – 3[A-3]
Kw = {H+} {OH-} = 10-14
k1 = {H+}1 {H2A-} / {H3A}
k2 = {H+}2 {HA-2} / {H3A}
k3 = {H+}3 {A-3} / {H3A}
mass balance
law of mass action
charge balance
CT = [H3A] + [H2A-] + [HA-2] + [A-3]
N+1 equations rely on
activities {..}
2 equations rely on
concentrations [..]
Set of N+3 Equations (for Triprotic Acid H3A)
Kw = {H+} {OH-} (self-ionization H2O)
k1 = {H+}1 {HN-1 A-} / {HNA}
k2 = {H+}2 {HN-2 A-2} / {HNA}
kN = {H+}N {A-N} / {HNA}
CT = [HNA] + [HN-1A-] + ... + [A-N] (mass balance)
0 = [H+] – [OH-] – [HN-1A-] – 2[HN-2A-2] – ... – N[A-N] (charge balance)
N+3 species (variables/unknowns): H+, OH-, HNA, HN-1A-, ... A-N
acid
N-protic acid HN A
N+1 acid species
N equations
Set of N+3 equations
given CT  the pH is determined, and vice versa
(0 degrees of freedom)
pH =  lg [H+]
To study pH dependences we add one degree of freedom
to the system: CB
For this purpose, only the last line in the set of N+3 equations
should be changed:
0 = [H+] – [OH-] – [HN-1A-] – 2[HN-2A-2] – ... – N[A-N]
CB = [H+] – [OH-] – [HN-1A-] – 2[HN-2A-2] – ... – N[A-N]
(chargebalance)
(protonbalance)
CB is the amount of strong base BOH = B+ + OH-
(where B+ = Na+, K+, NH4
+, ...)
N+4 species (variables): H+, OH-, HNA, HN-1A-, ... A-N, CB
N-protic acid HNA + Strong Base BOH
N+1 acid species
Set of N+3 equations
1 degree of freedom
amount
of base
Kw = {H+} {OH-} (self-ionization H2O)
k1 = {H+}1 {HN-1 A-} / {HNA}
k2 = {H+}2 {HN-2 A-2} / {HNA}
kN = {H+}N {A-N} / {HNA}
CT = [HNA] + [HN-1A-] + ... + [A-N] (mass balance)
CB = [H+] – [OH-] – [HN-1A-] – 2[HN-2A-2] – ... – N[A-N] (protonbalance)
acid
N equations
Acid Formula Type pK1 pK2 pK3
acetic acid CH3COOH HA 4.76
(composite) carbonic
acid
H2CO3 H2A 6.35 10.33
phosphoric acid H3PO4 H3A 2.15 7.21 12.35
citric acid C6H8O7 H3A 3.13 4.76 6.4
Example: Common Acids for N = 1, 2 and 3
pKj =  lg Kj
An acid is completely defined by these
thermodynamic data (equilibrium constants).
Solving the Set of Equations
(Notation & Assumptions)
Part 2
x = [H+] = 10-pH
dissolved species
[j] = [HN-jA-j] for j = 0,1, ... N
“pure-water balance”
w = [OH-] – [H+] = Kw/x – x
ionization fractions
aj = [j]/CT for j = 0,1, ... N
pH = – log x
Terms&Abbreviations
equivalence fraction
n = CB/CT
Assumptions
Replace
Activities {..}  Concentrations [..]
This is legitimate for:
– small ionic strengths, I0 (dilute systems)
– or conditional equilibrium constants
Kw = x(x+w) (self-ionization H2O)
k1 = x(a1/a0)
k2 = x(a2/a0)
kN = x(aN/a0)
1 = a0 + a1 + a2 + ... + aN (mass balance)
n = – w/CT – (a1 + 2a2 + ... + NaN) (protonbalance)
pure
acid
N equations
Set of N+3 equations
Abbreviations
Assumptions
HN A + Strong Base
0j
j
j a
x
k
a 






1
N
N
2
21
0
x
k
...
x
k
x
k
1a








Ionization Fractions (j = 0, 1, ... N)
with
n = w/CT + Y1
pure H2O N-protic acid
proton
balance
N+1equations
strong base
n = CB/CT
Kw = x (x+w) a1 = (k1/x) a0
a2 = (k2/x2) a0
. . .
aN = (kN/xN) a0
1 = a0 + a1 + a2 + ... + aN
Y1 = a1 + 2a2 + 3a3 + ... + NaN
couples three subsystems:
H2O, HNA, BOH
pK1 pK2
pK2 pK3
pK1
HA (acetic acid)
H2A (carbonic acid)
H3A (citric acid)
pHpH
pK1
pK2 pK3pK1
H3A (phosphoric acid)
Ionization Fractions aj
Moments YL
(Sums over aj)
)x(ajY j
L
N
0j
L 

Y1 = a1 + 2a2 + ... + NaN
Y0 = a0 + a1 + ... + aN = 1
ionization fractions
Y2 = a1 + 4a2 + ... + N2aN
Y3 = a1 + 8a2 + ... + N3aN
 mass balance
 titration function
 buffer intensity β
 1st derivative of β
pK1 pK2 pK1 pK2 pK3
pK1 pK2 pK3
pK1
HA (acetic acid)
H2A (carbonic acid) H3A (phosphoric acid)
H3A (citric acid)Moments YL (for L = 1 to 4)
pHpH
n = Y1(x) +
w(x)
CT
Acid HNA
analytical solution of the Set of N+3 equations
K1 , K2 , ... KN
k0 =1, k1=K1 , k2=K1K2 , ...
aj(x) =
YL(x) =
acidity constants
cumulative constants
ionization fractions
moments (sums)
x = 10-pH
)x(a
x
k
0j
j






j
j
L
)x(aj
LEGOSet
1
N
N
2
21
0
x
k
...
x
k
x
k
1a








Applications
(Titration & Buffer Intensity)
Part 3
Titration Curves
‘Pure-Acid Limit’
T
1
C
w
Y)pH(n 
Y1 = a1 + 2a2
H2A (carbonic acid)
pK1 pK2pH1
1Y)pH(n 
CT  
ionization fractions aj
Y1 = a1 + 2a2
n = Y1
pK1 pK2pH1
Y1 = a1 + 2 a2
n = Y1 + w/CT
Titration Curves
T
1
C
w
Y)pH(n 
H2A (carbonic acid)
CT =  (pure acid)
Variation of CT
pK1 pK2 pK1 pK2 pK3
pK1 pK2 pK3pK1
HA (acetic acid)
H2A (carbonic acid) H3A (phosphoric acid)
H3A (citric acid)
n(pH)
pH
n(pH)
pH
T
1
C
w
Y)x(n 





 

T
2
12
C
x2w
YY10ln
pHd
dn
)x(








T
3
1213
2
2
2
C
w
Y2YY3Y)10(ln
pHd
nd
pHd
d
titration
curve
buffer
intensity β
1st derivative
of 
x = 10-pH
pH
CT = 100 mM
CT = 10 mM
CT = 1 mM
n (pH)
 = dn/dpH
d/dpH Buffer Intensity β
& Co.
for the
Carbonate System H2CO3
CTincreasing
pK1 pK2
pK2 pK3pK1
HA (acetic acid)
H2A (carbonic acid) H3A (phosphoric acid)
H3A (citric acid)
pHpH
CT = 1 mM
pK1 pK2 pK2
pK2 pK3pK1
HA (acetic acid)
H2A (carbonic acid) H3A (phosphoric acid)
H3A (citric acid)
pHpH
CT = 10 mM
pK1 pK2 pK2
pK2 pK3pK1
HA (acetic acid)
H2A (carbonic acid) H3A (phosphoric acid)
H3A (citric acid)
pHpH
CT = 100 mM pK1
pK1 pK2 pK1 pK2 pK3
pK1 pK2 pK3pK1
HA (acetic acid)
H2A (carbonic acid) H3A (phosphoric acid)
H3A (citric acid)
pHpH
CT  
Ref
www.aqion.de/file/acid-base-systems.pdf
www.aqion.de/site/38 (EN)
www.aqion.de/site/34 (DE)

Más contenido relacionado

La actualidad más candente

sintesis de dibenzilacetona condensacion aldolica
sintesis de dibenzilacetona condensacion aldolicasintesis de dibenzilacetona condensacion aldolica
sintesis de dibenzilacetona condensacion aldolica
Carolina Vesga Hernandez
 
Labovoorbereiding - titratie HCl met NaOH
Labovoorbereiding - titratie HCl met NaOHLabovoorbereiding - titratie HCl met NaOH
Labovoorbereiding - titratie HCl met NaOH
Tom Mortier
 
Labovoorbereiding - titratie azijnzuur met NaOH
Labovoorbereiding - titratie azijnzuur met NaOHLabovoorbereiding - titratie azijnzuur met NaOH
Labovoorbereiding - titratie azijnzuur met NaOH
Tom Mortier
 

La actualidad más candente (20)

Equivalence Points
Equivalence PointsEquivalence Points
Equivalence Points
 
Chapter 5 stoichiometric calculations summer2014
Chapter 5 stoichiometric calculations summer2014Chapter 5 stoichiometric calculations summer2014
Chapter 5 stoichiometric calculations summer2014
 
Soap and detegents
Soap and detegentsSoap and detegents
Soap and detegents
 
Pinacol
PinacolPinacol
Pinacol
 
Nitric acid Preparation & Uses Raw materials, Flow sheet diagram unit operat...
Nitric acid Preparation & Uses Raw materials, Flow sheet diagram unit operat...Nitric acid Preparation & Uses Raw materials, Flow sheet diagram unit operat...
Nitric acid Preparation & Uses Raw materials, Flow sheet diagram unit operat...
 
P h de una disolución de una base débil (amoníaco)
P h de una disolución de una base débil (amoníaco)P h de una disolución de una base débil (amoníaco)
P h de una disolución de una base débil (amoníaco)
 
Industrial chemistry
Industrial chemistryIndustrial chemistry
Industrial chemistry
 
obtencion del acido fenoxiacetico mediante la sintesis de williamson
obtencion del acido fenoxiacetico mediante la sintesis de williamsonobtencion del acido fenoxiacetico mediante la sintesis de williamson
obtencion del acido fenoxiacetico mediante la sintesis de williamson
 
sintesis de dibenzilacetona condensacion aldolica
sintesis de dibenzilacetona condensacion aldolicasintesis de dibenzilacetona condensacion aldolica
sintesis de dibenzilacetona condensacion aldolica
 
Introduction of Formic Acid
Introduction of Formic AcidIntroduction of Formic Acid
Introduction of Formic Acid
 
Química Analítica PT
Química Analítica PT Química Analítica PT
Química Analítica PT
 
Labovoorbereiding - titratie HCl met NaOH
Labovoorbereiding - titratie HCl met NaOHLabovoorbereiding - titratie HCl met NaOH
Labovoorbereiding - titratie HCl met NaOH
 
Reformatskii reaction module
Reformatskii reaction moduleReformatskii reaction module
Reformatskii reaction module
 
Unidad II: soluciones-problemas resueltos
Unidad II: soluciones-problemas resueltosUnidad II: soluciones-problemas resueltos
Unidad II: soluciones-problemas resueltos
 
Labovoorbereiding - titratie azijnzuur met NaOH
Labovoorbereiding - titratie azijnzuur met NaOHLabovoorbereiding - titratie azijnzuur met NaOH
Labovoorbereiding - titratie azijnzuur met NaOH
 
Carboxylic Acids
Carboxylic AcidsCarboxylic Acids
Carboxylic Acids
 
Practica #3 Química Analítica Equipo#6 "Alcalimetria"
Practica #3 Química Analítica Equipo#6 "Alcalimetria"Practica #3 Química Analítica Equipo#6 "Alcalimetria"
Practica #3 Química Analítica Equipo#6 "Alcalimetria"
 
Gravimetric anaysis 4 FINAL.pptx
Gravimetric anaysis 4 FINAL.pptxGravimetric anaysis 4 FINAL.pptx
Gravimetric anaysis 4 FINAL.pptx
 
Experiment 32 formal report
Experiment 32 formal reportExperiment 32 formal report
Experiment 32 formal report
 
T5 CINÉTICA QUÍMICA
T5 CINÉTICA QUÍMICAT5 CINÉTICA QUÍMICA
T5 CINÉTICA QUÍMICA
 

Similar a Acid-Base Systems

Tang 04 ka calculations 2
Tang 04   ka calculations 2Tang 04   ka calculations 2
Tang 04 ka calculations 2
mrtangextrahelp
 
Tang 05 ionization + kb 2
Tang 05   ionization + kb 2Tang 05   ionization + kb 2
Tang 05 ionization + kb 2
mrtangextrahelp
 
Equilibrium slideshare. WN.2011
Equilibrium slideshare. WN.2011Equilibrium slideshare. WN.2011
Equilibrium slideshare. WN.2011
docott
 
Lect w9 152 - buffers and ksp_alg
Lect w9 152 - buffers and ksp_algLect w9 152 - buffers and ksp_alg
Lect w9 152 - buffers and ksp_alg
chelss
 
Lect w9 buffers_exercises
Lect w9 buffers_exercisesLect w9 buffers_exercises
Lect w9 buffers_exercises
chelss
 
Lect w8 152 - ka and kb calculations_abbrev_alg
Lect w8 152 - ka and kb calculations_abbrev_algLect w8 152 - ka and kb calculations_abbrev_alg
Lect w8 152 - ka and kb calculations_abbrev_alg
chelss
 
Saponification in a batch reactor
Saponification in a batch reactorSaponification in a batch reactor
Saponification in a batch reactor
sumitnp369
 
Equilibrium student 2014 2
Equilibrium student 2014 2Equilibrium student 2014 2
Equilibrium student 2014 2
Abraham Ramirez
 

Similar a Acid-Base Systems (20)

Tang 04 ka calculations 2
Tang 04   ka calculations 2Tang 04   ka calculations 2
Tang 04 ka calculations 2
 
Tang 05 ionization + kb 2
Tang 05   ionization + kb 2Tang 05   ionization + kb 2
Tang 05 ionization + kb 2
 
Equilibrium slideshare. WN.2011
Equilibrium slideshare. WN.2011Equilibrium slideshare. WN.2011
Equilibrium slideshare. WN.2011
 
Lect w9 152 - buffers and ksp_alg
Lect w9 152 - buffers and ksp_algLect w9 152 - buffers and ksp_alg
Lect w9 152 - buffers and ksp_alg
 
Gc chemical equilibrium
Gc  chemical equilibriumGc  chemical equilibrium
Gc chemical equilibrium
 
CM4106 Review of Lesson 3 (Part 1)
CM4106 Review of Lesson 3 (Part 1)CM4106 Review of Lesson 3 (Part 1)
CM4106 Review of Lesson 3 (Part 1)
 
GC Chemical Equilibrium
GC  Chemical EquilibriumGC  Chemical Equilibrium
GC Chemical Equilibrium
 
GC Chemical Equilibrium
GC  Chemical EquilibriumGC  Chemical Equilibrium
GC Chemical Equilibrium
 
Lect w9 buffers_exercises
Lect w9 buffers_exercisesLect w9 buffers_exercises
Lect w9 buffers_exercises
 
TOPIC 18 : ACIDS AND BASES
TOPIC 18 : ACIDS AND BASES TOPIC 18 : ACIDS AND BASES
TOPIC 18 : ACIDS AND BASES
 
Chemistry Equilibrium
Chemistry EquilibriumChemistry Equilibrium
Chemistry Equilibrium
 
Chapter 14
Chapter 14Chapter 14
Chapter 14
 
Ch16
Ch16Ch16
Ch16
 
Tang 06 titration calculations
Tang 06   titration calculationsTang 06   titration calculations
Tang 06 titration calculations
 
IB Chemistry on Equilibrium Constant, Kc and Equilibrium Law.
IB Chemistry on Equilibrium Constant, Kc and Equilibrium Law.IB Chemistry on Equilibrium Constant, Kc and Equilibrium Law.
IB Chemistry on Equilibrium Constant, Kc and Equilibrium Law.
 
c5-chemkinetic_ko_thi_effect_of_temperature_and_concentration.pptx
c5-chemkinetic_ko_thi_effect_of_temperature_and_concentration.pptxc5-chemkinetic_ko_thi_effect_of_temperature_and_concentration.pptx
c5-chemkinetic_ko_thi_effect_of_temperature_and_concentration.pptx
 
Lect w8 152 - ka and kb calculations_abbrev_alg
Lect w8 152 - ka and kb calculations_abbrev_algLect w8 152 - ka and kb calculations_abbrev_alg
Lect w8 152 - ka and kb calculations_abbrev_alg
 
Chemical Reaction Equilibrium
Chemical Reaction EquilibriumChemical Reaction Equilibrium
Chemical Reaction Equilibrium
 
Saponification in a batch reactor
Saponification in a batch reactorSaponification in a batch reactor
Saponification in a batch reactor
 
Equilibrium student 2014 2
Equilibrium student 2014 2Equilibrium student 2014 2
Equilibrium student 2014 2
 

Último

Pests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdfPests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdf
PirithiRaju
 
Module for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learningModule for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learning
levieagacer
 
The Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptxThe Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptx
seri bangash
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
?#DUbAI#??##{{(☎️+971_581248768%)**%*]'#abortion pills for sale in dubai@
 
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune WaterworldsBiogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Sérgio Sacani
 

Último (20)

Pests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdfPests of mustard_Identification_Management_Dr.UPR.pdf
Pests of mustard_Identification_Management_Dr.UPR.pdf
 
Clean In Place(CIP).pptx .
Clean In Place(CIP).pptx                 .Clean In Place(CIP).pptx                 .
Clean In Place(CIP).pptx .
 
Zoology 5th semester notes( Sumit_yadav).pdf
Zoology 5th semester notes( Sumit_yadav).pdfZoology 5th semester notes( Sumit_yadav).pdf
Zoology 5th semester notes( Sumit_yadav).pdf
 
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 60009654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
9654467111 Call Girls In Raj Nagar Delhi Short 1500 Night 6000
 
Module for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learningModule for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learning
 
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
❤Jammu Kashmir Call Girls 8617697112 Personal Whatsapp Number 💦✅.
 
Pulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceuticsPulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceutics
 
PSYCHOSOCIAL NEEDS. in nursing II sem pptx
PSYCHOSOCIAL NEEDS. in nursing II sem pptxPSYCHOSOCIAL NEEDS. in nursing II sem pptx
PSYCHOSOCIAL NEEDS. in nursing II sem pptx
 
Grade 7 - Lesson 1 - Microscope and Its Functions
Grade 7 - Lesson 1 - Microscope and Its FunctionsGrade 7 - Lesson 1 - Microscope and Its Functions
Grade 7 - Lesson 1 - Microscope and Its Functions
 
Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...
Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...
Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...
 
The Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptxThe Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptx
 
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...
 
Introduction to Viruses
Introduction to VirusesIntroduction to Viruses
Introduction to Viruses
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
 
module for grade 9 for distance learning
module for grade 9 for distance learningmodule for grade 9 for distance learning
module for grade 9 for distance learning
 
GBSN - Microbiology (Unit 3)
GBSN - Microbiology (Unit 3)GBSN - Microbiology (Unit 3)
GBSN - Microbiology (Unit 3)
 
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune WaterworldsBiogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
 
Locating and isolating a gene, FISH, GISH, Chromosome walking and jumping, te...
Locating and isolating a gene, FISH, GISH, Chromosome walking and jumping, te...Locating and isolating a gene, FISH, GISH, Chromosome walking and jumping, te...
Locating and isolating a gene, FISH, GISH, Chromosome walking and jumping, te...
 
9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Service
9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Service9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Service
9999266834 Call Girls In Noida Sector 22 (Delhi) Call Girl Service
 
Dubai Call Girls Beauty Face Teen O525547819 Call Girls Dubai Young
Dubai Call Girls Beauty Face Teen O525547819 Call Girls Dubai YoungDubai Call Girls Beauty Face Teen O525547819 Call Girls Dubai Young
Dubai Call Girls Beauty Face Teen O525547819 Call Girls Dubai Young
 

Acid-Base Systems

  • 1. Acid-Base Systems Simple Analytical Formulas aqion.de updated 2017-08-30
  • 2. Acids can be investigated • in the lab (titrations) • with modern hydrochemistry software (one click  pH) • by chemical thermodynamics (derive equations, plot pH curves) • ... Motivation that’s our aim
  • 3. Aim: Simple closed-form equations for • titration curves • buffer intensity β • 1st derivative of β Motivation examples on next slides for any N-protic acid HNA
  • 4. pK1 pK2 pH titration curve buffer intensity β 1st derivative of β Input • thermodynamic data: K1, K2 • amount of acid: CT = 100 mM Outputequivalentfraction Example H2CO3
  • 5. pK1 pK2 pK2 pK2 pK3pK1 HA (acetic acid) H2A (carbonic acid) H3A (phosphoric acid) H3A (citric acid) pHpH CT = 100 mM pK1 titration curve buffer intensity β 1st derivative of β
  • 7. Building-Block Hierarchy K1 , K2 , ... KN k0 =1, k1=K1 , k2=K1K2 , ... aj(x) = YL(x) =moments (sums of aj) x = 10-pH )x(a x k 0j j       )x(aj j LN 0j AcidHNA ionization fractions titration curves buffer intensity β 1st derivative of β H2O: w = Kw/x – x amount of acid CT 1 N N 2 21 0 x k ... x k x k 1a         acidity constants cumulative constants
  • 8. The Elegance of Ionization Fractions aj (as the smallest Building Blocks) pK2 pK3 H3A (citric acid) pH pK1 pK2 pK3pK1 H3A (phosphoric acid)
  • 9. Let’s start with the derivation ..
  • 10. Polyprotic Acid HNA (The complete Set of Equations) Part 1 the general case (N = 1, 2, 3, ...)
  • 11. Warm-Up Example: Triprotic Acid (N=3) 1st dissociation step: H3A = H+ + H2A- K1 2nd dissociation step: H2A- = H+ + HA-2 K2 3rd dissociation step: HA-2 = H+ + A-3 K3 stepwise equilibrium constants cumulative equilibrium constants total amount: CT  [H3A]T = [H3A] + [H2A-] + [HA-2] + [A-3] H3A = H+ + H2A- k1 = K1 H3A = 2H+ + HA-2 k2 = K1K2 H3A = 3H+ + A-3 k3 = K1K2K3 number of variables (unknowns): N+3 H+ OH- H3A H2A- HA-2 A-3 requires N+3 equations
  • 12. 0 = [H+] – [OH-] – [H2A-] – 2[A-2] – 3[A-3] Kw = {H+} {OH-} = 10-14 k1 = {H+}1 {H2A-} / {H3A} k2 = {H+}2 {HA-2} / {H3A} k3 = {H+}3 {A-3} / {H3A} mass balance law of mass action charge balance CT = [H3A] + [H2A-] + [HA-2] + [A-3] N+1 equations rely on activities {..} 2 equations rely on concentrations [..] Set of N+3 Equations (for Triprotic Acid H3A)
  • 13. Kw = {H+} {OH-} (self-ionization H2O) k1 = {H+}1 {HN-1 A-} / {HNA} k2 = {H+}2 {HN-2 A-2} / {HNA} kN = {H+}N {A-N} / {HNA} CT = [HNA] + [HN-1A-] + ... + [A-N] (mass balance) 0 = [H+] – [OH-] – [HN-1A-] – 2[HN-2A-2] – ... – N[A-N] (charge balance) N+3 species (variables/unknowns): H+, OH-, HNA, HN-1A-, ... A-N acid N-protic acid HN A N+1 acid species N equations Set of N+3 equations given CT  the pH is determined, and vice versa (0 degrees of freedom) pH =  lg [H+]
  • 14. To study pH dependences we add one degree of freedom to the system: CB For this purpose, only the last line in the set of N+3 equations should be changed: 0 = [H+] – [OH-] – [HN-1A-] – 2[HN-2A-2] – ... – N[A-N] CB = [H+] – [OH-] – [HN-1A-] – 2[HN-2A-2] – ... – N[A-N] (chargebalance) (protonbalance) CB is the amount of strong base BOH = B+ + OH- (where B+ = Na+, K+, NH4 +, ...)
  • 15. N+4 species (variables): H+, OH-, HNA, HN-1A-, ... A-N, CB N-protic acid HNA + Strong Base BOH N+1 acid species Set of N+3 equations 1 degree of freedom amount of base Kw = {H+} {OH-} (self-ionization H2O) k1 = {H+}1 {HN-1 A-} / {HNA} k2 = {H+}2 {HN-2 A-2} / {HNA} kN = {H+}N {A-N} / {HNA} CT = [HNA] + [HN-1A-] + ... + [A-N] (mass balance) CB = [H+] – [OH-] – [HN-1A-] – 2[HN-2A-2] – ... – N[A-N] (protonbalance) acid N equations
  • 16. Acid Formula Type pK1 pK2 pK3 acetic acid CH3COOH HA 4.76 (composite) carbonic acid H2CO3 H2A 6.35 10.33 phosphoric acid H3PO4 H3A 2.15 7.21 12.35 citric acid C6H8O7 H3A 3.13 4.76 6.4 Example: Common Acids for N = 1, 2 and 3 pKj =  lg Kj An acid is completely defined by these thermodynamic data (equilibrium constants).
  • 17. Solving the Set of Equations (Notation & Assumptions) Part 2
  • 18. x = [H+] = 10-pH dissolved species [j] = [HN-jA-j] for j = 0,1, ... N “pure-water balance” w = [OH-] – [H+] = Kw/x – x ionization fractions aj = [j]/CT for j = 0,1, ... N pH = – log x Terms&Abbreviations equivalence fraction n = CB/CT
  • 19. Assumptions Replace Activities {..}  Concentrations [..] This is legitimate for: – small ionic strengths, I0 (dilute systems) – or conditional equilibrium constants
  • 20. Kw = x(x+w) (self-ionization H2O) k1 = x(a1/a0) k2 = x(a2/a0) kN = x(aN/a0) 1 = a0 + a1 + a2 + ... + aN (mass balance) n = – w/CT – (a1 + 2a2 + ... + NaN) (protonbalance) pure acid N equations Set of N+3 equations Abbreviations Assumptions HN A + Strong Base 0j j j a x k a        1 N N 2 21 0 x k ... x k x k 1a         Ionization Fractions (j = 0, 1, ... N) with
  • 21. n = w/CT + Y1 pure H2O N-protic acid proton balance N+1equations strong base n = CB/CT Kw = x (x+w) a1 = (k1/x) a0 a2 = (k2/x2) a0 . . . aN = (kN/xN) a0 1 = a0 + a1 + a2 + ... + aN Y1 = a1 + 2a2 + 3a3 + ... + NaN couples three subsystems: H2O, HNA, BOH
  • 22. pK1 pK2 pK2 pK3 pK1 HA (acetic acid) H2A (carbonic acid) H3A (citric acid) pHpH pK1 pK2 pK3pK1 H3A (phosphoric acid) Ionization Fractions aj
  • 23. Moments YL (Sums over aj) )x(ajY j L N 0j L   Y1 = a1 + 2a2 + ... + NaN Y0 = a0 + a1 + ... + aN = 1 ionization fractions Y2 = a1 + 4a2 + ... + N2aN Y3 = a1 + 8a2 + ... + N3aN  mass balance  titration function  buffer intensity β  1st derivative of β
  • 24. pK1 pK2 pK1 pK2 pK3 pK1 pK2 pK3 pK1 HA (acetic acid) H2A (carbonic acid) H3A (phosphoric acid) H3A (citric acid)Moments YL (for L = 1 to 4) pHpH
  • 25. n = Y1(x) + w(x) CT Acid HNA analytical solution of the Set of N+3 equations K1 , K2 , ... KN k0 =1, k1=K1 , k2=K1K2 , ... aj(x) = YL(x) = acidity constants cumulative constants ionization fractions moments (sums) x = 10-pH )x(a x k 0j j       j j L )x(aj LEGOSet 1 N N 2 21 0 x k ... x k x k 1a        
  • 26. Applications (Titration & Buffer Intensity) Part 3
  • 27. Titration Curves ‘Pure-Acid Limit’ T 1 C w Y)pH(n  Y1 = a1 + 2a2 H2A (carbonic acid) pK1 pK2pH1 1Y)pH(n  CT   ionization fractions aj Y1 = a1 + 2a2
  • 28. n = Y1 pK1 pK2pH1 Y1 = a1 + 2 a2 n = Y1 + w/CT Titration Curves T 1 C w Y)pH(n  H2A (carbonic acid) CT =  (pure acid) Variation of CT
  • 29. pK1 pK2 pK1 pK2 pK3 pK1 pK2 pK3pK1 HA (acetic acid) H2A (carbonic acid) H3A (phosphoric acid) H3A (citric acid) n(pH) pH n(pH) pH
  • 31. pH CT = 100 mM CT = 10 mM CT = 1 mM n (pH)  = dn/dpH d/dpH Buffer Intensity β & Co. for the Carbonate System H2CO3 CTincreasing
  • 32. pK1 pK2 pK2 pK3pK1 HA (acetic acid) H2A (carbonic acid) H3A (phosphoric acid) H3A (citric acid) pHpH CT = 1 mM
  • 33. pK1 pK2 pK2 pK2 pK3pK1 HA (acetic acid) H2A (carbonic acid) H3A (phosphoric acid) H3A (citric acid) pHpH CT = 10 mM
  • 34. pK1 pK2 pK2 pK2 pK3pK1 HA (acetic acid) H2A (carbonic acid) H3A (phosphoric acid) H3A (citric acid) pHpH CT = 100 mM pK1
  • 35. pK1 pK2 pK1 pK2 pK3 pK1 pK2 pK3pK1 HA (acetic acid) H2A (carbonic acid) H3A (phosphoric acid) H3A (citric acid) pHpH CT  