SlideShare una empresa de Scribd logo
1 de 18
Photoelectrochemical Water Splitting   for Hydrogen Production  Using Carbon Modified (CM) n-TiO 2 Chengkun Xu and Shahed U. M. Khan * Duquesne University, Pittsburgh, PA [email_address] Chemistry & Biochemistry
[object Object],[object Object],[object Object],Benefits of Hydrogen as an Energy Carrier Use of Hydrogen as an Energy Carrier 2 H 2  + O 2  -> 2 H 2 O +  Heat  In combustion processes In fuel cells 2 H 2  + O 2  -> 2 H 2 O +  Electricity  Fuel Cell H 2 O 2 Water/ Heat
Hydrogen Production Technologies Thermochemical Electrolytic Photolytic ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Photoelectrochemial Water Splitting Photoanode: 2H 2 O + 4h  O 2  + 4H + Cathode:   4H +  + 4e  2H 2   Inputs: sunlight and water Outputs: hydrogen and oxygen Sustainable and environmentally benign e n-type E g H 2 O O 2 Pt H 2 O H 2 h e 2H 2 O  O 2  + 2H 2
Material Requirements for Photoelectrode ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],n-type E g E C E V E F,n H 2 O/H 2 H 2 O/O 2 1.23 eV
n-TiO 2 ,[object Object],[object Object],[object Object],[object Object],[object Object],n-TiO 2 3.0-3.2 eV E C E V H 2 O/H 2 H 2 O/O 2 1.23 eV
Modifications of TiO 2  Bandgap ,[object Object],[object Object],[object Object],Shahed U. M. Khan etc. SCIENCE, 297 (2002) 2243
Synthesis of Carbon Modified (CM)-n-TiO 2  by Spray Pyrolysis ,[object Object],[object Object],[object Object],[object Object],[object Object],Ti substrate
UV-Vis spectra of CM-n-TiO 2  films   Chengkun Xu and Shahed Khan, Electrochemical and Solid-State Letters,  10 (3) B56-B59, 2007 C at% 1  0 2  0.58 3  0.94 4  2.0
Dependence of Photoresponse on the Carbon Doping Concentration C at% 1  0 2  0.58 3  0.94 4  2.0 Chengkun Xu and Shahed UM Khan,   Electrochemical and Solid-State Letters,  10 (3) B56-B59, 2007
Dependence of Photoresponse on the Carbon Doping Concentration 1, 3-calcined in Ar; 3.8 at % C 2, 4-calcined in air; 2.1 at % C 2.1 at % C 3.8 at % C Chengkun Xu and Shahed UM Khan,   Electrochemistry Communications 8 (2006) 1650–1654 Mostly visible light  illumination White light illumination 1, 2-illuminated with white light 3, 4-illuminated with mostly visible light
Monochromatic Photocurrent The photoresponse in the UV region now extends into the visible region ( bandgap reduction ). A second photoresponse in the visible region at around 600 nm noted ( new intragap band ).  Chengkun Xu and Shahed UM Khan,   Electrochemical and Solid-State Letters,  10 (3) B56-B59, 2007 Visible UV
Quantum Efficiency  η Chengkun Xu and Shahed UM Khan,   Electrochemical and Solid-State Letters,  10 (3) B56-B59, 2007
Bandgap Energy of CM-n-TiO 2 Chengkun Xu and Shahed UM Khan,   Electrochemical and Solid-State Letters,  10 (3) B56-B59, 2007 Chengkun Xu and Shahed UM Khan,   Electrochemistry Communications 8 (2006) 1650–1654
Schematic Diagram of Bandgap Modifications  for CM-n-TiO 2 H 2 O/H 2 O 2 /H 2 O 1.23 eV 2.63 eV 1.2 eV E C E V Intragap band h ν h ν CM-n-TiO 2 KOH Undoped TiO 2 Carbon-doped TiO 2
Explanations of Bandgap Modifications H. Kamisaka et al, J Chem. Phys. 123, 084704 (2005) Carbon doping induces several intragap states.  The intragap states near the valence band edge overlap with the valence band and form a new valence band and thus narrow the bandgap of TiO 2 .  The states deep in the gap stand alone.
Visible Light Photocatalytic degradation  of 4-chlorophenol Using CM-n-TiO 2  Nanoparticles CM-n-TiO 2  nanoparticles show significant visible light catalytic activity   Under mostly visible light  illumination P25 TiO 2 CM-n-TiO 2 Chengkun Xu and Shahed UM Khan,   Applied Catalysis B: Environmental, 64 (2006), 312-317
Summary ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]

Más contenido relacionado

La actualidad más candente

Sunlight-driven water-splitting using two-dimensional carbon based semiconduc...
Sunlight-driven water-splitting using two-dimensional carbon based semiconduc...Sunlight-driven water-splitting using two-dimensional carbon based semiconduc...
Sunlight-driven water-splitting using two-dimensional carbon based semiconduc...
Pawan Kumar
 
Hydrogen Production via Water-Splitting
Hydrogen Production via Water-SplittingHydrogen Production via Water-Splitting
Hydrogen Production via Water-Splitting
Chao Yang
 

La actualidad más candente (20)

Semiconductor part-2
Semiconductor part-2Semiconductor part-2
Semiconductor part-2
 
Sunlight-driven water-splitting using two-dimensional carbon based semiconduc...
Sunlight-driven water-splitting using two-dimensional carbon based semiconduc...Sunlight-driven water-splitting using two-dimensional carbon based semiconduc...
Sunlight-driven water-splitting using two-dimensional carbon based semiconduc...
 
Electrochemical reduction of Carbon Dioxide
Electrochemical reduction of Carbon DioxideElectrochemical reduction of Carbon Dioxide
Electrochemical reduction of Carbon Dioxide
 
Photocatalytic reduction of CO2
Photocatalytic reduction of CO2Photocatalytic reduction of CO2
Photocatalytic reduction of CO2
 
Hydrogen Production via Water-Splitting
Hydrogen Production via Water-SplittingHydrogen Production via Water-Splitting
Hydrogen Production via Water-Splitting
 
Role of photocatalysis in renewable energy.
Role of photocatalysis in renewable energy.Role of photocatalysis in renewable energy.
Role of photocatalysis in renewable energy.
 
Hydrogen generation
Hydrogen generationHydrogen generation
Hydrogen generation
 
Electrocatalysts for fuel cells
Electrocatalysts for fuel cells  Electrocatalysts for fuel cells
Electrocatalysts for fuel cells
 
Misconceptions in Photocatalysis
Misconceptions in PhotocatalysisMisconceptions in Photocatalysis
Misconceptions in Photocatalysis
 
Renewable hydrogen fuel production using earth-abundant molybdenum disulfide ...
Renewable hydrogen fuel production using earth-abundant molybdenum disulfide ...Renewable hydrogen fuel production using earth-abundant molybdenum disulfide ...
Renewable hydrogen fuel production using earth-abundant molybdenum disulfide ...
 
ORR
ORRORR
ORR
 
Renewable Fuels by Photocatalytic Reduction of carbondioxide (CO2); (Artifici...
Renewable Fuels by Photocatalytic Reduction of carbondioxide (CO2); (Artifici...Renewable Fuels by Photocatalytic Reduction of carbondioxide (CO2); (Artifici...
Renewable Fuels by Photocatalytic Reduction of carbondioxide (CO2); (Artifici...
 
final ppt on 30 sep 2022.pptx
final ppt on 30 sep 2022.pptxfinal ppt on 30 sep 2022.pptx
final ppt on 30 sep 2022.pptx
 
New Material:Perovskites presentation
New Material:Perovskites presentationNew Material:Perovskites presentation
New Material:Perovskites presentation
 
Materials for hydrogen storage
Materials for hydrogen storageMaterials for hydrogen storage
Materials for hydrogen storage
 
chapter1.pptx
chapter1.pptxchapter1.pptx
chapter1.pptx
 
Electrochemical Characterization of Electrocatalysts .pptx
Electrochemical Characterization of Electrocatalysts .pptxElectrochemical Characterization of Electrocatalysts .pptx
Electrochemical Characterization of Electrocatalysts .pptx
 
Photocatalytic Performance of TiO2 as a Catalyst
Photocatalytic Performance of TiO2 as a CatalystPhotocatalytic Performance of TiO2 as a Catalyst
Photocatalytic Performance of TiO2 as a Catalyst
 
Pawan CO2 REDUCTION PPT
Pawan CO2 REDUCTION PPTPawan CO2 REDUCTION PPT
Pawan CO2 REDUCTION PPT
 
degradation of pollution and photocatalysis
degradation of pollution and photocatalysisdegradation of pollution and photocatalysis
degradation of pollution and photocatalysis
 

Similar a Photoelectrochemical Water Splitting

Optical Control of Selectivity of High Rate CO2 Photoreduction Via Interband-...
Optical Control of Selectivity of High Rate CO2 Photoreduction Via Interband-...Optical Control of Selectivity of High Rate CO2 Photoreduction Via Interband-...
Optical Control of Selectivity of High Rate CO2 Photoreduction Via Interband-...
Pawan Kumar
 
Njc15 publication 15
Njc15 publication 15Njc15 publication 15
Njc15 publication 15
dionisio31
 
Carbon corrosion and platinum nanoparticles ripening under open circuit poten...
Carbon corrosion and platinum nanoparticles ripening under open circuit poten...Carbon corrosion and platinum nanoparticles ripening under open circuit poten...
Carbon corrosion and platinum nanoparticles ripening under open circuit poten...
LandimarMendesDuarte
 
REVIEW_ON_CONVERSION_OF_CO2_INTO_NEW_VALUABLE_FORM_ijariie2016
REVIEW_ON_CONVERSION_OF_CO2_INTO_NEW_VALUABLE_FORM_ijariie2016REVIEW_ON_CONVERSION_OF_CO2_INTO_NEW_VALUABLE_FORM_ijariie2016
REVIEW_ON_CONVERSION_OF_CO2_INTO_NEW_VALUABLE_FORM_ijariie2016
Rahul Ghuge
 
Proton‐functionalized graphitic carbon nitride for efficient metal‐free disin...
Proton‐functionalized graphitic carbon nitride for efficient metal‐free disin...Proton‐functionalized graphitic carbon nitride for efficient metal‐free disin...
Proton‐functionalized graphitic carbon nitride for efficient metal‐free disin...
Journal Papers
 
Aresta energia roma, 18 10 2011
Aresta energia roma, 18 10 2011Aresta energia roma, 18 10 2011
Aresta energia roma, 18 10 2011
canaleenergia
 

Similar a Photoelectrochemical Water Splitting (20)

Optical Control of Selectivity of High Rate CO2 Photoreduction Via Interband-...
Optical Control of Selectivity of High Rate CO2 Photoreduction Via Interband-...Optical Control of Selectivity of High Rate CO2 Photoreduction Via Interband-...
Optical Control of Selectivity of High Rate CO2 Photoreduction Via Interband-...
 
The effect of particle fragmentation.pptx
The effect of particle fragmentation.pptxThe effect of particle fragmentation.pptx
The effect of particle fragmentation.pptx
 
Njc15 publication 15
Njc15 publication 15Njc15 publication 15
Njc15 publication 15
 
Maryam Bachelor thesis
Maryam Bachelor thesisMaryam Bachelor thesis
Maryam Bachelor thesis
 
Carbon corrosion and platinum nanoparticles ripening under open circuit poten...
Carbon corrosion and platinum nanoparticles ripening under open circuit poten...Carbon corrosion and platinum nanoparticles ripening under open circuit poten...
Carbon corrosion and platinum nanoparticles ripening under open circuit poten...
 
REVIEW_ON_CONVERSION_OF_CO2_INTO_NEW_VALUABLE_FORM_ijariie2016
REVIEW_ON_CONVERSION_OF_CO2_INTO_NEW_VALUABLE_FORM_ijariie2016REVIEW_ON_CONVERSION_OF_CO2_INTO_NEW_VALUABLE_FORM_ijariie2016
REVIEW_ON_CONVERSION_OF_CO2_INTO_NEW_VALUABLE_FORM_ijariie2016
 
PhD Proposal - December 2008
PhD Proposal - December 2008PhD Proposal - December 2008
PhD Proposal - December 2008
 
Metal-organic hybrid: Photoreduction of CO2 using graphitic carbon nitride su...
Metal-organic hybrid: Photoreduction of CO2 using graphitic carbon nitride su...Metal-organic hybrid: Photoreduction of CO2 using graphitic carbon nitride su...
Metal-organic hybrid: Photoreduction of CO2 using graphitic carbon nitride su...
 
Metal-organic hybrid: Photoreduction of CO2 using graphitic carbon nitride su...
Metal-organic hybrid: Photoreduction of CO2 using graphitic carbon nitride su...Metal-organic hybrid: Photoreduction of CO2 using graphitic carbon nitride su...
Metal-organic hybrid: Photoreduction of CO2 using graphitic carbon nitride su...
 
Metal-organic hybrid: Photoreduction of CO2 using graphitic carbon nitride su...
Metal-organic hybrid: Photoreduction of CO2 using graphitic carbon nitride su...Metal-organic hybrid: Photoreduction of CO2 using graphitic carbon nitride su...
Metal-organic hybrid: Photoreduction of CO2 using graphitic carbon nitride su...
 
Proton‐functionalized graphitic carbon nitride for efficient metal‐free disin...
Proton‐functionalized graphitic carbon nitride for efficient metal‐free disin...Proton‐functionalized graphitic carbon nitride for efficient metal‐free disin...
Proton‐functionalized graphitic carbon nitride for efficient metal‐free disin...
 
Final MS Presentation.pptx
Final MS Presentation.pptxFinal MS Presentation.pptx
Final MS Presentation.pptx
 
Wang2009
Wang2009Wang2009
Wang2009
 
Electrochemical CO2 reduction in acidic electrolyte.pptx
Electrochemical CO2 reduction in acidic electrolyte.pptxElectrochemical CO2 reduction in acidic electrolyte.pptx
Electrochemical CO2 reduction in acidic electrolyte.pptx
 
Adsorption study of Cu2+ ions from aqueous solution using kaolinite and metak...
Adsorption study of Cu2+ ions from aqueous solution using kaolinite and metak...Adsorption study of Cu2+ ions from aqueous solution using kaolinite and metak...
Adsorption study of Cu2+ ions from aqueous solution using kaolinite and metak...
 
I0355561
I0355561I0355561
I0355561
 
18 ccc
18 ccc18 ccc
18 ccc
 
Photocatalytic reduction of carbon dioxide
Photocatalytic reduction of carbon dioxidePhotocatalytic reduction of carbon dioxide
Photocatalytic reduction of carbon dioxide
 
Development of novel catalytic systems for photoreduction of CO2 to fuel and ...
Development of novel catalytic systems for photoreduction of CO2 to fuel and ...Development of novel catalytic systems for photoreduction of CO2 to fuel and ...
Development of novel catalytic systems for photoreduction of CO2 to fuel and ...
 
Aresta energia roma, 18 10 2011
Aresta energia roma, 18 10 2011Aresta energia roma, 18 10 2011
Aresta energia roma, 18 10 2011
 

Photoelectrochemical Water Splitting

  • 1. Photoelectrochemical Water Splitting for Hydrogen Production Using Carbon Modified (CM) n-TiO 2 Chengkun Xu and Shahed U. M. Khan * Duquesne University, Pittsburgh, PA [email_address] Chemistry & Biochemistry
  • 2.
  • 3.
  • 4. Photoelectrochemial Water Splitting Photoanode: 2H 2 O + 4h O 2 + 4H + Cathode: 4H + + 4e 2H 2 Inputs: sunlight and water Outputs: hydrogen and oxygen Sustainable and environmentally benign e n-type E g H 2 O O 2 Pt H 2 O H 2 h e 2H 2 O O 2 + 2H 2
  • 5.
  • 6.
  • 7.
  • 8.
  • 9. UV-Vis spectra of CM-n-TiO 2 films Chengkun Xu and Shahed Khan, Electrochemical and Solid-State Letters, 10 (3) B56-B59, 2007 C at% 1 0 2 0.58 3 0.94 4 2.0
  • 10. Dependence of Photoresponse on the Carbon Doping Concentration C at% 1 0 2 0.58 3 0.94 4 2.0 Chengkun Xu and Shahed UM Khan, Electrochemical and Solid-State Letters, 10 (3) B56-B59, 2007
  • 11. Dependence of Photoresponse on the Carbon Doping Concentration 1, 3-calcined in Ar; 3.8 at % C 2, 4-calcined in air; 2.1 at % C 2.1 at % C 3.8 at % C Chengkun Xu and Shahed UM Khan, Electrochemistry Communications 8 (2006) 1650–1654 Mostly visible light illumination White light illumination 1, 2-illuminated with white light 3, 4-illuminated with mostly visible light
  • 12. Monochromatic Photocurrent The photoresponse in the UV region now extends into the visible region ( bandgap reduction ). A second photoresponse in the visible region at around 600 nm noted ( new intragap band ). Chengkun Xu and Shahed UM Khan, Electrochemical and Solid-State Letters, 10 (3) B56-B59, 2007 Visible UV
  • 13. Quantum Efficiency η Chengkun Xu and Shahed UM Khan, Electrochemical and Solid-State Letters, 10 (3) B56-B59, 2007
  • 14. Bandgap Energy of CM-n-TiO 2 Chengkun Xu and Shahed UM Khan, Electrochemical and Solid-State Letters, 10 (3) B56-B59, 2007 Chengkun Xu and Shahed UM Khan, Electrochemistry Communications 8 (2006) 1650–1654
  • 15. Schematic Diagram of Bandgap Modifications for CM-n-TiO 2 H 2 O/H 2 O 2 /H 2 O 1.23 eV 2.63 eV 1.2 eV E C E V Intragap band h ν h ν CM-n-TiO 2 KOH Undoped TiO 2 Carbon-doped TiO 2
  • 16. Explanations of Bandgap Modifications H. Kamisaka et al, J Chem. Phys. 123, 084704 (2005) Carbon doping induces several intragap states. The intragap states near the valence band edge overlap with the valence band and form a new valence band and thus narrow the bandgap of TiO 2 . The states deep in the gap stand alone.
  • 17. Visible Light Photocatalytic degradation of 4-chlorophenol Using CM-n-TiO 2 Nanoparticles CM-n-TiO 2 nanoparticles show significant visible light catalytic activity Under mostly visible light illumination P25 TiO 2 CM-n-TiO 2 Chengkun Xu and Shahed UM Khan, Applied Catalysis B: Environmental, 64 (2006), 312-317
  • 18.