LinkedIn emplea cookies para mejorar la funcionalidad y el rendimiento de nuestro sitio web, así como para ofrecer publicidad relevante. Si continúas navegando por ese sitio web, aceptas el uso de cookies. Consulta nuestras Condiciones de uso y nuestra Política de privacidad para más información.
LinkedIn emplea cookies para mejorar la funcionalidad y el rendimiento de nuestro sitio web, así como para ofrecer publicidad relevante. Si continúas navegando por ese sitio web, aceptas el uso de cookies. Consulta nuestra Política de privacidad y nuestras Condiciones de uso para más información.
Publicado el
On présente ici un réseau récurrent séquence à séquence (ou sequence to sequence: seq2seq) pour la traduction automatique. Nous présentons ci-dessous une architecture simplifiée basée sur un réseau récurrent composé le plus souvent de cellules LSTM avec un mécanisme d'attention.
Le réseau RNN, et tout particulièrement la variante LSTM, permettent de créer des modèles Séquence à séquence (Seq2seq) pour la traduction automatique. Mais le problème du goulot d'étranglement entre l'encodeur et le décodeur a conduit à l'utilisation d'un mécanisme d'attention pour faciliter l'accès à l'information pertinente contenue dans les états cachés de l'encodeur lors de la phase de décodage et garantir un bon alignement des mot dans les séquences en sortie.
Liens pour les vidéos :
I- Introduction
https://youtu.be/JhH6MSST2ic
II- Principes du mécanisme d'attention
https://youtu.be/EjhPvC9aizs
III- Machine Translation avec Attention
https://youtu.be/5avpZ0Ea4x8
IV- Graphe et matrice des liaisons pertinentes
https://youtu.be/1zFXWT4cuKI
Parece que ya has recortado esta diapositiva en .
Sé el primero en comentar