SlideShare una empresa de Scribd logo
1 de 91
Descargar para leer sin conexión
Chemical Kinetics
• Study of speed with which a chemical reaction
  occurs and the factors affecting that speed
• Provides information about the feasibility of a
  chemical reaction
• Provides information about the time it takes
  for a chemical reaction to occur
• Provides information about the series of
  elementary steps which lead to the formation
  of product
Rate Data for A + B → C
time (seconds)    Concentration A   Concentration B,   Concentration C,
                      mol/L             mol/L              mol/L
      0              0.76              0.38                   0
      1              0.31              0.16                 0.20
      2              0.13            6.5 x 10-2             0.40
      3            5.2 x 10-2        2.6 x 10-2             0.58
      4            2.1 x 10-2        1.1 x 10-2             0.73
      5            8.8 x 10-3        4.4 x 10-3             0.86
      6            3.6 x 10-3        1.8 x 10-3             0.95
      7            1.4 x 10-3        7.0 x 10-4             1.02
      8            6.1 x 10-4        3.1 x 10-4             1.07
      9            2.5 x 10-4        1.3 x 10-4             1.07
     10            1.0 x 10-4        5.0 x 10-5             1.07
A + B→C

                        1.2


                                                             C
                         1



                        0.8
Concentration (mol/L)




                        0.6
                                      A


                        0.4       B

                        0.2



                         0
                              0           2   4          6          8   10   12
                                                   time (seconds)
The Rate of a Chemical Reaction

• The speed of a reaction can be examined by the
  decrease in reactants or the increase in products.
• aA +bB →cC + d D


        Rate = k  A  B
                           m       n




   Where m and n are determined experimentally, and not necessarily
   Equal to the stiochiometry of the reaction
Reaction A → 2 B

    A      A      A                               B         B     B    B
                                                  B         B     B    B
    A       A      A
                                                      B     B    B     B
    A      A      A                               B          B   B     B
    A                                                 B      B    B    B



A   = 6.022 x 1022 molecules                      B       = 6.022 x 1022 molecules

in a 1.00 L container                             in a 1.00 Liter container


        1 mol/L                                              2 mol/L


                            Δ  A     1 Δ  B
                        -            =
                             t        2 t
Average Rate
                                                       Δ A
• Rate of A disappearing is - t
• Let’s suppose that after 20 seconds ½ half of A
  disappears.
• Then
    Δ  A        A f  Ai    0.50 mol/L - 1.00 mol/L                                    mol
-            =-            =-                         = - 2.5 x 10-2 M/s or - 2.5 x 10-2
     t           tf  ti            20 s - 0 s                                          L-s

                                                         1 Δ  B
• And Rate of B appearing is
                                                         2 t
• Then
       1 Δ  B Bf -Bi    1 1.00 mol/L - 0.00 mol/L                                mol
               =         = x                        = 2.5 x 10-2 M/s or 2.5 x 10-2
       2 t      tf - ti  2        20 s - 0 s                                      L-s
Average Rate Law for the General Equation
              aA+bB→cC + dD

 1 Δ  A    1 Δ  B 1 Δ C 1 Δ  D
- x       = - x      = x     = x
 a  Δt       b  Δt    c  Δt   d  Δt

    For Example:
    N2O5 (g) → 2 NO2 (g) + ½ O2 (g)



    Δ  N 2O5 (g) 
                      1 Δ  NO2 (g) 
                                      = 2 x Δ O2 (g) 
                                                       
-                     =   x
          Δt            2      Δt                 Δt
Determination of the Rate Equation
• Determined Experimentally
• Can be obtained by examining the initial rate
  after about 1% or 2% of the limiting reagent
  has been consumed.
Consider the Reaction:
CH3CH2CH2CH2Cl (aq) + H2O (l) → CH3CH2CH2CH2OH (aq) + HCl (aq)


          time (seconds)    Concentration
                            n-butyl chloride
                                 mol/L
                0               0.10
                50           9.05 x 10-2
               100           8.2 x 10-2
               150           7.41 x 10-2
               200           6.71 x 10-2
               300           5.49 x 10-2
               400           4.48 x 10-2
               500           3.68 x 10-2
               800           2.00 x 10-2
mol
                Average Rates,          L-s

time, seconds    [CH3CH2CH2CH2Cl]    Average Rate, mol
                                                          L-s

                                             [C4 H9Cl]
                                         
                                                t

     0.0              0.1000          1.90 x 10-4
    50.0              0.0905


time, seconds     [CH3CH2CH2CH2Cl]   Average Rate,          mol
                                                            L-s
                                             [C4 H9Cl]
                                         
                                                t


     50.0             0.0905           1.70 x 10-4
    100.0             0.0820
mol
                Average Rates,          L-s

time, seconds    [CH3CH2CH2CH2Cl]    Average Rate, mol
                                                          L-s

                                             [C4 H9Cl]
                                         
                                                t

   100.0              0.0820          1.58 x 10-4
   150.0              0.0741


time, seconds     [CH3CH2CH2CH2Cl]   Average Rate,          mol
                                                            L-s
                                             [C4 H9Cl]
                                         
                                                t


    150.0             0.0741           1.74 x 10-4
    200.0             0.0671
mol
                Average Rates,          L-s

time, seconds    [CH3CH2CH2CH2Cl]    Average Rate, mol
                                                          L-s

                                             [C4 H9Cl]
                                         
                                                t

   200.0              0.0671          1.22 x 10-4
   300.0              0.0549


time, seconds     [CH3CH2CH2CH2Cl]   Average Rate,          mol
                                                            L-s
                                             [C4 H9Cl]
                                         
                                                t


    300.0             0.0549           1.01 x 10-4
    400.0             0.0448
mol
                Average Rates,          L-s

time, seconds    [CH3CH2CH2CH2Cl]    Average Rate, mol
                                                          L-s

                                             [C4 H9Cl]
                                         
                                                t

   400.0              0.0448          8.00 x 10-5
   500.0              0.0368


time, seconds     [CH3CH2CH2CH2Cl]   Average Rate,          mol
                                                            L-s
                                             [C4 H9Cl]
                                         
                                                t


    500.0             0.0368           5.60 x 10-5
    800.0             0.0200
0.12



                         0.1



                        0.08
Concentration (mol/L)




                                   Instantaneous Rate or initial rate at t=0 s
                        0.06


                                                                           Instantaneous Rate at t = 500 s
                        0.04



                        0.02



                          0
                               0       100     200     300    400         500    600    700     800    900
                                                               time (seconds)
0.10 M - 0.060 M
 Instaneous Rateat 0 s    =
                                190 s - 0 s
                            0.040 M
 Instaneous Rateat 0 s    =          = 2.1 x 10-4 M s
                              190 s


                            0.042 M - 0.020 M
Instaneous Rateat 500 s   =
                               800 s - 400 s
                            0.022 M
Instaneous Rateat 500 s   =          = 5.5 x 10-5 M s
                              400 s
Order of Reaction
• Zero order –independent of the concentration of
  the reactants, e.g, depends on light
• First order - depends on a step in the mechanism
  that is unimolecular
• Pseudo first order reaction – one of the reactants
  in the rate determining step is the solvent
• Second order – depends on a step in the
  mechanism that is bimolecular
• Rarely third order – depends on the step in the
  mechanism that is termolecular
Data from the hydrolysis of n-butyl chloride
       time (seconds)   Concentration
                        n-butyl chloride
                             mol/L
             0               0.10
            50           9.05 x 10-2
           100           8.2 x 10-2
           150           7.41 x 10-2
           200           6.71 x 10-2
           300           5.49 x 10-2
           400           4.48 x 10-2
           500           3.68 x 10-2
           800           2.00 x 10-2
IF Zero Order
time (seconds)      [C4H9Cl]



      0              0.10
     50           9.05 x 10-2
    100           8.2 x 10-2
    150           7.41 x 10-2
    200           6.71 x 10-2
    300           5.49 x 10-2
    400           4.48 x 10-2
    500           3.68 x 10-2
    800           2.00 x 10-2
60


                     50


                     40
[n-butyl chloride]




                     30


                     20


                     10


                      0
                          0   100   200   300   400       500    600   700   800   900
                                                time (seconds)




                              Therefore, the reaction is not zero order
If Second Order
time (seconds)   1/[C4H9Cl]



      0             10
     50            11.0
    100            12.2
    150            13.5
    200            14.9
    300            18.2
    400            22.3
    500            27.2
    800             50
60



                       50



                       40
1/[n-butyl chloride]




                       30



                       20



                       10



                        0
                            0     100   200   300   400      500     600   700   800   900
                                                    time (seconds)




                                Therefore, the reaction is not second order
IF First Order Reaction

   time   log [C4H9Cl]   ln[C4H9Cl]
(seconds)
     0         -1           -2.3
    50       -1.04          -2.4
    100      -1.09         -2.51
    150      -1.13         -2.60
    200      -1.17         -2.69
    300      -1.26         -2.90
    400      -1.35         -3.11
    500      -1.43         -3.29
    800       -1.7         -3.92
First Order Plot
                           0
                                0   100   200   300   400       500    600       700        800   900
                         -0.2


                         -0.4


                         -0.6
log [n-butyl chloride]




                         -0.8


                          -1


                         -1.2                                           y = -0.0009x - 0.9985


                         -1.4


                         -1.6


                         -1.8
                                                      time (seconds)
First Order Plot

               0
                    0   100   200    300   400       500    600   700         800          900
             -0.5


              -1


             -1.5
ln[C4H9Cl]




              -2


             -2.5


              -3                                                        y = -0.002x - 2.2987

             -3.5


              -4


             -4.5
                                           time (seconds)
Slope

                k
    slope = -
              2.303

    -2.303 x slope = k


-2.303 x - 9.0 x 10-4 = k
          2.1 x 10-3 = k
Slope

   slope = - k
          3   1
- (- 2 x 10 s ) = k
2 x 103 s 1 = k
Rate of the Reaction


Rate = k [n-butylchloride]
For the Reaction
N2O5 (g) → 2 NO2 (g) + ½ O2 (g)

         Rate = k [N2O5 ]



The rate can be used to explain the mechanism
(1)          Slow Step

        ..                           ..              ..
                     ..                                                                       ..
       :O                            O:             :O                            ..
              +      O
                     ..     +
                                          slow                .+
                                                                                 .O
                                                                                  ..   +      O:
              N             N                             N             +              N

             :O :           :O :                          :O :
              ..             ..                            ..                          :O :
              -               -                                                         ..
                                                           -                             -


                                                          NO2                          NO3
                    N2O5




 (2)         Fast Step
                                ..                                ..
              ..                                                 :O
             .O       +         O:
              ..                             fast                           .+                 1/2 O2
                      N                                                N               +

                     :O :                                              :O :
                      ..                                                ..
                       -                                                -


                     NO3                                               NO2
Sum of the two steps:



 ..                        ..                     ..
              ..                                 :O                  :O
:O
                    +      O:                                                 .+
      +       O
              ..                                            .+            N
      N             N                                   N        +                 +   1/2 O2

                                                       :O :               :O :
      :O :          :O :                                ..                 ..
       ..            ..                                                    -
       -              -                                 -



                                                       NO2                NO2
             N2O5




                           N2O5 → 2 NO2 + ½ O2
                           or
                           2 N2O5 → 4 NO2 + O2
Application
         Mechanism of a Chemical Reaction
(a)
  Suggest a possible mechanism for
  NO2 (g) + CO (g) → NO (g) + CO2 (g)

  Given that

      Rate = k [NO2(g) ]2

(b)
       Suggest a possible mechanism for
       2 NO2 (g) + F2 (g) → 2 NO2F (g)

       Given that

       Rate = k [NO2 (g) ] [F2 (g) ]
Factors Affecting the Rate of a Chemical
                      Reaction
•   The Physical State of Matter
•   The Concentration of the Reactants
•   Temperature
•   Catalyst
For A Reaction to Occur

• Molecules Must Collide
• Molecules must have the Appropriate
  Orientation
• Molecules must have sufficient energy to
  overcome the energy barrier to the reaction-
• Bonds must break and bonds must form
A Second Order Reaction


H2O2 (aq) + I (aq)  H2O (l) + O2 (g)
              -




                          -
   Rate = k [H2O2(aq) ] [I(aq) ]
Rate Constant “k”
• Must be determined experimentally
• Its value allows one to find the reaction rate
  for a new set of concentrations
The following data were collected for the rate of the reaction
Between A and B, A + B → C , at 25oC. Determine the rate law
for the reaction and calculate k.



   Experiment         [A], moles/L       [B], moles/L     Initial Rate, M/s
        1               0.1000             0.1000           5.500 x 10-6
        2               0.2000             0.1000           2.200 x 10-5
        3               0.4000             0.1000           8.800 x 10-5
        4               0.1000             0.3000           1.650 x 10-5
        5               0.1000             0.6000           3.300 x 10-5
From Experiments 1 and 2


 Rate = k  A           B
                    m      n




 Solution A:

(1) 5.5 x 10-6 M/s = k 0.1000 M            0.1000 M
                                                m                 n



                               k 0.2000 M 0.1000 M
                                           m            n
(2) 2.2 x 10-5 M/s =


 Divide equation (1) into equation (2)


                               k  0.2000 M        0.1000 M 
               -5                            m                n
   2.2 x 10 M/s
                =
                  k  0.1000 M   0.1000 M 
           -6                   m            n
   5.5 x 10 M/s

   4   2
           m


   2=m
Solution B:


 (1) log (5.5 x 10-6 ) = log k + m log 0.1000 + n log 0.1000

 (2) log (2.2 x 10-5 ) = log k + m log 0.2000 + n log 0.1000

Subtract equation (2) from equation (1)


log (5.5 x 10-6 ) -log (2.2 x 10-5 ) = m [log  0.1000 -log  0.2000]

 -5.3 - (-4.7) = m [-1 - (-0.7)]
 -0.6 = m [-0.3]
 -0.6
      =m
 -0.3
 2=m
From Experiments 4 and 5


 Solution A:

(1) 1.65 x 10 M/s = k 0.1000 M                  0.3000 M
                 -5                           m             n




(2) 3.3 x 10-5 M/s = k 0.1000 M                 0.6000 M
                                             m              n



 Divide equation (1) into equation (2)


                        k  0.1000 M        0.6000 M 
            -5                           m              n
 3.3 x 10 M/s
              =
                k  0.1000 M   0.3000 M 
         -6                   m            n
1.65 x 10 M/s

2   2
        n


1=n
Solution B:


 (1) log (1.65 x 10-5 ) = log k + m log 0.1000 + n log 0.3000

 (2) log (3.3 x 10-5 ) = log k + m log 0.1000 + n log 0.6000

Subtract equation (2) from equation (1)

log (1.65 x 10-5 ) -log (3.3 x 10-5 ) = n [log  0.3000 -log  0.6000]

-4.78 - (-4.5) = n [-0.5227 - (-0.2218)]
-0.3 = n [-0.3]
-0.3
     =n
-0.3
1=n
Rate Constant k
Rate = k  A    B
            m          n




Rate = k  A    B
            2        1




     Rate
                =k
   A   B
      2
Rate Constant k
 From Experiment 3
    Rate
                    =k
   A   B
      2




                   M
    8.800 x 10-5
                   s       =k
0.4000 M     0.1000 M 
           2




              1-3
5.500 x 10    2
                  =k
             M s
              L2
5.500 x 10-3    2
                   =k
             mol s
Rate Constant k
 From Experiment 1
    Rate
                =k
  A   B
     2




                    M
    5.500 x 10-5
                    s       =k
0.1000 M      0.1000 M 
           2




           -3 1
5.500 x 10    2
                  =k
             M s
              L2
5.500 x 10-3    2
                   =k
             mol s
Your Understanding of this Process
         Consider the Data for the Following Reaction:
              O                                             O
                            _
CH3      C             +        OH            CH3      C              +   CH3OH
                                                                _
              OCH3                                          O



      Experiment       [CH3CO2CH3]         [-OH]      Initial Rate,
                            M                M             M/s
          1                0.050          0.050       0.00034
          2                0.050          0.100       0.00069
          3                0.100          0.100       0.00137



      Determine the Rate Law Expression and the value of k consistent
      With these data.
From Experiments 1 and 2

                                      n
Rate = k [CH3CO2CH3 ]  m
                            - OH 
                                 

Solution :

(1) 3.4 x 10 M/s = k 0.050 M                    0.050 M
                 -4                           m               n




(2) 6.9 x 10-4 M/s = k 0.50 M                   0.100 M
                                              m           n




 Divide equation (1) into equation (2)


                      k  0.050 M   0.100 M 
            -4                            m         n
 6.9 x 10 M/s
              =
                      k  0.050 M   0.050 M 
         -5                        m           n
 3.4 x 10 M/s

 2   2
        n


1=n
From Experiments 2 and 3

  Solution :

(1) 6.9 x 10 M/s = k 0.050 M                    0.050 M
                -4                        m               n




(2) 1.37 x 10-3 M/s = k 0.100 M                  0.100 M
                                              m               n




 Divide equation (1) into equation (2)


                        k  0.100 M     0.100 M 
               -3                    m               n
   1.37 x 10 M/s
                 =
                   k  0.050 M   0.100 M 
            -5                  m           n
    6.9 x 10 M/s

   2   2
           m


   1=m
Rate Expression

Rate = k [CH3CO2CH3 ] [ - OH]

       Rate
               -
                    =k
 [CH3CO2CH3 ] [ OH]

                M
       0.00137
                 s     =k
   [0.100 M] [0.100 M]
           1
   0.137       =k
          Ms
            L
   0.137        =k
          mol s
Assignment
Determine the Rate Law for the following reaction from the
                      given data:

                 2 NO (g) + O2 (g) → 2 NO2 (g)



    Experiment        [NO (g)]     [O2 (g)]   Initial Rate,
                        M            M             M/s
        1             0.020        0.010        0.028
        2             0.020        0.020        0.057
        3             0.020        0.040        0.114
        4             0.040        0.020        0.227
        5             0.010        0.020        0.014
Relationship Between Concentration and Time
                         A       product
First Order Reaction
                       ao  x         x
dx
      = k (a o -x)
dt                                  -ln (a o -x) = kt + C
 dx                                 at x = o and t = o, C = -ln a o
        = k dt
a o -x                              -ln (a o -x) = kt - ln a o
   dx
 a o -x = k  dt                   ln a o - ln (a o -x) = kt
                                          ao
let s = a o -x                      ln          = kt
                                         a o -x
ds = -dx                            or
    ds
     = k  dt                     log
                                           ao
                                                =
                                                   kt
    s                                     a o -x 2.303
-ln s = kt + C
A plot of
                           ao
                       ln        versus t
                          a o -x

                  Gives a Straight line

    The Following Reaction is a First Order Reaction:

      H           H                             H

H         C           H                H        C           H
     C        C                             C
                                     H             C
H                  H                        H           H


Plot the linear graph for concentration versus time
and obtain the rate constant for the reaction.
Data for the Transformation of cylcpropane to propene


  ao       X       ao –x     Ln[ao]/[ ao –x]      t
  M        M         M                         seconds
0.050      0       0.050           0              0
0.050    0.0004    0.0496      9.0 x 10-3       600
0.050    0.0009    0.0491       0.0180          1200
0.050    0.0015    0.0485       0.0300          2000
0.050    0.0022    0.0478        0.045          3000
0.050    0.0036    0.0464        0.075          5000
0.050    0.0057    0.0443        0.120          8000
0.050    0.0070    0.0430        0.150         10000
0.050    0.0082    0.0418        0.180         12000
0.2


                    0.18
                                                         y = 2E-05x - 4E-17
                    0.16
ln (ao /(ao – x))



                    0.14


                    0.12


                     0.1


                    0.08


                    0.06


                    0.04


                    0.02


                       0
                            0   2000   4000      6000          8000           10000   12000   14000
                    -0.02
                                                   time (seconds)




                                              slope = 2 x 10-5 s-1
Data for the Transformation of cylcpropane to propene


  ao       X       ao –x       Ln [ ao –x]       t
  M        M         M                        seconds
0.050      0       0.050         -2.996          0
0.050    0.0004    0.0496       -3.0038         600
0.050    0.0009    0.0491        -3.014         1200
0.050    0.0015    0.0485        -3.026         2000
0.050    0.0022    0.0478       -3.0407         3000
0.050    0.0036    0.0464        -3.070         5000
0.050    0.0057    0.0443       -3.1167         8000
0.050    0.0070    0.0430       -3.1466        10000
0.050    0.0082    0.0418       -3.1748        12000
-2.98
                      0   2000   4000   6000         8000      10000           12000   14000
                 -3

              -3.02

              -3.04

              -3.06
                                                            y = -2E-05x - 2.9957
Ln (ao – x)




              -3.08

               -3.1

              -3.12

              -3.14

              -3.16

              -3.18

               -3.2
                                          time (seconds)


                                                     -slope = -2 x 10-5s-1

                                                    Slope = 2 x 10-5 s-1
Relationship Between Concentration and Time
                           A       product
Second Order Reaction
                         ao  x            x
dx
      = k (a o -x) 2
dt                        1
   dx                          = kt + C
         2
           = k dt       a o -x
(a o -x)
     dx
                                                1
                        at x = o and t = o, C =
 (a o -x)2 = k  dt                            ao
let s = a o -x            1           1
                               = kt +
ds = -dx                a o -x        ao
     ds
       = k  dt         1     1
     s 2
                              -    = kt
1                       a o -x a o
  = kt + C
s
A plot of
                    1
                         versus t
                  a o -x

            Gives a Straight line

The Following Reaction is a Second Order Reaction:



        2 HI (g) → H2 (g) + I2 (g)

Plot the linear graph for concentration versus time
and obtain the rate constant for the reaction.
Data for the Transformation of hydrogen iodide gas to hydrogen and iodine



       ao          X           ao –x       1/[ ao –x]         t
       M           M            M             M-1          Minutes
     0.0100         0         0.0100           100           0.00
     0.0100      0.0060      0.00400           250           5.00
     0.0100      0.0075      0.00250           400           10.0
     0.0100      0.0086      0.00143           700           20.0
     0.0100      0.0090       0.0010          1000           30.0
     0.0100      0.0099      0.00077          1300           40.0
     0.0100      0.0094      0.00063          1600           50.0
     0.0100      0.0095      0.00053          1900           60.0
2000

             1800

             1600

             1400
                                                          y = 30x + 100
1/(ao – x)




             1200

             1000

             800

             600

             400

             200

               0
                    0   10     20      30           40   50               60   70
                                        time (minutes)




                             slope = 30. L mol-1 min-1
Graphical Method for Determining the Order of
                 a Reaction
• First Order Reaction: y = ln (ao – x); x = t; slope = -k; and
  the intercept is ln ao
  or
   y = ln (ao /(ao – x)); x = t; slope = k; and the intercept
  =0
• Second Order Reaction: y = 1/ (ao – x); x = t; slope = k;
  and the intercept = 1/ ao
• Zero Order Reaction: y = x; x = t; slope = k and the
  intercept = 0
  or y = ao – x ; x = t; slope = -k and the intercept = ao
Zero Order Reaction

dx                            a o -x        t

                                      dx =  dt
    =k
dt
dx = k dt                      ao           0

 dx = k  dt                  a o - (a o -x) = kt
x = kt + C                    - (a o -x) = kt - a o
at t = 0 and x =0; C = 0
                              (a o -x) = - kt + a o
x = kt
Application of the Graphical Method for Determining
               the Order of a Reaction

  N2O5 (g) → 2 NO2 (g) + ½ O2 (g)



         [ N 2O 5 ]              t
            M                 minutes
           2.08                3.07
           1.67                8.77
           1.36                14.45
           0.72                31.28

    Tabulate the data so that each order may be tested
Data tabulation to determine which order will give a linear graph




   [ N2O5 ]         t         ln[ N2O5 ]         1/[ N2O5 ]
      M          minutes     (first order)           M-1
(zero order)                                  (second order)
     2.08          3.07          0.732              0.481
   1.67            8.77          0.513              0.599
   1.36           14.45          0.307              0.735
   0.72           31.28         -0.329              1.390
Test for zero order reaction



                    2.5


                     2


                    1.5
           [N2O5]




                     1


                    0.5


                     0
                          0   5    10    15       20     25   30   35
                                        time (minutes)




               Not linear; therefore, the reaction is not zero order
Test for first order reaction


                 0.8



                 0.6
                                                                  y = -0.0376x + 0.8462

                 0.4
      ln[N2O5]




                 0.2



                   0
                        0       5       10       15          20        25           30    35

                 -0.2



                 -0.4
                                                 time (minutes)




                        Linear; therefore, the reaction is first order
Test for second order reaction

               1.6

               1.4

               1.2

                1
    1/[N2O5]




               0.8

               0.6

               0.4

               0.2

                0
                     0         5      10      15         20    25   30     35
                                              time (minutes)




                         Non-linear; therefore, the reaction is not second order
Half Life for a First Order Reaction
           ao
     ln             = kt 1
         1                   2
           x ao
         2
     ln 2= k t 1
                2

     0.693 = k t 1
                      2

      0.693
            = t1
        k        2
Half Life for a Second Order Reaction

        1       1
             -     = kt 1
       1
         ao ao
                           2

       2
         2     1
           -      = kt 1
        ao ao            2

       1
          = kt 1
       ao        2

        1
            = t1
       k ao      2
Half Life for a Zero Order Reaction

       1
          a o = - kt 1 + a o
       2              2

       1
          a o - a o = - kt 1
       2                     2

         1
        a o = - kt 1
         2              2

       ao
             = t1
       2k         2
Application of Half Life

• The rate constant for transforming
  cyclopropane into propene is 0.054 h-1
• Calculate the half-life of cyclopropane.
• Calculate the fraction of cyclopropane
  remaining after 18.0 hours.
• Calculate the fraction of cyclopropane
  remaining after 51.5 hours.
Half-Life        Fraction of cyclopropane            Fraction of cyclopropane
                  Remaining after 18.0 hours          Remaining after 51.5 hours



                           ao                                 ao
 0.693               ln          = kt                   ln          = kt
         = t1             a o -x                             a o -x
0.054/h       2
                          a o -x                             a o -x
12.8 h = t 1         ln          = - kt                 ln          = - kt
             2
                           ao                                 ao
                     a o -x                             a o -x
                            = e- kt                            = e- kt
                      ao                                 ao
                     a o -x                             a o -x
                            = e- (0.054/h) x 18.0 h            = e- (0.054/h) x 51.5 h
                      ao                                 ao
                     a o -x                             a o -x
                            = e- 0.972                         = e- 2.8
                      ao                                 ao
                     a o -x                             a o -x
                            = 0.38                             = 0.061
                      ao                                 ao
Effect of Temperature on the Reaction Rate
Arrhenius Equation
             Eact
         -
                    RT
 k=Ae

          Eact
 ln k = -      + ln A
          RT

of the form y = mx + b
Use the Following Data to Determine the Eact
                    for
        2 N2O (g)  2 N2 (g) + O2 (g)


       T        k        Ln k           104(1/T)
       K       M-1/s

      1125    11.5900   2.450            8.890
      1053     1.6700   0.510            9.50
      1001     0.3800   -0.968           9.99
      838      0.0010   -6.810           11.9
5


              0
                   0   2    4         6          8        10      12   14   16   18   20

              -5
      ln k

             -10


             -15


             -20
                                          y = -3.0712x + 29.721
             -25


             -30
                                                      104(1/T)

                              E act
slope = -3.07 x 104 K = -
                               R
-3.07 x 104 K x - R = E act
                             J
-3.07 x 104 K x - 8.314          = E act
                           K mol
2.55 x 105 J/mol = E act

      255 kJ/mol = Eact
Effect of a Catalyst on the Rate of a Reaction

• Lowers the energy barrier to the reaction via
  lowering the energy of activation
• Homogeneous catalyst- in the same phase as
  the reacting molecules
• Herterogeneous catalyst – in a different phase
  from the reacting molecules
Example of a Homogeneous Catalyst

                         1                      1
1. H 2O2 (aq) + Br-
                    
                 (aq)      Br2 (aq) + H 2O (l) + O 2 (g)
                         2                      2
                 1                              1
2. H 2O2 (aq) + Br2 (aq)  Br(aq) + H 2O (l) + O 2 (g)
                               -

                 2                              2
PE

                      intermediate



     reactants


                                     products

            reaction coordinates
Example of Heterogeneous Catalyst


            H                H

 H     H          C      C
             H               H

  Finely divided metal
An interesting problem:

The reaction between propionaldehyde and hydrocyanic acid
have been observed by Svirbely and Roth and reported in the
Journal of the American Chemical Society. Use this data to
ascertain the order of the reaction and the value of the rate
constant for this reaction.

              ..                               H                             H
              O:
                                               C                         C
 CH3CH2   C        +   H   C   N:   CH3CH2         C   N : + :N   C              CH2CH3
               H
                                             :OH
                                              ..                      HO :
                                                                       ..
time, minutes   [HCN]    [CH3CH2CHO]



    2.78        0.0990     0.0566
    5.33        0.0906     0.0482
    8.17        0.0830     0.0406
   15.23        0.0706     0.0282
   19.80        0.0653     0.0229
                0.0424     0.0000
    ∞
Check to determine first order in HCN


                  -2.35
                          0   2   4   6   8          10    12   14   16   18

                   -2.4


                  -2.45


                   -2.5
    ln([HCN]-x)




                  -2.55


                   -2.6


                  -2.65


                   -2.7


                  -2.75
                                          time (minutes)
Check to determine first order in propionaldehyde


                               0
                                    0   2   4   6      8             10   12   14   16   18
                             -0.5

                                                    time (minutes)
                              -1
 ln ([propionaldehyde] -x)




                             -1.5


                              -2


                             -2.5


                              -3


                             -3.5


                              -4
So close; therefore, let’s take another approach. Let [HCN] = ao and
[propionaldehyde] = bo

Then,
        dx
              = k (a o -x) (b o -x)
        dt
               dx
                          = k dt
        (a o -x) (b o -x)
                 dx
         (a o -x) (bo -x) = k  dt
        Solution:
            1         (a o -x)            1         bo
                   ln          = kt -            ln
        (a o -bo )     b o -x         (a o -b o ) a o
1       (a o -x)            1      0.0566
         ln          = kt -         ln
0.0424 M     b o -x         0.0424 M 0.0990
         -1      (a o -x)
23.6 M        ln          = kt - 23.6 M -1 ln 0.572
                  bo -x
         -1      (a o -x)
23.6 M        ln          = kt - 23.6 M -1 (-0.559)
                  bo -x
         -1      (a o -x)
23.6 M        ln          = kt + 13.2 M -1
                  bo -x
1       (a o -x)            1      0.0566
         ln          = kt -         ln
0.0424 M     b o -x         0.0424 M 0.0990
         -1      (a o -x)
23.6 M        ln          = kt - 23.6 M -1 ln 0.572
                  bo -x
                 (a o -x)
23.6 M -1 ln              = kt - 23.6 M -1 (-0.559)
                  bo -x
                 (a o -x)
23.6 M -1 ln              = kt + 13.2 M -1
                  bo -x
Let’s construct the data in a different format



     time, minutes    [HCN] - x   [CH3CH2CHO]-x                   ([HCN]-x)
                                                  (23.6) ln
                                                              ([CH3CH2 CHO]-x)


        2.55          0.0906        0.0482                     14.9
        5.39          0.0830        0.0406                     16.9
        12.76         0.0706        0.0282                     21.7
        17.02         0.0653        0.0229                     24.8
30



                             25



                             20

             ([HCN] - x)                                                 y = 0.6778x + 13.184
23.6 ln
          ([CH3CH 2CHO]-x)
                             15



                             10



                             5



                             0
                                  0   2    4       6      8        10      12      14      16   18

                                                         time, minutes




               Slope = 0.678; therefore, k = 0.678 M-1min-1
Rate = k [HCN] [CH3CH2CHO]

     Mechanism:
                                 k1
                                                       +              -
1.     HCN   +    H2O                       H3O            +     CN
                                 k -1

                                                                                            +
                        O                                                                   OH
                                                                k2
2.                                                 +                                             +   H2O
        CH3CH2    C                   +    H3O                            CH3CH2        C
                                                                k-2
                        H                                                                    H



                            +                                                       H
3.                          OH
                                                           k3
                                               -                                    C
        CH3CH2     C              +       CN
                                                                          CH3CH2            CN
                        H                                                      HO
Steps 1 and 2 are fast equilibrium steps; and step 3 is the rate determining step


                                               +
                                               OH
        Rate = k3       CH3CH2                      [ CN- ]
                                       C

                                           H




k 1 [HCN] [H2O] = k -1 [H3O+] [CN-]


k 1 [HCN] [H2O]
                          = [CN-]
k -1 [H3O+]
O

     CH3CH2     C                    +
                                 [H3O ]
k                                                                   +
2
                        H                                           OH

                                              =   CH3CH2    C
         k [H2O]                                                H
          -2




                                                      O
                                         CH3CH2   C

                                                                +
         k3 k1 k2 [HCN] [H2O]                         H    [H3O ]
Rate =
                            +
          k -1 k        [H3O ]    [H2O]
                   -2
O

Rate = k [HCN]   CH3CH2   C

                              H
Revisit the kinetics for

2 NO (g) + O2 (g) → 2 NO2 (g)



 Rate = k [NO]2 [O2 ]

Más contenido relacionado

La actualidad más candente

Chemical Kinetics
Chemical KineticsChemical Kinetics
Chemical Kinetics
jc762006
 
Kinetics ppt
Kinetics pptKinetics ppt
Kinetics ppt
ekozoriz
 

La actualidad más candente (20)

Chapter 14 Lecture- Chemical Kinetics
Chapter 14 Lecture- Chemical KineticsChapter 14 Lecture- Chemical Kinetics
Chapter 14 Lecture- Chemical Kinetics
 
P05 Chemical Kinetics
P05 Chemical KineticsP05 Chemical Kinetics
P05 Chemical Kinetics
 
Empirical and molecular formula class 11
Empirical and molecular formula class 11Empirical and molecular formula class 11
Empirical and molecular formula class 11
 
Chemical kinetics
Chemical kineticsChemical kinetics
Chemical kinetics
 
Chem 2 - Chemical Kinetics III - Determining the Rate Law with the Method of ...
Chem 2 - Chemical Kinetics III - Determining the Rate Law with the Method of ...Chem 2 - Chemical Kinetics III - Determining the Rate Law with the Method of ...
Chem 2 - Chemical Kinetics III - Determining the Rate Law with the Method of ...
 
Chemical kinetics
Chemical kineticsChemical kinetics
Chemical kinetics
 
Chemical Kinetics
Chemical KineticsChemical Kinetics
Chemical Kinetics
 
Chem 2 - Chemical Kinetics IV: The First-Order Integrated Rate Law
Chem 2 - Chemical Kinetics IV: The First-Order Integrated Rate LawChem 2 - Chemical Kinetics IV: The First-Order Integrated Rate Law
Chem 2 - Chemical Kinetics IV: The First-Order Integrated Rate Law
 
First order complex reaction
First order complex reactionFirst order complex reaction
First order complex reaction
 
Nanochemie - kwantumchemie deel 3
Nanochemie - kwantumchemie deel 3Nanochemie - kwantumchemie deel 3
Nanochemie - kwantumchemie deel 3
 
Chemica kinetic 2017
Chemica kinetic 2017Chemica kinetic 2017
Chemica kinetic 2017
 
Second order reaction
Second order reactionSecond order reaction
Second order reaction
 
Lecture 18.5- rate laws
Lecture 18.5- rate lawsLecture 18.5- rate laws
Lecture 18.5- rate laws
 
Nucleophilic substitution reaction
Nucleophilic substitution reactionNucleophilic substitution reaction
Nucleophilic substitution reaction
 
Chemical kinetics
Chemical kineticsChemical kinetics
Chemical kinetics
 
IB Chemistry Limiting, Excess, Theoretical and Percentage Yield
IB Chemistry Limiting, Excess, Theoretical and Percentage YieldIB Chemistry Limiting, Excess, Theoretical and Percentage Yield
IB Chemistry Limiting, Excess, Theoretical and Percentage Yield
 
Kinetics ppt
Kinetics pptKinetics ppt
Kinetics ppt
 
Chemical kinetics-ppt
Chemical kinetics-pptChemical kinetics-ppt
Chemical kinetics-ppt
 
Chapter 21 Lecture- Nuclear Chemistry
Chapter 21 Lecture- Nuclear ChemistryChapter 21 Lecture- Nuclear Chemistry
Chapter 21 Lecture- Nuclear Chemistry
 
Chem 2 - Chemical Kinetics I: Introduction and Factors Affecting Reaction Rates
Chem 2 - Chemical Kinetics I: Introduction and Factors Affecting Reaction RatesChem 2 - Chemical Kinetics I: Introduction and Factors Affecting Reaction Rates
Chem 2 - Chemical Kinetics I: Introduction and Factors Affecting Reaction Rates
 

Similar a GC Chemical Kinetics

Chapter 2 – kinetics
Chapter 2 – kineticsChapter 2 – kinetics
Chapter 2 – kinetics
manzizhen
 
09 complex acid-base_titrations
09 complex acid-base_titrations09 complex acid-base_titrations
09 complex acid-base_titrations
mohamed_elkayal
 
Recitation before exam-student
Recitation before exam-studentRecitation before exam-student
Recitation before exam-student
Elise Myers
 
Chap 14 mass spec
Chap 14 mass specChap 14 mass spec
Chap 14 mass spec
ceutics1315
 
12 7 What Are Mole Ratios
12 7 What Are Mole Ratios12 7 What Are Mole Ratios
12 7 What Are Mole Ratios
mrheffner
 
Ch099 a finalexam-pretest(1)
Ch099 a finalexam-pretest(1)Ch099 a finalexam-pretest(1)
Ch099 a finalexam-pretest(1)
Julia vbvvvhgcv
 

Similar a GC Chemical Kinetics (20)

Chapter 2 – kinetics
Chapter 2 – kineticsChapter 2 – kinetics
Chapter 2 – kinetics
 
09 complex acid-base_titrations
09 complex acid-base_titrations09 complex acid-base_titrations
09 complex acid-base_titrations
 
Chemical Reactions: Kinetics
Chemical Reactions: KineticsChemical Reactions: Kinetics
Chemical Reactions: Kinetics
 
8.1 reaction rate
8.1 reaction rate8.1 reaction rate
8.1 reaction rate
 
Tutorial 2
Tutorial 2Tutorial 2
Tutorial 2
 
Recitation before exam-student
Recitation before exam-studentRecitation before exam-student
Recitation before exam-student
 
Stoichiometry 2nd Tri 0910
Stoichiometry 2nd Tri 0910Stoichiometry 2nd Tri 0910
Stoichiometry 2nd Tri 0910
 
Chap 14 mass spec
Chap 14 mass specChap 14 mass spec
Chap 14 mass spec
 
mass spectroscopy
mass spectroscopymass spectroscopy
mass spectroscopy
 
Topic 7 kft 131
Topic 7 kft 131Topic 7 kft 131
Topic 7 kft 131
 
12 7 What Are Mole Ratios
12 7 What Are Mole Ratios12 7 What Are Mole Ratios
12 7 What Are Mole Ratios
 
Chem1020 examples for chapters 8-9-10
Chem1020 examples for chapters 8-9-10Chem1020 examples for chapters 8-9-10
Chem1020 examples for chapters 8-9-10
 
IB Chemistry Order Reaction, Rate Law and Half life
IB Chemistry Order Reaction, Rate Law and Half lifeIB Chemistry Order Reaction, Rate Law and Half life
IB Chemistry Order Reaction, Rate Law and Half life
 
Ch 11 sec 2, Stoichiometric calculations
Ch 11 sec 2, Stoichiometric  calculationsCh 11 sec 2, Stoichiometric  calculations
Ch 11 sec 2, Stoichiometric calculations
 
IB Chemistry Order Reaction, Rate Law and Half life
IB Chemistry Order Reaction, Rate Law and Half lifeIB Chemistry Order Reaction, Rate Law and Half life
IB Chemistry Order Reaction, Rate Law and Half life
 
E1 reaction
E1 reactionE1 reaction
E1 reaction
 
E023048063
E023048063E023048063
E023048063
 
E023048063
E023048063E023048063
E023048063
 
Ch099 a finalexam-pretest(1)
Ch099 a finalexam-pretest(1)Ch099 a finalexam-pretest(1)
Ch099 a finalexam-pretest(1)
 
SI #13 Key
SI #13 KeySI #13 Key
SI #13 Key
 

Más de David Richardson

Más de David Richardson (10)

Gc chemical equilibrium
Gc  chemical equilibriumGc  chemical equilibrium
Gc chemical equilibrium
 
GC Chemical Equilibrium
GC  Chemical EquilibriumGC  Chemical Equilibrium
GC Chemical Equilibrium
 
GC Chemical Equilibrium
GC  Chemical EquilibriumGC  Chemical Equilibrium
GC Chemical Equilibrium
 
Gc Chemical Kinetics
Gc Chemical KineticsGc Chemical Kinetics
Gc Chemical Kinetics
 
Gc Chemical Kinetics
Gc Chemical KineticsGc Chemical Kinetics
Gc Chemical Kinetics
 
GC Chemical Kinetics
GC Chemical KineticsGC Chemical Kinetics
GC Chemical Kinetics
 
Chemical Equilibrium
Chemical EquilibriumChemical Equilibrium
Chemical Equilibrium
 
Acid Base Equilibrium
Acid Base EquilibriumAcid Base Equilibrium
Acid Base Equilibrium
 
Nancy's celebration of life
Nancy's celebration of lifeNancy's celebration of life
Nancy's celebration of life
 
China Trip
China TripChina Trip
China Trip
 

GC Chemical Kinetics

  • 1. Chemical Kinetics • Study of speed with which a chemical reaction occurs and the factors affecting that speed • Provides information about the feasibility of a chemical reaction • Provides information about the time it takes for a chemical reaction to occur • Provides information about the series of elementary steps which lead to the formation of product
  • 2. Rate Data for A + B → C time (seconds) Concentration A Concentration B, Concentration C, mol/L mol/L mol/L 0 0.76 0.38 0 1 0.31 0.16 0.20 2 0.13 6.5 x 10-2 0.40 3 5.2 x 10-2 2.6 x 10-2 0.58 4 2.1 x 10-2 1.1 x 10-2 0.73 5 8.8 x 10-3 4.4 x 10-3 0.86 6 3.6 x 10-3 1.8 x 10-3 0.95 7 1.4 x 10-3 7.0 x 10-4 1.02 8 6.1 x 10-4 3.1 x 10-4 1.07 9 2.5 x 10-4 1.3 x 10-4 1.07 10 1.0 x 10-4 5.0 x 10-5 1.07
  • 3. A + B→C 1.2 C 1 0.8 Concentration (mol/L) 0.6 A 0.4 B 0.2 0 0 2 4 6 8 10 12 time (seconds)
  • 4. The Rate of a Chemical Reaction • The speed of a reaction can be examined by the decrease in reactants or the increase in products. • aA +bB →cC + d D Rate = k  A  B m n Where m and n are determined experimentally, and not necessarily Equal to the stiochiometry of the reaction
  • 5. Reaction A → 2 B A A A B B B B B B B B A A A B B B B A A A B B B B A B B B B A = 6.022 x 1022 molecules B = 6.022 x 1022 molecules in a 1.00 L container in a 1.00 Liter container 1 mol/L 2 mol/L Δ  A 1 Δ  B - = t 2 t
  • 6. Average Rate Δ A • Rate of A disappearing is - t • Let’s suppose that after 20 seconds ½ half of A disappears. • Then Δ  A A f  Ai 0.50 mol/L - 1.00 mol/L mol - =- =- = - 2.5 x 10-2 M/s or - 2.5 x 10-2 t tf  ti 20 s - 0 s L-s 1 Δ  B • And Rate of B appearing is 2 t • Then 1 Δ  B Bf -Bi 1 1.00 mol/L - 0.00 mol/L mol = = x = 2.5 x 10-2 M/s or 2.5 x 10-2 2 t tf - ti 2 20 s - 0 s L-s
  • 7. Average Rate Law for the General Equation aA+bB→cC + dD 1 Δ  A 1 Δ  B 1 Δ C 1 Δ  D - x = - x = x = x a Δt b Δt c Δt d Δt For Example: N2O5 (g) → 2 NO2 (g) + ½ O2 (g) Δ  N 2O5 (g)    1 Δ  NO2 (g)    = 2 x Δ O2 (g)    - = x Δt 2 Δt Δt
  • 8. Determination of the Rate Equation • Determined Experimentally • Can be obtained by examining the initial rate after about 1% or 2% of the limiting reagent has been consumed.
  • 9. Consider the Reaction: CH3CH2CH2CH2Cl (aq) + H2O (l) → CH3CH2CH2CH2OH (aq) + HCl (aq) time (seconds) Concentration n-butyl chloride mol/L 0 0.10 50 9.05 x 10-2 100 8.2 x 10-2 150 7.41 x 10-2 200 6.71 x 10-2 300 5.49 x 10-2 400 4.48 x 10-2 500 3.68 x 10-2 800 2.00 x 10-2
  • 10. mol Average Rates, L-s time, seconds [CH3CH2CH2CH2Cl] Average Rate, mol L-s [C4 H9Cl]  t 0.0 0.1000 1.90 x 10-4 50.0 0.0905 time, seconds [CH3CH2CH2CH2Cl] Average Rate, mol L-s [C4 H9Cl]  t 50.0 0.0905 1.70 x 10-4 100.0 0.0820
  • 11. mol Average Rates, L-s time, seconds [CH3CH2CH2CH2Cl] Average Rate, mol L-s [C4 H9Cl]  t 100.0 0.0820 1.58 x 10-4 150.0 0.0741 time, seconds [CH3CH2CH2CH2Cl] Average Rate, mol L-s [C4 H9Cl]  t 150.0 0.0741 1.74 x 10-4 200.0 0.0671
  • 12. mol Average Rates, L-s time, seconds [CH3CH2CH2CH2Cl] Average Rate, mol L-s [C4 H9Cl]  t 200.0 0.0671 1.22 x 10-4 300.0 0.0549 time, seconds [CH3CH2CH2CH2Cl] Average Rate, mol L-s [C4 H9Cl]  t 300.0 0.0549 1.01 x 10-4 400.0 0.0448
  • 13. mol Average Rates, L-s time, seconds [CH3CH2CH2CH2Cl] Average Rate, mol L-s [C4 H9Cl]  t 400.0 0.0448 8.00 x 10-5 500.0 0.0368 time, seconds [CH3CH2CH2CH2Cl] Average Rate, mol L-s [C4 H9Cl]  t 500.0 0.0368 5.60 x 10-5 800.0 0.0200
  • 14. 0.12 0.1 0.08 Concentration (mol/L) Instantaneous Rate or initial rate at t=0 s 0.06 Instantaneous Rate at t = 500 s 0.04 0.02 0 0 100 200 300 400 500 600 700 800 900 time (seconds)
  • 15. 0.10 M - 0.060 M Instaneous Rateat 0 s = 190 s - 0 s 0.040 M Instaneous Rateat 0 s = = 2.1 x 10-4 M s 190 s 0.042 M - 0.020 M Instaneous Rateat 500 s = 800 s - 400 s 0.022 M Instaneous Rateat 500 s = = 5.5 x 10-5 M s 400 s
  • 16. Order of Reaction • Zero order –independent of the concentration of the reactants, e.g, depends on light • First order - depends on a step in the mechanism that is unimolecular • Pseudo first order reaction – one of the reactants in the rate determining step is the solvent • Second order – depends on a step in the mechanism that is bimolecular • Rarely third order – depends on the step in the mechanism that is termolecular
  • 17. Data from the hydrolysis of n-butyl chloride time (seconds) Concentration n-butyl chloride mol/L 0 0.10 50 9.05 x 10-2 100 8.2 x 10-2 150 7.41 x 10-2 200 6.71 x 10-2 300 5.49 x 10-2 400 4.48 x 10-2 500 3.68 x 10-2 800 2.00 x 10-2
  • 18. IF Zero Order time (seconds) [C4H9Cl] 0 0.10 50 9.05 x 10-2 100 8.2 x 10-2 150 7.41 x 10-2 200 6.71 x 10-2 300 5.49 x 10-2 400 4.48 x 10-2 500 3.68 x 10-2 800 2.00 x 10-2
  • 19. 60 50 40 [n-butyl chloride] 30 20 10 0 0 100 200 300 400 500 600 700 800 900 time (seconds) Therefore, the reaction is not zero order
  • 20. If Second Order time (seconds) 1/[C4H9Cl] 0 10 50 11.0 100 12.2 150 13.5 200 14.9 300 18.2 400 22.3 500 27.2 800 50
  • 21. 60 50 40 1/[n-butyl chloride] 30 20 10 0 0 100 200 300 400 500 600 700 800 900 time (seconds) Therefore, the reaction is not second order
  • 22. IF First Order Reaction time log [C4H9Cl] ln[C4H9Cl] (seconds) 0 -1 -2.3 50 -1.04 -2.4 100 -1.09 -2.51 150 -1.13 -2.60 200 -1.17 -2.69 300 -1.26 -2.90 400 -1.35 -3.11 500 -1.43 -3.29 800 -1.7 -3.92
  • 23. First Order Plot 0 0 100 200 300 400 500 600 700 800 900 -0.2 -0.4 -0.6 log [n-butyl chloride] -0.8 -1 -1.2 y = -0.0009x - 0.9985 -1.4 -1.6 -1.8 time (seconds)
  • 24. First Order Plot 0 0 100 200 300 400 500 600 700 800 900 -0.5 -1 -1.5 ln[C4H9Cl] -2 -2.5 -3 y = -0.002x - 2.2987 -3.5 -4 -4.5 time (seconds)
  • 25. Slope k slope = - 2.303 -2.303 x slope = k -2.303 x - 9.0 x 10-4 = k 2.1 x 10-3 = k
  • 26. Slope slope = - k 3 1 - (- 2 x 10 s ) = k 2 x 103 s 1 = k
  • 27. Rate of the Reaction Rate = k [n-butylchloride]
  • 28. For the Reaction N2O5 (g) → 2 NO2 (g) + ½ O2 (g) Rate = k [N2O5 ] The rate can be used to explain the mechanism
  • 29. (1) Slow Step .. .. .. .. .. :O O: :O .. + O .. + slow .+ .O .. + O: N N N + N :O : :O : :O : .. .. .. :O : - - .. - - NO2 NO3 N2O5 (2) Fast Step .. .. .. :O .O + O: .. fast .+ 1/2 O2 N N + :O : :O : .. .. - - NO3 NO2
  • 30. Sum of the two steps: .. .. .. .. :O :O :O + O: .+ + O .. .+ N N N N + + 1/2 O2 :O : :O : :O : :O : .. .. .. .. - - - - NO2 NO2 N2O5 N2O5 → 2 NO2 + ½ O2 or 2 N2O5 → 4 NO2 + O2
  • 31. Application Mechanism of a Chemical Reaction (a) Suggest a possible mechanism for NO2 (g) + CO (g) → NO (g) + CO2 (g) Given that Rate = k [NO2(g) ]2 (b) Suggest a possible mechanism for 2 NO2 (g) + F2 (g) → 2 NO2F (g) Given that Rate = k [NO2 (g) ] [F2 (g) ]
  • 32. Factors Affecting the Rate of a Chemical Reaction • The Physical State of Matter • The Concentration of the Reactants • Temperature • Catalyst
  • 33. For A Reaction to Occur • Molecules Must Collide • Molecules must have the Appropriate Orientation • Molecules must have sufficient energy to overcome the energy barrier to the reaction- • Bonds must break and bonds must form
  • 34. A Second Order Reaction H2O2 (aq) + I (aq)  H2O (l) + O2 (g) - - Rate = k [H2O2(aq) ] [I(aq) ]
  • 35. Rate Constant “k” • Must be determined experimentally • Its value allows one to find the reaction rate for a new set of concentrations
  • 36. The following data were collected for the rate of the reaction Between A and B, A + B → C , at 25oC. Determine the rate law for the reaction and calculate k. Experiment [A], moles/L [B], moles/L Initial Rate, M/s 1 0.1000 0.1000 5.500 x 10-6 2 0.2000 0.1000 2.200 x 10-5 3 0.4000 0.1000 8.800 x 10-5 4 0.1000 0.3000 1.650 x 10-5 5 0.1000 0.6000 3.300 x 10-5
  • 37. From Experiments 1 and 2 Rate = k  A  B m n Solution A: (1) 5.5 x 10-6 M/s = k 0.1000 M 0.1000 M m n k 0.2000 M 0.1000 M m n (2) 2.2 x 10-5 M/s = Divide equation (1) into equation (2) k  0.2000 M  0.1000 M  -5 m n 2.2 x 10 M/s = k  0.1000 M   0.1000 M  -6 m n 5.5 x 10 M/s 4   2 m 2=m
  • 38. Solution B: (1) log (5.5 x 10-6 ) = log k + m log 0.1000 + n log 0.1000 (2) log (2.2 x 10-5 ) = log k + m log 0.2000 + n log 0.1000 Subtract equation (2) from equation (1) log (5.5 x 10-6 ) -log (2.2 x 10-5 ) = m [log  0.1000 -log  0.2000] -5.3 - (-4.7) = m [-1 - (-0.7)] -0.6 = m [-0.3] -0.6 =m -0.3 2=m
  • 39. From Experiments 4 and 5 Solution A: (1) 1.65 x 10 M/s = k 0.1000 M 0.3000 M -5 m n (2) 3.3 x 10-5 M/s = k 0.1000 M 0.6000 M m n Divide equation (1) into equation (2) k  0.1000 M  0.6000 M  -5 m n 3.3 x 10 M/s = k  0.1000 M   0.3000 M  -6 m n 1.65 x 10 M/s 2   2 n 1=n
  • 40. Solution B: (1) log (1.65 x 10-5 ) = log k + m log 0.1000 + n log 0.3000 (2) log (3.3 x 10-5 ) = log k + m log 0.1000 + n log 0.6000 Subtract equation (2) from equation (1) log (1.65 x 10-5 ) -log (3.3 x 10-5 ) = n [log  0.3000 -log  0.6000] -4.78 - (-4.5) = n [-0.5227 - (-0.2218)] -0.3 = n [-0.3] -0.3 =n -0.3 1=n
  • 41. Rate Constant k Rate = k  A  B m n Rate = k  A  B 2 1 Rate =k  A   B 2
  • 42. Rate Constant k From Experiment 3 Rate =k  A   B 2 M 8.800 x 10-5 s =k 0.4000 M  0.1000 M  2 1-3 5.500 x 10 2 =k M s L2 5.500 x 10-3 2 =k mol s
  • 43. Rate Constant k From Experiment 1 Rate =k  A   B 2 M 5.500 x 10-5 s =k 0.1000 M  0.1000 M  2 -3 1 5.500 x 10 2 =k M s L2 5.500 x 10-3 2 =k mol s
  • 44. Your Understanding of this Process Consider the Data for the Following Reaction: O O _ CH3 C + OH CH3 C + CH3OH _ OCH3 O Experiment [CH3CO2CH3] [-OH] Initial Rate, M M M/s 1 0.050 0.050 0.00034 2 0.050 0.100 0.00069 3 0.100 0.100 0.00137 Determine the Rate Law Expression and the value of k consistent With these data.
  • 45. From Experiments 1 and 2 n Rate = k [CH3CO2CH3 ] m  - OH    Solution : (1) 3.4 x 10 M/s = k 0.050 M 0.050 M -4 m n (2) 6.9 x 10-4 M/s = k 0.50 M 0.100 M m n Divide equation (1) into equation (2) k  0.050 M  0.100 M  -4 m n 6.9 x 10 M/s = k  0.050 M   0.050 M  -5 m n 3.4 x 10 M/s 2   2 n 1=n
  • 46. From Experiments 2 and 3 Solution : (1) 6.9 x 10 M/s = k 0.050 M 0.050 M -4 m n (2) 1.37 x 10-3 M/s = k 0.100 M 0.100 M m n Divide equation (1) into equation (2) k  0.100 M  0.100 M  -3 m n 1.37 x 10 M/s = k  0.050 M   0.100 M  -5 m n 6.9 x 10 M/s 2   2 m 1=m
  • 47. Rate Expression Rate = k [CH3CO2CH3 ] [ - OH] Rate - =k [CH3CO2CH3 ] [ OH] M 0.00137 s =k [0.100 M] [0.100 M] 1 0.137 =k Ms L 0.137 =k mol s
  • 48. Assignment Determine the Rate Law for the following reaction from the given data: 2 NO (g) + O2 (g) → 2 NO2 (g) Experiment [NO (g)] [O2 (g)] Initial Rate, M M M/s 1 0.020 0.010 0.028 2 0.020 0.020 0.057 3 0.020 0.040 0.114 4 0.040 0.020 0.227 5 0.010 0.020 0.014
  • 49. Relationship Between Concentration and Time A  product First Order Reaction ao  x x dx = k (a o -x) dt -ln (a o -x) = kt + C dx at x = o and t = o, C = -ln a o = k dt a o -x -ln (a o -x) = kt - ln a o dx  a o -x = k  dt ln a o - ln (a o -x) = kt ao let s = a o -x ln = kt a o -x ds = -dx or ds  = k  dt log ao = kt s a o -x 2.303 -ln s = kt + C
  • 50. A plot of ao ln versus t a o -x Gives a Straight line The Following Reaction is a First Order Reaction: H H H H C H H C H C C C  H C H H H H Plot the linear graph for concentration versus time and obtain the rate constant for the reaction.
  • 51. Data for the Transformation of cylcpropane to propene ao X ao –x Ln[ao]/[ ao –x] t M M M seconds 0.050 0 0.050 0 0 0.050 0.0004 0.0496 9.0 x 10-3 600 0.050 0.0009 0.0491 0.0180 1200 0.050 0.0015 0.0485 0.0300 2000 0.050 0.0022 0.0478 0.045 3000 0.050 0.0036 0.0464 0.075 5000 0.050 0.0057 0.0443 0.120 8000 0.050 0.0070 0.0430 0.150 10000 0.050 0.0082 0.0418 0.180 12000
  • 52. 0.2 0.18 y = 2E-05x - 4E-17 0.16 ln (ao /(ao – x)) 0.14 0.12 0.1 0.08 0.06 0.04 0.02 0 0 2000 4000 6000 8000 10000 12000 14000 -0.02 time (seconds) slope = 2 x 10-5 s-1
  • 53. Data for the Transformation of cylcpropane to propene ao X ao –x Ln [ ao –x] t M M M seconds 0.050 0 0.050 -2.996 0 0.050 0.0004 0.0496 -3.0038 600 0.050 0.0009 0.0491 -3.014 1200 0.050 0.0015 0.0485 -3.026 2000 0.050 0.0022 0.0478 -3.0407 3000 0.050 0.0036 0.0464 -3.070 5000 0.050 0.0057 0.0443 -3.1167 8000 0.050 0.0070 0.0430 -3.1466 10000 0.050 0.0082 0.0418 -3.1748 12000
  • 54. -2.98 0 2000 4000 6000 8000 10000 12000 14000 -3 -3.02 -3.04 -3.06 y = -2E-05x - 2.9957 Ln (ao – x) -3.08 -3.1 -3.12 -3.14 -3.16 -3.18 -3.2 time (seconds) -slope = -2 x 10-5s-1 Slope = 2 x 10-5 s-1
  • 55. Relationship Between Concentration and Time A  product Second Order Reaction ao  x x dx = k (a o -x) 2 dt 1 dx = kt + C 2 = k dt a o -x (a o -x) dx 1 at x = o and t = o, C =  (a o -x)2 = k  dt ao let s = a o -x 1 1 = kt + ds = -dx a o -x ao ds  = k  dt 1 1 s 2 - = kt 1 a o -x a o = kt + C s
  • 56. A plot of 1 versus t a o -x Gives a Straight line The Following Reaction is a Second Order Reaction: 2 HI (g) → H2 (g) + I2 (g) Plot the linear graph for concentration versus time and obtain the rate constant for the reaction.
  • 57. Data for the Transformation of hydrogen iodide gas to hydrogen and iodine ao X ao –x 1/[ ao –x] t M M M M-1 Minutes 0.0100 0 0.0100 100 0.00 0.0100 0.0060 0.00400 250 5.00 0.0100 0.0075 0.00250 400 10.0 0.0100 0.0086 0.00143 700 20.0 0.0100 0.0090 0.0010 1000 30.0 0.0100 0.0099 0.00077 1300 40.0 0.0100 0.0094 0.00063 1600 50.0 0.0100 0.0095 0.00053 1900 60.0
  • 58. 2000 1800 1600 1400 y = 30x + 100 1/(ao – x) 1200 1000 800 600 400 200 0 0 10 20 30 40 50 60 70 time (minutes) slope = 30. L mol-1 min-1
  • 59. Graphical Method for Determining the Order of a Reaction • First Order Reaction: y = ln (ao – x); x = t; slope = -k; and the intercept is ln ao or y = ln (ao /(ao – x)); x = t; slope = k; and the intercept =0 • Second Order Reaction: y = 1/ (ao – x); x = t; slope = k; and the intercept = 1/ ao • Zero Order Reaction: y = x; x = t; slope = k and the intercept = 0 or y = ao – x ; x = t; slope = -k and the intercept = ao
  • 60. Zero Order Reaction dx a o -x t  dx =  dt =k dt dx = k dt ao 0  dx = k  dt a o - (a o -x) = kt x = kt + C - (a o -x) = kt - a o at t = 0 and x =0; C = 0 (a o -x) = - kt + a o x = kt
  • 61. Application of the Graphical Method for Determining the Order of a Reaction N2O5 (g) → 2 NO2 (g) + ½ O2 (g) [ N 2O 5 ] t M minutes 2.08 3.07 1.67 8.77 1.36 14.45 0.72 31.28 Tabulate the data so that each order may be tested
  • 62. Data tabulation to determine which order will give a linear graph [ N2O5 ] t ln[ N2O5 ] 1/[ N2O5 ] M minutes (first order) M-1 (zero order) (second order) 2.08 3.07 0.732 0.481 1.67 8.77 0.513 0.599 1.36 14.45 0.307 0.735 0.72 31.28 -0.329 1.390
  • 63. Test for zero order reaction 2.5 2 1.5 [N2O5] 1 0.5 0 0 5 10 15 20 25 30 35 time (minutes) Not linear; therefore, the reaction is not zero order
  • 64. Test for first order reaction 0.8 0.6 y = -0.0376x + 0.8462 0.4 ln[N2O5] 0.2 0 0 5 10 15 20 25 30 35 -0.2 -0.4 time (minutes) Linear; therefore, the reaction is first order
  • 65. Test for second order reaction 1.6 1.4 1.2 1 1/[N2O5] 0.8 0.6 0.4 0.2 0 0 5 10 15 20 25 30 35 time (minutes) Non-linear; therefore, the reaction is not second order
  • 66. Half Life for a First Order Reaction ao ln = kt 1 1 2 x ao 2 ln 2= k t 1 2 0.693 = k t 1 2 0.693 = t1 k 2
  • 67. Half Life for a Second Order Reaction 1 1 - = kt 1 1 ao ao 2 2 2 1 - = kt 1 ao ao 2 1 = kt 1 ao 2 1 = t1 k ao 2
  • 68. Half Life for a Zero Order Reaction 1 a o = - kt 1 + a o 2 2 1 a o - a o = - kt 1 2 2 1  a o = - kt 1 2 2 ao = t1 2k 2
  • 69. Application of Half Life • The rate constant for transforming cyclopropane into propene is 0.054 h-1 • Calculate the half-life of cyclopropane. • Calculate the fraction of cyclopropane remaining after 18.0 hours. • Calculate the fraction of cyclopropane remaining after 51.5 hours.
  • 70. Half-Life Fraction of cyclopropane Fraction of cyclopropane Remaining after 18.0 hours Remaining after 51.5 hours ao ao 0.693 ln = kt ln = kt = t1 a o -x a o -x 0.054/h 2 a o -x a o -x 12.8 h = t 1 ln = - kt ln = - kt 2 ao ao a o -x a o -x = e- kt = e- kt ao ao a o -x a o -x = e- (0.054/h) x 18.0 h = e- (0.054/h) x 51.5 h ao ao a o -x a o -x = e- 0.972 = e- 2.8 ao ao a o -x a o -x = 0.38 = 0.061 ao ao
  • 71. Effect of Temperature on the Reaction Rate Arrhenius Equation Eact - RT k=Ae Eact ln k = - + ln A RT of the form y = mx + b
  • 72. Use the Following Data to Determine the Eact for 2 N2O (g)  2 N2 (g) + O2 (g) T k Ln k 104(1/T) K M-1/s 1125 11.5900 2.450 8.890 1053 1.6700 0.510 9.50 1001 0.3800 -0.968 9.99 838 0.0010 -6.810 11.9
  • 73. 5 0 0 2 4 6 8 10 12 14 16 18 20 -5 ln k -10 -15 -20 y = -3.0712x + 29.721 -25 -30 104(1/T) E act slope = -3.07 x 104 K = - R -3.07 x 104 K x - R = E act J -3.07 x 104 K x - 8.314 = E act K mol 2.55 x 105 J/mol = E act 255 kJ/mol = Eact
  • 74. Effect of a Catalyst on the Rate of a Reaction • Lowers the energy barrier to the reaction via lowering the energy of activation • Homogeneous catalyst- in the same phase as the reacting molecules • Herterogeneous catalyst – in a different phase from the reacting molecules
  • 75. Example of a Homogeneous Catalyst 1 1 1. H 2O2 (aq) + Br-  (aq) Br2 (aq) + H 2O (l) + O 2 (g) 2 2 1 1 2. H 2O2 (aq) + Br2 (aq)  Br(aq) + H 2O (l) + O 2 (g) - 2 2
  • 76. PE intermediate reactants products reaction coordinates
  • 77. Example of Heterogeneous Catalyst H H H H C C H H Finely divided metal
  • 78. An interesting problem: The reaction between propionaldehyde and hydrocyanic acid have been observed by Svirbely and Roth and reported in the Journal of the American Chemical Society. Use this data to ascertain the order of the reaction and the value of the rate constant for this reaction. .. H H O: C C CH3CH2 C + H C N: CH3CH2 C N : + :N C CH2CH3 H :OH .. HO : ..
  • 79. time, minutes [HCN] [CH3CH2CHO] 2.78 0.0990 0.0566 5.33 0.0906 0.0482 8.17 0.0830 0.0406 15.23 0.0706 0.0282 19.80 0.0653 0.0229 0.0424 0.0000 ∞
  • 80. Check to determine first order in HCN -2.35 0 2 4 6 8 10 12 14 16 18 -2.4 -2.45 -2.5 ln([HCN]-x) -2.55 -2.6 -2.65 -2.7 -2.75 time (minutes)
  • 81. Check to determine first order in propionaldehyde 0 0 2 4 6 8 10 12 14 16 18 -0.5 time (minutes) -1 ln ([propionaldehyde] -x) -1.5 -2 -2.5 -3 -3.5 -4
  • 82. So close; therefore, let’s take another approach. Let [HCN] = ao and [propionaldehyde] = bo Then, dx = k (a o -x) (b o -x) dt dx = k dt (a o -x) (b o -x) dx  (a o -x) (bo -x) = k  dt Solution: 1 (a o -x) 1 bo ln = kt - ln (a o -bo ) b o -x (a o -b o ) a o
  • 83. 1 (a o -x) 1 0.0566 ln = kt - ln 0.0424 M b o -x 0.0424 M 0.0990 -1 (a o -x) 23.6 M ln = kt - 23.6 M -1 ln 0.572 bo -x -1 (a o -x) 23.6 M ln = kt - 23.6 M -1 (-0.559) bo -x -1 (a o -x) 23.6 M ln = kt + 13.2 M -1 bo -x
  • 84. 1 (a o -x) 1 0.0566 ln = kt - ln 0.0424 M b o -x 0.0424 M 0.0990 -1 (a o -x) 23.6 M ln = kt - 23.6 M -1 ln 0.572 bo -x (a o -x) 23.6 M -1 ln = kt - 23.6 M -1 (-0.559) bo -x (a o -x) 23.6 M -1 ln = kt + 13.2 M -1 bo -x
  • 85. Let’s construct the data in a different format time, minutes [HCN] - x [CH3CH2CHO]-x ([HCN]-x) (23.6) ln ([CH3CH2 CHO]-x) 2.55 0.0906 0.0482 14.9 5.39 0.0830 0.0406 16.9 12.76 0.0706 0.0282 21.7 17.02 0.0653 0.0229 24.8
  • 86. 30 25 20 ([HCN] - x) y = 0.6778x + 13.184 23.6 ln ([CH3CH 2CHO]-x) 15 10 5 0 0 2 4 6 8 10 12 14 16 18 time, minutes Slope = 0.678; therefore, k = 0.678 M-1min-1
  • 87. Rate = k [HCN] [CH3CH2CHO] Mechanism: k1 + - 1. HCN + H2O H3O + CN k -1 + O OH k2 2. + + H2O CH3CH2 C + H3O CH3CH2 C k-2 H H + H 3. OH k3 - C CH3CH2 C + CN CH3CH2 CN H HO
  • 88. Steps 1 and 2 are fast equilibrium steps; and step 3 is the rate determining step + OH Rate = k3 CH3CH2 [ CN- ] C H k 1 [HCN] [H2O] = k -1 [H3O+] [CN-] k 1 [HCN] [H2O] = [CN-] k -1 [H3O+]
  • 89. O CH3CH2 C + [H3O ] k + 2 H OH = CH3CH2 C k [H2O] H -2 O CH3CH2 C + k3 k1 k2 [HCN] [H2O] H [H3O ] Rate = + k -1 k [H3O ] [H2O] -2
  • 90. O Rate = k [HCN] CH3CH2 C H
  • 91. Revisit the kinetics for 2 NO (g) + O2 (g) → 2 NO2 (g) Rate = k [NO]2 [O2 ]