SlideShare una empresa de Scribd logo
1 de 26
Descargar para leer sin conexión
Neuroreceptor 
                   Modulation Will 
                      Deliver Many 
                  Different Flavors

             Denise H. Rhoney, Pharm.D., FCCP, FCCM
                                   Associate Professor
Eugene Applebaum College of Pharmacy & Health Sciences
                                Wayne State University
                                     Detroit, Michigan
What is Delirium?

 Otherwise known as ICU psychosis, acute brain 
  dysfunction, acute confusional state, toxic‐metabolic 
  encephalopathy, post‐op confusional state, organic brain 
  syndrome

 Complex neurobehavioral syndrome caused by the 
  transient disruption of normal neuronal activity

 Clinically characterized by :
   Acute confusion, fluctuating mental status, inattention, 
     disorganized thinking, altered levels of consciousness
ICU Delirium Facts
 60% to 80% of ventilated patients 
   develop delirium 
 20% to 50% of lower severity ICU 
   patients develop delirium
 3 times higher risk of death by 6 
   months
 $15k to $25k higher hospital costs

 Estimated national $4 to $16 billion 
   associated costs 
 5 fewer ventilator free days (days alive    Ely EW ICM 2001;27:1892‐900
   and off vent), adjusted P=0.03             Ely EW JAMA 2001;286,2703‐2710
                                              Ely EW CCM 2001;29,1370‐79
 9 times higher incidence of cognitive       McNicoll L, JAGS 2003;51:591‐98
   impairment at hospital discharge, adj.     Ely EW et al, JAMA 2004;291‐1753‐1762
   P=0.002                                    Milbrandt E et al, Crit Care Med 2004;32:955‐962
                                              Lin et al, Crit Care Med 2004;32:2254‐59
Delirium Subtypes*
Characteristic            Hyperactive                            Hypoactive
% in ICU                  0‐6%                                   43.5‐94%
Level of Consciousness    Hyperalert/vigilant, distractibility   Lethargy,  alertness, inattention
Cognition                 Diffuse deficits, speech               Diffuse deficits, slow speech/quiet
                          loud/rapid/disorganized, 
                          disorientation
Perceptual disturbances   Hallucination/delusions                None
Physiologic               Low‐voltage fast EEG,  or normal  Slow/diffuse EEG,  cerebral 
                          cerebral metabolic activity        metabolic activity
Behaviors                  Psychomotor activity, restless,       psychomotor activity, apathetic, 
                          combative, mood liability               stimuli response
Possible etiology         BZD w/drawal, ETOH/drug                BZD intoxication, hepatic 
                          w/drawal, drug intoxication            encephalopathy, hypoxia, metabolic 
                                                                 disturbance
Outcome                   Best                                   Worst

    *64%  ICU patients with mixed forms
Overview of Acute Brain 
                   Dysfunction




Normal &  consistent               Elderly patients show signs of     ICU patients subjected  to 
connectivity between               grey matter atrophy in PPC,        medical and 
posterior parietal cortex (PPC),   MTL and PFC                        pharmacological challenges 
dorsal prefrontal cortex (PFC),                                       that disrupt normal CNS 
& medial temporal/                 Functional connectivity            connectivity and weaken 
hippocampal region (MTL) –         remains intact but strength of     functional links between 
circuit is innervated &            connections is no longer           these cortical regions
maintained by  ascending           robust
reticular activating system 
(ARAS) in the brainstem                         Gunther ML et al. Medical Hypotheses 2007;69:1179‐1182
Neuroimaging Studies

  Delirium results in significant hypoperfusion in several brain 
      regions (frontal, temporal, and subcortical regions)

  Critically ill patients with delirium (61% with abnormalities)
    Significant ventricular enlargement
    Generalized atrophy
    Focal lesions in frontal and parietal regions
    White matter lesions/hyperintensities
    Cortical and subcortical lesions


Fong TG et al. J Gerontol A Biol Sci Med Sci 2007;61A:1294‐9.
Sbordone R et al. Brain Inj 1998;12:505‐12.
Risk Factors for Delirium
Predisposing Host Factors   Critical Illness Factors   Iatrogenic Factors
Age                         Acidosis                   Few social interactions
APOE4 polymorphism          Anemia                     Frequent nursing care
Cognitive impairment        CNS pathology              Immobilization
Depression                  Electrolyte disturbances   Medications
Stroke History              Endocrine derangement      Oversedation
Vision/hearing impairment   Fever                      Poorly controlled pain
                            Hepatic Failure            Sleep disturbances
                            High severity of illness
                            Hypoperfusion
                            Hypotension
                            Hypoxia/anoxia
                            Infection/sepsis
                            Malnutrition
                            Metabolic disturbances
                            Respiratory failure
                            Shock
                            Trauma
Risk of Delirium with Commonly 
            Administered Drugs
   High Risk
    Opioids (particularly meperidine & morphine)
    Antiparkinsonian agents
    Antidepressants (particularly anticholinergic agents)
    Benzodiazepines
    Corticosteroids
   Medium Risk
    Alpha‐blockers
    Beta‐blockers
    NSAIDS
   Low Risk
    ACE‐I
    H2 antagonists
    Calcium channel blockers
    Anticonvulsants

Maldonado JR. Crit Care Clin 2008;24:789‐856.
Pathophysiology of Delirium
Theories on the Development of 
               Delirium
   Oxygen deprivation hypothesis
   Neurotransmitter hypothesis
   Large neutral amino acid hypothesis
   Neuronal aging hypothesis
   Cellular‐signaling hypothesis
   Physiologic stress hypothesis
   Inflammatory hypothesis
   Genetic Factors
   Cortisol & HPA disruption
   Disruption in circadian rhythm
   Disruption in thalamic gating
Hypotheses of Delirium
                                   Large neutral amino acid hypothesis




                   Neurotransmitter hypothesis




                                                                               Oxygen deprivation hypothesis




                                                     Inflammatory hypothesis




Figueroa‐Ramos MI et al. Intensive Care Med 2009;35:781‐795
Neurotransmitter Hypothesis
Suggests that changes in neurotransmitter concentration or 
  receptor sensitivity may underlie the different symptoms 
  and clinical presentations of delirium
   Reduced cholinergic function
   Excess release of 
     Dopamine
      NE
      Glutamate
   Both decreased and increased activity
     Serotonin
      Histamine
      GABA
Acetylcholine & Delirium
       Decreased ACh synthesis and release
         Ach is an important neuromodulator of cortical and hippocampal 
          neuronal function
         Widespread dysfunction of arousal seen in delirium correlates well 
          with the blockade of the muscarininc cholinergic system
         Low levels of ACh described in plasma and CSF of patients with 
          delirium
         Higher levels of serum anticholinergic activity (SAA)  have been
          associated with increase likelihood of delirium in surgical and 
          medical inpatients
                 Detectable SAA levels have been reported even in patients with 
                    delirium who were not exposed to anticholinergic agents
Flacker et al. J Gerontol A Biol Sci Med Sci 2001; Mach et al. J Am Geriatr Sco 1995; Mulsant et al. Arch Gen Psychiatry 2003.
Acetylcholine & Delirium
 Potential contributing 
    mechanisms
     Aging
     Dementia & other “organic 
      brain injury”
     Hypoxia  ACh production
      anticholinergic activity
          Drugs
          Endogenous anticholinergic 
             substances
                                                           Central cholinergic pathways overlap with locations of 
                                                           neuroimaging abnormalities 

Hshieh TT et al. J Gerontol A Biol Sci Med Sci 2008; 63:764‐72
Dopamine
Dopamine associated with many functions 
inlcuding cognition, motor activity, 
thinking, perceptual function, 
motivation/reward, anxiety

Dopaminergic and cholinergic pathways 
overlap significantly in the brain

Overactivity of DA neurons in 
mesolimbic pathway 
may account for symptoms
similar to those in schizophrenia: 
agitation, disorganized behavior,
hallucinations and inattention

Dopaminergic neurons are among most 
susceptible to oxidative stress  massive 
DA release
Dopamine & Delirium
  Enhanced central dopaminergic activity
    DA agonists cause delirium
    DA antagonists treat delirium

  Follows an inverted U‐shaped curve
    Lack of dopamine = Parkinsonian symptoms
    Excess dopamine = psychosis

  D2 receptor density declines with age and correlates with frontal cognitive 
      test scores

  DA transporter gene allele A9 is more prevalent in alcoholics with 
      withdrawal delirium and seizures

  DA agonists cause EEG slowing

  DA release is increased in hypoxia (while ACh is decreased)
    Dopaminergic blockade can be used to reduce hypoxic damage in hippocampus

Trzepacz PT. Sem Clin Neuropsychiatry 2000;5:132‐148.
Pharmacology of Antipsychotics
GABA & Delirium
 Predominant inhibitory 
  neurotransmitter in CNS
    in hepatic encephalopathy and 
    benzodiazepine use
    sedative/alcohol withdrawal

 Flumazenil has improved hypoactive 
  delirium in cirrhotic patients
 Oversedation with GABAergic agents 
  has been found to be a risk factor for 
  transitioning to delirium and 
  prolonged mechanical ventilation

  Maldonado JR. Crit Care Clin 2008;24:789‐856.
  Pandharipande P et al. Anesthesiology 2006; 104:21‐6
GABA & Delirium

    GABAergic agents contribute to the development of 
       delirium via various possible mechanisms
        Interfering with physiologic sleep patterns
        Interfering with central cholinergeric function causing 
         centrally mediated acetylcholine deficient state
        Disrupting circadian rhythm of melatonin release
        Enhancing NMDA‐induced neuronal damage
        Disrupting thalamic gating function leading to sensory 
         overload and hyperarousal


Maldonado JR. Crit Care Clin 2008;24:789‐856.
Other Neurotransmitters & Delirium
Serotonin:
      Most abundant neurotransmitter in the brainstem, its synthesis and 
       release depends on its precursor tryptophan
      Increased and decreased serotonin levels are both associated with 
       development of delirium
      Cerebral serotonin is increased in hepatic encephalopathy, septic delirium 
       and serotonin syndrome 

Histamine:
      HA1 & HA2 alter the polarity of hippocampal neurons
      Pharmacological antagonism of HA1 and HA2 causes delirium
      Both excess and deficiency of HA may be related to delirium
      H2 Blockers cimetidine, ranitidine may cause cognitive dysfunction and 
         delirium in elderly
Maldonado JR. Crit Care Clin 2008;24:789‐856.
Other Neurotransmitters & Delirium
   Norepinephrine:
         Plays important role in modulating attention, anxiety & mood
         Enhanced central noradrengergic activity ( NE)
         Acute NE release due to hypoxia leads to further neuronal injury and worsening 
          delirium
         Cortisol release with injury may lead to further NE release and activity
         Up‐regulation of NE receptors due to chronic GABA suppression
         Dexmedetomidine  has been shown to decrease NE conc. by up to 90%
                Significantly decreased incidence of delirium associated with Dex compared to 
                 midazolam

   Glutamate:
         Enhanced glutamate activity leading to neuronal injury via activation of NMDA 
          receptors
         Metabolized by glutamate decarboxylase into GABA
         DA may enhance GLU‐mediated injury


Hshieh TT et al. J Gerontol A Biol Sci Med Sci 2008; 63:764‐72   Engelhard K et al. Anesth Analg 2003;96:524‐31
Maldonado JR. Crit Care Clin 2008;24:789‐856                     Riker R et al JAMA 2009;301:489‐99
Interaction Between 
                          Neurotransmitters




Hshieh TT et al. J Gerontol A Biol Sci Med Sci 2008; 63:764‐72
Medications, alcohol withdrawal                       Medications, medical illness




                                                        Ach (-)           Benzodiazepine and alcohol withdrawal
                                    Ach (+)
Medications, Stroke
                             D(+)

                                                                                  Benzodiazepine, hepatic failure
Cytokine Excess

                                                                         GABA (+)
                      5HT (+)
                                                                     GLU (+)
  Medications, substance withdrawal
                                                                               Hepatic failure, alcohol withdrawal
                                              5HT (-)

                                                         Cortisol excess
               Tryptophan depletion
                                                                       Glucocorticosteroids, Cushing’s syndrome
Surgical Illness, medical illness
                                                                      Maldonado JR. Crit Care Clin 2008;24:789‐856.
Maldonado JR. Crit Care Clin 2008;24:789‐856.
Summary

 Firm understanding of pathophysiology of delirium 
  remains elusive despite improvements in diagnosis and 
  treatment
 Neurotransmitter imbalance along with a number of other 
  hypotheses have been implicated in the development of 
  delirium
 Understanding cellular response to critical illness, 
  including neurotransmitter activity and neuroreceptor 
  expression, may lead to innovative diagnostic and 
  treatment modalities

Más contenido relacionado

La actualidad más candente

Who guidelines on safety monitoring of natural medicines
Who guidelines on safety monitoring of natural medicinesWho guidelines on safety monitoring of natural medicines
Who guidelines on safety monitoring of natural medicines
Pharmacy Slides
 
Herbal medicine marketing
Herbal medicine marketingHerbal medicine marketing
Herbal medicine marketing
Tooba Alam
 

La actualidad más candente (20)

Cardiac Glycosides (Medicinal Chemistry) MANIK
Cardiac Glycosides (Medicinal Chemistry) MANIKCardiac Glycosides (Medicinal Chemistry) MANIK
Cardiac Glycosides (Medicinal Chemistry) MANIK
 
Phytochemical fingerprinting by hptlc and gc ms
Phytochemical fingerprinting by hptlc and gc msPhytochemical fingerprinting by hptlc and gc ms
Phytochemical fingerprinting by hptlc and gc ms
 
Introduction to Phytopharmaceuticals- Carotenoids.pptx
Introduction to Phytopharmaceuticals- Carotenoids.pptxIntroduction to Phytopharmaceuticals- Carotenoids.pptx
Introduction to Phytopharmaceuticals- Carotenoids.pptx
 
Pharmacognosy of teratogenic plants
Pharmacognosy of teratogenic plantsPharmacognosy of teratogenic plants
Pharmacognosy of teratogenic plants
 
Global Market For Herbal Products In India
Global Market For Herbal Products In IndiaGlobal Market For Herbal Products In India
Global Market For Herbal Products In India
 
Determination of foreign matter, heavy metals, pesticide residues, photo toxi...
Determination of foreign matter, heavy metals, pesticide residues, photo toxi...Determination of foreign matter, heavy metals, pesticide residues, photo toxi...
Determination of foreign matter, heavy metals, pesticide residues, photo toxi...
 
HERBS AS HEALTH FOOD - Brief introduction and therapeutic applications of: N...
HERBS AS HEALTH FOOD - Brief introduction and therapeutic applications of:  N...HERBS AS HEALTH FOOD - Brief introduction and therapeutic applications of:  N...
HERBS AS HEALTH FOOD - Brief introduction and therapeutic applications of: N...
 
EVALUATION OF CRUDE DRUGS 2022.pptx
EVALUATION OF CRUDE DRUGS 2022.pptxEVALUATION OF CRUDE DRUGS 2022.pptx
EVALUATION OF CRUDE DRUGS 2022.pptx
 
QUEEN PPT.pptx
QUEEN PPT.pptxQUEEN PPT.pptx
QUEEN PPT.pptx
 
Who guidelines
Who guidelines Who guidelines
Who guidelines
 
Who guidelines on safety monitoring of natural medicines
Who guidelines on safety monitoring of natural medicinesWho guidelines on safety monitoring of natural medicines
Who guidelines on safety monitoring of natural medicines
 
Herbal and synthetic drug
Herbal and synthetic drugHerbal and synthetic drug
Herbal and synthetic drug
 
Role of Pharmacognosy in various systems of medicine
Role of Pharmacognosy in various systems of medicineRole of Pharmacognosy in various systems of medicine
Role of Pharmacognosy in various systems of medicine
 
Gpat important questions with answers
Gpat important questions with answersGpat important questions with answers
Gpat important questions with answers
 
Herbal medicine marketing
Herbal medicine marketingHerbal medicine marketing
Herbal medicine marketing
 
Physical evaluation of crude drugs
Physical evaluation of crude drugsPhysical evaluation of crude drugs
Physical evaluation of crude drugs
 
Alkaloids
AlkaloidsAlkaloids
Alkaloids
 
Lipids
LipidsLipids
Lipids
 
Bio drug drug interaction
Bio drug  drug interactionBio drug  drug interaction
Bio drug drug interaction
 
Tannins
TanninsTannins
Tannins
 

Destacado (6)

Hot Topics in ICM
Hot Topics in ICM Hot Topics in ICM
Hot Topics in ICM
 
Meningitis-By Dr Opiro Keneth
Meningitis-By Dr Opiro KenethMeningitis-By Dr Opiro Keneth
Meningitis-By Dr Opiro Keneth
 
Introduction to child Psychiatry- Assessment issues
Introduction to child Psychiatry- Assessment issues Introduction to child Psychiatry- Assessment issues
Introduction to child Psychiatry- Assessment issues
 
Syncope (nx power lite) /certified fixed orthodontic courses by Indian dental...
Syncope (nx power lite) /certified fixed orthodontic courses by Indian dental...Syncope (nx power lite) /certified fixed orthodontic courses by Indian dental...
Syncope (nx power lite) /certified fixed orthodontic courses by Indian dental...
 
Dr Funke's Formulation Workshop Implementing Theory into Practice
Dr Funke's Formulation Workshop Implementing Theory into PracticeDr Funke's Formulation Workshop Implementing Theory into Practice
Dr Funke's Formulation Workshop Implementing Theory into Practice
 
Predisposing And Precipitating Factors To Mental Illness
Predisposing And Precipitating Factors To Mental IllnessPredisposing And Precipitating Factors To Mental Illness
Predisposing And Precipitating Factors To Mental Illness
 

Similar a Neuroreceptor Modulation Will Deliver Many Different Flavors

Organic Mental Disorders
Organic Mental DisordersOrganic Mental Disorders
Organic Mental Disorders
john xxx
 
M.S lecture from sir Pañgan
M.S lecture from sir PañganM.S lecture from sir Pañgan
M.S lecture from sir Pañgan
Dolly Fernandez
 

Similar a Neuroreceptor Modulation Will Deliver Many Different Flavors (20)

Delirium in icu
Delirium in icuDelirium in icu
Delirium in icu
 
Organic Mental Disorders
Organic Mental DisordersOrganic Mental Disorders
Organic Mental Disorders
 
Epilepsy and Headaches
Epilepsy and HeadachesEpilepsy and Headaches
Epilepsy and Headaches
 
Delirium by Dr. Aryan
Delirium by Dr. AryanDelirium by Dr. Aryan
Delirium by Dr. Aryan
 
Organic Mental Disorders
Organic Mental DisordersOrganic Mental Disorders
Organic Mental Disorders
 
Schizophrenia
SchizophreniaSchizophrenia
Schizophrenia
 
Unit 5 schizophrenia online3
Unit 5 schizophrenia online3Unit 5 schizophrenia online3
Unit 5 schizophrenia online3
 
Alzheimer's disease.pptx
Alzheimer's disease.pptxAlzheimer's disease.pptx
Alzheimer's disease.pptx
 
Neurodegenerative disorders
Neurodegenerative disordersNeurodegenerative disorders
Neurodegenerative disorders
 
Organic mental disorders 1-DELIRIUM
Organic mental disorders 1-DELIRIUMOrganic mental disorders 1-DELIRIUM
Organic mental disorders 1-DELIRIUM
 
Delirium in critical illness.
Delirium in critical illness.Delirium in critical illness.
Delirium in critical illness.
 
A guideline for discontinuing antiepileptic drugs in seizure-free patients – ...
A guideline for discontinuing antiepileptic drugs in seizure-free patients – ...A guideline for discontinuing antiepileptic drugs in seizure-free patients – ...
A guideline for discontinuing antiepileptic drugs in seizure-free patients – ...
 
Delirium 3.0
Delirium 3.0Delirium 3.0
Delirium 3.0
 
M.S lecture from sir Pañgan
M.S lecture from sir PañganM.S lecture from sir Pañgan
M.S lecture from sir Pañgan
 
Delirium
DeliriumDelirium
Delirium
 
DELIRIUM_&_DEMENTIA[1]_Ngoma.pptx
DELIRIUM_&_DEMENTIA[1]_Ngoma.pptxDELIRIUM_&_DEMENTIA[1]_Ngoma.pptx
DELIRIUM_&_DEMENTIA[1]_Ngoma.pptx
 
MEDICATION INDUCED MOVEMENT DISORDERS
MEDICATION INDUCED MOVEMENT DISORDERSMEDICATION INDUCED MOVEMENT DISORDERS
MEDICATION INDUCED MOVEMENT DISORDERS
 
Psychosis in Epilepsy
Psychosis in Epilepsy Psychosis in Epilepsy
Psychosis in Epilepsy
 
Delirium
Delirium Delirium
Delirium
 
asadullahcns-130402212329-phpapp02 (1).pdf
asadullahcns-130402212329-phpapp02 (1).pdfasadullahcns-130402212329-phpapp02 (1).pdf
asadullahcns-130402212329-phpapp02 (1).pdf
 

Más de hospira2010

Sleep in the ICU The Next Delirium Frontier?
Sleep in the ICU The Next Delirium Frontier?Sleep in the ICU The Next Delirium Frontier?
Sleep in the ICU The Next Delirium Frontier?
hospira2010
 
Patients Gone Wild: Agitation and Delirium in the ICU
Patients Gone Wild: Agitation and Delirium in the ICUPatients Gone Wild: Agitation and Delirium in the ICU
Patients Gone Wild: Agitation and Delirium in the ICU
hospira2010
 
Improving Patient Safety Outcomes: Impact of Bar-code Technology
Improving Patient Safety Outcomes: Impact of Bar-code TechnologyImproving Patient Safety Outcomes: Impact of Bar-code Technology
Improving Patient Safety Outcomes: Impact of Bar-code Technology
hospira2010
 
Treating Agitation and De to an Alphabet Soup of Potential Options
Treating Agitation and De to an Alphabet Soup of Potential OptionsTreating Agitation and De to an Alphabet Soup of Potential Options
Treating Agitation and De to an Alphabet Soup of Potential Options
hospira2010
 
Controlling ICU Agitation; Context Determines Strategy Ways to Facilitate Kno...
Controlling ICU Agitation; Context Determines Strategy Ways to Facilitate Kno...Controlling ICU Agitation; Context Determines Strategy Ways to Facilitate Kno...
Controlling ICU Agitation; Context Determines Strategy Ways to Facilitate Kno...
hospira2010
 
The Delirious ICU Patient
The Delirious ICU PatientThe Delirious ICU Patient
The Delirious ICU Patient
hospira2010
 
Haloperidol is the “Go To” Drug for Delirium: But are Atypicals a Better Option?
Haloperidol is the “Go To” Drug for Delirium: But are Atypicals a Better Option?Haloperidol is the “Go To” Drug for Delirium: But are Atypicals a Better Option?
Haloperidol is the “Go To” Drug for Delirium: But are Atypicals a Better Option?
hospira2010
 
Delirium: The Next Proposed “Never Event.” Is This Realistic?
Delirium: The Next Proposed “Never Event.” Is This Realistic?Delirium: The Next Proposed “Never Event.” Is This Realistic?
Delirium: The Next Proposed “Never Event.” Is This Realistic?
hospira2010
 
Delirium in ICU Characteristic, Diagnosis and Prevention
Delirium in ICU Characteristic, Diagnosis and PreventionDelirium in ICU Characteristic, Diagnosis and Prevention
Delirium in ICU Characteristic, Diagnosis and Prevention
hospira2010
 
A case of delirium
A case of delirium A case of delirium
A case of delirium
hospira2010
 
Mejorando desenlaces en ventilacion mecanica
Mejorando desenlaces en ventilacion mecanicaMejorando desenlaces en ventilacion mecanica
Mejorando desenlaces en ventilacion mecanica
hospira2010
 
Delirium in critically ill patients bogota043009
Delirium in critically ill patients bogota043009Delirium in critically ill patients bogota043009
Delirium in critically ill patients bogota043009
hospira2010
 
Bogota sedation052110
Bogota sedation052110Bogota sedation052110
Bogota sedation052110
hospira2010
 
Bogota sedation052010
Bogota sedation052010Bogota sedation052010
Bogota sedation052010
hospira2010
 
Bogota delirium051110
Bogota delirium051110Bogota delirium051110
Bogota delirium051110
hospira2010
 

Más de hospira2010 (15)

Sleep in the ICU The Next Delirium Frontier?
Sleep in the ICU The Next Delirium Frontier?Sleep in the ICU The Next Delirium Frontier?
Sleep in the ICU The Next Delirium Frontier?
 
Patients Gone Wild: Agitation and Delirium in the ICU
Patients Gone Wild: Agitation and Delirium in the ICUPatients Gone Wild: Agitation and Delirium in the ICU
Patients Gone Wild: Agitation and Delirium in the ICU
 
Improving Patient Safety Outcomes: Impact of Bar-code Technology
Improving Patient Safety Outcomes: Impact of Bar-code TechnologyImproving Patient Safety Outcomes: Impact of Bar-code Technology
Improving Patient Safety Outcomes: Impact of Bar-code Technology
 
Treating Agitation and De to an Alphabet Soup of Potential Options
Treating Agitation and De to an Alphabet Soup of Potential OptionsTreating Agitation and De to an Alphabet Soup of Potential Options
Treating Agitation and De to an Alphabet Soup of Potential Options
 
Controlling ICU Agitation; Context Determines Strategy Ways to Facilitate Kno...
Controlling ICU Agitation; Context Determines Strategy Ways to Facilitate Kno...Controlling ICU Agitation; Context Determines Strategy Ways to Facilitate Kno...
Controlling ICU Agitation; Context Determines Strategy Ways to Facilitate Kno...
 
The Delirious ICU Patient
The Delirious ICU PatientThe Delirious ICU Patient
The Delirious ICU Patient
 
Haloperidol is the “Go To” Drug for Delirium: But are Atypicals a Better Option?
Haloperidol is the “Go To” Drug for Delirium: But are Atypicals a Better Option?Haloperidol is the “Go To” Drug for Delirium: But are Atypicals a Better Option?
Haloperidol is the “Go To” Drug for Delirium: But are Atypicals a Better Option?
 
Delirium: The Next Proposed “Never Event.” Is This Realistic?
Delirium: The Next Proposed “Never Event.” Is This Realistic?Delirium: The Next Proposed “Never Event.” Is This Realistic?
Delirium: The Next Proposed “Never Event.” Is This Realistic?
 
Delirium in ICU Characteristic, Diagnosis and Prevention
Delirium in ICU Characteristic, Diagnosis and PreventionDelirium in ICU Characteristic, Diagnosis and Prevention
Delirium in ICU Characteristic, Diagnosis and Prevention
 
A case of delirium
A case of delirium A case of delirium
A case of delirium
 
Mejorando desenlaces en ventilacion mecanica
Mejorando desenlaces en ventilacion mecanicaMejorando desenlaces en ventilacion mecanica
Mejorando desenlaces en ventilacion mecanica
 
Delirium in critically ill patients bogota043009
Delirium in critically ill patients bogota043009Delirium in critically ill patients bogota043009
Delirium in critically ill patients bogota043009
 
Bogota sedation052110
Bogota sedation052110Bogota sedation052110
Bogota sedation052110
 
Bogota sedation052010
Bogota sedation052010Bogota sedation052010
Bogota sedation052010
 
Bogota delirium051110
Bogota delirium051110Bogota delirium051110
Bogota delirium051110
 

Neuroreceptor Modulation Will Deliver Many Different Flavors

  • 1. Neuroreceptor  Modulation Will  Deliver Many  Different Flavors Denise H. Rhoney, Pharm.D., FCCP, FCCM Associate Professor Eugene Applebaum College of Pharmacy & Health Sciences Wayne State University Detroit, Michigan
  • 2. What is Delirium?  Otherwise known as ICU psychosis, acute brain  dysfunction, acute confusional state, toxic‐metabolic  encephalopathy, post‐op confusional state, organic brain  syndrome  Complex neurobehavioral syndrome caused by the  transient disruption of normal neuronal activity  Clinically characterized by :  Acute confusion, fluctuating mental status, inattention,  disorganized thinking, altered levels of consciousness
  • 3. ICU Delirium Facts  60% to 80% of ventilated patients  develop delirium   20% to 50% of lower severity ICU  patients develop delirium  3 times higher risk of death by 6  months  $15k to $25k higher hospital costs  Estimated national $4 to $16 billion  associated costs   5 fewer ventilator free days (days alive  Ely EW ICM 2001;27:1892‐900 and off vent), adjusted P=0.03 Ely EW JAMA 2001;286,2703‐2710 Ely EW CCM 2001;29,1370‐79  9 times higher incidence of cognitive  McNicoll L, JAGS 2003;51:591‐98 impairment at hospital discharge, adj.  Ely EW et al, JAMA 2004;291‐1753‐1762 P=0.002 Milbrandt E et al, Crit Care Med 2004;32:955‐962 Lin et al, Crit Care Med 2004;32:2254‐59
  • 4. Delirium Subtypes* Characteristic Hyperactive Hypoactive % in ICU 0‐6% 43.5‐94% Level of Consciousness Hyperalert/vigilant, distractibility Lethargy,  alertness, inattention Cognition Diffuse deficits, speech  Diffuse deficits, slow speech/quiet loud/rapid/disorganized,  disorientation Perceptual disturbances Hallucination/delusions None Physiologic Low‐voltage fast EEG,  or normal  Slow/diffuse EEG,  cerebral  cerebral metabolic activity metabolic activity Behaviors  Psychomotor activity, restless,   psychomotor activity, apathetic,  combative, mood liability  stimuli response Possible etiology BZD w/drawal, ETOH/drug  BZD intoxication, hepatic  w/drawal, drug intoxication encephalopathy, hypoxia, metabolic  disturbance Outcome Best Worst *64%  ICU patients with mixed forms
  • 5. Overview of Acute Brain  Dysfunction Normal &  consistent  Elderly patients show signs of  ICU patients subjected  to  connectivity between grey matter atrophy in PPC,  medical and  posterior parietal cortex (PPC), MTL and PFC pharmacological challenges  dorsal prefrontal cortex (PFC), that disrupt normal CNS  & medial temporal/  Functional connectivity  connectivity and weaken  hippocampal region (MTL) – remains intact but strength of  functional links between  circuit is innervated &  connections is no longer  these cortical regions maintained by  ascending robust reticular activating system  (ARAS) in the brainstem Gunther ML et al. Medical Hypotheses 2007;69:1179‐1182
  • 6. Neuroimaging Studies  Delirium results in significant hypoperfusion in several brain  regions (frontal, temporal, and subcortical regions)  Critically ill patients with delirium (61% with abnormalities)  Significant ventricular enlargement  Generalized atrophy  Focal lesions in frontal and parietal regions  White matter lesions/hyperintensities  Cortical and subcortical lesions Fong TG et al. J Gerontol A Biol Sci Med Sci 2007;61A:1294‐9. Sbordone R et al. Brain Inj 1998;12:505‐12.
  • 7. Risk Factors for Delirium Predisposing Host Factors Critical Illness Factors Iatrogenic Factors Age Acidosis Few social interactions APOE4 polymorphism Anemia Frequent nursing care Cognitive impairment CNS pathology Immobilization Depression Electrolyte disturbances Medications Stroke History Endocrine derangement Oversedation Vision/hearing impairment Fever Poorly controlled pain Hepatic Failure Sleep disturbances High severity of illness Hypoperfusion Hypotension Hypoxia/anoxia Infection/sepsis Malnutrition Metabolic disturbances Respiratory failure Shock Trauma
  • 8. Risk of Delirium with Commonly  Administered Drugs High Risk Opioids (particularly meperidine & morphine) Antiparkinsonian agents Antidepressants (particularly anticholinergic agents) Benzodiazepines Corticosteroids Medium Risk Alpha‐blockers Beta‐blockers NSAIDS Low Risk ACE‐I H2 antagonists Calcium channel blockers Anticonvulsants Maldonado JR. Crit Care Clin 2008;24:789‐856.
  • 10. Theories on the Development of  Delirium  Oxygen deprivation hypothesis  Neurotransmitter hypothesis  Large neutral amino acid hypothesis  Neuronal aging hypothesis  Cellular‐signaling hypothesis  Physiologic stress hypothesis  Inflammatory hypothesis  Genetic Factors  Cortisol & HPA disruption  Disruption in circadian rhythm  Disruption in thalamic gating
  • 11. Hypotheses of Delirium Large neutral amino acid hypothesis Neurotransmitter hypothesis Oxygen deprivation hypothesis Inflammatory hypothesis Figueroa‐Ramos MI et al. Intensive Care Med 2009;35:781‐795
  • 12. Neurotransmitter Hypothesis Suggests that changes in neurotransmitter concentration or  receptor sensitivity may underlie the different symptoms  and clinical presentations of delirium  Reduced cholinergic function  Excess release of   Dopamine  NE  Glutamate  Both decreased and increased activity  Serotonin  Histamine  GABA
  • 13. Acetylcholine & Delirium  Decreased ACh synthesis and release  Ach is an important neuromodulator of cortical and hippocampal  neuronal function  Widespread dysfunction of arousal seen in delirium correlates well  with the blockade of the muscarininc cholinergic system  Low levels of ACh described in plasma and CSF of patients with  delirium  Higher levels of serum anticholinergic activity (SAA)  have been associated with increase likelihood of delirium in surgical and  medical inpatients  Detectable SAA levels have been reported even in patients with  delirium who were not exposed to anticholinergic agents Flacker et al. J Gerontol A Biol Sci Med Sci 2001; Mach et al. J Am Geriatr Sco 1995; Mulsant et al. Arch Gen Psychiatry 2003.
  • 14. Acetylcholine & Delirium  Potential contributing  mechanisms  Aging  Dementia & other “organic  brain injury”  Hypoxia  ACh production   anticholinergic activity  Drugs  Endogenous anticholinergic  substances Central cholinergic pathways overlap with locations of  neuroimaging abnormalities  Hshieh TT et al. J Gerontol A Biol Sci Med Sci 2008; 63:764‐72
  • 16. Dopamine & Delirium  Enhanced central dopaminergic activity  DA agonists cause delirium  DA antagonists treat delirium  Follows an inverted U‐shaped curve  Lack of dopamine = Parkinsonian symptoms  Excess dopamine = psychosis  D2 receptor density declines with age and correlates with frontal cognitive  test scores  DA transporter gene allele A9 is more prevalent in alcoholics with  withdrawal delirium and seizures  DA agonists cause EEG slowing  DA release is increased in hypoxia (while ACh is decreased)  Dopaminergic blockade can be used to reduce hypoxic damage in hippocampus Trzepacz PT. Sem Clin Neuropsychiatry 2000;5:132‐148.
  • 17.
  • 19. GABA & Delirium  Predominant inhibitory  neurotransmitter in CNS   in hepatic encephalopathy and  benzodiazepine use   sedative/alcohol withdrawal  Flumazenil has improved hypoactive  delirium in cirrhotic patients  Oversedation with GABAergic agents  has been found to be a risk factor for  transitioning to delirium and  prolonged mechanical ventilation Maldonado JR. Crit Care Clin 2008;24:789‐856. Pandharipande P et al. Anesthesiology 2006; 104:21‐6
  • 20. GABA & Delirium  GABAergic agents contribute to the development of  delirium via various possible mechanisms  Interfering with physiologic sleep patterns  Interfering with central cholinergeric function causing  centrally mediated acetylcholine deficient state  Disrupting circadian rhythm of melatonin release  Enhancing NMDA‐induced neuronal damage  Disrupting thalamic gating function leading to sensory  overload and hyperarousal Maldonado JR. Crit Care Clin 2008;24:789‐856.
  • 21. Other Neurotransmitters & Delirium Serotonin:  Most abundant neurotransmitter in the brainstem, its synthesis and  release depends on its precursor tryptophan  Increased and decreased serotonin levels are both associated with  development of delirium  Cerebral serotonin is increased in hepatic encephalopathy, septic delirium  and serotonin syndrome  Histamine:  HA1 & HA2 alter the polarity of hippocampal neurons  Pharmacological antagonism of HA1 and HA2 causes delirium  Both excess and deficiency of HA may be related to delirium  H2 Blockers cimetidine, ranitidine may cause cognitive dysfunction and  delirium in elderly Maldonado JR. Crit Care Clin 2008;24:789‐856.
  • 22. Other Neurotransmitters & Delirium Norepinephrine:  Plays important role in modulating attention, anxiety & mood  Enhanced central noradrengergic activity ( NE)  Acute NE release due to hypoxia leads to further neuronal injury and worsening  delirium  Cortisol release with injury may lead to further NE release and activity  Up‐regulation of NE receptors due to chronic GABA suppression  Dexmedetomidine  has been shown to decrease NE conc. by up to 90%  Significantly decreased incidence of delirium associated with Dex compared to  midazolam Glutamate:  Enhanced glutamate activity leading to neuronal injury via activation of NMDA  receptors  Metabolized by glutamate decarboxylase into GABA  DA may enhance GLU‐mediated injury Hshieh TT et al. J Gerontol A Biol Sci Med Sci 2008; 63:764‐72 Engelhard K et al. Anesth Analg 2003;96:524‐31 Maldonado JR. Crit Care Clin 2008;24:789‐856 Riker R et al JAMA 2009;301:489‐99
  • 23. Interaction Between  Neurotransmitters Hshieh TT et al. J Gerontol A Biol Sci Med Sci 2008; 63:764‐72
  • 24. Medications, alcohol withdrawal Medications, medical illness Ach (-) Benzodiazepine and alcohol withdrawal Ach (+) Medications, Stroke D(+) Benzodiazepine, hepatic failure Cytokine Excess GABA (+) 5HT (+) GLU (+) Medications, substance withdrawal Hepatic failure, alcohol withdrawal 5HT (-) Cortisol excess Tryptophan depletion Glucocorticosteroids, Cushing’s syndrome Surgical Illness, medical illness Maldonado JR. Crit Care Clin 2008;24:789‐856.
  • 26. Summary  Firm understanding of pathophysiology of delirium  remains elusive despite improvements in diagnosis and  treatment  Neurotransmitter imbalance along with a number of other  hypotheses have been implicated in the development of  delirium  Understanding cellular response to critical illness,  including neurotransmitter activity and neuroreceptor  expression, may lead to innovative diagnostic and  treatment modalities