SlideShare una empresa de Scribd logo
1 de 10
Descargar para leer sin conexión
International Journal of Computer Engineering and Technology (IJCET), ISSN 0976-6367(Print),
INTERNATIONAL JOURNAL OF COMPUTER ENGINEERING &
ISSN 0976 - 6375(Online), Volume 5, Issue 2, February (2014), pp. 88-97 © IAEME

TECHNOLOGY (IJCET)

ISSN 0976 – 6367(Print)
ISSN 0976 – 6375(Online)
Volume 5, Issue 2, February (2014), pp. 88-97
© IAEME: www.iaeme.com/ijcet.asp
Journal Impact Factor (2014): 4.4012 (Calculated by GISI)
www.jifactor.com

IJCET
©IAEME

A NEW LEAF ANALYSIS AND CLUSTERING FOR TEA SPECIES
IDENTIFICATION
Arunpriya C.
P.S.G.R Krishnammal College for Women, Coimbatore, India
Antony Selvadoss Thanamani
Nallamuthu Gounder Mahalingam College, Pollachi, India.

ABSTRACT
Leaf is an important organ of the plant. It is widely used for many purposes such as in
medical field, chemical and other research purposes. Now it becomes active area for analysis of
plants as most of the plant species are at the risk of extinction. Most of the leaves cannot be analyzed
easily since some are not flat (e.g. succulent leaves and conifers), some does not grow above ground
(e.g. bulb scales), and some does not undergo photosynthetic function (e.g. cataphylls, spines, and
cotyledons).In this paper, we mainly focused on tea leaves to identify the leaf type for improving tea
leaf classification. Tea leaf images are loaded from digital cameras or scanners in the system. This
proposed approach consists of three phases such as preprocessing, feature extraction, selection and
finally clustering of leaves. The tea leaf images are first preprocessed to remove the noise and
enhanced by fuzzy denoising using Dual Tree Discrete Wavelet Transform (DT-DWT and boundary
enhancement to obtain the shape of leaf accurately. In the feature extraction phase, Digital
Morphological Features (DMFs) and Geometrical features are extracted and from that main features
are selected. They are given to the clustering process which is done by using Fuzzy C-Means
algorithm, it clearly cluster different type of tea leaves.
The Fuzzy C-Means is trained by 60 tea leaves to classify them into 6 types. Experimental
results proved that the proposed method clustered the tea leaves with more accuracy in less time.
Thus, the proposed method achieves more accuracy in clustering the leaf type.
Keywords: Leaf Recognition, Dual Tree Discrete Wavelet Transform (DT-DWT), Digital
Morphological Features (DMFs), K-Means Algorithm, Fuzzy C-Means (FCM).

88
International Journal of Computer Engineering and Technology (IJCET), ISSN 0976-6367(Print),
ISSN 0976 - 6375(Online), Volume 5, Issue 2, February (2014), pp. 88-97 © IAEME

I.

INTRODUCTION

Plant is an important thing in our environment. It has vital use in food stuff, medicine and
industry. There is an difficulty arises while recognize plant species on earth. All over the world, there
are currently about 310 000–420 000 known plant species, and many are still unknown yet. [2]
At present, plant taxonomy usually adopts traditional classification method. And so far many
other classification methods, such as molecule biology, morphologic anatomy, cell biology and
phytochemistry, have also been used. These methods have good relation to do with biology and
chemistry. However, the acquisition of needed data from plant living body or specimen directly and
automatically by computer has not been implemented [1].
Plants are basically classified according to shapes, colors and structures of their leaves and
flowers [5, 6]. However, if we want to recognize the plant based on 2D images, it is difficult to
analyze shapes and structures of flowers since they have complex 3D structures. On the other hand,
the colors of leaves are always green; moreover, shades and the variety of changes in atmosphere and
season cause the color feature having low reliability. Therefore, we decided to recognize various
plants by the grey-level leaf image of plant. The leaf of plant carry useful information for
classification of various plants, for example, shape, aspect ratio and texture. [12]
In this work initially the leaf images are subjected to preprocessing, In that preprocessing the
leaf image is converted into gray scale and then from it noises are removed and it is enhanced to
desired level. From it several features are extracted and selection of features is made. Then they are
clustered based upon their features.
The paper can be organized as follows. Section II describes the related works involved
regarding leaf analysis. Section III describes about the proposed methodology. Experimental results
are illustrated in Section IV and Section V deals with the conclusion.
II.

RELATED WORKS

Ji-Xiang Du et al., takes leaf database from different plants is firstly constructed. Then, a new
classification method, referred to as move median centers (MMC) hypersphere classifiers, for the
leaf database based on digital morphological feature is proposed. Then says that it is more robust
than the one based on contour features since those significant curvature points are hard to find.
Finally, the efficiency and effectiveness of the method in recognizing different plants is
demonstrated by experiments.
Xiao Gu et al., [13] proposed a novel approach for leaf recognition by means of the result of
segmentation of leaf’s skeleton based on the integration of Wavelet Transform (WT) and Gaussian
interpolation. And then the classifiers, a nearest neighbor classifier (1-NN), a k -nearest neighbor
classifier (k-NN) and a radial basis probabilistic neural network (RBPNN) are employed, based on
Run-length Features (RF) obtained from the skeleton to identify the leaves. Ultimately, the efficiency
of this approach is illustrated by several experiments. The results reveal that the skeleton can be
effectively extracted from the entire leaf, and the recognition rates can be significantly improved.
The evolution of the curves may be driven by image gradient information (Kichenassamy et
al., 1995; Caselles et al., 1997), region information (Chan and Vese, 2001 [14]; Jehan-Besson et al.,
2003) [3], or their combination (Tsai et al., 2001) [4]. The image segments generated are enclosed by
closed contours and are unsupervised which make it an ideal candidate for image post processing.
These methods are more suitable for simple images and their performance degrades both in terms of
segmentation and complexity, with complicated images (Paragios and Deriche, 2000). In such cases,
the utilization of prior information is necessary for curve evolution methods in complicated image
segmentation applications.

89
International Journal of Computer Engineering and Technology (IJCET), ISSN 0976-6367(Print),
ISSN 0976 - 6375(Online), Volume 5, Issue 2, February (2014), pp. 88-97 © IAEME

III.

METHODOLOGY

The tea leaf recognition method used in the proposed approach consists of three phases
namely image pre processing, feature extraction and selection then finally clustering.
3.1. Image Pre-Processing
The input tea leaf images undergo several processing steps as follows.
Converting RGB Image to Binary Image
The tea leaf image is obtained through scanners or digital cameras. An RGB image is firstly
converted into a grayscale image. Equation 1 is used to convert RGB value of a pixel into its
grayscale value.
gray=0.2989‫כ‬R+0.85870‫כ‬G+0.1140‫כ‬B

(1)

Where R, G and B corresponds to the color of the pixel, respectively.
Fuzzy Denoising Using Dual Tree Discrete Wavelet Transform
Here the denoising is done through Fuzzy shrinkage rule. In image denoising, where a tradeoff between noise suppression and the maintenance of actual image discontinuity should be made,
solutions are required to detect important image details and accordingly adapt the degree of noise
smoothing. With respect to this principle, use a fuzzy feature for single channel image denoising to
enhance image information in wavelet sub-bands and then using a fuzzy membership function to
shrink wavelet coefficients, consequently.
Dual Tree Discrete Wavelet Transform (DT-DWT) is used as a fuzzy denoising algorithm
which provides both shiftable sub-bands and good directional selectivity and low redundancy.
The 2-D dual-tree discrete wavelet transform (DT-DWT) of an image is employed using two
critically-sampled separable 2-D DWT’s in parallel .[16] The advantages of the dual-tree DWT (DTDWT) over separable 2D DWT is that, it can be used to employ 2D wavelet transforms which are
more selective with respect to orientation.
The real part or the imaginary part of DT-DWT [17] produces perfect reconstruction and
hence it can be employed as a stand-alone transform. Feature vector can be calculated using
magnitude of sub bands. The implementation of DT-DWT is easy. An input image is decomposed by
௔
௔
௕
௕
two sets of filter banks, (‫ܪ‬଴ , ‫ܪ‬ଵ ሻ ܽ݊݀ ‫ܪ‬଴ , ‫ܪ‬ଵ ሻ separately and filtering the image both horizontally
and vertically. Then eight sub bands are obtained: LLa, HLa , LHa , HHa , LLb , HLb , LHb and HHb.
Each high-pass subband from one filter bank is combined with the corresponding subband from the
other filter bank by simple linear operations: averaging or differencing. The size of every sub band is
the same as that of 2D DWT at the same level. [18] But there are six high pass sub bands instead of
three highpass sub bands at every level. The two low pass sub bands, LLb and LLa, are iteratively
decomposed up to a desired level within each branch.
The DT-DWT (K) can be designed in two ways to have required delays. The first is based on
Farras filters and the second employs Q-shift (quarter shift) filter design. The key issue in the design
of DT-DWT (K) is to obtain (approximate) shift invariance using any of the filter forms.[19]To use a
redundant transform for compression seems contradictory to the goal of compression which is to
reduce whatever redundancy as much as possible. However if coefficients of a redundant transform
are sparse enough, compression can even benefit from the introduced redundancy since most
coefficients are nearly zero.
Processing is usually result from a modification of the spatial correlation between wavelet
coefficients (often caused by zeroing of small neighboring coefficients) or by using DWT.
90
International Journal of Computer Engineering and Technology (IJCET), ISSN 0976
f
0976-6367(Print),
ISSN 0976 - 6375(Online), Volume 5, Issue 2, February (2014), pp. 88-97 © IAEME

After the post processing process the enhanced leaf image is obtained as a result.
Boundary Enhancement
The margin of a leaf is highly focused in this pre processing step. Convolving the image with
a Laplacian filter of 3 × 3 spatial mask as in equation 2:
0
1
0

1
-4
1

Fig. 1 Enhanced image

0
1
0

(2)

Fig. 2 Boundary Enhancement

The Fig.1 shows the enhanced ima and Fig 2 shows boundary enhancement of the
image
proposed tea leaf recognition. To make boundary as a black curve on white background, the pixel
values “0” and “1” are swapped.
3.2.

Feature Extraction
The proposed approach uses Digital Morphological Features (DMFs) and geometrical
MFs)
features. For these features, computer can obtain feature values quickly and automatically. The
automatically
features used for extraction in the proposed method is described as follows.
A. Physiological Length
The only human interfered segment of the proposed algorithm is that, the two terminals of the
the
main vein of the leaf should be marked through mouse click. The distance between the two terminals
is the physiological length. It is represented as Lp. The red line in the Fig. 3 indicates the
physiological length of a leaf.

Fig. 3 Physiological length of a leaf
3:
91
International Journal of Computer Engineering and Technology (IJCET), ISSN 0976
f
0976-6367(Print),
ISSN 0976 - 6375(Online), Volume 5, Issue 2, February (2014), pp. 88-97 © IAEME

B. Physiological Width
Drawing a line passing through the two terminals of the main vein, infinite lines can be
plotted orthogonal to that line. The count of intersection pairs between those lines and the leaf
margin is also infinite. At the physiological width, the longest distance between points of those
intersection pairs is defined. It is represented as Wp. As the coordinates of pixels are discrete, two
lines are considered as orthogonal if their degree is 90◦ ± 0.5◦.The red line in the Fig. 4 indicates the
90
.The
physiological width of a leaf.

Fig. 4 Physiological width of a leaf
C. Aspect Ratio
The ratio of physiological length Lp to physiological width Wp is called aspect ratio and it is
atio
given by equation(3),
(3)

D. Serration Angle
The teeth angle of a leaf can be defined as equation (4) using serration angle.
serrati

(4)
Where θ is the serration angle, a is the length of first recognizable teeth from the tip of the
angle and b is the breadth of first recognizable teeth from the tip of the angle.

rration
Fig. 5 Serration angle obtained from the tea leaf
The serration angle obtained from the tea leaf using equation 4 is shown in the Fig. 5.
92
International Journal of Computer Engineering and Technology (IJCET), ISSN 0976-6367(Print),
ISSN 0976 - 6375(Online), Volume 5, Issue 2, February (2014), pp. 88-97 © IAEME

E. Segment
The segment of a leaf can be defined as the ratio of first recognizable teeth in the left side
from the tip of the angle ‘a’ to the first recognizable teeth in the right side from the tip of the angle
‘b’ as defined in equation (5).
(5)
F. Segment maximum width to Physiological length ratio
The leaf is divided into 10 segments as shown in the Fig. 6. Each segment width to the
physiological length ratio can be determined for all the 10 segments.
G. Tip Angle
The angle which is formed from the tip of the leaf to the first recognizable teeth on either side
of the leaf is called tip angle.
The tip angle can be calculated using the formula as defined in equation (6).

(6)

where θ is the tip angle, a and b are the first recognizable teeth from the tip of the angle on
left and right side respectively. The tip angle formed from the tea leaf is shown in the Fig. 7.
θ

a

Fig. 6 Segment of a leaf

b

Fig. 7 Tip angle obtained from the tea leaf

3.3.

Feature Selection
Feature selection is the process of selecting the features which are essential for its
classification or clustering. While extracting the features user may extract many features. And when
all the extracted features are given for clustering, it may fails in clustering. The computational
complexity arises while large numbers of features are given for clustering and time consumption also
becomes high. For these reasons feature selection is made and here appropriate features are selected
based on its further process.
93
International Journal of Computer Engineering and Technology (IJCET), ISSN 0976-6367(Print),
ISSN 0976 - 6375(Online), Volume 5, Issue 2, February (2014), pp. 88-97 © IAEME

The clustering process here is done according to the selected features. The leaf images here
are grouped based on it.
In this paper several morphological and geometrical features are extracted. The geometrical
features such as Physiological Length, Physiological Width, Serration Angle, Leaf Layer Segment –
Layer 1, Layer 2, Layer 3, Layer 4, Layer 5, Layer 6, Layer 7, Layer 8, Layer 9 and Layer 10
maximum distance, Segment maximum width to Physiological length ratio and Tip Angle are
extracted.
Morphological feature of Aspect Ratio is extracted. These are the unique features by this
clustering is made. Each type of leaf differs by these features.
3.4.

K-means clustering
To cluster the images based on the selected features k-Means Clustering is used. K-Means
algorithm is one of the clustering algorithms that classify the input data points into multiple classes
based on their inherent distance from each other. Suppose that the data features form a vector space
and this algorithm tries to find natural clustering in them. The points are clustered around centroid
µ୧ ‫׊‬୧ ൌ 1 … k which are obtained by minimizing the objective as given in equation (7)
ଶ

ܸ ൌ ∑୩ ∑୶ౠ ‫ א‬౩ ൫x୨ െ µ୧ ൯
୧ୀଵ

(7)

౟

where there are k clusters R ୧,୨ ൌ 1, 2, … … , k and µ୧ is the centroid or mean point of all the
points x୨ ‫ א‬R ୧
The algorithm takes a 2 dimensional image as an input. Various steps in the algorithm are as follows:
•
•
•
•

Compute the intensity distribution of the intensities.
Initialize the centroids with k random intensities.
Repeat the following steps until the cluster labels of the image do not change anymore.
Cluster the points based on distance of their intensities from the centroid intensities which
can be defined as equation (8).
ଶ

c ሺ୧ሻ ‫׷‬ൌ arg min ቛx ሺ୧ሻ െ µ୨ ቛ
୨

•

ሺ8ሻ

Compute the new centroid for each of the clusters as in equation (9).
ߤ௜ ؔ

∑௠ 1 ൛ܿሺ௝ሻ ൌ ݆ൟ‫ ݔ‬ሺ௜ሻ
௜ୀଵ
∑௠ 1 ൛ܿሺ௝ሻ ൌ ݆ൟ
௜ୀଵ

ሺ9ሻ

where k is a parameter of the algorithm (the number of clusters to be obtained), i iterates over
the all the intensities, j iterates over all the centroids and µ୧ are the centroid intensities. [15].
3.5.

Fuzzy C-Means Clustering
The Fuzzy C-Means (FCM) clustering algorithm was first introduced by Dunn [20] and later
was extended by Bezdek [21]. The algorithm is an iterative clustering method that produces an
optimal c partition by minimizing the weighted within group sum of squared error objective function
JFCM defined in equation (10) [21].

94
International Journal of Computer Engineering and Technology (IJCET), ISSN 0976-6367(Print),
ISSN 0976 - 6375(Online), Volume 5, Issue 2, February (2014), pp. 88-97 © IAEME
௡

௖

‫ܬ‬ி௉஼ெ ൌ ෍ ෍ሺ‫ݑ‬௜௞ ሻ௤ ݀ଶ ሺ‫ݔ‬௞ , ‫ݒ‬௜ ሻ
௞ୀଵ ௜ୀଵ

ሺ10ሻ

Where X = ‫ݔ‬ଵ , ‫ݔ‬ଶ , … , ‫ݔ‬௡ ሽ ‫ ܴ ه‬௣ is the data set in the p-dimensional vector space, ݊ is the
number of clusters with 2 ൑ ܿ ൏ ݊, ‫ݑ‬௜௞ is the degree of membership of ‫ݔ‬௞ in the ith cluster, q is a
weighting exponent on each fuzzy membership, vi is the prototype of the centre of cluster i,
݀ଶ ሺ‫ݔ‬௞ , ‫ݒ‬௜ ሻ is a distance measure between object ‫ݔ‬௞ and cluster centre ‫ݒ‬௜ . A solution of the object
function JFCM can be obtained via an iterative process.
IV.

EXPERIMENTAL RESULTS

The tea leaf clustering is taken in the proposed approach. For each type of tealeaf, 10 pieces
of leaves from testing sets are used to test the accuracy. The dataset used in this approach is UPASI
dataset.
For clustering using FCM algorithm, input as features are given by those features they are
clustered. Here for this UPASI dataset there are 6 types of tea leaves. Each type has nearly same
feature values and they are far for the other type.
TABLE I: DIFFERENT TYPES OF TEA LEAVES TESTED IN THE PROPOSED METHOD
Tea Leaf Name
Serration Angle Feature Values
Tip Angle Feature Values
TRF 1

110 to 140

35 to 50

UPASI - 3

35 to 120

35 to 75

UPASI - 9

80 to 140

28 to 46

UPASI - 10

110 to 150

45 to 55

UPASI -17

100 to 120

42 to 52

UPASI - 22

60 to 150

45 to 100

The feature values obtained for serration and tip angle are shown in table I. Likewise all other
remaining 14 different features are extracted. From the above table, we can see that the range of
feature values differs for each type of leaves.
The performance of the proposed approach is evaluated based on the following parameters:
Accuracy and Execution time. The different tea leaves taken in the proposed approach is shown in
the Table II.
TABLE II: DIFFERENT TYPES OF TEA LEAVES TESTED IN THE PROPOSED METHOD
Tea Leaf Name
Tested Samples
Number of Correct Clustered
TRF 1

57

54

UPASI - 3

62

52

UPASI - 9

56

51

UPASI - 10

56

46

UPASI -17

60

56

UPASI - 22

63

56

95
International Journal of Computer Engineering and Technology (IJCET), ISSN 0976-6367(Print),
ISSN 0976 - 6375(Online), Volume 5, Issue 2, February (2014), pp. 88-97 © IAEME

TABLE III: COMPARISON OF THE EXECUTION TIME
Classification
Time (seconds)
Techniques
Fuzzy C-Means
0.83
K-Means
0.74
EM
0.92
Table III reveals the execution time of the classification algorithms. The execution time of
the proposed K-Means clustering approach is less when compared with EM and Mean Shift
Clustering algorithm. Thus this k-means clustering is well suits for clustering of images in reduced
executed time.
V.

CONCLUSION

A new approach of tea leaf feature selection and clustering is proposed in this paper. This
approach consisted of three phases namely the preprocessing, feature extraction and selection finally
clustering. The image can be preprocessed using fuzzy denoising by Dual Tree Discrete Wavelet
Transform (DT-DWT) and Boundary enhancement. The main features of leaf can be extracted by
using morphological and geometrical feature techniques. And the related features are selected and
given as an input to the clustering. FCM clustering algorithm is used as a clustering algorithm. The
computer can automatically cluster 60 kinds of plants via the leaf images loaded from digital
cameras or scanners. The performance of the proposed approach is evaluated based on the accuracy
and execution time. The proposed algorithm produces better accuracy and takes very less time for
execution.
REFERENCES
[1]

[2]
[3]

[4]
[5]
[6]
[7]
[8]
[9]

Ji-Xiang, Du, Xiao-Feng Wang, D.S. Huang, Automatic plant leaves recognition system
based on image processing techniques, Technical Report, Institute of Intelligent Machines,
Chinese Academy of Sciences, October, 2004.
Ji-Xiang Du , Xiao-Feng Wang and Guo-Jun Zhang,“ Leaf shape based plant species
recognition”, Applied Mathematics and Computation 185 (2007) 883–893.
Aujol, J., Aubert, G. and Blanc-Féraud, L. (2003) Wavelet-based level set evolution for
classification of textured images,” IEEE Trans. Image Process., Vol. 12, No. 12,
Pp. 1634–1641. National Institute for Agricultural Botany, Chrysanthemum Leaf
Classification. Cambridge, 2005.
Chan, T. F. and Vese, L.A. (2001) Active contours without edges, IEEE Trans. Image
Process., Vol. 10, No. 2, Pp. 266–277.
Im, H. Nishida, T.L Kunii, “Recognizing plant species by leaf shapes—a case study of the
Acer family,” Proc. Pattern Recognition, Vol. 2, pp. 1171-1173, 1998.
Z. Wang, Z. Chi, D. Feng, “Shape based leaf image retrieval,” Image Signal Process, Vol.
150, no. 1, pp.34-43, 2003
Im, H. Nishida, T.L Kunii, “Recognizing plant species by leaf shapes—a case study of the
Acer family,” Proc. Pattern Recognition, Vol. 2, pp. 1171-1173, 1998.
Z. Wang, Z. Chi, D. Feng, “Fuzzy integral for leaf image retrieval,” Proc. Fuzzy Systems,
Vol. 1, pp.372-377, 2002.
T. Saitoh, T. Kaneko, “Automatic recognition of wild flowers,” Proc. Pattern Recognition,
Vol. 2, pp. 507 -510, 2000.
96
International Journal of Computer Engineering and Technology (IJCET), ISSN 0976-6367(Print),
ISSN 0976 - 6375(Online), Volume 5, Issue 2, February (2014), pp. 88-97 © IAEME

[10] Warren, “Automated leaf shape description for variety testing in chrysanthemums,” Proc.
Image Processing and Its Applications, Vol. 2, pp. 497-501, 1997.
[11] Z. Wang, Z. Chi, D. Feng, “Shape based leaf image retrieval,” Image Signal Process,
Vol.150, no. 1, pp.34-43, 2003.
[12] N.Valliammal and S.N.Geethalakshmi, “Automatic Recognition System Using Preferential
Image Segmentation For Leaf And Flower Images”, Computer Science & Engineering: An
International Journal (CSEIJ), Vol.1, No.4, October 2011.
[13] Xiao Gu, Ji-Xiang Du and Xiao-Feng Wang, “Leaf Recognition Based on the Combination
of Wavelet Transform and Gaussian Interpolation”, Advances in Intelligent Computing, Vol.
3644/2005, pp. 253-262, 2005..
[14] Chen, Y. (2002) Using prior shapes in geometric active contours in a variational framework,
Int. J. Comput. Vis., Vol. 50, No. 3, Pp. 315–328.
[15] Suman Tatiraju and Avi Mehta, “Image Segmentation using k-means clustering, EM and
Normalized Cuts.”.
[16] M. J. L. Orr, “Introduction to radial basis function networks”, Technical report, Center for
Cognitive Science, University of Edinburgh, 1996
[17] Arokia Priya, S.PNarote, and A.V.Patil, “Dual Tree Wavelet Transforms in Image
Compression”.
[18] M. Sepasian, W. Balachandran and C. Mares, “Image Enhancement for Fingerprint
Minutiae-Based Algorithms Using CLAHE, Standard Deviation Analysis and Sliding
Neighborhood”, Proceedings of the World Congress on Engineering and Computer Science
2008 WCECS 2008, October 22 - 24, 2008, San Francisco, USA.
[19] R.Sharmila, R. Uma, “A New Approach To Image Contrast Enhancement using Weighted
Threshold Histogram Equalization with Improved Switching Median Filter”, International
Journal Of Advanced Engineering Sciences and Technologies Vol No. 7, No. 2,
pp. 206 – 211, 2011.
[20] Dunn, J.C.: A Fuzzy Relative of the ISODATA Process and its Use in Detecting Compact
Well Separated Clusters. Journal of Cybernetics, Vol. 3, 1974, pp. 32–57.
[21] Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. New York:
Plenum Press, 1981.
[22] Abhishek Choubey, Omprakash Firke and Bahgwan Swaroop Sharma, “Rotation and
Illumination Invariant Image Retrieval using Texture Features”, International Journal of
Electronics and Communication Engineering & Technology (IJECET), Volume 3, Issue 2,
2013, pp. 48 - 55, ISSN Print: 0976- 6464, ISSN Online: 0976 –6472.
[23] C. S. Sumathi and A.V. Senthil Kumar, “Identification of Arable and Tree Crops by Edge
and Texture Fusion Techniques”, International Journal of Computer Engineering &
Technology (IJCET), Volume 4, Issue 6, 2013, pp. 167 - 174, ISSN Print: 0976 – 6367,
ISSN Online: 0976 – 6375.
[24] Ankit Vidyarthi and Ankita Kansal, “A Survey Report on Digital Images Segmentation
Algorithms”, International Journal of Computer Engineering & Technology (IJCET),
Volume 3, Issue 2, 2012, pp. 85 - 91, ISSN Print: 0976 – 6367, ISSN Online: 0976 – 6375.
[25] Garima Agarwal, Rekha Nair and Pravin Shrinath, “A Review of Plant Leaf Classification
Features and Techniques”, International Journal of Computer Engineering & Technology
(IJCET), Volume 4, Issue 5, 2013, pp. 204 - 216, ISSN Print: 0976 – 6367, ISSN Online:
0976 – 6375.

97

Más contenido relacionado

La actualidad más candente

Foliage Measurement Using Image Processing Techniques
Foliage Measurement Using Image Processing TechniquesFoliage Measurement Using Image Processing Techniques
Foliage Measurement Using Image Processing TechniquesIJTET Journal
 
Pollination based optimization for color image segmentation
Pollination based optimization for color image segmentationPollination based optimization for color image segmentation
Pollination based optimization for color image segmentationIAEME Publication
 
IRJET- Supervised Learning Approach for Flower Images using Color, Shape and ...
IRJET- Supervised Learning Approach for Flower Images using Color, Shape and ...IRJET- Supervised Learning Approach for Flower Images using Color, Shape and ...
IRJET- Supervised Learning Approach for Flower Images using Color, Shape and ...IRJET Journal
 
Dual Tree Complex Wavelet Transform, Probabilistic Neural Network and Fuzzy C...
Dual Tree Complex Wavelet Transform, Probabilistic Neural Network and Fuzzy C...Dual Tree Complex Wavelet Transform, Probabilistic Neural Network and Fuzzy C...
Dual Tree Complex Wavelet Transform, Probabilistic Neural Network and Fuzzy C...IJAEMSJORNAL
 
Image Mining for Flower Classification by Genetic Association Rule Mining Usi...
Image Mining for Flower Classification by Genetic Association Rule Mining Usi...Image Mining for Flower Classification by Genetic Association Rule Mining Usi...
Image Mining for Flower Classification by Genetic Association Rule Mining Usi...IJAEMSJORNAL
 
A parallel rough set based smoothing filter
A parallel rough set based smoothing filterA parallel rough set based smoothing filter
A parallel rough set based smoothing filterprjpublications
 
MEDICAL IMAGE TEXTURE SEGMENTATION USINGRANGE FILTER
MEDICAL IMAGE TEXTURE SEGMENTATION USINGRANGE FILTERMEDICAL IMAGE TEXTURE SEGMENTATION USINGRANGE FILTER
MEDICAL IMAGE TEXTURE SEGMENTATION USINGRANGE FILTERcscpconf
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)theijes
 
Multilinear Kernel Mapping for Feature Dimension Reduction in Content Based M...
Multilinear Kernel Mapping for Feature Dimension Reduction in Content Based M...Multilinear Kernel Mapping for Feature Dimension Reduction in Content Based M...
Multilinear Kernel Mapping for Feature Dimension Reduction in Content Based M...ijma
 
A Study of Image Processing in Agriculture
A Study of Image Processing in AgricultureA Study of Image Processing in Agriculture
A Study of Image Processing in AgricultureEswar Publications
 
Wavelet transformation based detection of masses in digital mammograms
Wavelet transformation based detection of masses in digital mammogramsWavelet transformation based detection of masses in digital mammograms
Wavelet transformation based detection of masses in digital mammogramseSAT Publishing House
 
Wavelet transformation based detection of masses in digital mammograms
Wavelet transformation based detection of masses in digital mammogramsWavelet transformation based detection of masses in digital mammograms
Wavelet transformation based detection of masses in digital mammogramseSAT Journals
 
IRJET- Surveillance for Leaf Detection using Hexacopter
IRJET- Surveillance for Leaf Detection using HexacopterIRJET- Surveillance for Leaf Detection using Hexacopter
IRJET- Surveillance for Leaf Detection using HexacopterIRJET Journal
 
Inflammatory Conditions Mimicking Tumours In Calabar: A 30 Year Study (1978-2...
Inflammatory Conditions Mimicking Tumours In Calabar: A 30 Year Study (1978-2...Inflammatory Conditions Mimicking Tumours In Calabar: A 30 Year Study (1978-2...
Inflammatory Conditions Mimicking Tumours In Calabar: A 30 Year Study (1978-2...IOSR Journals
 
4 ijaems jun-2015-5-hybrid algorithmic approach for medical image compression...
4 ijaems jun-2015-5-hybrid algorithmic approach for medical image compression...4 ijaems jun-2015-5-hybrid algorithmic approach for medical image compression...
4 ijaems jun-2015-5-hybrid algorithmic approach for medical image compression...INFOGAIN PUBLICATION
 
REVIEW ON TRANSFORM BASED MEDICAL IMAGE COMPRESSION
REVIEW ON TRANSFORM BASED MEDICAL IMAGE COMPRESSION REVIEW ON TRANSFORM BASED MEDICAL IMAGE COMPRESSION
REVIEW ON TRANSFORM BASED MEDICAL IMAGE COMPRESSION cscpconf
 
Analysis of multi focus gray scale image fusion using
Analysis of multi focus gray scale image fusion usingAnalysis of multi focus gray scale image fusion using
Analysis of multi focus gray scale image fusion usingeSAT Publishing House
 
Segmentation and Classification of MRI Brain Tumor
Segmentation and Classification of MRI Brain TumorSegmentation and Classification of MRI Brain Tumor
Segmentation and Classification of MRI Brain TumorIRJET Journal
 
Classification and Segmentation of Glaucomatous Image Using Probabilistic Neu...
Classification and Segmentation of Glaucomatous Image Using Probabilistic Neu...Classification and Segmentation of Glaucomatous Image Using Probabilistic Neu...
Classification and Segmentation of Glaucomatous Image Using Probabilistic Neu...ijsrd.com
 

La actualidad más candente (20)

Foliage Measurement Using Image Processing Techniques
Foliage Measurement Using Image Processing TechniquesFoliage Measurement Using Image Processing Techniques
Foliage Measurement Using Image Processing Techniques
 
Pollination based optimization for color image segmentation
Pollination based optimization for color image segmentationPollination based optimization for color image segmentation
Pollination based optimization for color image segmentation
 
IRJET- Supervised Learning Approach for Flower Images using Color, Shape and ...
IRJET- Supervised Learning Approach for Flower Images using Color, Shape and ...IRJET- Supervised Learning Approach for Flower Images using Color, Shape and ...
IRJET- Supervised Learning Approach for Flower Images using Color, Shape and ...
 
Dual Tree Complex Wavelet Transform, Probabilistic Neural Network and Fuzzy C...
Dual Tree Complex Wavelet Transform, Probabilistic Neural Network and Fuzzy C...Dual Tree Complex Wavelet Transform, Probabilistic Neural Network and Fuzzy C...
Dual Tree Complex Wavelet Transform, Probabilistic Neural Network and Fuzzy C...
 
Image Mining for Flower Classification by Genetic Association Rule Mining Usi...
Image Mining for Flower Classification by Genetic Association Rule Mining Usi...Image Mining for Flower Classification by Genetic Association Rule Mining Usi...
Image Mining for Flower Classification by Genetic Association Rule Mining Usi...
 
A parallel rough set based smoothing filter
A parallel rough set based smoothing filterA parallel rough set based smoothing filter
A parallel rough set based smoothing filter
 
MEDICAL IMAGE TEXTURE SEGMENTATION USINGRANGE FILTER
MEDICAL IMAGE TEXTURE SEGMENTATION USINGRANGE FILTERMEDICAL IMAGE TEXTURE SEGMENTATION USINGRANGE FILTER
MEDICAL IMAGE TEXTURE SEGMENTATION USINGRANGE FILTER
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)
 
Multilinear Kernel Mapping for Feature Dimension Reduction in Content Based M...
Multilinear Kernel Mapping for Feature Dimension Reduction in Content Based M...Multilinear Kernel Mapping for Feature Dimension Reduction in Content Based M...
Multilinear Kernel Mapping for Feature Dimension Reduction in Content Based M...
 
A Study of Image Processing in Agriculture
A Study of Image Processing in AgricultureA Study of Image Processing in Agriculture
A Study of Image Processing in Agriculture
 
CASR-Report
CASR-ReportCASR-Report
CASR-Report
 
Wavelet transformation based detection of masses in digital mammograms
Wavelet transformation based detection of masses in digital mammogramsWavelet transformation based detection of masses in digital mammograms
Wavelet transformation based detection of masses in digital mammograms
 
Wavelet transformation based detection of masses in digital mammograms
Wavelet transformation based detection of masses in digital mammogramsWavelet transformation based detection of masses in digital mammograms
Wavelet transformation based detection of masses in digital mammograms
 
IRJET- Surveillance for Leaf Detection using Hexacopter
IRJET- Surveillance for Leaf Detection using HexacopterIRJET- Surveillance for Leaf Detection using Hexacopter
IRJET- Surveillance for Leaf Detection using Hexacopter
 
Inflammatory Conditions Mimicking Tumours In Calabar: A 30 Year Study (1978-2...
Inflammatory Conditions Mimicking Tumours In Calabar: A 30 Year Study (1978-2...Inflammatory Conditions Mimicking Tumours In Calabar: A 30 Year Study (1978-2...
Inflammatory Conditions Mimicking Tumours In Calabar: A 30 Year Study (1978-2...
 
4 ijaems jun-2015-5-hybrid algorithmic approach for medical image compression...
4 ijaems jun-2015-5-hybrid algorithmic approach for medical image compression...4 ijaems jun-2015-5-hybrid algorithmic approach for medical image compression...
4 ijaems jun-2015-5-hybrid algorithmic approach for medical image compression...
 
REVIEW ON TRANSFORM BASED MEDICAL IMAGE COMPRESSION
REVIEW ON TRANSFORM BASED MEDICAL IMAGE COMPRESSION REVIEW ON TRANSFORM BASED MEDICAL IMAGE COMPRESSION
REVIEW ON TRANSFORM BASED MEDICAL IMAGE COMPRESSION
 
Analysis of multi focus gray scale image fusion using
Analysis of multi focus gray scale image fusion usingAnalysis of multi focus gray scale image fusion using
Analysis of multi focus gray scale image fusion using
 
Segmentation and Classification of MRI Brain Tumor
Segmentation and Classification of MRI Brain TumorSegmentation and Classification of MRI Brain Tumor
Segmentation and Classification of MRI Brain Tumor
 
Classification and Segmentation of Glaucomatous Image Using Probabilistic Neu...
Classification and Segmentation of Glaucomatous Image Using Probabilistic Neu...Classification and Segmentation of Glaucomatous Image Using Probabilistic Neu...
Classification and Segmentation of Glaucomatous Image Using Probabilistic Neu...
 

Destacado

FIRING ANGLE SVC MODEL FOR ANALYZING THE PERFORMANCE OF TRANSMISSION NETWORK ...
FIRING ANGLE SVC MODEL FOR ANALYZING THE PERFORMANCE OF TRANSMISSION NETWORK ...FIRING ANGLE SVC MODEL FOR ANALYZING THE PERFORMANCE OF TRANSMISSION NETWORK ...
FIRING ANGLE SVC MODEL FOR ANALYZING THE PERFORMANCE OF TRANSMISSION NETWORK ...IAEME Publication
 
SRF THEORY BASED STATCOM FOR COMPENSATION OF REACTIVE POWER AND HARMONICS
SRF THEORY BASED STATCOM FOR COMPENSATION OF REACTIVE POWER AND HARMONICSSRF THEORY BASED STATCOM FOR COMPENSATION OF REACTIVE POWER AND HARMONICS
SRF THEORY BASED STATCOM FOR COMPENSATION OF REACTIVE POWER AND HARMONICSIAEME Publication
 
NON-ISOLATED SOFT SWITCHING DC-DC CONVERTER AND LOAD AT FULL RANGE OF ZVS
NON-ISOLATED SOFT SWITCHING DC-DC CONVERTER AND LOAD AT FULL RANGE OF ZVS NON-ISOLATED SOFT SWITCHING DC-DC CONVERTER AND LOAD AT FULL RANGE OF ZVS
NON-ISOLATED SOFT SWITCHING DC-DC CONVERTER AND LOAD AT FULL RANGE OF ZVS IAEME Publication
 
MICROCONTROLLER BASED SOLAR POWER INVERTER
MICROCONTROLLER BASED SOLAR POWER INVERTERMICROCONTROLLER BASED SOLAR POWER INVERTER
MICROCONTROLLER BASED SOLAR POWER INVERTERIAEME Publication
 
REDUCTION OF HARMONIC DISTORTION IN BLDC DRIVE USING BL-BUCK BOOST CONVERTER ...
REDUCTION OF HARMONIC DISTORTION IN BLDC DRIVE USING BL-BUCK BOOST CONVERTER ...REDUCTION OF HARMONIC DISTORTION IN BLDC DRIVE USING BL-BUCK BOOST CONVERTER ...
REDUCTION OF HARMONIC DISTORTION IN BLDC DRIVE USING BL-BUCK BOOST CONVERTER ...IAEME Publication
 
DESIGN CONTROL SYSTEM OF AN AIRCRAFT
DESIGN CONTROL SYSTEM OF AN AIRCRAFTDESIGN CONTROL SYSTEM OF AN AIRCRAFT
DESIGN CONTROL SYSTEM OF AN AIRCRAFTIAEME Publication
 
ODD EVEN BASED BINARY SEARCH
ODD EVEN BASED BINARY SEARCHODD EVEN BASED BINARY SEARCH
ODD EVEN BASED BINARY SEARCHIAEME Publication
 

Destacado (8)

FIRING ANGLE SVC MODEL FOR ANALYZING THE PERFORMANCE OF TRANSMISSION NETWORK ...
FIRING ANGLE SVC MODEL FOR ANALYZING THE PERFORMANCE OF TRANSMISSION NETWORK ...FIRING ANGLE SVC MODEL FOR ANALYZING THE PERFORMANCE OF TRANSMISSION NETWORK ...
FIRING ANGLE SVC MODEL FOR ANALYZING THE PERFORMANCE OF TRANSMISSION NETWORK ...
 
SRF THEORY BASED STATCOM FOR COMPENSATION OF REACTIVE POWER AND HARMONICS
SRF THEORY BASED STATCOM FOR COMPENSATION OF REACTIVE POWER AND HARMONICSSRF THEORY BASED STATCOM FOR COMPENSATION OF REACTIVE POWER AND HARMONICS
SRF THEORY BASED STATCOM FOR COMPENSATION OF REACTIVE POWER AND HARMONICS
 
NON-ISOLATED SOFT SWITCHING DC-DC CONVERTER AND LOAD AT FULL RANGE OF ZVS
NON-ISOLATED SOFT SWITCHING DC-DC CONVERTER AND LOAD AT FULL RANGE OF ZVS NON-ISOLATED SOFT SWITCHING DC-DC CONVERTER AND LOAD AT FULL RANGE OF ZVS
NON-ISOLATED SOFT SWITCHING DC-DC CONVERTER AND LOAD AT FULL RANGE OF ZVS
 
MICROCONTROLLER BASED SOLAR POWER INVERTER
MICROCONTROLLER BASED SOLAR POWER INVERTERMICROCONTROLLER BASED SOLAR POWER INVERTER
MICROCONTROLLER BASED SOLAR POWER INVERTER
 
REDUCTION OF HARMONIC DISTORTION IN BLDC DRIVE USING BL-BUCK BOOST CONVERTER ...
REDUCTION OF HARMONIC DISTORTION IN BLDC DRIVE USING BL-BUCK BOOST CONVERTER ...REDUCTION OF HARMONIC DISTORTION IN BLDC DRIVE USING BL-BUCK BOOST CONVERTER ...
REDUCTION OF HARMONIC DISTORTION IN BLDC DRIVE USING BL-BUCK BOOST CONVERTER ...
 
DESIGN CONTROL SYSTEM OF AN AIRCRAFT
DESIGN CONTROL SYSTEM OF AN AIRCRAFTDESIGN CONTROL SYSTEM OF AN AIRCRAFT
DESIGN CONTROL SYSTEM OF AN AIRCRAFT
 
ODD EVEN BASED BINARY SEARCH
ODD EVEN BASED BINARY SEARCHODD EVEN BASED BINARY SEARCH
ODD EVEN BASED BINARY SEARCH
 
Ijmet 07 06_005
Ijmet 07 06_005Ijmet 07 06_005
Ijmet 07 06_005
 

Similar a 50120140502010

Combination of Local Descriptors and Global Features for Leaf Recognition
Combination of Local Descriptors and Global Features for Leaf RecognitionCombination of Local Descriptors and Global Features for Leaf Recognition
Combination of Local Descriptors and Global Features for Leaf Recognitionsipij
 
Multimodality medical image fusion using improved contourlet transformation
Multimodality medical image fusion using improved contourlet transformationMultimodality medical image fusion using improved contourlet transformation
Multimodality medical image fusion using improved contourlet transformationIAEME Publication
 
A STUDY ON WEED DISCRIMINATION THROUGH WAVELET TRANSFORM, TEXTURE FEATURE EXT...
A STUDY ON WEED DISCRIMINATION THROUGH WAVELET TRANSFORM, TEXTURE FEATURE EXT...A STUDY ON WEED DISCRIMINATION THROUGH WAVELET TRANSFORM, TEXTURE FEATURE EXT...
A STUDY ON WEED DISCRIMINATION THROUGH WAVELET TRANSFORM, TEXTURE FEATURE EXT...ijcsit
 
Foliage Plant Retrieval Using Polar Fourier Transform, Color Moments and Vein...
Foliage Plant Retrieval Using Polar Fourier Transform, Color Moments and Vein...Foliage Plant Retrieval Using Polar Fourier Transform, Color Moments and Vein...
Foliage Plant Retrieval Using Polar Fourier Transform, Color Moments and Vein...sipij
 
Leaf identification based on fuzzy c means and naïve bayesian classification
Leaf identification based on fuzzy c means and naïve bayesian classificationLeaf identification based on fuzzy c means and naïve bayesian classification
Leaf identification based on fuzzy c means and naïve bayesian classificationIAEME Publication
 
Review on Medical Image Fusion using Shearlet Transform
Review on Medical Image Fusion using Shearlet TransformReview on Medical Image Fusion using Shearlet Transform
Review on Medical Image Fusion using Shearlet TransformIRJET Journal
 
Spectral Density Oriented Feature Coding For Pattern Recognition Application
Spectral Density Oriented Feature Coding For Pattern Recognition ApplicationSpectral Density Oriented Feature Coding For Pattern Recognition Application
Spectral Density Oriented Feature Coding For Pattern Recognition ApplicationIJERDJOURNAL
 
PDE BASED FEATURES FOR TEXTURE ANALYSIS USING WAVELET TRANSFORM
PDE BASED FEATURES FOR TEXTURE ANALYSIS USING WAVELET TRANSFORMPDE BASED FEATURES FOR TEXTURE ANALYSIS USING WAVELET TRANSFORM
PDE BASED FEATURES FOR TEXTURE ANALYSIS USING WAVELET TRANSFORMIJCI JOURNAL
 
DCT AND DFT BASED BIOMETRIC RECOGNITION AND MULTIMODAL BIOMETRIC SECURITY
DCT AND DFT BASED BIOMETRIC RECOGNITION AND MULTIMODAL BIOMETRIC SECURITYDCT AND DFT BASED BIOMETRIC RECOGNITION AND MULTIMODAL BIOMETRIC SECURITY
DCT AND DFT BASED BIOMETRIC RECOGNITION AND MULTIMODAL BIOMETRIC SECURITYIAEME Publication
 
A New Approach for Segmentation of Fused Images using Cluster based Thresholding
A New Approach for Segmentation of Fused Images using Cluster based ThresholdingA New Approach for Segmentation of Fused Images using Cluster based Thresholding
A New Approach for Segmentation of Fused Images using Cluster based ThresholdingIDES Editor
 
Local Phase Oriented Structure Tensor To Segment Texture Images With Intensit...
Local Phase Oriented Structure Tensor To Segment Texture Images With Intensit...Local Phase Oriented Structure Tensor To Segment Texture Images With Intensit...
Local Phase Oriented Structure Tensor To Segment Texture Images With Intensit...CSCJournals
 
HOL, GDCT AND LDCT FOR PEDESTRIAN DETECTION
HOL, GDCT AND LDCT FOR PEDESTRIAN DETECTIONHOL, GDCT AND LDCT FOR PEDESTRIAN DETECTION
HOL, GDCT AND LDCT FOR PEDESTRIAN DETECTIONcsandit
 
HOL, GDCT AND LDCT FOR PEDESTRIAN DETECTION
HOL, GDCT AND LDCT FOR PEDESTRIAN DETECTIONHOL, GDCT AND LDCT FOR PEDESTRIAN DETECTION
HOL, GDCT AND LDCT FOR PEDESTRIAN DETECTIONcscpconf
 

Similar a 50120140502010 (20)

Combination of Local Descriptors and Global Features for Leaf Recognition
Combination of Local Descriptors and Global Features for Leaf RecognitionCombination of Local Descriptors and Global Features for Leaf Recognition
Combination of Local Descriptors and Global Features for Leaf Recognition
 
Multimodality medical image fusion using improved contourlet transformation
Multimodality medical image fusion using improved contourlet transformationMultimodality medical image fusion using improved contourlet transformation
Multimodality medical image fusion using improved contourlet transformation
 
A STUDY ON WEED DISCRIMINATION THROUGH WAVELET TRANSFORM, TEXTURE FEATURE EXT...
A STUDY ON WEED DISCRIMINATION THROUGH WAVELET TRANSFORM, TEXTURE FEATURE EXT...A STUDY ON WEED DISCRIMINATION THROUGH WAVELET TRANSFORM, TEXTURE FEATURE EXT...
A STUDY ON WEED DISCRIMINATION THROUGH WAVELET TRANSFORM, TEXTURE FEATURE EXT...
 
Leaves proposed
Leaves proposedLeaves proposed
Leaves proposed
 
Hh3114071412
Hh3114071412Hh3114071412
Hh3114071412
 
Q01051134140
Q01051134140Q01051134140
Q01051134140
 
Foliage Plant Retrieval Using Polar Fourier Transform, Color Moments and Vein...
Foliage Plant Retrieval Using Polar Fourier Transform, Color Moments and Vein...Foliage Plant Retrieval Using Polar Fourier Transform, Color Moments and Vein...
Foliage Plant Retrieval Using Polar Fourier Transform, Color Moments and Vein...
 
Ap36252256
Ap36252256Ap36252256
Ap36252256
 
Leaf identification based on fuzzy c means and naïve bayesian classification
Leaf identification based on fuzzy c means and naïve bayesian classificationLeaf identification based on fuzzy c means and naïve bayesian classification
Leaf identification based on fuzzy c means and naïve bayesian classification
 
Review on Medical Image Fusion using Shearlet Transform
Review on Medical Image Fusion using Shearlet TransformReview on Medical Image Fusion using Shearlet Transform
Review on Medical Image Fusion using Shearlet Transform
 
Spectral Density Oriented Feature Coding For Pattern Recognition Application
Spectral Density Oriented Feature Coding For Pattern Recognition ApplicationSpectral Density Oriented Feature Coding For Pattern Recognition Application
Spectral Density Oriented Feature Coding For Pattern Recognition Application
 
PDE BASED FEATURES FOR TEXTURE ANALYSIS USING WAVELET TRANSFORM
PDE BASED FEATURES FOR TEXTURE ANALYSIS USING WAVELET TRANSFORMPDE BASED FEATURES FOR TEXTURE ANALYSIS USING WAVELET TRANSFORM
PDE BASED FEATURES FOR TEXTURE ANALYSIS USING WAVELET TRANSFORM
 
DCT AND DFT BASED BIOMETRIC RECOGNITION AND MULTIMODAL BIOMETRIC SECURITY
DCT AND DFT BASED BIOMETRIC RECOGNITION AND MULTIMODAL BIOMETRIC SECURITYDCT AND DFT BASED BIOMETRIC RECOGNITION AND MULTIMODAL BIOMETRIC SECURITY
DCT AND DFT BASED BIOMETRIC RECOGNITION AND MULTIMODAL BIOMETRIC SECURITY
 
A New Approach for Segmentation of Fused Images using Cluster based Thresholding
A New Approach for Segmentation of Fused Images using Cluster based ThresholdingA New Approach for Segmentation of Fused Images using Cluster based Thresholding
A New Approach for Segmentation of Fused Images using Cluster based Thresholding
 
Ch4201557563
Ch4201557563Ch4201557563
Ch4201557563
 
G43043540
G43043540G43043540
G43043540
 
Local Phase Oriented Structure Tensor To Segment Texture Images With Intensit...
Local Phase Oriented Structure Tensor To Segment Texture Images With Intensit...Local Phase Oriented Structure Tensor To Segment Texture Images With Intensit...
Local Phase Oriented Structure Tensor To Segment Texture Images With Intensit...
 
HOL, GDCT AND LDCT FOR PEDESTRIAN DETECTION
HOL, GDCT AND LDCT FOR PEDESTRIAN DETECTIONHOL, GDCT AND LDCT FOR PEDESTRIAN DETECTION
HOL, GDCT AND LDCT FOR PEDESTRIAN DETECTION
 
HOL, GDCT AND LDCT FOR PEDESTRIAN DETECTION
HOL, GDCT AND LDCT FOR PEDESTRIAN DETECTIONHOL, GDCT AND LDCT FOR PEDESTRIAN DETECTION
HOL, GDCT AND LDCT FOR PEDESTRIAN DETECTION
 
2
22
2
 

Más de IAEME Publication

IAEME_Publication_Call_for_Paper_September_2022.pdf
IAEME_Publication_Call_for_Paper_September_2022.pdfIAEME_Publication_Call_for_Paper_September_2022.pdf
IAEME_Publication_Call_for_Paper_September_2022.pdfIAEME Publication
 
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...IAEME Publication
 
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURSA STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURSIAEME Publication
 
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURSBROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURSIAEME Publication
 
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONS
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONSDETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONS
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONSIAEME Publication
 
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONS
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONSANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONS
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONSIAEME Publication
 
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINO
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINOVOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINO
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINOIAEME Publication
 
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...IAEME Publication
 
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMY
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMYVISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMY
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMYIAEME Publication
 
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...IAEME Publication
 
GANDHI ON NON-VIOLENT POLICE
GANDHI ON NON-VIOLENT POLICEGANDHI ON NON-VIOLENT POLICE
GANDHI ON NON-VIOLENT POLICEIAEME Publication
 
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...IAEME Publication
 
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...IAEME Publication
 
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...IAEME Publication
 
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...IAEME Publication
 
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...IAEME Publication
 
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...IAEME Publication
 
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...IAEME Publication
 
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...IAEME Publication
 
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENT
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENTA MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENT
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENTIAEME Publication
 

Más de IAEME Publication (20)

IAEME_Publication_Call_for_Paper_September_2022.pdf
IAEME_Publication_Call_for_Paper_September_2022.pdfIAEME_Publication_Call_for_Paper_September_2022.pdf
IAEME_Publication_Call_for_Paper_September_2022.pdf
 
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...
 
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURSA STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
 
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURSBROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
 
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONS
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONSDETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONS
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONS
 
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONS
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONSANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONS
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONS
 
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINO
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINOVOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINO
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINO
 
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...
 
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMY
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMYVISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMY
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMY
 
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...
 
GANDHI ON NON-VIOLENT POLICE
GANDHI ON NON-VIOLENT POLICEGANDHI ON NON-VIOLENT POLICE
GANDHI ON NON-VIOLENT POLICE
 
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...
 
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...
 
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...
 
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...
 
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...
 
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...
 
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
 
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...
 
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENT
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENTA MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENT
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENT
 

50120140502010

  • 1. International Journal of Computer Engineering and Technology (IJCET), ISSN 0976-6367(Print), INTERNATIONAL JOURNAL OF COMPUTER ENGINEERING & ISSN 0976 - 6375(Online), Volume 5, Issue 2, February (2014), pp. 88-97 © IAEME TECHNOLOGY (IJCET) ISSN 0976 – 6367(Print) ISSN 0976 – 6375(Online) Volume 5, Issue 2, February (2014), pp. 88-97 © IAEME: www.iaeme.com/ijcet.asp Journal Impact Factor (2014): 4.4012 (Calculated by GISI) www.jifactor.com IJCET ©IAEME A NEW LEAF ANALYSIS AND CLUSTERING FOR TEA SPECIES IDENTIFICATION Arunpriya C. P.S.G.R Krishnammal College for Women, Coimbatore, India Antony Selvadoss Thanamani Nallamuthu Gounder Mahalingam College, Pollachi, India. ABSTRACT Leaf is an important organ of the plant. It is widely used for many purposes such as in medical field, chemical and other research purposes. Now it becomes active area for analysis of plants as most of the plant species are at the risk of extinction. Most of the leaves cannot be analyzed easily since some are not flat (e.g. succulent leaves and conifers), some does not grow above ground (e.g. bulb scales), and some does not undergo photosynthetic function (e.g. cataphylls, spines, and cotyledons).In this paper, we mainly focused on tea leaves to identify the leaf type for improving tea leaf classification. Tea leaf images are loaded from digital cameras or scanners in the system. This proposed approach consists of three phases such as preprocessing, feature extraction, selection and finally clustering of leaves. The tea leaf images are first preprocessed to remove the noise and enhanced by fuzzy denoising using Dual Tree Discrete Wavelet Transform (DT-DWT and boundary enhancement to obtain the shape of leaf accurately. In the feature extraction phase, Digital Morphological Features (DMFs) and Geometrical features are extracted and from that main features are selected. They are given to the clustering process which is done by using Fuzzy C-Means algorithm, it clearly cluster different type of tea leaves. The Fuzzy C-Means is trained by 60 tea leaves to classify them into 6 types. Experimental results proved that the proposed method clustered the tea leaves with more accuracy in less time. Thus, the proposed method achieves more accuracy in clustering the leaf type. Keywords: Leaf Recognition, Dual Tree Discrete Wavelet Transform (DT-DWT), Digital Morphological Features (DMFs), K-Means Algorithm, Fuzzy C-Means (FCM). 88
  • 2. International Journal of Computer Engineering and Technology (IJCET), ISSN 0976-6367(Print), ISSN 0976 - 6375(Online), Volume 5, Issue 2, February (2014), pp. 88-97 © IAEME I. INTRODUCTION Plant is an important thing in our environment. It has vital use in food stuff, medicine and industry. There is an difficulty arises while recognize plant species on earth. All over the world, there are currently about 310 000–420 000 known plant species, and many are still unknown yet. [2] At present, plant taxonomy usually adopts traditional classification method. And so far many other classification methods, such as molecule biology, morphologic anatomy, cell biology and phytochemistry, have also been used. These methods have good relation to do with biology and chemistry. However, the acquisition of needed data from plant living body or specimen directly and automatically by computer has not been implemented [1]. Plants are basically classified according to shapes, colors and structures of their leaves and flowers [5, 6]. However, if we want to recognize the plant based on 2D images, it is difficult to analyze shapes and structures of flowers since they have complex 3D structures. On the other hand, the colors of leaves are always green; moreover, shades and the variety of changes in atmosphere and season cause the color feature having low reliability. Therefore, we decided to recognize various plants by the grey-level leaf image of plant. The leaf of plant carry useful information for classification of various plants, for example, shape, aspect ratio and texture. [12] In this work initially the leaf images are subjected to preprocessing, In that preprocessing the leaf image is converted into gray scale and then from it noises are removed and it is enhanced to desired level. From it several features are extracted and selection of features is made. Then they are clustered based upon their features. The paper can be organized as follows. Section II describes the related works involved regarding leaf analysis. Section III describes about the proposed methodology. Experimental results are illustrated in Section IV and Section V deals with the conclusion. II. RELATED WORKS Ji-Xiang Du et al., takes leaf database from different plants is firstly constructed. Then, a new classification method, referred to as move median centers (MMC) hypersphere classifiers, for the leaf database based on digital morphological feature is proposed. Then says that it is more robust than the one based on contour features since those significant curvature points are hard to find. Finally, the efficiency and effectiveness of the method in recognizing different plants is demonstrated by experiments. Xiao Gu et al., [13] proposed a novel approach for leaf recognition by means of the result of segmentation of leaf’s skeleton based on the integration of Wavelet Transform (WT) and Gaussian interpolation. And then the classifiers, a nearest neighbor classifier (1-NN), a k -nearest neighbor classifier (k-NN) and a radial basis probabilistic neural network (RBPNN) are employed, based on Run-length Features (RF) obtained from the skeleton to identify the leaves. Ultimately, the efficiency of this approach is illustrated by several experiments. The results reveal that the skeleton can be effectively extracted from the entire leaf, and the recognition rates can be significantly improved. The evolution of the curves may be driven by image gradient information (Kichenassamy et al., 1995; Caselles et al., 1997), region information (Chan and Vese, 2001 [14]; Jehan-Besson et al., 2003) [3], or their combination (Tsai et al., 2001) [4]. The image segments generated are enclosed by closed contours and are unsupervised which make it an ideal candidate for image post processing. These methods are more suitable for simple images and their performance degrades both in terms of segmentation and complexity, with complicated images (Paragios and Deriche, 2000). In such cases, the utilization of prior information is necessary for curve evolution methods in complicated image segmentation applications. 89
  • 3. International Journal of Computer Engineering and Technology (IJCET), ISSN 0976-6367(Print), ISSN 0976 - 6375(Online), Volume 5, Issue 2, February (2014), pp. 88-97 © IAEME III. METHODOLOGY The tea leaf recognition method used in the proposed approach consists of three phases namely image pre processing, feature extraction and selection then finally clustering. 3.1. Image Pre-Processing The input tea leaf images undergo several processing steps as follows. Converting RGB Image to Binary Image The tea leaf image is obtained through scanners or digital cameras. An RGB image is firstly converted into a grayscale image. Equation 1 is used to convert RGB value of a pixel into its grayscale value. gray=0.2989‫כ‬R+0.85870‫כ‬G+0.1140‫כ‬B (1) Where R, G and B corresponds to the color of the pixel, respectively. Fuzzy Denoising Using Dual Tree Discrete Wavelet Transform Here the denoising is done through Fuzzy shrinkage rule. In image denoising, where a tradeoff between noise suppression and the maintenance of actual image discontinuity should be made, solutions are required to detect important image details and accordingly adapt the degree of noise smoothing. With respect to this principle, use a fuzzy feature for single channel image denoising to enhance image information in wavelet sub-bands and then using a fuzzy membership function to shrink wavelet coefficients, consequently. Dual Tree Discrete Wavelet Transform (DT-DWT) is used as a fuzzy denoising algorithm which provides both shiftable sub-bands and good directional selectivity and low redundancy. The 2-D dual-tree discrete wavelet transform (DT-DWT) of an image is employed using two critically-sampled separable 2-D DWT’s in parallel .[16] The advantages of the dual-tree DWT (DTDWT) over separable 2D DWT is that, it can be used to employ 2D wavelet transforms which are more selective with respect to orientation. The real part or the imaginary part of DT-DWT [17] produces perfect reconstruction and hence it can be employed as a stand-alone transform. Feature vector can be calculated using magnitude of sub bands. The implementation of DT-DWT is easy. An input image is decomposed by ௔ ௔ ௕ ௕ two sets of filter banks, (‫ܪ‬଴ , ‫ܪ‬ଵ ሻ ܽ݊݀ ‫ܪ‬଴ , ‫ܪ‬ଵ ሻ separately and filtering the image both horizontally and vertically. Then eight sub bands are obtained: LLa, HLa , LHa , HHa , LLb , HLb , LHb and HHb. Each high-pass subband from one filter bank is combined with the corresponding subband from the other filter bank by simple linear operations: averaging or differencing. The size of every sub band is the same as that of 2D DWT at the same level. [18] But there are six high pass sub bands instead of three highpass sub bands at every level. The two low pass sub bands, LLb and LLa, are iteratively decomposed up to a desired level within each branch. The DT-DWT (K) can be designed in two ways to have required delays. The first is based on Farras filters and the second employs Q-shift (quarter shift) filter design. The key issue in the design of DT-DWT (K) is to obtain (approximate) shift invariance using any of the filter forms.[19]To use a redundant transform for compression seems contradictory to the goal of compression which is to reduce whatever redundancy as much as possible. However if coefficients of a redundant transform are sparse enough, compression can even benefit from the introduced redundancy since most coefficients are nearly zero. Processing is usually result from a modification of the spatial correlation between wavelet coefficients (often caused by zeroing of small neighboring coefficients) or by using DWT. 90
  • 4. International Journal of Computer Engineering and Technology (IJCET), ISSN 0976 f 0976-6367(Print), ISSN 0976 - 6375(Online), Volume 5, Issue 2, February (2014), pp. 88-97 © IAEME After the post processing process the enhanced leaf image is obtained as a result. Boundary Enhancement The margin of a leaf is highly focused in this pre processing step. Convolving the image with a Laplacian filter of 3 × 3 spatial mask as in equation 2: 0 1 0 1 -4 1 Fig. 1 Enhanced image 0 1 0 (2) Fig. 2 Boundary Enhancement The Fig.1 shows the enhanced ima and Fig 2 shows boundary enhancement of the image proposed tea leaf recognition. To make boundary as a black curve on white background, the pixel values “0” and “1” are swapped. 3.2. Feature Extraction The proposed approach uses Digital Morphological Features (DMFs) and geometrical MFs) features. For these features, computer can obtain feature values quickly and automatically. The automatically features used for extraction in the proposed method is described as follows. A. Physiological Length The only human interfered segment of the proposed algorithm is that, the two terminals of the the main vein of the leaf should be marked through mouse click. The distance between the two terminals is the physiological length. It is represented as Lp. The red line in the Fig. 3 indicates the physiological length of a leaf. Fig. 3 Physiological length of a leaf 3: 91
  • 5. International Journal of Computer Engineering and Technology (IJCET), ISSN 0976 f 0976-6367(Print), ISSN 0976 - 6375(Online), Volume 5, Issue 2, February (2014), pp. 88-97 © IAEME B. Physiological Width Drawing a line passing through the two terminals of the main vein, infinite lines can be plotted orthogonal to that line. The count of intersection pairs between those lines and the leaf margin is also infinite. At the physiological width, the longest distance between points of those intersection pairs is defined. It is represented as Wp. As the coordinates of pixels are discrete, two lines are considered as orthogonal if their degree is 90◦ ± 0.5◦.The red line in the Fig. 4 indicates the 90 .The physiological width of a leaf. Fig. 4 Physiological width of a leaf C. Aspect Ratio The ratio of physiological length Lp to physiological width Wp is called aspect ratio and it is atio given by equation(3), (3) D. Serration Angle The teeth angle of a leaf can be defined as equation (4) using serration angle. serrati (4) Where θ is the serration angle, a is the length of first recognizable teeth from the tip of the angle and b is the breadth of first recognizable teeth from the tip of the angle. rration Fig. 5 Serration angle obtained from the tea leaf The serration angle obtained from the tea leaf using equation 4 is shown in the Fig. 5. 92
  • 6. International Journal of Computer Engineering and Technology (IJCET), ISSN 0976-6367(Print), ISSN 0976 - 6375(Online), Volume 5, Issue 2, February (2014), pp. 88-97 © IAEME E. Segment The segment of a leaf can be defined as the ratio of first recognizable teeth in the left side from the tip of the angle ‘a’ to the first recognizable teeth in the right side from the tip of the angle ‘b’ as defined in equation (5). (5) F. Segment maximum width to Physiological length ratio The leaf is divided into 10 segments as shown in the Fig. 6. Each segment width to the physiological length ratio can be determined for all the 10 segments. G. Tip Angle The angle which is formed from the tip of the leaf to the first recognizable teeth on either side of the leaf is called tip angle. The tip angle can be calculated using the formula as defined in equation (6). (6) where θ is the tip angle, a and b are the first recognizable teeth from the tip of the angle on left and right side respectively. The tip angle formed from the tea leaf is shown in the Fig. 7. θ a Fig. 6 Segment of a leaf b Fig. 7 Tip angle obtained from the tea leaf 3.3. Feature Selection Feature selection is the process of selecting the features which are essential for its classification or clustering. While extracting the features user may extract many features. And when all the extracted features are given for clustering, it may fails in clustering. The computational complexity arises while large numbers of features are given for clustering and time consumption also becomes high. For these reasons feature selection is made and here appropriate features are selected based on its further process. 93
  • 7. International Journal of Computer Engineering and Technology (IJCET), ISSN 0976-6367(Print), ISSN 0976 - 6375(Online), Volume 5, Issue 2, February (2014), pp. 88-97 © IAEME The clustering process here is done according to the selected features. The leaf images here are grouped based on it. In this paper several morphological and geometrical features are extracted. The geometrical features such as Physiological Length, Physiological Width, Serration Angle, Leaf Layer Segment – Layer 1, Layer 2, Layer 3, Layer 4, Layer 5, Layer 6, Layer 7, Layer 8, Layer 9 and Layer 10 maximum distance, Segment maximum width to Physiological length ratio and Tip Angle are extracted. Morphological feature of Aspect Ratio is extracted. These are the unique features by this clustering is made. Each type of leaf differs by these features. 3.4. K-means clustering To cluster the images based on the selected features k-Means Clustering is used. K-Means algorithm is one of the clustering algorithms that classify the input data points into multiple classes based on their inherent distance from each other. Suppose that the data features form a vector space and this algorithm tries to find natural clustering in them. The points are clustered around centroid µ୧ ‫׊‬୧ ൌ 1 … k which are obtained by minimizing the objective as given in equation (7) ଶ ܸ ൌ ∑୩ ∑୶ౠ ‫ א‬౩ ൫x୨ െ µ୧ ൯ ୧ୀଵ (7) ౟ where there are k clusters R ୧,୨ ൌ 1, 2, … … , k and µ୧ is the centroid or mean point of all the points x୨ ‫ א‬R ୧ The algorithm takes a 2 dimensional image as an input. Various steps in the algorithm are as follows: • • • • Compute the intensity distribution of the intensities. Initialize the centroids with k random intensities. Repeat the following steps until the cluster labels of the image do not change anymore. Cluster the points based on distance of their intensities from the centroid intensities which can be defined as equation (8). ଶ c ሺ୧ሻ ‫׷‬ൌ arg min ቛx ሺ୧ሻ െ µ୨ ቛ ୨ • ሺ8ሻ Compute the new centroid for each of the clusters as in equation (9). ߤ௜ ؔ ∑௠ 1 ൛ܿሺ௝ሻ ൌ ݆ൟ‫ ݔ‬ሺ௜ሻ ௜ୀଵ ∑௠ 1 ൛ܿሺ௝ሻ ൌ ݆ൟ ௜ୀଵ ሺ9ሻ where k is a parameter of the algorithm (the number of clusters to be obtained), i iterates over the all the intensities, j iterates over all the centroids and µ୧ are the centroid intensities. [15]. 3.5. Fuzzy C-Means Clustering The Fuzzy C-Means (FCM) clustering algorithm was first introduced by Dunn [20] and later was extended by Bezdek [21]. The algorithm is an iterative clustering method that produces an optimal c partition by minimizing the weighted within group sum of squared error objective function JFCM defined in equation (10) [21]. 94
  • 8. International Journal of Computer Engineering and Technology (IJCET), ISSN 0976-6367(Print), ISSN 0976 - 6375(Online), Volume 5, Issue 2, February (2014), pp. 88-97 © IAEME ௡ ௖ ‫ܬ‬ி௉஼ெ ൌ ෍ ෍ሺ‫ݑ‬௜௞ ሻ௤ ݀ଶ ሺ‫ݔ‬௞ , ‫ݒ‬௜ ሻ ௞ୀଵ ௜ୀଵ ሺ10ሻ Where X = ‫ݔ‬ଵ , ‫ݔ‬ଶ , … , ‫ݔ‬௡ ሽ ‫ ܴ ه‬௣ is the data set in the p-dimensional vector space, ݊ is the number of clusters with 2 ൑ ܿ ൏ ݊, ‫ݑ‬௜௞ is the degree of membership of ‫ݔ‬௞ in the ith cluster, q is a weighting exponent on each fuzzy membership, vi is the prototype of the centre of cluster i, ݀ଶ ሺ‫ݔ‬௞ , ‫ݒ‬௜ ሻ is a distance measure between object ‫ݔ‬௞ and cluster centre ‫ݒ‬௜ . A solution of the object function JFCM can be obtained via an iterative process. IV. EXPERIMENTAL RESULTS The tea leaf clustering is taken in the proposed approach. For each type of tealeaf, 10 pieces of leaves from testing sets are used to test the accuracy. The dataset used in this approach is UPASI dataset. For clustering using FCM algorithm, input as features are given by those features they are clustered. Here for this UPASI dataset there are 6 types of tea leaves. Each type has nearly same feature values and they are far for the other type. TABLE I: DIFFERENT TYPES OF TEA LEAVES TESTED IN THE PROPOSED METHOD Tea Leaf Name Serration Angle Feature Values Tip Angle Feature Values TRF 1 110 to 140 35 to 50 UPASI - 3 35 to 120 35 to 75 UPASI - 9 80 to 140 28 to 46 UPASI - 10 110 to 150 45 to 55 UPASI -17 100 to 120 42 to 52 UPASI - 22 60 to 150 45 to 100 The feature values obtained for serration and tip angle are shown in table I. Likewise all other remaining 14 different features are extracted. From the above table, we can see that the range of feature values differs for each type of leaves. The performance of the proposed approach is evaluated based on the following parameters: Accuracy and Execution time. The different tea leaves taken in the proposed approach is shown in the Table II. TABLE II: DIFFERENT TYPES OF TEA LEAVES TESTED IN THE PROPOSED METHOD Tea Leaf Name Tested Samples Number of Correct Clustered TRF 1 57 54 UPASI - 3 62 52 UPASI - 9 56 51 UPASI - 10 56 46 UPASI -17 60 56 UPASI - 22 63 56 95
  • 9. International Journal of Computer Engineering and Technology (IJCET), ISSN 0976-6367(Print), ISSN 0976 - 6375(Online), Volume 5, Issue 2, February (2014), pp. 88-97 © IAEME TABLE III: COMPARISON OF THE EXECUTION TIME Classification Time (seconds) Techniques Fuzzy C-Means 0.83 K-Means 0.74 EM 0.92 Table III reveals the execution time of the classification algorithms. The execution time of the proposed K-Means clustering approach is less when compared with EM and Mean Shift Clustering algorithm. Thus this k-means clustering is well suits for clustering of images in reduced executed time. V. CONCLUSION A new approach of tea leaf feature selection and clustering is proposed in this paper. This approach consisted of three phases namely the preprocessing, feature extraction and selection finally clustering. The image can be preprocessed using fuzzy denoising by Dual Tree Discrete Wavelet Transform (DT-DWT) and Boundary enhancement. The main features of leaf can be extracted by using morphological and geometrical feature techniques. And the related features are selected and given as an input to the clustering. FCM clustering algorithm is used as a clustering algorithm. The computer can automatically cluster 60 kinds of plants via the leaf images loaded from digital cameras or scanners. The performance of the proposed approach is evaluated based on the accuracy and execution time. The proposed algorithm produces better accuracy and takes very less time for execution. REFERENCES [1] [2] [3] [4] [5] [6] [7] [8] [9] Ji-Xiang, Du, Xiao-Feng Wang, D.S. Huang, Automatic plant leaves recognition system based on image processing techniques, Technical Report, Institute of Intelligent Machines, Chinese Academy of Sciences, October, 2004. Ji-Xiang Du , Xiao-Feng Wang and Guo-Jun Zhang,“ Leaf shape based plant species recognition”, Applied Mathematics and Computation 185 (2007) 883–893. Aujol, J., Aubert, G. and Blanc-Féraud, L. (2003) Wavelet-based level set evolution for classification of textured images,” IEEE Trans. Image Process., Vol. 12, No. 12, Pp. 1634–1641. National Institute for Agricultural Botany, Chrysanthemum Leaf Classification. Cambridge, 2005. Chan, T. F. and Vese, L.A. (2001) Active contours without edges, IEEE Trans. Image Process., Vol. 10, No. 2, Pp. 266–277. Im, H. Nishida, T.L Kunii, “Recognizing plant species by leaf shapes—a case study of the Acer family,” Proc. Pattern Recognition, Vol. 2, pp. 1171-1173, 1998. Z. Wang, Z. Chi, D. Feng, “Shape based leaf image retrieval,” Image Signal Process, Vol. 150, no. 1, pp.34-43, 2003 Im, H. Nishida, T.L Kunii, “Recognizing plant species by leaf shapes—a case study of the Acer family,” Proc. Pattern Recognition, Vol. 2, pp. 1171-1173, 1998. Z. Wang, Z. Chi, D. Feng, “Fuzzy integral for leaf image retrieval,” Proc. Fuzzy Systems, Vol. 1, pp.372-377, 2002. T. Saitoh, T. Kaneko, “Automatic recognition of wild flowers,” Proc. Pattern Recognition, Vol. 2, pp. 507 -510, 2000. 96
  • 10. International Journal of Computer Engineering and Technology (IJCET), ISSN 0976-6367(Print), ISSN 0976 - 6375(Online), Volume 5, Issue 2, February (2014), pp. 88-97 © IAEME [10] Warren, “Automated leaf shape description for variety testing in chrysanthemums,” Proc. Image Processing and Its Applications, Vol. 2, pp. 497-501, 1997. [11] Z. Wang, Z. Chi, D. Feng, “Shape based leaf image retrieval,” Image Signal Process, Vol.150, no. 1, pp.34-43, 2003. [12] N.Valliammal and S.N.Geethalakshmi, “Automatic Recognition System Using Preferential Image Segmentation For Leaf And Flower Images”, Computer Science & Engineering: An International Journal (CSEIJ), Vol.1, No.4, October 2011. [13] Xiao Gu, Ji-Xiang Du and Xiao-Feng Wang, “Leaf Recognition Based on the Combination of Wavelet Transform and Gaussian Interpolation”, Advances in Intelligent Computing, Vol. 3644/2005, pp. 253-262, 2005.. [14] Chen, Y. (2002) Using prior shapes in geometric active contours in a variational framework, Int. J. Comput. Vis., Vol. 50, No. 3, Pp. 315–328. [15] Suman Tatiraju and Avi Mehta, “Image Segmentation using k-means clustering, EM and Normalized Cuts.”. [16] M. J. L. Orr, “Introduction to radial basis function networks”, Technical report, Center for Cognitive Science, University of Edinburgh, 1996 [17] Arokia Priya, S.PNarote, and A.V.Patil, “Dual Tree Wavelet Transforms in Image Compression”. [18] M. Sepasian, W. Balachandran and C. Mares, “Image Enhancement for Fingerprint Minutiae-Based Algorithms Using CLAHE, Standard Deviation Analysis and Sliding Neighborhood”, Proceedings of the World Congress on Engineering and Computer Science 2008 WCECS 2008, October 22 - 24, 2008, San Francisco, USA. [19] R.Sharmila, R. Uma, “A New Approach To Image Contrast Enhancement using Weighted Threshold Histogram Equalization with Improved Switching Median Filter”, International Journal Of Advanced Engineering Sciences and Technologies Vol No. 7, No. 2, pp. 206 – 211, 2011. [20] Dunn, J.C.: A Fuzzy Relative of the ISODATA Process and its Use in Detecting Compact Well Separated Clusters. Journal of Cybernetics, Vol. 3, 1974, pp. 32–57. [21] Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. New York: Plenum Press, 1981. [22] Abhishek Choubey, Omprakash Firke and Bahgwan Swaroop Sharma, “Rotation and Illumination Invariant Image Retrieval using Texture Features”, International Journal of Electronics and Communication Engineering & Technology (IJECET), Volume 3, Issue 2, 2013, pp. 48 - 55, ISSN Print: 0976- 6464, ISSN Online: 0976 –6472. [23] C. S. Sumathi and A.V. Senthil Kumar, “Identification of Arable and Tree Crops by Edge and Texture Fusion Techniques”, International Journal of Computer Engineering & Technology (IJCET), Volume 4, Issue 6, 2013, pp. 167 - 174, ISSN Print: 0976 – 6367, ISSN Online: 0976 – 6375. [24] Ankit Vidyarthi and Ankita Kansal, “A Survey Report on Digital Images Segmentation Algorithms”, International Journal of Computer Engineering & Technology (IJCET), Volume 3, Issue 2, 2012, pp. 85 - 91, ISSN Print: 0976 – 6367, ISSN Online: 0976 – 6375. [25] Garima Agarwal, Rekha Nair and Pravin Shrinath, “A Review of Plant Leaf Classification Features and Techniques”, International Journal of Computer Engineering & Technology (IJCET), Volume 4, Issue 5, 2013, pp. 204 - 216, ISSN Print: 0976 – 6367, ISSN Online: 0976 – 6375. 97