SlideShare una empresa de Scribd logo
1 de 9
Descargar para leer sin conexión
International Journal of Mobile Network Communications & Telematics ( IJMNCT) Vol. 4, No.3, June 2014
DOI : 10.5121/ijmnct.2014.4303 23
IMPROVING ENERGY EFFICIENCY IN MANET’S FOR
HEALTHCARE ENVIRONMENTS
Sohail Abid1
Imran Shafi2
and Shahid Abid3
1,3
Foundation University Rawalpindi Campus, Pakistan
2
Abasyn Unibersity Islamabad Campus, Pakistan.
ABSTRACT
Now a day ad hoc mobile networks (MANETs) have lots of routing protocols, but no one can meet
maximum performance. Some are good in a small network; some are suitable in large networks, and some
give better performance in location or global networks. Today modern and innovative applications for
health care environments based on a wireless network are being developed in the commercial sectors. The
emerging wireless networks are rapidly becoming a fundamental part of every single field of life. Our
proposed DEERP framework gives a better performance as compared to other routing protocol.
KEYWORDS
Dynamic Energy Efficient Routing Protocol (DEERP), Energy Awareness, energy-efficiency, Simulation of
Energy Efficient Routing Protocol in NS2.
1. INTRODUCTION
Today advance applications of health care environments have been developed for ad-hoc
networks. The capability to enhance health care telemetry with wearable miniature wireless
sensors would have a deep impact on several ways of medical practice. In terms of efficiency the
small portable wireless devices plays an important role in the health care environment and to
provide essential support to patients. Wireless health care monitors/ equipments are available in
the market for example blood pressure monitors [1, 2], pulse Oximeters [3, 4], maternal uterine
and fetal heart rate monitors [5], Wireless ECG System [6], and EKGs (Electrocardiographs) [7,
8, 9]. During disaster recovery or a group of casualty, the doctor fixes small sensors on each
patient and monitor the results using Laptop and PDAs.In fig 1 (a), (b) and (c) some wireless
devices used in the health care environment.
Fig 1: (a) Motion capture and EMG (b) Pulse Oxi-meter (c) EKG
In the health care environment, a huge importance is placed on data integrity, availability and
security. Now a day private and public key security is implemented in the security of data in ad-
International Journal of Mobile Network Communications & Telematics ( IJMNCT) Vol. 4, No.3, June 2014
24
hoc networks [10, 11, 12]. Due to mobility and congestion packet loss may be compromised.
Multiple doctors or nurses can receive patient data using multicast semantics support on the
network layer. Due to mobility of patients, doctors and nurses quickly route changes, therefore
energy efficient and multi-hop routing protocols are required in health care environments.
Ad hoc network building a network without any structure and set of hosts who are agreed to
establish a connection or communication with each other exclusive of any centralized
administration [13]. Each mobile device in an ad - hoc network acts as a router. Wireless MANET
is ideal for every application of our daily life due to its mobility and accessibility everywhere.
Now a day Mobile Ad hoc Network (MANET) is a quickly rising technology, due to its self-
motivated topology and unique nature of scattered resources. Wireless MANET is rapidly
emerging and trendy topology in almost all fields like medical, healthcare, banking and
commerce, etc. Currently wireless MANETs are becoming very popular and many routing
protocols have been suggested by researchers. We give a brief introduction to wireless networks
and discuss the issues and challenges regarding to performance and efficient use of energy. We
are concerned with energy efficiency and select some well-known energy efficient routing
protocols and simulate these protocols in NS2 and analyze energy efficiency in different cases.
MANET has principles due to which controls the number of hosts and route all packets between
the mobile hosts in their wireless networks. MANET faces a lot of challenges, but we focus
energy efficiency and performance. The energy efficiency and performance evaluation are two
very important and critical challenges for routing protocols. Some routing protocols to have
maximum packet delivery ratio and throughput, some have less end-to-end delay and minimum
routing overhead; some consume less energy during idle mode; some consume less energy during
receive mode, and some consumes less energy during transmit mode. On the other hand, some
routing protocols to perform skillfully in small networks and some perform skillfully in large
networks.
A mobile Ad-hoc network–MANET consists of mobile devices that are placed without any
predefine pattern and regularly changing their position and connected with each other. The main
aim of routing protocol is to discover routes from source to destination node and use the best and
most efficient route. In case of route error the routing protocol switches to the other suitable route.
During the establishment of and preservation of the route a less overhead and bandwidth
utilization should be made [14]. We discuss in this research article, how healthcare networks use
ICT (Information and Communications Technology) has been developed, and what sort of impact
they have on the present health care system. We consider the fittings of mobile technologies in
healthcare environments. We spotlight on WPAN (Wireless Personal Area Network)
technologies, explicitly, IEEE 802.11 standard. Our research work has based upon the recent
results on the energy efficiency and performance of routing protocols. Our proposed framework is
to choose appropriate routing protocols, which give good performance the necessary
implementation changes required to incorporate existing routing protocols in our framework. In
our framework, we use only proactive and reactive routing protocols. The proposed framework
presents wide assessment, using a very famous network simulator NS2. On the basis of our results
that our proposed framework improves energy efficiency and performance as compared with
other selected routing protocols.
2. RELATED WORK.
It is specified in recent research [15] that each protocol is appropriate for a certain user
environment and network. Some protocol that adapts the route construction method performs well
in less mobility and decreases their performance in the high mobility environment. L. M. Feeney
presented in his paper a comparison of energy consumption for DSR, AODV in NS2 [16].
Furthermore, in [17], [18], it proves that in the path creation method, competence is also a
International Journal of Mobile Network Communications & Telematics ( IJMNCT) Vol. 4, No.3, June 2014
25
limiting factor; as the number of nodes increases the available throughput of each node
approaches zero. Dr. S. P. Setty and B. Prasad compare QOS in energy consumption for proactive
and reactive routing protocols with the impact of network size [19]. On the other hand, the
support approach always succeeds in delivering messages [20]. Ved Prakash, Brajesh Kumar and
A. K. Srivastava analyze and compare the energy efficiency of topology based, and location
based routing protocols [21]. In this, review papers Neeraj Tantubay, Dinesh Ratan Gautam and
Mukesh Kumar Dhariwal present a summary of different energy control techniques and various
powers saving methods have been proposed in his research articles [22]. Feeney L. M. divides the
methods which are used in energy-efficient awareness routing protocols in ad-hoc networks [23].
In first method when a host transmitting packets, the routing protocol minimized the total energy
consumed during transmitting [24], [25], [26]. In a second method, load balance between hosts to
increase the lifetime of the whole network, instead of managing energy consumption for
individual packet [27], [28], [29]. A. Bamis and his group members present a mobility sensitive
method [30]. Moreover, they find the importance of both technologies with respect to scalability
issues. The pulse Oxi-meter equipped with 802.11 has developed by WiiSARD group [31] and
EKG by SMART team [32]. Some researcher making monitoring infrastructures of daily activity
of patient [33], monitoring infrastructures of daily activity of the patient at home [34], monitoring
infrastructures of daily activity of patient at hospital [35].
3. PROPOSED DEERP FRAMEWORK.
In our propose DEERP framework, we select two proactive and reactive routing protocols and
used as one routing protocol. On the basis of previous research paper results [36], we combine the
two best routing protocols and get better performance and energy efficiency. The structure of the
proposed DEERP framework is shown in fig 2.
Fig 2: Proposed DEEPR
Propose a method select one state like idle mode and check which protocol gives best
performance in idle mode according to the given routing conditions. According to this method,
we select routing protocols for above three modes. In other words, our proposed method selects
different routing protocols based on their best performance and places these protocols in the
above modes. In our proposed DEERP, a framework has one service. The function of this service
is divided into three parts. In a first part SRP (Select Routing Protocol) service selects the best
routing protocol for idle mode from RPSC (Routing Protocol Selection Criteria) table. In the
second part, SRP services select routing protocol for TX mode, which is best in the RPSC table.
In the third part, SRP serviced select routing protocol for Rx mode, which is best in the RPSC
International Journal of Mobile Network Communications & Telematics ( IJMNCT) Vol. 4, No.3, June 2014
26
table. According to this process, we select two or three routing protocols. The combination of
these protocols gives excellent performance.
The RPSC table consists of routing environment and characteristics like number of nodes,
mobility model, node speed and best routing protocols on their performance with respect to RPSC
table criteria. The SRP service checks the routing environment characteristics or conditions
like number of nodes, mobility model, node speed, etc. and compares these characteristics with
RPSC table. The protocol which performs well according to the given routing conditions will be
selected. In our case RPSC table is as below.
3.1. Routing Protocol Selection Criteria (RPSC)
The routing protocol is selected on following properties.
Table 1: Routing Protocol Selection Criteria Table (RPSC)
Mobility
Model
No. of
Nodes
Node
Speed
Mode Best Performance
Protocol
RWP 5 - 25 1 – 10
ms
Idle DSR
Tx DSDV
Rx DSR
RPGM 20- 80 0.5- 5
ms
Idle DSDV
Tx DSDV
Rx DSR
4. SIMULATIONS
4.1. Methodology Used in Our Simulation-I
The network parameters used in our simulation is described in table 2.
Table 2: Simulation I Parameters
Simulation I Parameters
Parameters Values
MAC Type IEEE 802.11
Antenna Omni directional
Simulation Time 900 sec
Transmission range 500 x 500 – 2000 x 2000
Node speed 0.5m/s to 5.0 m/s
Traffic Type CBR
Data payload 512 bytes/ packet
Packet rate 8 packet/sec
Node Pause Time 0
Mobility Model RPGM
Interface Queue Type Drop Tail/Priori Queue
Interface Queue Length 50
No. of Nodes 20 to 80
International Journal of Mobile Network Communications & Telematics ( IJMNCT) Vol. 4, No.3, June 2014
27
4.2. Methodology Used in Our Simulation-II
The new changes in parameter used in our simulation II is described in table 3.
Table 3: Simulation II Parameters
Simulation II Parameters
Parameters Values
Simulation Time 300 sec
Transmission range 600 x 600 m
Mobility Model Random Waypoint
No. of Nodes 5, 10,15,20,25
4.3. Energy Consumption Model:
There are four states of energy consumption of mobile devices which are given in table 4.
Table 4: Energy States
Energy Consumption Parameters
ei: Energy Consumption during Idle mode
es: Energy Consumption during Sleep mode
et: Energy Consumed during Transmitting mode
er: Energy Consumed during Receiving mode
4.3.1. Transmit Mode (Tx)
Tx = (Pkt-size x 330) / 2 x 106 And PTx = Tx / TTx
Where PTx is transmitting power, Tx is transmitting energy and TTx is time take during packet
transmit and Pkt-size is the size of packet in bits.
4.3.2. RX Mode
RX = (Pkt-size x 230) / 2 x 106 And PRX = RX / TRX
Where PRX is receiving power, RX is receiving energy and TRX is time take during receiving a
packet and Pkt-size is the size of packet in bits.
4.3.3. Idle/ Listening Mode
PIdle = PRX
Where PRX is power consumed in receiving mode and PIdle is power consumed in idle mode.
International Journal of Mobile Network Communications & Telematics ( IJMNCT) Vol. 4, No.3, June 2014
28
5. RESULTS
Simulation I Simulation II
Fig 3: Avg. Energy consumed in idle mode.
In fig 3, it is clear that our proposed DEERP framework consume minimum energy in idle mode
as compared to other protocols.
Fig 4: Avg. Energy consumed in Tx mode.
In fig 4, it is clear that our proposed DEERP framework consume minimum energy in Tx mode.
International Journal of Mobile Network Communications & Telematics ( IJMNCT) Vol. 4, No.3, June 2014
29
Fig 5: Avg. Energy consumed in Rx mode.
In fig 5, it is clear that our proposed DEERP framework consume minimum energy in Rx mode as
compared to other protocols.
Fig 6: Avg. Remaining Energy
In fig 6, it is proved that our proposed DEERP framework has maximum remaining energy as
compared to other protocols.
In the light of above graphs, it is proved that our proposed framework “DEERP” is a best routing
framework in our scenario.
CONCLUSION AND FUTURE WORK
In this research article, we discuss and compare four routing protocols to investigate the
performance and energy consumption. In the light of above investigation we found that our
proposed routing framework (DEERP) gives better performance as compared to other routing
protocols. Our RPSC table selection criteria of routing protocol are limited because our selected
routing protocols are selected from proactive and reactive routing protocols. In future work, we
will select routing protocols from proactive, reactive, hybrid and location base protocols and
International Journal of Mobile Network Communications & Telematics ( IJMNCT) Vol. 4, No.3, June 2014
30
improves RPSC table. We use two mobility models with limited criteria, In future it will be
enhanced to improve the performance of the framework/protocol.
REFERENCES
[1] Card Guard. Wireless Blood Pressure Monitors. http://www.cardguard.com/site/products-
list.asp?id=20.
[2] A & D Medical, Inc. UA-767BT Wireless Blood Pressure Monitor.
http://www.lifesourceonline.com/products/telemonitoring.cfm.
[3] Nonin Medical, Inc. Avant 4000WirelessWearable Pulse Oximeter.
http://www.nonin.com/products/4000.asp.
[4] Welch Allyn, Inc. Micropaq Wireless Patient Monitor.
http://www.monitoring.welchallyn.com/products/wireless/micropaq.asp.
[5] [GE Healthcare. Corometrics 340M – Telemetry Ambulatory monitoring during labor.
http://www.gehealthcare.com/usen/perinatal/mat_fetal_mon/products/colo3%40M.ht
ml.
[6] I. Noorzaie, “Survey Pap er: M edical ap p lications of wireless networks", Note: This paper is
available on- line at http://www.cse.wustl.edu/~jain/cse574-06/ftp/medical_wireless/index.html. Last
modified: April 12, 2006.
[7] GMP Wireless Medicine, Inc. LifeSync Wireless EKG System. http://www.wirelessecg.com/.
[8] HealthFrontier, Inc. ecgAnywhere. http://www.healthfrontier.com.
[9] GE Healthcare. ApexPro CH. http://www.gehealthcare.
com/usen/patient_mon_sys/wireless_and_telemetry%/products/telemetry_sys/products/apexpro_ch.ht
ml.
[10] C. Karlof, N. Sastry, and D. Wagner, “A link layer security architecture for wireless sensor networks”,
In Proc. Second ACM Conference on Embedded Networked Sensor Systems (SenSys 2004),
November 2004.
[11] N. Gura, A. Patel and A. Wander, “Comparing elliptic curve cryptography and RSA on 8-bit CPUs”,
In Proc. Cryptographic Hardware and Embedded Systems (CHES 2004): 6th International Workshop,
August 2004.
[12] D. Malan, M. Welsh, and M. Smith, “A public-key infrastructure for key distribution in TinyOS based
on elliptic curve cryptography”, In Proc. The First IEEE International Conference on Sensor and Ad
hoc Communications and Networks (SECON), Santa Clara, CA, October 2004.
[13] P. Bergamo, Alessandra, ” Distributed power control for energy efficient routing in ad hoc networks
”, Wireless Networks 10, pp. 29–42, 2004.
[14] N. A. Pantazis, S. A. Nikolidakis, D. D. Vergados, “ Energy-efficient routing protocols in wireless
wensor networks for health communication systems”, PETRA 09, Corfu, Greece, ACM ISBN 978-1-
60558-409-6, 2009.
[15] I. Chatzigiannakis, E. Kaltsa, and S. Nikoletseas, “Evaluating the effect of user mobility and user
density on the performance of ad-hoc mobile networks”, Wireless Communications & Mobile
Computing (WMC), 4:1–13, 2004.
[16] L. M. Feeney, “An energy consumption model for performance analysis of routing protocols for
mobile ad hoc networks”, Mobile Networks and Applications 6, pp. 239–249, 2001.
[17] P. Gupta and P. R. Kumar, “The capacity of wireless networks”, IEEE Transactions on Information
Theory, 46(2):388–404, March 2000.
[18] J. Li, C. Blake, D. S. J. D. Couto, H. I. Lee, R. Morris, “Capacity of ad-hoc wireless networks”, In 7th
ACM/IEEE Annual International Conference on Mobile Computing, pages 61–69, Rome, Italy, 2001.
[19] S. P. Setty, B. Prasad, “Comparative study of energy aware QoS for proactive and reactive routing
protocols for mobile ad-hoc networks”, International Journal of Computer Applications, Volume 31,
No.5, 2011.
[20] I. Chatzigiannakis, S. Nikoletseas, and P. Spirakis. “Distributed communication algorithms for ad hoc
mobile networks”, Journal of Parallel and Distributed Computing (JPDC), 63(1) pp. 58–74, January
2003.
[21] V. Prakash, B. Kumar, A. K. Srivastava, “Energy efficiency comparison of some topology-based and
location-based mobile ad-hoc routing protocols”, ICCCS 11, ACM 978-1-4503-0464-1/11/02, 2011.
International Journal of Mobile Network Communications & Telematics ( IJMNCT) Vol. 4, No.3, June 2014
31
[22] N. Tantubay, D. R. Gautam, M. K. Dhariwal , “A review of power conservation in wireless mobile
ad-hoc network (MANET)”, IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4,
No 1, 2011.
[23] Feeney, “Energy efficient communication in ad hoc wireless networks”,
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.14.9379.
[24] Bergamo, Giovanardi, Travasonia, “Distributed power control for energy efficient routing in Ad-hoc a
networks”, published in journal of Wireless Networks, Volume 10 Issue 1, pp. 29–42, 2004.
[25] Gomez, Campbell, Naghshineh, “Conserving transmission power in wireless ad-hoc networks “, [A].
In Proc of IEEE Conference on Network Protocols (ICNP. 01), 2001.
[26] Y. Wei, L. Jangwon, “DSR-based energy-aware routing protocols in ad hoc networks”, in Proc. of the
International Conference on Wireless Networks, 2002.
[27] W. Zhao, K. Ramamritham, “Virtual time CSMA protocols for hard real–time communications”,
IEEE Transactions on Software Engineering, Vol. 13, No. 8, 1987.
[28] W. Zhao, J. Stankovic, K. Ramamritham, “A window protocol for transmission of time constrained
messages”, IEEE Transactions on Computers, Vol. 39, No. 9, 1990.
[29] Rahman, Gburzynski, “On constructing minimum-energy path-preserving graphs for ad-hoc wireless
networks”, ICC 2005: IEEE international conference on communications, Vols.1, pp. 3083-3087,
2005.
[30] A. Bamis, A. Boukerche, I. Chatzigiannakis, S. Nikoletseas, “A Mobility Sensitive Approach for
Efficient Routing in Ad Hoc Mobile Networks”, MSWiM’06, Published in ACM 1-59593-477-
4/06/0010 in 2006.
[31] L. Lenert et al. WiiSARD:Wireless Internet Information System for Medical Response in Disasters.
https://wiisard.org.
[32] E. Shih, V. Bychkovsky, D. Curtis, and J. Guttag. Demo abstract: Continuous, remote medical
monitoring. In Proc. Second Annual International Conference on Embedded Networked Sensor
Systems, November 2004.
[33] D. Konstantas, V. Jones, R. Bults, and R. H. Mobihealth, “innovative 2.5/3g mobile services and
applications for healthcare”, In Proc. Eleventh IST Mobile and Wireless Telecommunications Summit
2002, Thessaloniki, Greece, June 2002.
[34] E. Dishman, “Inventing wellness systems for aging in place”, IEEE Computer, May 2004.
[35] K. V. Laerhoven, B. P. Lo, J. W. Ng, S. Thiemjarus, R. King, S. Kwan, H.-W. Gellersen, M. Sloman,
O. Wells, P. Needham, N. Peters, A. Darzi, C. Toumazou, and G.-Z. Yang, “Medical healthcare
monitoring with wearable and implantable sensors”, In Proc. Sixth International Conference on
Ubiquitous Computing, Tokyo, Japan, September 2004.
[36] S. Abid, I. Shafi and S. Abid “Energy efficient routing in mobile ad-hoc networks for healthcare
environments”, IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 1,
January 2013.

Más contenido relacionado

La actualidad más candente

An Efficient and Stable Routing Algorithm in Mobile Ad Hoc Network
An Efficient and Stable Routing Algorithm in Mobile Ad Hoc NetworkAn Efficient and Stable Routing Algorithm in Mobile Ad Hoc Network
An Efficient and Stable Routing Algorithm in Mobile Ad Hoc NetworkIJCNCJournal
 
IEEE BE-BTECH NS2 PROJECT@ DREAMWEB TECHNO SOLUTION
IEEE BE-BTECH NS2 PROJECT@ DREAMWEB TECHNO SOLUTIONIEEE BE-BTECH NS2 PROJECT@ DREAMWEB TECHNO SOLUTION
IEEE BE-BTECH NS2 PROJECT@ DREAMWEB TECHNO SOLUTIONranjith kumar
 
Performance evaluation of interference aware topology power and flow control ...
Performance evaluation of interference aware topology power and flow control ...Performance evaluation of interference aware topology power and flow control ...
Performance evaluation of interference aware topology power and flow control ...IJECEIAES
 
A Cluster-Based Routing Protocol and Fault Detection for Wireless Sensor Network
A Cluster-Based Routing Protocol and Fault Detection for Wireless Sensor NetworkA Cluster-Based Routing Protocol and Fault Detection for Wireless Sensor Network
A Cluster-Based Routing Protocol and Fault Detection for Wireless Sensor NetworkIJCNCJournal
 
E-MICE: Energy-Efficient Concurrent Exploitation of Multiple Wi-Fi Radios
E-MICE: Energy-Efficient Concurrent Exploitation of Multiple Wi-Fi RadiosE-MICE: Energy-Efficient Concurrent Exploitation of Multiple Wi-Fi Radios
E-MICE: Energy-Efficient Concurrent Exploitation of Multiple Wi-Fi RadiosUniversitasGadjahMada
 
Design and implementation of new routing
Design and implementation of new routingDesign and implementation of new routing
Design and implementation of new routingIJCNCJournal
 
Novel Position Estimation using Differential Timing Information for Asynchron...
Novel Position Estimation using Differential Timing Information for Asynchron...Novel Position Estimation using Differential Timing Information for Asynchron...
Novel Position Estimation using Differential Timing Information for Asynchron...IJCNCJournal
 
RESOURCE ALLOCATION TECHNIQUE USING LOAD MATRIX METHOD IN WIRELESS CELLULAR S...
RESOURCE ALLOCATION TECHNIQUE USING LOAD MATRIX METHOD IN WIRELESS CELLULAR S...RESOURCE ALLOCATION TECHNIQUE USING LOAD MATRIX METHOD IN WIRELESS CELLULAR S...
RESOURCE ALLOCATION TECHNIQUE USING LOAD MATRIX METHOD IN WIRELESS CELLULAR S...cscpconf
 
Performance analysis for Adaptive Subcarriers Allocation in Coherent Optical ...
Performance analysis for Adaptive Subcarriers Allocation in Coherent Optical ...Performance analysis for Adaptive Subcarriers Allocation in Coherent Optical ...
Performance analysis for Adaptive Subcarriers Allocation in Coherent Optical ...iosrjce
 
Channel Capacity Maximization using NQHN Approach at Heterogeneous Network
Channel Capacity Maximization using NQHN Approach at Heterogeneous NetworkChannel Capacity Maximization using NQHN Approach at Heterogeneous Network
Channel Capacity Maximization using NQHN Approach at Heterogeneous NetworkIJECEIAES
 
MAR SECURITY: IMPROVED SECURITY MECHANISM FOR EMERGENCY MESSAGES OF VANET USI...
MAR SECURITY: IMPROVED SECURITY MECHANISM FOR EMERGENCY MESSAGES OF VANET USI...MAR SECURITY: IMPROVED SECURITY MECHANISM FOR EMERGENCY MESSAGES OF VANET USI...
MAR SECURITY: IMPROVED SECURITY MECHANISM FOR EMERGENCY MESSAGES OF VANET USI...IJCNCJournal
 
MULTI-CRITERIA HANDOVER DECISION FOR HETEROGENEOUS NETWORKS: CARRIER AGGREGAT...
MULTI-CRITERIA HANDOVER DECISION FOR HETEROGENEOUS NETWORKS: CARRIER AGGREGAT...MULTI-CRITERIA HANDOVER DECISION FOR HETEROGENEOUS NETWORKS: CARRIER AGGREGAT...
MULTI-CRITERIA HANDOVER DECISION FOR HETEROGENEOUS NETWORKS: CARRIER AGGREGAT...IJCNCJournal
 
Optimized Cluster Establishment and Cluster-Head Selection Approach in WSN
Optimized Cluster Establishment and Cluster-Head Selection Approach in WSNOptimized Cluster Establishment and Cluster-Head Selection Approach in WSN
Optimized Cluster Establishment and Cluster-Head Selection Approach in WSNIJCNCJournal
 
A novel optimal small cells deployment for next-generation cellular networks
A novel optimal small cells deployment for next-generation cellular networks A novel optimal small cells deployment for next-generation cellular networks
A novel optimal small cells deployment for next-generation cellular networks IJECEIAES
 
A small vessel detection using a co-located multi-frequency FMCW MIMO radar
A small vessel detection using a co-located multi-frequency FMCW MIMO radar A small vessel detection using a co-located multi-frequency FMCW MIMO radar
A small vessel detection using a co-located multi-frequency FMCW MIMO radar IJECEIAES
 
Enhancement of qos in lte downlink systems using
Enhancement of qos in lte downlink systems usingEnhancement of qos in lte downlink systems using
Enhancement of qos in lte downlink systems usingeSAT Publishing House
 
GENERALIZED POWER ALLOCATION (GPA) SCHEME FOR NON-ORTHOGONAL MULTIPLE ACCESS ...
GENERALIZED POWER ALLOCATION (GPA) SCHEME FOR NON-ORTHOGONAL MULTIPLE ACCESS ...GENERALIZED POWER ALLOCATION (GPA) SCHEME FOR NON-ORTHOGONAL MULTIPLE ACCESS ...
GENERALIZED POWER ALLOCATION (GPA) SCHEME FOR NON-ORTHOGONAL MULTIPLE ACCESS ...ijcseit
 

La actualidad más candente (17)

An Efficient and Stable Routing Algorithm in Mobile Ad Hoc Network
An Efficient and Stable Routing Algorithm in Mobile Ad Hoc NetworkAn Efficient and Stable Routing Algorithm in Mobile Ad Hoc Network
An Efficient and Stable Routing Algorithm in Mobile Ad Hoc Network
 
IEEE BE-BTECH NS2 PROJECT@ DREAMWEB TECHNO SOLUTION
IEEE BE-BTECH NS2 PROJECT@ DREAMWEB TECHNO SOLUTIONIEEE BE-BTECH NS2 PROJECT@ DREAMWEB TECHNO SOLUTION
IEEE BE-BTECH NS2 PROJECT@ DREAMWEB TECHNO SOLUTION
 
Performance evaluation of interference aware topology power and flow control ...
Performance evaluation of interference aware topology power and flow control ...Performance evaluation of interference aware topology power and flow control ...
Performance evaluation of interference aware topology power and flow control ...
 
A Cluster-Based Routing Protocol and Fault Detection for Wireless Sensor Network
A Cluster-Based Routing Protocol and Fault Detection for Wireless Sensor NetworkA Cluster-Based Routing Protocol and Fault Detection for Wireless Sensor Network
A Cluster-Based Routing Protocol and Fault Detection for Wireless Sensor Network
 
E-MICE: Energy-Efficient Concurrent Exploitation of Multiple Wi-Fi Radios
E-MICE: Energy-Efficient Concurrent Exploitation of Multiple Wi-Fi RadiosE-MICE: Energy-Efficient Concurrent Exploitation of Multiple Wi-Fi Radios
E-MICE: Energy-Efficient Concurrent Exploitation of Multiple Wi-Fi Radios
 
Design and implementation of new routing
Design and implementation of new routingDesign and implementation of new routing
Design and implementation of new routing
 
Novel Position Estimation using Differential Timing Information for Asynchron...
Novel Position Estimation using Differential Timing Information for Asynchron...Novel Position Estimation using Differential Timing Information for Asynchron...
Novel Position Estimation using Differential Timing Information for Asynchron...
 
RESOURCE ALLOCATION TECHNIQUE USING LOAD MATRIX METHOD IN WIRELESS CELLULAR S...
RESOURCE ALLOCATION TECHNIQUE USING LOAD MATRIX METHOD IN WIRELESS CELLULAR S...RESOURCE ALLOCATION TECHNIQUE USING LOAD MATRIX METHOD IN WIRELESS CELLULAR S...
RESOURCE ALLOCATION TECHNIQUE USING LOAD MATRIX METHOD IN WIRELESS CELLULAR S...
 
Performance analysis for Adaptive Subcarriers Allocation in Coherent Optical ...
Performance analysis for Adaptive Subcarriers Allocation in Coherent Optical ...Performance analysis for Adaptive Subcarriers Allocation in Coherent Optical ...
Performance analysis for Adaptive Subcarriers Allocation in Coherent Optical ...
 
Channel Capacity Maximization using NQHN Approach at Heterogeneous Network
Channel Capacity Maximization using NQHN Approach at Heterogeneous NetworkChannel Capacity Maximization using NQHN Approach at Heterogeneous Network
Channel Capacity Maximization using NQHN Approach at Heterogeneous Network
 
MAR SECURITY: IMPROVED SECURITY MECHANISM FOR EMERGENCY MESSAGES OF VANET USI...
MAR SECURITY: IMPROVED SECURITY MECHANISM FOR EMERGENCY MESSAGES OF VANET USI...MAR SECURITY: IMPROVED SECURITY MECHANISM FOR EMERGENCY MESSAGES OF VANET USI...
MAR SECURITY: IMPROVED SECURITY MECHANISM FOR EMERGENCY MESSAGES OF VANET USI...
 
MULTI-CRITERIA HANDOVER DECISION FOR HETEROGENEOUS NETWORKS: CARRIER AGGREGAT...
MULTI-CRITERIA HANDOVER DECISION FOR HETEROGENEOUS NETWORKS: CARRIER AGGREGAT...MULTI-CRITERIA HANDOVER DECISION FOR HETEROGENEOUS NETWORKS: CARRIER AGGREGAT...
MULTI-CRITERIA HANDOVER DECISION FOR HETEROGENEOUS NETWORKS: CARRIER AGGREGAT...
 
Optimized Cluster Establishment and Cluster-Head Selection Approach in WSN
Optimized Cluster Establishment and Cluster-Head Selection Approach in WSNOptimized Cluster Establishment and Cluster-Head Selection Approach in WSN
Optimized Cluster Establishment and Cluster-Head Selection Approach in WSN
 
A novel optimal small cells deployment for next-generation cellular networks
A novel optimal small cells deployment for next-generation cellular networks A novel optimal small cells deployment for next-generation cellular networks
A novel optimal small cells deployment for next-generation cellular networks
 
A small vessel detection using a co-located multi-frequency FMCW MIMO radar
A small vessel detection using a co-located multi-frequency FMCW MIMO radar A small vessel detection using a co-located multi-frequency FMCW MIMO radar
A small vessel detection using a co-located multi-frequency FMCW MIMO radar
 
Enhancement of qos in lte downlink systems using
Enhancement of qos in lte downlink systems usingEnhancement of qos in lte downlink systems using
Enhancement of qos in lte downlink systems using
 
GENERALIZED POWER ALLOCATION (GPA) SCHEME FOR NON-ORTHOGONAL MULTIPLE ACCESS ...
GENERALIZED POWER ALLOCATION (GPA) SCHEME FOR NON-ORTHOGONAL MULTIPLE ACCESS ...GENERALIZED POWER ALLOCATION (GPA) SCHEME FOR NON-ORTHOGONAL MULTIPLE ACCESS ...
GENERALIZED POWER ALLOCATION (GPA) SCHEME FOR NON-ORTHOGONAL MULTIPLE ACCESS ...
 

Destacado

Charles Perkins
Charles PerkinsCharles Perkins
Charles Perkinsccaarrlaa
 
Rol del docente especialista
Rol del docente especialistaRol del docente especialista
Rol del docente especialistaLisseth Rico
 
Rotary International Spain District 2203 ry12 monthly contribution report
Rotary International Spain District 2203 ry12 monthly contribution reportRotary International Spain District 2203 ry12 monthly contribution report
Rotary International Spain District 2203 ry12 monthly contribution reportPablo Ruiz Amo
 
Bourgogne Residences Gourmet
Bourgogne Residences GourmetBourgogne Residences Gourmet
Bourgogne Residences GourmetSuporteaoCorretor
 
Ordenamiento territorial material de clase
Ordenamiento territorial material de claseOrdenamiento territorial material de clase
Ordenamiento territorial material de claseGabriela Perez Medina
 
παρουσίαση1 aqua aerobics
παρουσίαση1 aqua aerobicsπαρουσίαση1 aqua aerobics
παρουσίαση1 aqua aerobicsmarianikh
 
all information websites
all information websitesall information websites
all information websiteslingadurai g
 
M7 2 bim_aluno_2014
M7 2 bim_aluno_2014M7 2 bim_aluno_2014
M7 2 bim_aluno_2014LiviaMariia
 
07 windows runtime app lifecycle
07   windows runtime app lifecycle07   windows runtime app lifecycle
07 windows runtime app lifecycleWindowsPhoneRocks
 
الدليل النهائي للكيف تصبح لاعب (Arab)
الدليل النهائي للكيف تصبح لاعب (Arab)الدليل النهائي للكيف تصبح لاعب (Arab)
الدليل النهائي للكيف تصبح لاعب (Arab)Acting_Jobs_Casting
 

Destacado (18)

Charles Perkins
Charles PerkinsCharles Perkins
Charles Perkins
 
Open Government Data in Austria - Organisation, Procedures and Uptake
Open Government Data in Austria - Organisation, Procedures and UptakeOpen Government Data in Austria - Organisation, Procedures and Uptake
Open Government Data in Austria - Organisation, Procedures and Uptake
 
Rol del docente especialista
Rol del docente especialistaRol del docente especialista
Rol del docente especialista
 
Rotary International Spain District 2203 ry12 monthly contribution report
Rotary International Spain District 2203 ry12 monthly contribution reportRotary International Spain District 2203 ry12 monthly contribution report
Rotary International Spain District 2203 ry12 monthly contribution report
 
Bourgogne Residences Gourmet
Bourgogne Residences GourmetBourgogne Residences Gourmet
Bourgogne Residences Gourmet
 
Ordenamiento territorial material de clase
Ordenamiento territorial material de claseOrdenamiento territorial material de clase
Ordenamiento territorial material de clase
 
Review pemasaran 2014
Review pemasaran 2014Review pemasaran 2014
Review pemasaran 2014
 
Avant Garde Residencial
Avant Garde ResidencialAvant Garde Residencial
Avant Garde Residencial
 
Alfa Corporate
Alfa CorporateAlfa Corporate
Alfa Corporate
 
παρουσίαση1 aqua aerobics
παρουσίαση1 aqua aerobicsπαρουσίαση1 aqua aerobics
παρουσίαση1 aqua aerobics
 
all information websites
all information websitesall information websites
all information websites
 
M7 2 bim_aluno_2014
M7 2 bim_aluno_2014M7 2 bim_aluno_2014
M7 2 bim_aluno_2014
 
Math2 52
Math2 52Math2 52
Math2 52
 
07 windows runtime app lifecycle
07   windows runtime app lifecycle07   windows runtime app lifecycle
07 windows runtime app lifecycle
 
Pc 5.5 Notes P2 Half Angles
Pc 5.5 Notes P2 Half AnglesPc 5.5 Notes P2 Half Angles
Pc 5.5 Notes P2 Half Angles
 
Sakai
SakaiSakai
Sakai
 
الدليل النهائي للكيف تصبح لاعب (Arab)
الدليل النهائي للكيف تصبح لاعب (Arab)الدليل النهائي للكيف تصبح لاعب (Arab)
الدليل النهائي للكيف تصبح لاعب (Arab)
 
Ventura Clube Residence
Ventura Clube ResidenceVentura Clube Residence
Ventura Clube Residence
 

Similar a Improving Energy Efficiency in MANETs for Healthcare

Evaluation of Energy Consumption of Reactive and Proactive Routing Protocols ...
Evaluation of Energy Consumption of Reactive and Proactive Routing Protocols ...Evaluation of Energy Consumption of Reactive and Proactive Routing Protocols ...
Evaluation of Energy Consumption of Reactive and Proactive Routing Protocols ...IJCNCJournal
 
Link Stability and Energy Aware routing Protocol for Mobile Adhoc Network
Link Stability and Energy Aware routing Protocol for Mobile Adhoc NetworkLink Stability and Energy Aware routing Protocol for Mobile Adhoc Network
Link Stability and Energy Aware routing Protocol for Mobile Adhoc NetworkIOSR Journals
 
Energy efficiency cross layer protocol for wireless mesh network
Energy efficiency cross layer protocol for wireless mesh networkEnergy efficiency cross layer protocol for wireless mesh network
Energy efficiency cross layer protocol for wireless mesh networkIJCNCJournal
 
Performance Analysis of Energy Efficient Cross Layer Load Balancing in Tactic...
Performance Analysis of Energy Efficient Cross Layer Load Balancing in Tactic...Performance Analysis of Energy Efficient Cross Layer Load Balancing in Tactic...
Performance Analysis of Energy Efficient Cross Layer Load Balancing in Tactic...IRJET Journal
 
A survey on energy aware routing issues and cross layering in mane ts
A survey on energy aware routing issues and cross layering in mane tsA survey on energy aware routing issues and cross layering in mane ts
A survey on energy aware routing issues and cross layering in mane tsIAEME Publication
 
MULTICASTING BASED ENHANCED PROACTIVE SOURCE ROUTING IN MANETS
MULTICASTING BASED ENHANCED PROACTIVE SOURCE ROUTING IN MANETSMULTICASTING BASED ENHANCED PROACTIVE SOURCE ROUTING IN MANETS
MULTICASTING BASED ENHANCED PROACTIVE SOURCE ROUTING IN MANETSIJCNCJournal
 
Adaptive Routing in Wireless Sensor Networks: QoS Optimisation for Enhanced A...
Adaptive Routing in Wireless Sensor Networks: QoS Optimisation for Enhanced A...Adaptive Routing in Wireless Sensor Networks: QoS Optimisation for Enhanced A...
Adaptive Routing in Wireless Sensor Networks: QoS Optimisation for Enhanced A...M H
 
EFFICIENT APPROACH FOR DESIGNING A PROTOCOL FOR IMPROVING THE CAPACITY OF ADH...
EFFICIENT APPROACH FOR DESIGNING A PROTOCOL FOR IMPROVING THE CAPACITY OF ADH...EFFICIENT APPROACH FOR DESIGNING A PROTOCOL FOR IMPROVING THE CAPACITY OF ADH...
EFFICIENT APPROACH FOR DESIGNING A PROTOCOL FOR IMPROVING THE CAPACITY OF ADH...IJCI JOURNAL
 
Ijeee 24-27-energy efficient communication for adhoc networks
Ijeee 24-27-energy efficient communication for adhoc networksIjeee 24-27-energy efficient communication for adhoc networks
Ijeee 24-27-energy efficient communication for adhoc networksKumar Goud
 
ENERGY EFFICIENT ROUTING PROTOCOL BASED ON DSR
ENERGY EFFICIENT ROUTING PROTOCOL BASED ON DSRENERGY EFFICIENT ROUTING PROTOCOL BASED ON DSR
ENERGY EFFICIENT ROUTING PROTOCOL BASED ON DSRijasuc
 
ENERGY EFFICIENT ROUTING PROTOCOL BASED ON DSR
ENERGY EFFICIENT ROUTING PROTOCOL BASED ON DSRENERGY EFFICIENT ROUTING PROTOCOL BASED ON DSR
ENERGY EFFICIENT ROUTING PROTOCOL BASED ON DSRijasuc
 
Balancing stable topology and network lifetime in ad hoc networks
Balancing stable topology and network lifetime in ad hoc networksBalancing stable topology and network lifetime in ad hoc networks
Balancing stable topology and network lifetime in ad hoc networksIAEME Publication
 
IRJET-A_AODV: A Modern Routing Algorithm for Mobile Ad-Hoc Network
IRJET-A_AODV: A Modern Routing Algorithm for Mobile Ad-Hoc NetworkIRJET-A_AODV: A Modern Routing Algorithm for Mobile Ad-Hoc Network
IRJET-A_AODV: A Modern Routing Algorithm for Mobile Ad-Hoc NetworkIRJET Journal
 
A scalable and power efficient solution for routing in mobile ad hoc network ...
A scalable and power efficient solution for routing in mobile ad hoc network ...A scalable and power efficient solution for routing in mobile ad hoc network ...
A scalable and power efficient solution for routing in mobile ad hoc network ...ijmnct
 
M-EPAR to Improve the Quality of the MANETs
M-EPAR to Improve the Quality of the MANETsM-EPAR to Improve the Quality of the MANETs
M-EPAR to Improve the Quality of the MANETsIJERA Editor
 
Design and Performance Analysis of Energy Aware Routing Protocol for Delay Se...
Design and Performance Analysis of Energy Aware Routing Protocol for Delay Se...Design and Performance Analysis of Energy Aware Routing Protocol for Delay Se...
Design and Performance Analysis of Energy Aware Routing Protocol for Delay Se...ijcncs
 
Servant-ModLeach Energy Efficient Cluster Base Routing Protocol for Large Sca...
Servant-ModLeach Energy Efficient Cluster Base Routing Protocol for Large Sca...Servant-ModLeach Energy Efficient Cluster Base Routing Protocol for Large Sca...
Servant-ModLeach Energy Efficient Cluster Base Routing Protocol for Large Sca...IRJET Journal
 

Similar a Improving Energy Efficiency in MANETs for Healthcare (20)

Evaluation of Energy Consumption of Reactive and Proactive Routing Protocols ...
Evaluation of Energy Consumption of Reactive and Proactive Routing Protocols ...Evaluation of Energy Consumption of Reactive and Proactive Routing Protocols ...
Evaluation of Energy Consumption of Reactive and Proactive Routing Protocols ...
 
J018216275
J018216275J018216275
J018216275
 
Link Stability and Energy Aware routing Protocol for Mobile Adhoc Network
Link Stability and Energy Aware routing Protocol for Mobile Adhoc NetworkLink Stability and Energy Aware routing Protocol for Mobile Adhoc Network
Link Stability and Energy Aware routing Protocol for Mobile Adhoc Network
 
Energy efficiency cross layer protocol for wireless mesh network
Energy efficiency cross layer protocol for wireless mesh networkEnergy efficiency cross layer protocol for wireless mesh network
Energy efficiency cross layer protocol for wireless mesh network
 
Performance Analysis of Energy Efficient Cross Layer Load Balancing in Tactic...
Performance Analysis of Energy Efficient Cross Layer Load Balancing in Tactic...Performance Analysis of Energy Efficient Cross Layer Load Balancing in Tactic...
Performance Analysis of Energy Efficient Cross Layer Load Balancing in Tactic...
 
A survey on energy aware routing issues and cross layering in mane ts
A survey on energy aware routing issues and cross layering in mane tsA survey on energy aware routing issues and cross layering in mane ts
A survey on energy aware routing issues and cross layering in mane ts
 
MULTICASTING BASED ENHANCED PROACTIVE SOURCE ROUTING IN MANETS
MULTICASTING BASED ENHANCED PROACTIVE SOURCE ROUTING IN MANETSMULTICASTING BASED ENHANCED PROACTIVE SOURCE ROUTING IN MANETS
MULTICASTING BASED ENHANCED PROACTIVE SOURCE ROUTING IN MANETS
 
Adaptive Routing in Wireless Sensor Networks: QoS Optimisation for Enhanced A...
Adaptive Routing in Wireless Sensor Networks: QoS Optimisation for Enhanced A...Adaptive Routing in Wireless Sensor Networks: QoS Optimisation for Enhanced A...
Adaptive Routing in Wireless Sensor Networks: QoS Optimisation for Enhanced A...
 
EFFICIENT APPROACH FOR DESIGNING A PROTOCOL FOR IMPROVING THE CAPACITY OF ADH...
EFFICIENT APPROACH FOR DESIGNING A PROTOCOL FOR IMPROVING THE CAPACITY OF ADH...EFFICIENT APPROACH FOR DESIGNING A PROTOCOL FOR IMPROVING THE CAPACITY OF ADH...
EFFICIENT APPROACH FOR DESIGNING A PROTOCOL FOR IMPROVING THE CAPACITY OF ADH...
 
Ijeee 24-27-energy efficient communication for adhoc networks
Ijeee 24-27-energy efficient communication for adhoc networksIjeee 24-27-energy efficient communication for adhoc networks
Ijeee 24-27-energy efficient communication for adhoc networks
 
ENERGY EFFICIENT ROUTING PROTOCOL BASED ON DSR
ENERGY EFFICIENT ROUTING PROTOCOL BASED ON DSRENERGY EFFICIENT ROUTING PROTOCOL BASED ON DSR
ENERGY EFFICIENT ROUTING PROTOCOL BASED ON DSR
 
ENERGY EFFICIENT ROUTING PROTOCOL BASED ON DSR
ENERGY EFFICIENT ROUTING PROTOCOL BASED ON DSRENERGY EFFICIENT ROUTING PROTOCOL BASED ON DSR
ENERGY EFFICIENT ROUTING PROTOCOL BASED ON DSR
 
Balancing stable topology and network lifetime in ad hoc networks
Balancing stable topology and network lifetime in ad hoc networksBalancing stable topology and network lifetime in ad hoc networks
Balancing stable topology and network lifetime in ad hoc networks
 
adhoc networks
adhoc networksadhoc networks
adhoc networks
 
IRJET-A_AODV: A Modern Routing Algorithm for Mobile Ad-Hoc Network
IRJET-A_AODV: A Modern Routing Algorithm for Mobile Ad-Hoc NetworkIRJET-A_AODV: A Modern Routing Algorithm for Mobile Ad-Hoc Network
IRJET-A_AODV: A Modern Routing Algorithm for Mobile Ad-Hoc Network
 
A scalable and power efficient solution for routing in mobile ad hoc network ...
A scalable and power efficient solution for routing in mobile ad hoc network ...A scalable and power efficient solution for routing in mobile ad hoc network ...
A scalable and power efficient solution for routing in mobile ad hoc network ...
 
M-EPAR to Improve the Quality of the MANETs
M-EPAR to Improve the Quality of the MANETsM-EPAR to Improve the Quality of the MANETs
M-EPAR to Improve the Quality of the MANETs
 
L0947075
L0947075L0947075
L0947075
 
Design and Performance Analysis of Energy Aware Routing Protocol for Delay Se...
Design and Performance Analysis of Energy Aware Routing Protocol for Delay Se...Design and Performance Analysis of Energy Aware Routing Protocol for Delay Se...
Design and Performance Analysis of Energy Aware Routing Protocol for Delay Se...
 
Servant-ModLeach Energy Efficient Cluster Base Routing Protocol for Large Sca...
Servant-ModLeach Energy Efficient Cluster Base Routing Protocol for Large Sca...Servant-ModLeach Energy Efficient Cluster Base Routing Protocol for Large Sca...
Servant-ModLeach Energy Efficient Cluster Base Routing Protocol for Large Sca...
 

Último

Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...
Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...
Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...gurkirankumar98700
 
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Igalia
 
Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...Alan Dix
 
SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024Scott Keck-Warren
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonAnna Loughnan Colquhoun
 
Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slidevu2urc
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationSafe Software
 
IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsEnterprise Knowledge
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)Gabriella Davis
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerThousandEyes
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘RTylerCroy
 
Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101Paola De la Torre
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Drew Madelung
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking MenDelhi Call girls
 
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhi
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | DelhiFULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhi
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhisoniya singh
 
Enhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for PartnersEnhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for PartnersThousandEyes
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024The Digital Insurer
 
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 3652toLead Limited
 
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024BookNet Canada
 
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure serviceWhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure servicePooja Nehwal
 

Último (20)

Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...
Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...
Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...
 
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
 
Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...
 
SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt Robison
 
Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slide
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
 
IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI Solutions
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘
 
Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
 
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhi
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | DelhiFULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhi
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhi
 
Enhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for PartnersEnhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for Partners
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024
 
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
 
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
 
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure serviceWhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
 

Improving Energy Efficiency in MANETs for Healthcare

  • 1. International Journal of Mobile Network Communications & Telematics ( IJMNCT) Vol. 4, No.3, June 2014 DOI : 10.5121/ijmnct.2014.4303 23 IMPROVING ENERGY EFFICIENCY IN MANET’S FOR HEALTHCARE ENVIRONMENTS Sohail Abid1 Imran Shafi2 and Shahid Abid3 1,3 Foundation University Rawalpindi Campus, Pakistan 2 Abasyn Unibersity Islamabad Campus, Pakistan. ABSTRACT Now a day ad hoc mobile networks (MANETs) have lots of routing protocols, but no one can meet maximum performance. Some are good in a small network; some are suitable in large networks, and some give better performance in location or global networks. Today modern and innovative applications for health care environments based on a wireless network are being developed in the commercial sectors. The emerging wireless networks are rapidly becoming a fundamental part of every single field of life. Our proposed DEERP framework gives a better performance as compared to other routing protocol. KEYWORDS Dynamic Energy Efficient Routing Protocol (DEERP), Energy Awareness, energy-efficiency, Simulation of Energy Efficient Routing Protocol in NS2. 1. INTRODUCTION Today advance applications of health care environments have been developed for ad-hoc networks. The capability to enhance health care telemetry with wearable miniature wireless sensors would have a deep impact on several ways of medical practice. In terms of efficiency the small portable wireless devices plays an important role in the health care environment and to provide essential support to patients. Wireless health care monitors/ equipments are available in the market for example blood pressure monitors [1, 2], pulse Oximeters [3, 4], maternal uterine and fetal heart rate monitors [5], Wireless ECG System [6], and EKGs (Electrocardiographs) [7, 8, 9]. During disaster recovery or a group of casualty, the doctor fixes small sensors on each patient and monitor the results using Laptop and PDAs.In fig 1 (a), (b) and (c) some wireless devices used in the health care environment. Fig 1: (a) Motion capture and EMG (b) Pulse Oxi-meter (c) EKG In the health care environment, a huge importance is placed on data integrity, availability and security. Now a day private and public key security is implemented in the security of data in ad-
  • 2. International Journal of Mobile Network Communications & Telematics ( IJMNCT) Vol. 4, No.3, June 2014 24 hoc networks [10, 11, 12]. Due to mobility and congestion packet loss may be compromised. Multiple doctors or nurses can receive patient data using multicast semantics support on the network layer. Due to mobility of patients, doctors and nurses quickly route changes, therefore energy efficient and multi-hop routing protocols are required in health care environments. Ad hoc network building a network without any structure and set of hosts who are agreed to establish a connection or communication with each other exclusive of any centralized administration [13]. Each mobile device in an ad - hoc network acts as a router. Wireless MANET is ideal for every application of our daily life due to its mobility and accessibility everywhere. Now a day Mobile Ad hoc Network (MANET) is a quickly rising technology, due to its self- motivated topology and unique nature of scattered resources. Wireless MANET is rapidly emerging and trendy topology in almost all fields like medical, healthcare, banking and commerce, etc. Currently wireless MANETs are becoming very popular and many routing protocols have been suggested by researchers. We give a brief introduction to wireless networks and discuss the issues and challenges regarding to performance and efficient use of energy. We are concerned with energy efficiency and select some well-known energy efficient routing protocols and simulate these protocols in NS2 and analyze energy efficiency in different cases. MANET has principles due to which controls the number of hosts and route all packets between the mobile hosts in their wireless networks. MANET faces a lot of challenges, but we focus energy efficiency and performance. The energy efficiency and performance evaluation are two very important and critical challenges for routing protocols. Some routing protocols to have maximum packet delivery ratio and throughput, some have less end-to-end delay and minimum routing overhead; some consume less energy during idle mode; some consume less energy during receive mode, and some consumes less energy during transmit mode. On the other hand, some routing protocols to perform skillfully in small networks and some perform skillfully in large networks. A mobile Ad-hoc network–MANET consists of mobile devices that are placed without any predefine pattern and regularly changing their position and connected with each other. The main aim of routing protocol is to discover routes from source to destination node and use the best and most efficient route. In case of route error the routing protocol switches to the other suitable route. During the establishment of and preservation of the route a less overhead and bandwidth utilization should be made [14]. We discuss in this research article, how healthcare networks use ICT (Information and Communications Technology) has been developed, and what sort of impact they have on the present health care system. We consider the fittings of mobile technologies in healthcare environments. We spotlight on WPAN (Wireless Personal Area Network) technologies, explicitly, IEEE 802.11 standard. Our research work has based upon the recent results on the energy efficiency and performance of routing protocols. Our proposed framework is to choose appropriate routing protocols, which give good performance the necessary implementation changes required to incorporate existing routing protocols in our framework. In our framework, we use only proactive and reactive routing protocols. The proposed framework presents wide assessment, using a very famous network simulator NS2. On the basis of our results that our proposed framework improves energy efficiency and performance as compared with other selected routing protocols. 2. RELATED WORK. It is specified in recent research [15] that each protocol is appropriate for a certain user environment and network. Some protocol that adapts the route construction method performs well in less mobility and decreases their performance in the high mobility environment. L. M. Feeney presented in his paper a comparison of energy consumption for DSR, AODV in NS2 [16]. Furthermore, in [17], [18], it proves that in the path creation method, competence is also a
  • 3. International Journal of Mobile Network Communications & Telematics ( IJMNCT) Vol. 4, No.3, June 2014 25 limiting factor; as the number of nodes increases the available throughput of each node approaches zero. Dr. S. P. Setty and B. Prasad compare QOS in energy consumption for proactive and reactive routing protocols with the impact of network size [19]. On the other hand, the support approach always succeeds in delivering messages [20]. Ved Prakash, Brajesh Kumar and A. K. Srivastava analyze and compare the energy efficiency of topology based, and location based routing protocols [21]. In this, review papers Neeraj Tantubay, Dinesh Ratan Gautam and Mukesh Kumar Dhariwal present a summary of different energy control techniques and various powers saving methods have been proposed in his research articles [22]. Feeney L. M. divides the methods which are used in energy-efficient awareness routing protocols in ad-hoc networks [23]. In first method when a host transmitting packets, the routing protocol minimized the total energy consumed during transmitting [24], [25], [26]. In a second method, load balance between hosts to increase the lifetime of the whole network, instead of managing energy consumption for individual packet [27], [28], [29]. A. Bamis and his group members present a mobility sensitive method [30]. Moreover, they find the importance of both technologies with respect to scalability issues. The pulse Oxi-meter equipped with 802.11 has developed by WiiSARD group [31] and EKG by SMART team [32]. Some researcher making monitoring infrastructures of daily activity of patient [33], monitoring infrastructures of daily activity of the patient at home [34], monitoring infrastructures of daily activity of patient at hospital [35]. 3. PROPOSED DEERP FRAMEWORK. In our propose DEERP framework, we select two proactive and reactive routing protocols and used as one routing protocol. On the basis of previous research paper results [36], we combine the two best routing protocols and get better performance and energy efficiency. The structure of the proposed DEERP framework is shown in fig 2. Fig 2: Proposed DEEPR Propose a method select one state like idle mode and check which protocol gives best performance in idle mode according to the given routing conditions. According to this method, we select routing protocols for above three modes. In other words, our proposed method selects different routing protocols based on their best performance and places these protocols in the above modes. In our proposed DEERP, a framework has one service. The function of this service is divided into three parts. In a first part SRP (Select Routing Protocol) service selects the best routing protocol for idle mode from RPSC (Routing Protocol Selection Criteria) table. In the second part, SRP services select routing protocol for TX mode, which is best in the RPSC table. In the third part, SRP serviced select routing protocol for Rx mode, which is best in the RPSC
  • 4. International Journal of Mobile Network Communications & Telematics ( IJMNCT) Vol. 4, No.3, June 2014 26 table. According to this process, we select two or three routing protocols. The combination of these protocols gives excellent performance. The RPSC table consists of routing environment and characteristics like number of nodes, mobility model, node speed and best routing protocols on their performance with respect to RPSC table criteria. The SRP service checks the routing environment characteristics or conditions like number of nodes, mobility model, node speed, etc. and compares these characteristics with RPSC table. The protocol which performs well according to the given routing conditions will be selected. In our case RPSC table is as below. 3.1. Routing Protocol Selection Criteria (RPSC) The routing protocol is selected on following properties. Table 1: Routing Protocol Selection Criteria Table (RPSC) Mobility Model No. of Nodes Node Speed Mode Best Performance Protocol RWP 5 - 25 1 – 10 ms Idle DSR Tx DSDV Rx DSR RPGM 20- 80 0.5- 5 ms Idle DSDV Tx DSDV Rx DSR 4. SIMULATIONS 4.1. Methodology Used in Our Simulation-I The network parameters used in our simulation is described in table 2. Table 2: Simulation I Parameters Simulation I Parameters Parameters Values MAC Type IEEE 802.11 Antenna Omni directional Simulation Time 900 sec Transmission range 500 x 500 – 2000 x 2000 Node speed 0.5m/s to 5.0 m/s Traffic Type CBR Data payload 512 bytes/ packet Packet rate 8 packet/sec Node Pause Time 0 Mobility Model RPGM Interface Queue Type Drop Tail/Priori Queue Interface Queue Length 50 No. of Nodes 20 to 80
  • 5. International Journal of Mobile Network Communications & Telematics ( IJMNCT) Vol. 4, No.3, June 2014 27 4.2. Methodology Used in Our Simulation-II The new changes in parameter used in our simulation II is described in table 3. Table 3: Simulation II Parameters Simulation II Parameters Parameters Values Simulation Time 300 sec Transmission range 600 x 600 m Mobility Model Random Waypoint No. of Nodes 5, 10,15,20,25 4.3. Energy Consumption Model: There are four states of energy consumption of mobile devices which are given in table 4. Table 4: Energy States Energy Consumption Parameters ei: Energy Consumption during Idle mode es: Energy Consumption during Sleep mode et: Energy Consumed during Transmitting mode er: Energy Consumed during Receiving mode 4.3.1. Transmit Mode (Tx) Tx = (Pkt-size x 330) / 2 x 106 And PTx = Tx / TTx Where PTx is transmitting power, Tx is transmitting energy and TTx is time take during packet transmit and Pkt-size is the size of packet in bits. 4.3.2. RX Mode RX = (Pkt-size x 230) / 2 x 106 And PRX = RX / TRX Where PRX is receiving power, RX is receiving energy and TRX is time take during receiving a packet and Pkt-size is the size of packet in bits. 4.3.3. Idle/ Listening Mode PIdle = PRX Where PRX is power consumed in receiving mode and PIdle is power consumed in idle mode.
  • 6. International Journal of Mobile Network Communications & Telematics ( IJMNCT) Vol. 4, No.3, June 2014 28 5. RESULTS Simulation I Simulation II Fig 3: Avg. Energy consumed in idle mode. In fig 3, it is clear that our proposed DEERP framework consume minimum energy in idle mode as compared to other protocols. Fig 4: Avg. Energy consumed in Tx mode. In fig 4, it is clear that our proposed DEERP framework consume minimum energy in Tx mode.
  • 7. International Journal of Mobile Network Communications & Telematics ( IJMNCT) Vol. 4, No.3, June 2014 29 Fig 5: Avg. Energy consumed in Rx mode. In fig 5, it is clear that our proposed DEERP framework consume minimum energy in Rx mode as compared to other protocols. Fig 6: Avg. Remaining Energy In fig 6, it is proved that our proposed DEERP framework has maximum remaining energy as compared to other protocols. In the light of above graphs, it is proved that our proposed framework “DEERP” is a best routing framework in our scenario. CONCLUSION AND FUTURE WORK In this research article, we discuss and compare four routing protocols to investigate the performance and energy consumption. In the light of above investigation we found that our proposed routing framework (DEERP) gives better performance as compared to other routing protocols. Our RPSC table selection criteria of routing protocol are limited because our selected routing protocols are selected from proactive and reactive routing protocols. In future work, we will select routing protocols from proactive, reactive, hybrid and location base protocols and
  • 8. International Journal of Mobile Network Communications & Telematics ( IJMNCT) Vol. 4, No.3, June 2014 30 improves RPSC table. We use two mobility models with limited criteria, In future it will be enhanced to improve the performance of the framework/protocol. REFERENCES [1] Card Guard. Wireless Blood Pressure Monitors. http://www.cardguard.com/site/products- list.asp?id=20. [2] A & D Medical, Inc. UA-767BT Wireless Blood Pressure Monitor. http://www.lifesourceonline.com/products/telemonitoring.cfm. [3] Nonin Medical, Inc. Avant 4000WirelessWearable Pulse Oximeter. http://www.nonin.com/products/4000.asp. [4] Welch Allyn, Inc. Micropaq Wireless Patient Monitor. http://www.monitoring.welchallyn.com/products/wireless/micropaq.asp. [5] [GE Healthcare. Corometrics 340M – Telemetry Ambulatory monitoring during labor. http://www.gehealthcare.com/usen/perinatal/mat_fetal_mon/products/colo3%40M.ht ml. [6] I. Noorzaie, “Survey Pap er: M edical ap p lications of wireless networks", Note: This paper is available on- line at http://www.cse.wustl.edu/~jain/cse574-06/ftp/medical_wireless/index.html. Last modified: April 12, 2006. [7] GMP Wireless Medicine, Inc. LifeSync Wireless EKG System. http://www.wirelessecg.com/. [8] HealthFrontier, Inc. ecgAnywhere. http://www.healthfrontier.com. [9] GE Healthcare. ApexPro CH. http://www.gehealthcare. com/usen/patient_mon_sys/wireless_and_telemetry%/products/telemetry_sys/products/apexpro_ch.ht ml. [10] C. Karlof, N. Sastry, and D. Wagner, “A link layer security architecture for wireless sensor networks”, In Proc. Second ACM Conference on Embedded Networked Sensor Systems (SenSys 2004), November 2004. [11] N. Gura, A. Patel and A. Wander, “Comparing elliptic curve cryptography and RSA on 8-bit CPUs”, In Proc. Cryptographic Hardware and Embedded Systems (CHES 2004): 6th International Workshop, August 2004. [12] D. Malan, M. Welsh, and M. Smith, “A public-key infrastructure for key distribution in TinyOS based on elliptic curve cryptography”, In Proc. The First IEEE International Conference on Sensor and Ad hoc Communications and Networks (SECON), Santa Clara, CA, October 2004. [13] P. Bergamo, Alessandra, ” Distributed power control for energy efficient routing in ad hoc networks ”, Wireless Networks 10, pp. 29–42, 2004. [14] N. A. Pantazis, S. A. Nikolidakis, D. D. Vergados, “ Energy-efficient routing protocols in wireless wensor networks for health communication systems”, PETRA 09, Corfu, Greece, ACM ISBN 978-1- 60558-409-6, 2009. [15] I. Chatzigiannakis, E. Kaltsa, and S. Nikoletseas, “Evaluating the effect of user mobility and user density on the performance of ad-hoc mobile networks”, Wireless Communications & Mobile Computing (WMC), 4:1–13, 2004. [16] L. M. Feeney, “An energy consumption model for performance analysis of routing protocols for mobile ad hoc networks”, Mobile Networks and Applications 6, pp. 239–249, 2001. [17] P. Gupta and P. R. Kumar, “The capacity of wireless networks”, IEEE Transactions on Information Theory, 46(2):388–404, March 2000. [18] J. Li, C. Blake, D. S. J. D. Couto, H. I. Lee, R. Morris, “Capacity of ad-hoc wireless networks”, In 7th ACM/IEEE Annual International Conference on Mobile Computing, pages 61–69, Rome, Italy, 2001. [19] S. P. Setty, B. Prasad, “Comparative study of energy aware QoS for proactive and reactive routing protocols for mobile ad-hoc networks”, International Journal of Computer Applications, Volume 31, No.5, 2011. [20] I. Chatzigiannakis, S. Nikoletseas, and P. Spirakis. “Distributed communication algorithms for ad hoc mobile networks”, Journal of Parallel and Distributed Computing (JPDC), 63(1) pp. 58–74, January 2003. [21] V. Prakash, B. Kumar, A. K. Srivastava, “Energy efficiency comparison of some topology-based and location-based mobile ad-hoc routing protocols”, ICCCS 11, ACM 978-1-4503-0464-1/11/02, 2011.
  • 9. International Journal of Mobile Network Communications & Telematics ( IJMNCT) Vol. 4, No.3, June 2014 31 [22] N. Tantubay, D. R. Gautam, M. K. Dhariwal , “A review of power conservation in wireless mobile ad-hoc network (MANET)”, IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 1, 2011. [23] Feeney, “Energy efficient communication in ad hoc wireless networks”, http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.14.9379. [24] Bergamo, Giovanardi, Travasonia, “Distributed power control for energy efficient routing in Ad-hoc a networks”, published in journal of Wireless Networks, Volume 10 Issue 1, pp. 29–42, 2004. [25] Gomez, Campbell, Naghshineh, “Conserving transmission power in wireless ad-hoc networks “, [A]. In Proc of IEEE Conference on Network Protocols (ICNP. 01), 2001. [26] Y. Wei, L. Jangwon, “DSR-based energy-aware routing protocols in ad hoc networks”, in Proc. of the International Conference on Wireless Networks, 2002. [27] W. Zhao, K. Ramamritham, “Virtual time CSMA protocols for hard real–time communications”, IEEE Transactions on Software Engineering, Vol. 13, No. 8, 1987. [28] W. Zhao, J. Stankovic, K. Ramamritham, “A window protocol for transmission of time constrained messages”, IEEE Transactions on Computers, Vol. 39, No. 9, 1990. [29] Rahman, Gburzynski, “On constructing minimum-energy path-preserving graphs for ad-hoc wireless networks”, ICC 2005: IEEE international conference on communications, Vols.1, pp. 3083-3087, 2005. [30] A. Bamis, A. Boukerche, I. Chatzigiannakis, S. Nikoletseas, “A Mobility Sensitive Approach for Efficient Routing in Ad Hoc Mobile Networks”, MSWiM’06, Published in ACM 1-59593-477- 4/06/0010 in 2006. [31] L. Lenert et al. WiiSARD:Wireless Internet Information System for Medical Response in Disasters. https://wiisard.org. [32] E. Shih, V. Bychkovsky, D. Curtis, and J. Guttag. Demo abstract: Continuous, remote medical monitoring. In Proc. Second Annual International Conference on Embedded Networked Sensor Systems, November 2004. [33] D. Konstantas, V. Jones, R. Bults, and R. H. Mobihealth, “innovative 2.5/3g mobile services and applications for healthcare”, In Proc. Eleventh IST Mobile and Wireless Telecommunications Summit 2002, Thessaloniki, Greece, June 2002. [34] E. Dishman, “Inventing wellness systems for aging in place”, IEEE Computer, May 2004. [35] K. V. Laerhoven, B. P. Lo, J. W. Ng, S. Thiemjarus, R. King, S. Kwan, H.-W. Gellersen, M. Sloman, O. Wells, P. Needham, N. Peters, A. Darzi, C. Toumazou, and G.-Z. Yang, “Medical healthcare monitoring with wearable and implantable sensors”, In Proc. Sixth International Conference on Ubiquitous Computing, Tokyo, Japan, September 2004. [36] S. Abid, I. Shafi and S. Abid “Energy efficient routing in mobile ad-hoc networks for healthcare environments”, IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 1, January 2013.