SlideShare una empresa de Scribd logo
1 de 7
Descargar para leer sin conexión
International Journal of Engineering Science Invention
ISSN (Online): 2319 – 6734, ISSN (Print): 2319 – 6726
www.ijesi.org Volume 2 Issue 1 ǁ January. 2013 ǁ PP.70-76
www.ijesi.org 70 | P a g e
A Decision Support System for Polyuria Patient’s Treatment
Hashem Hashemi1
, HosseinAlizadeh Moghaddam2
, Pegah Keyvan3
Shahram Jafari4
1
(Department of Computer Science and Engineering / Shiraz University, Iran)
2
(Department of Computer Science and Engineering / Shiraz University, Iran)
3
(Department of Computer Science and Engineering / Shiraz University, Iran)
4
(Department of Computer Science and Engineering / Shiraz University, Iran)
ABSTRACT : An expert system is a computer application that simulates the reasoning skill and
performance of a human or an organization that has expert knowledge and experience in a specific area. Our
goal was to design an expert system which could be useful for physicians to produce more accurate
prescriptions for polyuria patients. In our paper, we first studied the logical rules that were needed to produce a
prescription for polyuria patients and represented them in an antecedent/consequent model of rules that were
capable of being used in an expert system. Afterwards we used a powerful expert system tool, CLIPS, to
implement our proposed expert system and discussed parts and fundamentals of our expert system that were
designed based on thestudied rules. Since our expert system produced its prescription based on strict medical
science instructions, our goal was to make the system be able to cooperate with physicians’ experiences on
polyuria patients. Further in our paper, we used the double-blind technique to evaluate our proposed expert
system and compared its results with alternatives (physicians).
Keywords –Artificial Intelligence, Expert System, CLIPS, Polyuria, Prescription
I. INTRODUCTION
Considering the large number of known diseases, variety of existing drugs and patient with different conditions
on age, weight and backgrounds, physicians can only keep a limited number of prescription states in
their mind and require using reference books to produce the right prescription and calculate the usage
amount of drugs in other situations. After diagnosis of the disease, physicians first need to select the
right drugs among their various choices considering available types of that particular drug in the
country and then required to calculate the usage amount of the drug with respect to patient’s age and
weight.
Due to variety of “drug usage amount” and“drug usage period” formulas, diseases and patients’ conditions,
physicians can only keep about two or three formulas in their mind to use in their calculations [1].
Some usage of drugs may cause some abnormalities in the patient’s situation that is caused by drug
conflictions and alsothe patient might have more than a disease at a time that each needs different
treatments. This might lead to unwanted side effects [2]that need to be considered bythe physician. It is
even possible that through years, new side effects of a particular drug get discovered and its usage as a
treatment to a specific disease gets banned.
Intelligent computer programs could be used to reduce these limitations and help physicians produce a better
prescription. However, this requires the knowledge of logical rules applied on polyuria patients. Our
goal in this paper by building logical rules for an expert system that produces prescription for polyuria
patients is to resolve problems on prescribing and ease the process of treatment using computational
techniques. In order reach such goal, following process have taken place:
1. Instruction: It is the science and techniques that a physician uses to treat a patient, represented in form
of a set of rules.
2. Validity of rules: Retrieved rules have been evaluated and their validity ratios have been discussed.
3. Expertize and decision support: In our system, a suitable inference mechanism has been used which
prefers the right prescription based on the existing rules.
4. Learnability: In each step of the process, physicians have the ability to apply their own thoughts and
in case of need, recommend a better treatment. This made it possible to combine physicians’
experience with the existing knowledge in the system.
5. Usability in the physician’s clinic: We have improved our system in accuracy, performance,
usefulness and acceptability of its result so our polyuria treatment system could be used in physician’s
A Decision Support System for Polyuria Patient’s Treatment
www.ijesi.org 71 | P a g e
clinic and help in process of patients’ treatment. Artificial Intelligence, Expert System, CLIPS,
Polyuria, Prescription
The rest of the paper is organized as follows. In Section II, we briefly discuss an overview of what Expert
systems are and how do they work, Section III introduces a powerful tool for implementing expert
system (CLIPS) and briefly discusses about its background. In Section IV, an overview of Polyuria
definition is covered. Then in Section V, we define some of the common medical terms that are used in
the rest of the paper. Section VI discusses the design of the knowledge base of our prescription system
and its relevance to Expert systems. In section VII Framework of our proposed system is clarified.
Section VIII argues how our expert system works and in section IX, we evaluate and compare our
proposed system with available alternatives (in our case, physicians) and finally in the conclusion, a
brief overview of the paper is obtained and discussed.
II. EXPERT SYSTEM
Expert system is a subdivision of Artificial intelligence and generally is defined as a computer program
designed to model the problem solving ability of a human expert [3] that is proposed to perform in all
respects like a human expert in a specific field.
Constructing an expert system is recognized as knowledge engineering and its experts are called knowledge
engineers. The knowledge engineer should pick a knowledge representation and need to confirm that
the computer can use the knowledge well enough by selecting from a minority of reasoning techniques.
Typically such a system contains a knowledge base containing accumulated experience and a set of
rules for applying the knowledge base to each particular situation that is described to the program.
Expert systems can be categorized from different points of view. It could be the advisory systems, the ones that
recommend the direction; systems taking decisions without the help and human interference; criticizing
systems the ones which on the basis of a particular problem and the predicted solution by a man,
analyze and comment the particular reasoning and action way. It is important that there is a close
cooperation between a system engineer and experts on those interest fields when constructing the
appropriate expert system. Nothing can replace the knowledge and expert’s experience [4].
Expert systems have many advantages over traditional computer applications and one could be the separation of
knowledge from its processing which is a powerful feature of expert system that permits the reuse of
existing code and greatly reduces the development time for other systems.
Although advantages of expert systems overs expert human beings are deliverance of permanent knowledge,
ability of reproduction of the available skill and knowledge by just duplicating the computer database,
steady and reproducible outcomes, reasonably cheap to work and sustain.
The structure of expert systems consists five main parts which are as follows:
Knowledge base: part of an expert system that contains the domain knowledge.
1. Working memory: part of an expert system that contains the problem facts that are discovered during
the session.
2. Inference Engine: Processor in an expert system that matches the facts contained in the working
memory with the domain knowledge contained in the knowledge base, to draw conclusions about the
problem.
3. Explanation facility: interpretability provider in expert systems.
4. Interface: Part of the system that interact with user.
Expert systems are designed to accomplish generic tasks on the basis of the
problem type as illustrates in table1 [3].
Table1: Type of problems solved by Expert systems
Problem solving paradigm Description
Control Governing system behavior to meet specification.
Design Configuring objects under constraint
Diagnosis Inferring system malfunctions from observables
Instruction Diagnosis, debugging
Interpretation Inferring situation description from data
Monitoring Comparing observations to expectations
Planning Designing actions
Prediction Inferring likely consequence of given situations
Prescription Recommending solutions to system malfunction
Selection Identifying best choice from a list of possibilities
Simulation Modeling the interaction between system components
A Decision Support System for Polyuria Patient’s Treatment
www.ijesi.org 72 | P a g e
III. CLIPS
CLIPS is an expert system shell originally developed in 1984 by the Artificial Intelligence Section of NASA’s
Johnson Space Center and is written in C. CLIPS uses a forward-chaining inference strategy based on
the Rete pattern-matching algorithm. The CLIPS shell provides the basic elements of an expert system
[5]:
1. Fact-list and instance-list: Overall memory for data
2. Knowledge-base: Covers all the rules
3. Inference engine: Controls overall execution of rules
A program written in CLIPS may contain rules, facts, and objects. The inference engine decides which rules
should be performed and when. A rule-based expert system written in CLIPS is a program where the
facts, and objects (if needed), are the data that stimulate execution via the inference engine. Fact[6]
consists of relation name(a symbol field), followed with zero or some slot(also symbol field) and their
relevant value.
IV. WHAT IS POLYURIA
Human body may be infected by different type of bacteria or viruses that may lead to dangerous diseases with
different symptoms and some of these symptoms can be common among a number of diseases.
Polyuria is one of these symptoms on human body that is common between dangerous diseases such as Diabetes
and Tachycardia and non-risky diseases such as water intoxication and pregnancy polyuria. It is
defined when a person produces abnormally large volume of urine about 2.5 to 3 liters per day.
V. DEFINITIONS
Before discussing more detail on the topic, we need to define some of the common medical terms that are used
in the rest of the paper.
 Polyuria related diseases: there are several diseases that could cause a person’s polyuria such as
Diabetes, Addison, Lupus and etc. In this paper, we use the term diseases instead of polyuria related
diseases.
 General drug and their Commercial names: Generic drugs are the drugs that are well known and
officially used in every country but might be called with a different name in each country that is their
commercial name.
 Type of the drug: drugs are made in different types such as tablets, capsules and drops for different
type of use.
 Consuming type of the drug: each drug could be consumed through different ways depending on
patient’s situation.
 Usage amount of the drug: amount of the drug patient need to use throughout a treatment.
 Drug usage period: the number of times a drug needs to be used in a period of time which is
dependent to the drug itself, disease and patient’s situation.
VI. LOGICAL PRESCRIPTION RULES
Parts of a prescription are “name of the drug”, “type of the drug”, “consuming type of the drug”, “usage amount
of the drug” and “drug usage period”. An example of a prescription is as follows:
1- Tab, Ranitidine 1mg
Oral 1N x 1T/Day
2- Cap, Amoxicillin 25mg
Oral 1N x 3T/Day
3- Tab, Tramadol 1mg
Oral 0.50N x 1T/Day
By gathering information on the treatment approaches and evaluating them, we need to represent them in a way
that computer can process. Most common technique to represent knowledge is “Rules”. Advantages on
using Rules are simplicity, their use on defining the empirical relations, ability to adjust knowledge
base, existence of various inference techniques and the non-linear inference engine however, there are
some disadvantages for Rules and the main can be mentioned as the slow performance.
Based on the discussion above, we have used the Rules technique to represent our data and CLIPS to store and
process the rules and implement the system.
Prescribing rules are divided into two main sections:
 First section that includes seven categories of standard rules is used to release a prescription for a
patient. In brief, we discuss these categories using one sample from each.
A. Rules for categorizing patients age
A Decision Support System for Polyuria Patient’s Treatment
www.ijesi.org 73 | P a g e
(Patient ( < age 2))
=>
(Patient ( age “baby”))
B. Rules for categorizing patients weight for both genders.
(Patient ( sex male) (< Weight 50))
=>
(Patient (weight ”thin”))
C. Rules to retrieve the right drug from Database for the chosen disease.
(Disease(name ?DName)(drug ?Drug))
=>
(Assert ( Diagnosis (drug (name ?Drug)))
D. Based on patient’s situation and the seriousness of the disease, it chooses the right “type of the drug” and
“consuming type of the drug”.
(patient (age “baby”))
=>
(packet (drug “drop”))
E. Rules to check the confliction between drugs and patient’s background.
(patient (background ?Disease))
=>
(conflict(drug ?Drug)(disease ?Disease))
F. Rules which selectthe“right usage amount” of the drug based on the patient’s background and condition.
(patient (background ?Disease)(urgency “High”))
=>
(assert (drug (dosage “High”)))
G. Rules to tune the suggested prescription based on patient’s financial ability and availability of the drug.
?f1<-(drug (availability “Low”)(name ?drug))
?f2<-(instead (drug1 ?drug)(drug2 ?drug2))
=>
(retract ?f2)
(modify ?f1 (name ?drug2))
 And second section is related to particular conditions when physician, considering patient’s conditions,
need to change the flow of the system’s prescribing method and inserts new rules into the system. This
will likewiseincrease the accuracy of the system design for example:
(patient (urgency “High”)(ability “Good”))
=>
(packet(drug “ampule”))
VII. FRAMEWORK OF PROPOSED SYSTEM
Prescribing for polyuria patients is in a way that once patients visit the physician they will briefly describe
their physical condition and whether or not they have had any illness background. In each visit,
physician will check the symptoms and reasons that patients have visited him/her considering their
physical condition. The physician will then recall his/her memory for diseases that match those
symptoms since each disease has its own sign and symptoms [7], [8]. Then the disease(s) is chosen
among the rest of diseases.
However prescribing has several factors [9], [10] and each is very important on its own, not considering
anycould have great changes on the prescription which might be dangerous for polyuria patient.
Chosen drugs are tuned based on patient’s condition such as pregnancy, breast-feeder, liver and kidney
diseases, allergy and etc. physicians should consider patient’s background and then choose the right
prescription and “consuming type of the drug” based on “type of the disease”, “urgency of disease” and
patient’s age. After selection of the right consuming type for the drug, physicians choose the right type
of the drug considering it’s availability in stores however, patient’s ability would also influence the
“consuming type of the drug”. For each age range and considering patient’s weight and urgency of
their disease, physician will select the right usage amount and usage period for the drug.
The proposed polyuria prescription system is divided into three parts which are as follows:
1. Overall structure:This software at first will receive information about patient’s details and
background and assigns a new file to them. After diagnosis a disease by physician, system begins to
produce a prescription based on its knowledge database. Also physician can use the expert system to
produce an intelligent prescription in such way that system will compare the patient’s information and
the given diagnosis by the physician. In case of not finding any similar data in the knowledge base, the
A Decision Support System for Polyuria Patient’s Treatment
www.ijesi.org 74 | P a g e
physician’s diagnosis will be selected, otherwise, the system’s decision will have higher priority. Of
course in the end, selection of the right prescription will be on the physician to decide. The expert
system uses its inference engine and a set of rules on medical treatments to produce a prescription
intelligently. The proposed expert system consists of parts User Interface, Knowledge Base, Inference
engine and Fact List.
2. Prescribing Knowledge base:After receiving the patient’s information which is entered by the
physician, name of the diagnosed disease is asked from the physician and once receiving the name of
the disease, the related code for the disease is retrieved from the knowledge base together withname of
the drugs and information which areusedin treatment of the disease. In this state, all the factors such as
the availability of the drugs in the country (such as pill, ampule and etc.) which were entered in the
knowledge base, types of drugs, their dosage and required usage amount for a patient are considered
one by one and the prescription is released accurately and whole. Chosen drugs are checked based on
patient’s background therefore the system will be able to release notice messages in case of
conflictions.
3. Inference engine:This part has the duty to choose the fittest rule compare to data in the working
memory from knowledge base. Entire input data in the system are entered through system’s pages that
include patient’s information forms, patient background form and patent’s visit history forms and also
through working memory file. Inference engine selects the rules on order and checks their IF part. In
case that based on the data in the working memory, a related rule’s conditions get satisfied, this means
the rule will get selected and its THEN part will be extracted and the results will be kept in the TEMP
Working Memory as temporary results. Since these results are not kept in the original Working
Memory, while runtime would not have any influence on the rest of rules. This means all the rules are
fired once with equal conditions and all their output result are stored in a temporary memory which is
called TEMP Working Memory. After all rules are fired and their results are stored in the TEMP
Working Memory, these results are transferred into the original Working Memory. Now in case of any
changes in the original Working Memory, the entire rules are checked based on those changes and fired
if their conditions satisfy. This process will repeat until nothing changes in the original Working
Memory and system reaches a stable mode.
VIII. HOW OUR PROPOSED SYSTEM WORKS
System data is divided into three main parts, Knowledge Base, Working Memory and Rules.
 Knowledge Base:The entire basic medical information which is needed in order to release a
prescription is stored in the Knowledge Base as a list of facts. These facts can be including items such
as:
o Patient’s Personal Detail
o Patient’s Background
o Pregnancy or Brest-Feeder
o Existence of any allergy
 Working Memory:Data in original Working Memory are also divided into two categories. However,
we have used a Temporary Working Memory that will be discussed further on.
o First Working Memory: Part of the data which are entered through the system Q&A part.
o Second Working Memory: Since not all Questions might be asked or answered correctly, Second
Working Memory is the memory that stores the data which are entered manually such as: Patient’s
consciousness and Patient’s urgency. Also in this part, it is possible to modify the data which are kept in
the first working memory.
o Temp Working Memory: Consist of output data given from rules that have got fired after being selected
by inference engine. After all rules are fired and their results are stored in the TEMP Working Memory,
these results are transferred into the original Working Memory
 Rules:This part includes rules for our expert system that is stored in a “.CLP” file.
In order to improve the accuracy and inference strength of the system, a number as a coefficient is definable that
is known as “Certainty Factor (CF)” and can be in range of -1 and 1. There are two approaches to use
CF in a system which are:
 Using CF as a priority number: This approach is used when a group of known assumptions produce
different results that may set different values to a variable. CF is used as a priority number for each rule
that stops the rules with lower CF to be fired and resolves the problem of rule confliction.
 Using CF in probabilistic functions: This is the second approach of using CF in cases where result of a
group of known assumptions set different values to a variable. With the difference that each value will
be paired with its Certainty factor (CF) and then kept in the memory. Using a specific function that
A Decision Support System for Polyuria Patient’s Treatment
www.ijesi.org 75 | P a g e
receives a group of CF values, an output CF will be calculated and its paired value will be kept in the
variable.
We will discuss the evaluation results of these two approaches and other available methods in the next section.
IX. EVALUATION
In this section, we evaluate the implemented system by gathering data from seventy three patients with variation
on age, weight and background and entering the data into the system.Knowledge of the system has
been collected from five physicians in the field of urology. Afterwards using three available methods
that were implemented and will be discussed, we produced prescriptions for our polyuria patients.
These three implemented methods are:
1. Polyuria Database: This is the classical method to search for the right prescription using databases that
keep the information of diseases. Afterwards, when the physician diagnoses the cause of patient’s
polyuria and enters the disease name to the system, the Key ID of that disease is found and database is
searched for any matches. A prescription output will then be resulted.
2. CF-based Expert SystemThis implemented method is an expert system that uses its knowledge base
and inference engine to produce a prescription and uses Certainty Factor coefficient as a priority number
which is explained in the previous section.
3. Probability-based Expert System:Just like previous implemented method with the difference on the
usage of Certainty Factor in a probabilistic function. This method is briefly discussed in the previous
section.
In order to evaluate these methods, their output prescriptions were compared to five other physicians
(evaluators) while the system has not experienced our gathered data in the training phase. In other
word, our system was evaluated in a double-blind approach. Number of unacceptable results are
counted and shown on Figure 1.
It is important to note that the difference between our expert systems and evaluators’ opinion has occurred based
on their difference on studies and knowledge. It is clear that by applying the knowledge of our
evaluators to our expert system, we can decrease the difference as small as possible.
Based on physicians’ opinion we have concluded that important parts of a prescription are “selection of drug”,
“type of the drug” and “consuming type of the drug”. These three parts do not have the same level of
importance in a prescription. In Table 2, their weights of importance are shown.
Part Weight
Selection of Drug 5
Type of the drug 3
Consuming type of the drug 2
Table 2. Weight of importance of parts in a prescription
Fig 1. Comparison of method with evaluators’ opinion
25 12 11
51
22 13
65
19 11
0
20
40
60
80
Polyuria Database Expert System 1 Expert System 2
Selection of Drug
Type of the drug
Consuming type of the drug
A Decision Support System for Polyuria Patient’s Treatment
www.ijesi.org 76 | P a g e
Using the weighted average technique, three importance parts of a prescription (Table 2) are combined with
comparison of the result of our three methods (Figure 1) and the result are shown in Figure 3.
Fig 2. Comparison of weighted average of methods
As it is observable, results of “Expert System 2” have the minimum error compared to the rest followed
by “Expert System 1” and “Polyuria Database”.
X. CONCLUSION
Based on what has been mentioned in the first section, the main goal of producing rules and intelligent system
was to resolve the problem of difficulty in producing a prescription by using computational techniques
and methods. To reach such goal, knowledge and skill that a physician uses to treat a patient are
represented in form of rules and facts and arestored in an intelligent system. These rules are the
fundamentals to produce a prescription for diseases that cause polyuria. In this system physician can
also force his/her opinion to the system and in case of difference with the system’s prescription, new
rules can be entered into the knowledge base to combine physician’s medical experience and system’s
current knowledge.
As the results of the section IX shows, we can point out that our proposed system results about 92% acceptable
which proves the correctness of our implementation of inference engine and knowledge base in the
system. Our system could also be useful for medical students as a decision support system.
ACKNOWLEDGEMENTS
We would like to offer our sincerest gratitude to Shiraz University staff, those who have supported us
throughout this Paper with their patience, knowledge, and encouragement, also thankful to Dr. Sharifi, Dr.
Kiani, Dr. Afsharian, Dr. Norouzi and Dr. Rezaei for contributing their time and knowledge for us to be able to
work on such manner and students of Shiraz university of medical sciences who have helped us evaluate our
implemented expert system.
REFERENCES
[1]. D. shahram Aminzadeh, Generic drugs consuming guidance., Third. SAMAT, 2003.
[2]. M. H. Mohammad sadegh javidan nejad, Generic Drug information, Third. SAMAT, 2003.
[3]. J. Durkin, “Expert systems: design and development,” 1998.
[4]. Smith V, “An expert system for diabetes diagnosis,” CHRIST UNIVERSITY BANGALORE, 2010.
[5]. P. D. Joseph C. Giarratano, CLIPS User’s Guide Version Quicksilver Beta. sourceforge.net, 2007.
[6]. G. D. R. Joseph C. Giarratano, Expert Systems Principles and Programming Fourth Edition. 2006.
[7]. J. B. H. (M.D), Clinical Diagnosis and Management by Laboratory Methods, 19 Ed. Saunders, 1996.
[8]. J. Wallach, Interpretation of Diagnosis, 5 ED. A Little Brwon, 1992.
[9]. J. C. B. (M. A. C. P. & F. (M.D), Cecil Textbook of Medicine, 20Ed ed. Saunders, 1996.
[10]. J. C. B. (M. A. C. P. & F. (M.D), Cecil Essentials of medicine, 4Ed ed. Saunders, 1997.
40.8
16.2 11.4
0
10
20
30
40
50
Weighted average
Polyuria Database Expert System 1 Expert System 2

Más contenido relacionado

La actualidad más candente

Hybrid Recommender System Architecture for Personalized Wellness Management
Hybrid Recommender System Architecture for Personalized Wellness ManagementHybrid Recommender System Architecture for Personalized Wellness Management
Hybrid Recommender System Architecture for Personalized Wellness ManagementPrasad Priyadarshana Fernando
 
Smart Health Prediction Report
Smart Health Prediction ReportSmart Health Prediction Report
Smart Health Prediction ReportArhind Gautam
 
Disease Prediction And Doctor Appointment system
Disease Prediction And Doctor Appointment  systemDisease Prediction And Doctor Appointment  system
Disease Prediction And Doctor Appointment systemKOYELMAJUMDAR1
 
IRJET- Hybrid Architecture of Heart Disease Prediction System using Genetic N...
IRJET- Hybrid Architecture of Heart Disease Prediction System using Genetic N...IRJET- Hybrid Architecture of Heart Disease Prediction System using Genetic N...
IRJET- Hybrid Architecture of Heart Disease Prediction System using Genetic N...IRJET Journal
 
Heart Disease Identification Method Using Machine Learnin in E-healthcare.
Heart Disease Identification Method Using Machine Learnin in E-healthcare.Heart Disease Identification Method Using Machine Learnin in E-healthcare.
Heart Disease Identification Method Using Machine Learnin in E-healthcare.SUJIT SHIBAPRASAD MAITY
 
cognitive computing for electronic medical record
cognitive computing for electronic medical record cognitive computing for electronic medical record
cognitive computing for electronic medical record selamu shirtawi
 
THE USE OF ARTIFICIAL INTELLIGENCE SYSTEMS AS A TOOL TO DIFFERENTIATE IN QUAL...
THE USE OF ARTIFICIAL INTELLIGENCE SYSTEMS AS A TOOL TO DIFFERENTIATE IN QUAL...THE USE OF ARTIFICIAL INTELLIGENCE SYSTEMS AS A TOOL TO DIFFERENTIATE IN QUAL...
THE USE OF ARTIFICIAL INTELLIGENCE SYSTEMS AS A TOOL TO DIFFERENTIATE IN QUAL...AM Publications
 
IRJET- A Framework for Disease Risk Prediction
IRJET- A Framework for Disease Risk PredictionIRJET- A Framework for Disease Risk Prediction
IRJET- A Framework for Disease Risk PredictionIRJET Journal
 
Prediction of Heart Disease using Machine Learning Algorithms: A Survey
Prediction of Heart Disease using Machine Learning Algorithms: A SurveyPrediction of Heart Disease using Machine Learning Algorithms: A Survey
Prediction of Heart Disease using Machine Learning Algorithms: A Surveyrahulmonikasharma
 
Psdot 14 using data mining techniques in heart
Psdot 14 using data mining techniques in heartPsdot 14 using data mining techniques in heart
Psdot 14 using data mining techniques in heartZTech Proje
 
DISEASE PREDICTION BY MACHINE LEARNING OVER BIG DATA FROM HEALTHCARE COMMUNI...
 DISEASE PREDICTION BY MACHINE LEARNING OVER BIG DATA FROM HEALTHCARE COMMUNI... DISEASE PREDICTION BY MACHINE LEARNING OVER BIG DATA FROM HEALTHCARE COMMUNI...
DISEASE PREDICTION BY MACHINE LEARNING OVER BIG DATA FROM HEALTHCARE COMMUNI...Nexgen Technology
 
Paper id 212014112
Paper id 212014112Paper id 212014112
Paper id 212014112IJRAT
 
Project on disease prediction
Project on disease predictionProject on disease prediction
Project on disease predictionKOYELMAJUMDAR1
 
An Intelligent Electronic Patient Record Management System (IEPRMS)
An Intelligent Electronic Patient Record Management System (IEPRMS)An Intelligent Electronic Patient Record Management System (IEPRMS)
An Intelligent Electronic Patient Record Management System (IEPRMS)IJCSIS Research Publications
 
Implementing and Upgrading Clinical Information Systems
Implementing and Upgrading Clinical Information SystemsImplementing and Upgrading Clinical Information Systems
Implementing and Upgrading Clinical Information SystemsElizabeth Ross Palaganas
 
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...ijceronline
 

La actualidad más candente (20)

Hybrid Recommender System Architecture for Personalized Wellness Management
Hybrid Recommender System Architecture for Personalized Wellness ManagementHybrid Recommender System Architecture for Personalized Wellness Management
Hybrid Recommender System Architecture for Personalized Wellness Management
 
Smart Health Prediction Report
Smart Health Prediction ReportSmart Health Prediction Report
Smart Health Prediction Report
 
Disease Prediction And Doctor Appointment system
Disease Prediction And Doctor Appointment  systemDisease Prediction And Doctor Appointment  system
Disease Prediction And Doctor Appointment system
 
IRJET- Hybrid Architecture of Heart Disease Prediction System using Genetic N...
IRJET- Hybrid Architecture of Heart Disease Prediction System using Genetic N...IRJET- Hybrid Architecture of Heart Disease Prediction System using Genetic N...
IRJET- Hybrid Architecture of Heart Disease Prediction System using Genetic N...
 
Heart Disease Identification Method Using Machine Learnin in E-healthcare.
Heart Disease Identification Method Using Machine Learnin in E-healthcare.Heart Disease Identification Method Using Machine Learnin in E-healthcare.
Heart Disease Identification Method Using Machine Learnin in E-healthcare.
 
cognitive computing for electronic medical record
cognitive computing for electronic medical record cognitive computing for electronic medical record
cognitive computing for electronic medical record
 
THE USE OF ARTIFICIAL INTELLIGENCE SYSTEMS AS A TOOL TO DIFFERENTIATE IN QUAL...
THE USE OF ARTIFICIAL INTELLIGENCE SYSTEMS AS A TOOL TO DIFFERENTIATE IN QUAL...THE USE OF ARTIFICIAL INTELLIGENCE SYSTEMS AS A TOOL TO DIFFERENTIATE IN QUAL...
THE USE OF ARTIFICIAL INTELLIGENCE SYSTEMS AS A TOOL TO DIFFERENTIATE IN QUAL...
 
[IJET-V2I1P10] Authors:Prof.Dr.Pramod Patil, Sneha Chhanchure, Asmita Dhage, ...
[IJET-V2I1P10] Authors:Prof.Dr.Pramod Patil, Sneha Chhanchure, Asmita Dhage, ...[IJET-V2I1P10] Authors:Prof.Dr.Pramod Patil, Sneha Chhanchure, Asmita Dhage, ...
[IJET-V2I1P10] Authors:Prof.Dr.Pramod Patil, Sneha Chhanchure, Asmita Dhage, ...
 
IRJET- A Framework for Disease Risk Prediction
IRJET- A Framework for Disease Risk PredictionIRJET- A Framework for Disease Risk Prediction
IRJET- A Framework for Disease Risk Prediction
 
Prediction of Heart Disease using Machine Learning Algorithms: A Survey
Prediction of Heart Disease using Machine Learning Algorithms: A SurveyPrediction of Heart Disease using Machine Learning Algorithms: A Survey
Prediction of Heart Disease using Machine Learning Algorithms: A Survey
 
Disease Prediction by Machine Learning Over Big Data From Healthcare Communities
Disease Prediction by Machine Learning Over Big Data From Healthcare CommunitiesDisease Prediction by Machine Learning Over Big Data From Healthcare Communities
Disease Prediction by Machine Learning Over Big Data From Healthcare Communities
 
ECG
ECGECG
ECG
 
Psdot 14 using data mining techniques in heart
Psdot 14 using data mining techniques in heartPsdot 14 using data mining techniques in heart
Psdot 14 using data mining techniques in heart
 
SHS_ ASQ 2010 Paper
SHS_ ASQ 2010 PaperSHS_ ASQ 2010 Paper
SHS_ ASQ 2010 Paper
 
DISEASE PREDICTION BY MACHINE LEARNING OVER BIG DATA FROM HEALTHCARE COMMUNI...
 DISEASE PREDICTION BY MACHINE LEARNING OVER BIG DATA FROM HEALTHCARE COMMUNI... DISEASE PREDICTION BY MACHINE LEARNING OVER BIG DATA FROM HEALTHCARE COMMUNI...
DISEASE PREDICTION BY MACHINE LEARNING OVER BIG DATA FROM HEALTHCARE COMMUNI...
 
Paper id 212014112
Paper id 212014112Paper id 212014112
Paper id 212014112
 
Project on disease prediction
Project on disease predictionProject on disease prediction
Project on disease prediction
 
An Intelligent Electronic Patient Record Management System (IEPRMS)
An Intelligent Electronic Patient Record Management System (IEPRMS)An Intelligent Electronic Patient Record Management System (IEPRMS)
An Intelligent Electronic Patient Record Management System (IEPRMS)
 
Implementing and Upgrading Clinical Information Systems
Implementing and Upgrading Clinical Information SystemsImplementing and Upgrading Clinical Information Systems
Implementing and Upgrading Clinical Information Systems
 
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
 

Destacado

Técnicas de estudio
Técnicas de estudioTécnicas de estudio
Técnicas de estudioMauricio Lara
 
Baker nakbeh asefa is abu baker فلسطين والعاصفة والنكبة كما يحلل االمفكر الع...
Baker nakbeh asefa is abu baker  فلسطين والعاصفة والنكبة كما يحلل االمفكر الع...Baker nakbeh asefa is abu baker  فلسطين والعاصفة والنكبة كما يحلل االمفكر الع...
Baker nakbeh asefa is abu baker فلسطين والعاصفة والنكبة كما يحلل االمفكر الع...Baker AbuBaker
 
Södertörns högskola 8 dec 2011 : Biblioteksperspektivet på e-böcker:
Södertörns högskola 8 dec 2011 : Biblioteksperspektivet på e-böcker:Södertörns högskola 8 dec 2011 : Biblioteksperspektivet på e-böcker:
Södertörns högskola 8 dec 2011 : Biblioteksperspektivet på e-böcker:Elisabet Fornell
 
Tse recurso especial negado-eleições 2012-paracuru
Tse recurso especial negado-eleições 2012-paracuruTse recurso especial negado-eleições 2012-paracuru
Tse recurso especial negado-eleições 2012-paracuruFrancisco Luz
 
Miljöresultat i Alliansregeringen 2006-2011
Miljöresultat i Alliansregeringen 2006-2011Miljöresultat i Alliansregeringen 2006-2011
Miljöresultat i Alliansregeringen 2006-2011acval2010
 
Öppna offentliga data och PSI - ett första steg
Öppna offentliga data och PSI - ett första stegÖppna offentliga data och PSI - ett första steg
Öppna offentliga data och PSI - ett första stegE-delegationen
 
تقرير الإستكمال
تقرير الإستكمالتقرير الإستكمال
تقرير الإستكمالHany May
 
La stylistique 2ème partie
La stylistique 2ème partieLa stylistique 2ème partie
La stylistique 2ème partieMansour1
 
المحاضرة الثانية
المحاضرة الثانيةالمحاضرة الثانية
المحاضرة الثانيةguestabca4b
 
Samverkan offentlig och privat sektor
Samverkan offentlig och privat sektorSamverkan offentlig och privat sektor
Samverkan offentlig och privat sektorE-delegationen
 
Kulturarv som resurs presentation östergötlands museum olof hermelin-k2
Kulturarv som resurs   presentation östergötlands museum  olof hermelin-k2Kulturarv som resurs   presentation östergötlands museum  olof hermelin-k2
Kulturarv som resurs presentation östergötlands museum olof hermelin-k2Ostsam
 
محتويات برنامج إدارة الاجتماعا ت الفعاله
محتويات برنامج إدارة الاجتماعا ت الفعالهمحتويات برنامج إدارة الاجتماعا ت الفعاله
محتويات برنامج إدارة الاجتماعا ت الفعالهsohaila_ammar
 
Oil pulling as an adjunct to scaling and root planing: A Clinico-Microbial study
Oil pulling as an adjunct to scaling and root planing: A Clinico-Microbial studyOil pulling as an adjunct to scaling and root planing: A Clinico-Microbial study
Oil pulling as an adjunct to scaling and root planing: A Clinico-Microbial studyinventionjournals
 
To Study the Efficacy of Kampillakadi Tail as- Vranaropak In Sadyovrana
To Study the Efficacy of Kampillakadi Tail as- Vranaropak In SadyovranaTo Study the Efficacy of Kampillakadi Tail as- Vranaropak In Sadyovrana
To Study the Efficacy of Kampillakadi Tail as- Vranaropak In Sadyovranainventionjournals
 
The Accounting Information Quality And The Accounting Information System Qual...
The Accounting Information Quality And The Accounting Information System Qual...The Accounting Information Quality And The Accounting Information System Qual...
The Accounting Information Quality And The Accounting Information System Qual...inventionjournals
 
درس الكتاب المقدمه لرسالة العبرانيين - الكنيسه الإنجيليه بالإبراهيميه
درس الكتاب   المقدمه لرسالة العبرانيين - الكنيسه الإنجيليه بالإبراهيميهدرس الكتاب   المقدمه لرسالة العبرانيين - الكنيسه الإنجيليه بالإبراهيميه
درس الكتاب المقدمه لرسالة العبرانيين - الكنيسه الإنجيليه بالإبراهيميهIbrahimia Church Ftriends
 

Destacado (20)

Técnicas de estudio
Técnicas de estudioTécnicas de estudio
Técnicas de estudio
 
Baker nakbeh asefa is abu baker فلسطين والعاصفة والنكبة كما يحلل االمفكر الع...
Baker nakbeh asefa is abu baker  فلسطين والعاصفة والنكبة كما يحلل االمفكر الع...Baker nakbeh asefa is abu baker  فلسطين والعاصفة والنكبة كما يحلل االمفكر الع...
Baker nakbeh asefa is abu baker فلسطين والعاصفة والنكبة كما يحلل االمفكر الع...
 
Södertörns högskola 8 dec 2011 : Biblioteksperspektivet på e-böcker:
Södertörns högskola 8 dec 2011 : Biblioteksperspektivet på e-böcker:Södertörns högskola 8 dec 2011 : Biblioteksperspektivet på e-böcker:
Södertörns högskola 8 dec 2011 : Biblioteksperspektivet på e-böcker:
 
Diapositivas de tecnologia
Diapositivas de tecnologiaDiapositivas de tecnologia
Diapositivas de tecnologia
 
Tse recurso especial negado-eleições 2012-paracuru
Tse recurso especial negado-eleições 2012-paracuruTse recurso especial negado-eleições 2012-paracuru
Tse recurso especial negado-eleições 2012-paracuru
 
Miljöresultat i Alliansregeringen 2006-2011
Miljöresultat i Alliansregeringen 2006-2011Miljöresultat i Alliansregeringen 2006-2011
Miljöresultat i Alliansregeringen 2006-2011
 
Öppna offentliga data och PSI - ett första steg
Öppna offentliga data och PSI - ett första stegÖppna offentliga data och PSI - ett första steg
Öppna offentliga data och PSI - ett första steg
 
Ketika migrain menghadang
Ketika migrain menghadangKetika migrain menghadang
Ketika migrain menghadang
 
تقرير الإستكمال
تقرير الإستكمالتقرير الإستكمال
تقرير الإستكمال
 
La stylistique 2ème partie
La stylistique 2ème partieLa stylistique 2ème partie
La stylistique 2ème partie
 
المحاضرة الثانية
المحاضرة الثانيةالمحاضرة الثانية
المحاضرة الثانية
 
Samverkan offentlig och privat sektor
Samverkan offentlig och privat sektorSamverkan offentlig och privat sektor
Samverkan offentlig och privat sektor
 
E-legitimationer
E-legitimationerE-legitimationer
E-legitimationer
 
инвестиции в мьянме регистрация бизнеса в мьянме
инвестиции в мьянме   регистрация бизнеса в мьянмеинвестиции в мьянме   регистрация бизнеса в мьянме
инвестиции в мьянме регистрация бизнеса в мьянме
 
Kulturarv som resurs presentation östergötlands museum olof hermelin-k2
Kulturarv som resurs   presentation östergötlands museum  olof hermelin-k2Kulturarv som resurs   presentation östergötlands museum  olof hermelin-k2
Kulturarv som resurs presentation östergötlands museum olof hermelin-k2
 
محتويات برنامج إدارة الاجتماعا ت الفعاله
محتويات برنامج إدارة الاجتماعا ت الفعالهمحتويات برنامج إدارة الاجتماعا ت الفعاله
محتويات برنامج إدارة الاجتماعا ت الفعاله
 
Oil pulling as an adjunct to scaling and root planing: A Clinico-Microbial study
Oil pulling as an adjunct to scaling and root planing: A Clinico-Microbial studyOil pulling as an adjunct to scaling and root planing: A Clinico-Microbial study
Oil pulling as an adjunct to scaling and root planing: A Clinico-Microbial study
 
To Study the Efficacy of Kampillakadi Tail as- Vranaropak In Sadyovrana
To Study the Efficacy of Kampillakadi Tail as- Vranaropak In SadyovranaTo Study the Efficacy of Kampillakadi Tail as- Vranaropak In Sadyovrana
To Study the Efficacy of Kampillakadi Tail as- Vranaropak In Sadyovrana
 
The Accounting Information Quality And The Accounting Information System Qual...
The Accounting Information Quality And The Accounting Information System Qual...The Accounting Information Quality And The Accounting Information System Qual...
The Accounting Information Quality And The Accounting Information System Qual...
 
درس الكتاب المقدمه لرسالة العبرانيين - الكنيسه الإنجيليه بالإبراهيميه
درس الكتاب   المقدمه لرسالة العبرانيين - الكنيسه الإنجيليه بالإبراهيميهدرس الكتاب   المقدمه لرسالة العبرانيين - الكنيسه الإنجيليه بالإبراهيميه
درس الكتاب المقدمه لرسالة العبرانيين - الكنيسه الإنجيليه بالإبراهيميه
 

Similar a I217076

Module -3 expert system.pptx
Module -3 expert system.pptxModule -3 expert system.pptx
Module -3 expert system.pptxSyedRafiammal1
 
Expert Systems vs Clinical Decision Support Systems
Expert Systems vs Clinical Decision Support SystemsExpert Systems vs Clinical Decision Support Systems
Expert Systems vs Clinical Decision Support SystemsAdil Alpkoçak
 
IRJET - Medicine Recommendation System
IRJET - Medicine Recommendation SystemIRJET - Medicine Recommendation System
IRJET - Medicine Recommendation SystemIRJET Journal
 
Application of Expert System in medical systems
Application of Expert System in medical systemsApplication of Expert System in medical systems
Application of Expert System in medical systemsShashwat Shankar
 
T OP K-O PINION D ECISIONS R ETRIEVAL IN H EALTHCARE S YSTEM
T OP  K-O PINION  D ECISIONS  R ETRIEVAL IN  H EALTHCARE  S YSTEM T OP  K-O PINION  D ECISIONS  R ETRIEVAL IN  H EALTHCARE  S YSTEM
T OP K-O PINION D ECISIONS R ETRIEVAL IN H EALTHCARE S YSTEM csandit
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)theijes
 
Medic - Artificially Intelligent System for Healthcare Services ...
Medic - Artificially Intelligent System for Healthcare Services              ...Medic - Artificially Intelligent System for Healthcare Services              ...
Medic - Artificially Intelligent System for Healthcare Services ...IRJET Journal
 
Data mining technique for opinion
Data mining technique for opinionData mining technique for opinion
Data mining technique for opinionIJDKP
 
Expert systems 1
Expert systems 1Expert systems 1
Expert systems 1AliNawaz567
 
Clinical decision support systems
Clinical decision support systemsClinical decision support systems
Clinical decision support systemsAHMED ZINHOM
 

Similar a I217076 (20)

Module -3 expert system.pptx
Module -3 expert system.pptxModule -3 expert system.pptx
Module -3 expert system.pptx
 
Expert Systems vs Clinical Decision Support Systems
Expert Systems vs Clinical Decision Support SystemsExpert Systems vs Clinical Decision Support Systems
Expert Systems vs Clinical Decision Support Systems
 
Expert system design
Expert system designExpert system design
Expert system design
 
Expert system
Expert systemExpert system
Expert system
 
Expert system
Expert systemExpert system
Expert system
 
1 Expert System.ppt
1 Expert System.ppt1 Expert System.ppt
1 Expert System.ppt
 
IRJET - Medicine Recommendation System
IRJET - Medicine Recommendation SystemIRJET - Medicine Recommendation System
IRJET - Medicine Recommendation System
 
Expert system
Expert systemExpert system
Expert system
 
Application of Expert System in medical systems
Application of Expert System in medical systemsApplication of Expert System in medical systems
Application of Expert System in medical systems
 
If2514741477
If2514741477If2514741477
If2514741477
 
T OP K-O PINION D ECISIONS R ETRIEVAL IN H EALTHCARE S YSTEM
T OP  K-O PINION  D ECISIONS  R ETRIEVAL IN  H EALTHCARE  S YSTEM T OP  K-O PINION  D ECISIONS  R ETRIEVAL IN  H EALTHCARE  S YSTEM
T OP K-O PINION D ECISIONS R ETRIEVAL IN H EALTHCARE S YSTEM
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)
 
Expert system
Expert system Expert system
Expert system
 
Medic - Artificially Intelligent System for Healthcare Services ...
Medic - Artificially Intelligent System for Healthcare Services              ...Medic - Artificially Intelligent System for Healthcare Services              ...
Medic - Artificially Intelligent System for Healthcare Services ...
 
Data mining technique for opinion
Data mining technique for opinionData mining technique for opinion
Data mining technique for opinion
 
Expert systems 1
Expert systems 1Expert systems 1
Expert systems 1
 
Mycin
MycinMycin
Mycin
 
Expert Systems
Expert SystemsExpert Systems
Expert Systems
 
Clinical decision support systems
Clinical decision support systemsClinical decision support systems
Clinical decision support systems
 
About Quahog Life Sciences
About Quahog Life SciencesAbout Quahog Life Sciences
About Quahog Life Sciences
 

Último

Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonAnna Loughnan Colquhoun
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Drew Madelung
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptxHampshireHUG
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking MenDelhi Call girls
 
Advantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your BusinessAdvantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your BusinessPixlogix Infotech
 
The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxMalak Abu Hammad
 
A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?Igalia
 
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking MenDelhi Call girls
 
Slack Application Development 101 Slides
Slack Application Development 101 SlidesSlack Application Development 101 Slides
Slack Application Development 101 Slidespraypatel2
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...Martijn de Jong
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)Gabriella Davis
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘RTylerCroy
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024The Digital Insurer
 
A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024Results
 
Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreternaman860154
 
Artificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsArtificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsJoaquim Jorge
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024Rafal Los
 
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfThe Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfEnterprise Knowledge
 
IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsEnterprise Knowledge
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonetsnaman860154
 

Último (20)

Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt Robison
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men
 
Advantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your BusinessAdvantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your Business
 
The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptx
 
A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?
 
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
 
Slack Application Development 101 Slides
Slack Application Development 101 SlidesSlack Application Development 101 Slides
Slack Application Development 101 Slides
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
 
A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024
 
Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreter
 
Artificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsArtificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and Myths
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024
 
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfThe Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
 
IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI Solutions
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonets
 

I217076

  • 1. International Journal of Engineering Science Invention ISSN (Online): 2319 – 6734, ISSN (Print): 2319 – 6726 www.ijesi.org Volume 2 Issue 1 ǁ January. 2013 ǁ PP.70-76 www.ijesi.org 70 | P a g e A Decision Support System for Polyuria Patient’s Treatment Hashem Hashemi1 , HosseinAlizadeh Moghaddam2 , Pegah Keyvan3 Shahram Jafari4 1 (Department of Computer Science and Engineering / Shiraz University, Iran) 2 (Department of Computer Science and Engineering / Shiraz University, Iran) 3 (Department of Computer Science and Engineering / Shiraz University, Iran) 4 (Department of Computer Science and Engineering / Shiraz University, Iran) ABSTRACT : An expert system is a computer application that simulates the reasoning skill and performance of a human or an organization that has expert knowledge and experience in a specific area. Our goal was to design an expert system which could be useful for physicians to produce more accurate prescriptions for polyuria patients. In our paper, we first studied the logical rules that were needed to produce a prescription for polyuria patients and represented them in an antecedent/consequent model of rules that were capable of being used in an expert system. Afterwards we used a powerful expert system tool, CLIPS, to implement our proposed expert system and discussed parts and fundamentals of our expert system that were designed based on thestudied rules. Since our expert system produced its prescription based on strict medical science instructions, our goal was to make the system be able to cooperate with physicians’ experiences on polyuria patients. Further in our paper, we used the double-blind technique to evaluate our proposed expert system and compared its results with alternatives (physicians). Keywords –Artificial Intelligence, Expert System, CLIPS, Polyuria, Prescription I. INTRODUCTION Considering the large number of known diseases, variety of existing drugs and patient with different conditions on age, weight and backgrounds, physicians can only keep a limited number of prescription states in their mind and require using reference books to produce the right prescription and calculate the usage amount of drugs in other situations. After diagnosis of the disease, physicians first need to select the right drugs among their various choices considering available types of that particular drug in the country and then required to calculate the usage amount of the drug with respect to patient’s age and weight. Due to variety of “drug usage amount” and“drug usage period” formulas, diseases and patients’ conditions, physicians can only keep about two or three formulas in their mind to use in their calculations [1]. Some usage of drugs may cause some abnormalities in the patient’s situation that is caused by drug conflictions and alsothe patient might have more than a disease at a time that each needs different treatments. This might lead to unwanted side effects [2]that need to be considered bythe physician. It is even possible that through years, new side effects of a particular drug get discovered and its usage as a treatment to a specific disease gets banned. Intelligent computer programs could be used to reduce these limitations and help physicians produce a better prescription. However, this requires the knowledge of logical rules applied on polyuria patients. Our goal in this paper by building logical rules for an expert system that produces prescription for polyuria patients is to resolve problems on prescribing and ease the process of treatment using computational techniques. In order reach such goal, following process have taken place: 1. Instruction: It is the science and techniques that a physician uses to treat a patient, represented in form of a set of rules. 2. Validity of rules: Retrieved rules have been evaluated and their validity ratios have been discussed. 3. Expertize and decision support: In our system, a suitable inference mechanism has been used which prefers the right prescription based on the existing rules. 4. Learnability: In each step of the process, physicians have the ability to apply their own thoughts and in case of need, recommend a better treatment. This made it possible to combine physicians’ experience with the existing knowledge in the system. 5. Usability in the physician’s clinic: We have improved our system in accuracy, performance, usefulness and acceptability of its result so our polyuria treatment system could be used in physician’s
  • 2. A Decision Support System for Polyuria Patient’s Treatment www.ijesi.org 71 | P a g e clinic and help in process of patients’ treatment. Artificial Intelligence, Expert System, CLIPS, Polyuria, Prescription The rest of the paper is organized as follows. In Section II, we briefly discuss an overview of what Expert systems are and how do they work, Section III introduces a powerful tool for implementing expert system (CLIPS) and briefly discusses about its background. In Section IV, an overview of Polyuria definition is covered. Then in Section V, we define some of the common medical terms that are used in the rest of the paper. Section VI discusses the design of the knowledge base of our prescription system and its relevance to Expert systems. In section VII Framework of our proposed system is clarified. Section VIII argues how our expert system works and in section IX, we evaluate and compare our proposed system with available alternatives (in our case, physicians) and finally in the conclusion, a brief overview of the paper is obtained and discussed. II. EXPERT SYSTEM Expert system is a subdivision of Artificial intelligence and generally is defined as a computer program designed to model the problem solving ability of a human expert [3] that is proposed to perform in all respects like a human expert in a specific field. Constructing an expert system is recognized as knowledge engineering and its experts are called knowledge engineers. The knowledge engineer should pick a knowledge representation and need to confirm that the computer can use the knowledge well enough by selecting from a minority of reasoning techniques. Typically such a system contains a knowledge base containing accumulated experience and a set of rules for applying the knowledge base to each particular situation that is described to the program. Expert systems can be categorized from different points of view. It could be the advisory systems, the ones that recommend the direction; systems taking decisions without the help and human interference; criticizing systems the ones which on the basis of a particular problem and the predicted solution by a man, analyze and comment the particular reasoning and action way. It is important that there is a close cooperation between a system engineer and experts on those interest fields when constructing the appropriate expert system. Nothing can replace the knowledge and expert’s experience [4]. Expert systems have many advantages over traditional computer applications and one could be the separation of knowledge from its processing which is a powerful feature of expert system that permits the reuse of existing code and greatly reduces the development time for other systems. Although advantages of expert systems overs expert human beings are deliverance of permanent knowledge, ability of reproduction of the available skill and knowledge by just duplicating the computer database, steady and reproducible outcomes, reasonably cheap to work and sustain. The structure of expert systems consists five main parts which are as follows: Knowledge base: part of an expert system that contains the domain knowledge. 1. Working memory: part of an expert system that contains the problem facts that are discovered during the session. 2. Inference Engine: Processor in an expert system that matches the facts contained in the working memory with the domain knowledge contained in the knowledge base, to draw conclusions about the problem. 3. Explanation facility: interpretability provider in expert systems. 4. Interface: Part of the system that interact with user. Expert systems are designed to accomplish generic tasks on the basis of the problem type as illustrates in table1 [3]. Table1: Type of problems solved by Expert systems Problem solving paradigm Description Control Governing system behavior to meet specification. Design Configuring objects under constraint Diagnosis Inferring system malfunctions from observables Instruction Diagnosis, debugging Interpretation Inferring situation description from data Monitoring Comparing observations to expectations Planning Designing actions Prediction Inferring likely consequence of given situations Prescription Recommending solutions to system malfunction Selection Identifying best choice from a list of possibilities Simulation Modeling the interaction between system components
  • 3. A Decision Support System for Polyuria Patient’s Treatment www.ijesi.org 72 | P a g e III. CLIPS CLIPS is an expert system shell originally developed in 1984 by the Artificial Intelligence Section of NASA’s Johnson Space Center and is written in C. CLIPS uses a forward-chaining inference strategy based on the Rete pattern-matching algorithm. The CLIPS shell provides the basic elements of an expert system [5]: 1. Fact-list and instance-list: Overall memory for data 2. Knowledge-base: Covers all the rules 3. Inference engine: Controls overall execution of rules A program written in CLIPS may contain rules, facts, and objects. The inference engine decides which rules should be performed and when. A rule-based expert system written in CLIPS is a program where the facts, and objects (if needed), are the data that stimulate execution via the inference engine. Fact[6] consists of relation name(a symbol field), followed with zero or some slot(also symbol field) and their relevant value. IV. WHAT IS POLYURIA Human body may be infected by different type of bacteria or viruses that may lead to dangerous diseases with different symptoms and some of these symptoms can be common among a number of diseases. Polyuria is one of these symptoms on human body that is common between dangerous diseases such as Diabetes and Tachycardia and non-risky diseases such as water intoxication and pregnancy polyuria. It is defined when a person produces abnormally large volume of urine about 2.5 to 3 liters per day. V. DEFINITIONS Before discussing more detail on the topic, we need to define some of the common medical terms that are used in the rest of the paper.  Polyuria related diseases: there are several diseases that could cause a person’s polyuria such as Diabetes, Addison, Lupus and etc. In this paper, we use the term diseases instead of polyuria related diseases.  General drug and their Commercial names: Generic drugs are the drugs that are well known and officially used in every country but might be called with a different name in each country that is their commercial name.  Type of the drug: drugs are made in different types such as tablets, capsules and drops for different type of use.  Consuming type of the drug: each drug could be consumed through different ways depending on patient’s situation.  Usage amount of the drug: amount of the drug patient need to use throughout a treatment.  Drug usage period: the number of times a drug needs to be used in a period of time which is dependent to the drug itself, disease and patient’s situation. VI. LOGICAL PRESCRIPTION RULES Parts of a prescription are “name of the drug”, “type of the drug”, “consuming type of the drug”, “usage amount of the drug” and “drug usage period”. An example of a prescription is as follows: 1- Tab, Ranitidine 1mg Oral 1N x 1T/Day 2- Cap, Amoxicillin 25mg Oral 1N x 3T/Day 3- Tab, Tramadol 1mg Oral 0.50N x 1T/Day By gathering information on the treatment approaches and evaluating them, we need to represent them in a way that computer can process. Most common technique to represent knowledge is “Rules”. Advantages on using Rules are simplicity, their use on defining the empirical relations, ability to adjust knowledge base, existence of various inference techniques and the non-linear inference engine however, there are some disadvantages for Rules and the main can be mentioned as the slow performance. Based on the discussion above, we have used the Rules technique to represent our data and CLIPS to store and process the rules and implement the system. Prescribing rules are divided into two main sections:  First section that includes seven categories of standard rules is used to release a prescription for a patient. In brief, we discuss these categories using one sample from each. A. Rules for categorizing patients age
  • 4. A Decision Support System for Polyuria Patient’s Treatment www.ijesi.org 73 | P a g e (Patient ( < age 2)) => (Patient ( age “baby”)) B. Rules for categorizing patients weight for both genders. (Patient ( sex male) (< Weight 50)) => (Patient (weight ”thin”)) C. Rules to retrieve the right drug from Database for the chosen disease. (Disease(name ?DName)(drug ?Drug)) => (Assert ( Diagnosis (drug (name ?Drug))) D. Based on patient’s situation and the seriousness of the disease, it chooses the right “type of the drug” and “consuming type of the drug”. (patient (age “baby”)) => (packet (drug “drop”)) E. Rules to check the confliction between drugs and patient’s background. (patient (background ?Disease)) => (conflict(drug ?Drug)(disease ?Disease)) F. Rules which selectthe“right usage amount” of the drug based on the patient’s background and condition. (patient (background ?Disease)(urgency “High”)) => (assert (drug (dosage “High”))) G. Rules to tune the suggested prescription based on patient’s financial ability and availability of the drug. ?f1<-(drug (availability “Low”)(name ?drug)) ?f2<-(instead (drug1 ?drug)(drug2 ?drug2)) => (retract ?f2) (modify ?f1 (name ?drug2))  And second section is related to particular conditions when physician, considering patient’s conditions, need to change the flow of the system’s prescribing method and inserts new rules into the system. This will likewiseincrease the accuracy of the system design for example: (patient (urgency “High”)(ability “Good”)) => (packet(drug “ampule”)) VII. FRAMEWORK OF PROPOSED SYSTEM Prescribing for polyuria patients is in a way that once patients visit the physician they will briefly describe their physical condition and whether or not they have had any illness background. In each visit, physician will check the symptoms and reasons that patients have visited him/her considering their physical condition. The physician will then recall his/her memory for diseases that match those symptoms since each disease has its own sign and symptoms [7], [8]. Then the disease(s) is chosen among the rest of diseases. However prescribing has several factors [9], [10] and each is very important on its own, not considering anycould have great changes on the prescription which might be dangerous for polyuria patient. Chosen drugs are tuned based on patient’s condition such as pregnancy, breast-feeder, liver and kidney diseases, allergy and etc. physicians should consider patient’s background and then choose the right prescription and “consuming type of the drug” based on “type of the disease”, “urgency of disease” and patient’s age. After selection of the right consuming type for the drug, physicians choose the right type of the drug considering it’s availability in stores however, patient’s ability would also influence the “consuming type of the drug”. For each age range and considering patient’s weight and urgency of their disease, physician will select the right usage amount and usage period for the drug. The proposed polyuria prescription system is divided into three parts which are as follows: 1. Overall structure:This software at first will receive information about patient’s details and background and assigns a new file to them. After diagnosis a disease by physician, system begins to produce a prescription based on its knowledge database. Also physician can use the expert system to produce an intelligent prescription in such way that system will compare the patient’s information and the given diagnosis by the physician. In case of not finding any similar data in the knowledge base, the
  • 5. A Decision Support System for Polyuria Patient’s Treatment www.ijesi.org 74 | P a g e physician’s diagnosis will be selected, otherwise, the system’s decision will have higher priority. Of course in the end, selection of the right prescription will be on the physician to decide. The expert system uses its inference engine and a set of rules on medical treatments to produce a prescription intelligently. The proposed expert system consists of parts User Interface, Knowledge Base, Inference engine and Fact List. 2. Prescribing Knowledge base:After receiving the patient’s information which is entered by the physician, name of the diagnosed disease is asked from the physician and once receiving the name of the disease, the related code for the disease is retrieved from the knowledge base together withname of the drugs and information which areusedin treatment of the disease. In this state, all the factors such as the availability of the drugs in the country (such as pill, ampule and etc.) which were entered in the knowledge base, types of drugs, their dosage and required usage amount for a patient are considered one by one and the prescription is released accurately and whole. Chosen drugs are checked based on patient’s background therefore the system will be able to release notice messages in case of conflictions. 3. Inference engine:This part has the duty to choose the fittest rule compare to data in the working memory from knowledge base. Entire input data in the system are entered through system’s pages that include patient’s information forms, patient background form and patent’s visit history forms and also through working memory file. Inference engine selects the rules on order and checks their IF part. In case that based on the data in the working memory, a related rule’s conditions get satisfied, this means the rule will get selected and its THEN part will be extracted and the results will be kept in the TEMP Working Memory as temporary results. Since these results are not kept in the original Working Memory, while runtime would not have any influence on the rest of rules. This means all the rules are fired once with equal conditions and all their output result are stored in a temporary memory which is called TEMP Working Memory. After all rules are fired and their results are stored in the TEMP Working Memory, these results are transferred into the original Working Memory. Now in case of any changes in the original Working Memory, the entire rules are checked based on those changes and fired if their conditions satisfy. This process will repeat until nothing changes in the original Working Memory and system reaches a stable mode. VIII. HOW OUR PROPOSED SYSTEM WORKS System data is divided into three main parts, Knowledge Base, Working Memory and Rules.  Knowledge Base:The entire basic medical information which is needed in order to release a prescription is stored in the Knowledge Base as a list of facts. These facts can be including items such as: o Patient’s Personal Detail o Patient’s Background o Pregnancy or Brest-Feeder o Existence of any allergy  Working Memory:Data in original Working Memory are also divided into two categories. However, we have used a Temporary Working Memory that will be discussed further on. o First Working Memory: Part of the data which are entered through the system Q&A part. o Second Working Memory: Since not all Questions might be asked or answered correctly, Second Working Memory is the memory that stores the data which are entered manually such as: Patient’s consciousness and Patient’s urgency. Also in this part, it is possible to modify the data which are kept in the first working memory. o Temp Working Memory: Consist of output data given from rules that have got fired after being selected by inference engine. After all rules are fired and their results are stored in the TEMP Working Memory, these results are transferred into the original Working Memory  Rules:This part includes rules for our expert system that is stored in a “.CLP” file. In order to improve the accuracy and inference strength of the system, a number as a coefficient is definable that is known as “Certainty Factor (CF)” and can be in range of -1 and 1. There are two approaches to use CF in a system which are:  Using CF as a priority number: This approach is used when a group of known assumptions produce different results that may set different values to a variable. CF is used as a priority number for each rule that stops the rules with lower CF to be fired and resolves the problem of rule confliction.  Using CF in probabilistic functions: This is the second approach of using CF in cases where result of a group of known assumptions set different values to a variable. With the difference that each value will be paired with its Certainty factor (CF) and then kept in the memory. Using a specific function that
  • 6. A Decision Support System for Polyuria Patient’s Treatment www.ijesi.org 75 | P a g e receives a group of CF values, an output CF will be calculated and its paired value will be kept in the variable. We will discuss the evaluation results of these two approaches and other available methods in the next section. IX. EVALUATION In this section, we evaluate the implemented system by gathering data from seventy three patients with variation on age, weight and background and entering the data into the system.Knowledge of the system has been collected from five physicians in the field of urology. Afterwards using three available methods that were implemented and will be discussed, we produced prescriptions for our polyuria patients. These three implemented methods are: 1. Polyuria Database: This is the classical method to search for the right prescription using databases that keep the information of diseases. Afterwards, when the physician diagnoses the cause of patient’s polyuria and enters the disease name to the system, the Key ID of that disease is found and database is searched for any matches. A prescription output will then be resulted. 2. CF-based Expert SystemThis implemented method is an expert system that uses its knowledge base and inference engine to produce a prescription and uses Certainty Factor coefficient as a priority number which is explained in the previous section. 3. Probability-based Expert System:Just like previous implemented method with the difference on the usage of Certainty Factor in a probabilistic function. This method is briefly discussed in the previous section. In order to evaluate these methods, their output prescriptions were compared to five other physicians (evaluators) while the system has not experienced our gathered data in the training phase. In other word, our system was evaluated in a double-blind approach. Number of unacceptable results are counted and shown on Figure 1. It is important to note that the difference between our expert systems and evaluators’ opinion has occurred based on their difference on studies and knowledge. It is clear that by applying the knowledge of our evaluators to our expert system, we can decrease the difference as small as possible. Based on physicians’ opinion we have concluded that important parts of a prescription are “selection of drug”, “type of the drug” and “consuming type of the drug”. These three parts do not have the same level of importance in a prescription. In Table 2, their weights of importance are shown. Part Weight Selection of Drug 5 Type of the drug 3 Consuming type of the drug 2 Table 2. Weight of importance of parts in a prescription Fig 1. Comparison of method with evaluators’ opinion 25 12 11 51 22 13 65 19 11 0 20 40 60 80 Polyuria Database Expert System 1 Expert System 2 Selection of Drug Type of the drug Consuming type of the drug
  • 7. A Decision Support System for Polyuria Patient’s Treatment www.ijesi.org 76 | P a g e Using the weighted average technique, three importance parts of a prescription (Table 2) are combined with comparison of the result of our three methods (Figure 1) and the result are shown in Figure 3. Fig 2. Comparison of weighted average of methods As it is observable, results of “Expert System 2” have the minimum error compared to the rest followed by “Expert System 1” and “Polyuria Database”. X. CONCLUSION Based on what has been mentioned in the first section, the main goal of producing rules and intelligent system was to resolve the problem of difficulty in producing a prescription by using computational techniques and methods. To reach such goal, knowledge and skill that a physician uses to treat a patient are represented in form of rules and facts and arestored in an intelligent system. These rules are the fundamentals to produce a prescription for diseases that cause polyuria. In this system physician can also force his/her opinion to the system and in case of difference with the system’s prescription, new rules can be entered into the knowledge base to combine physician’s medical experience and system’s current knowledge. As the results of the section IX shows, we can point out that our proposed system results about 92% acceptable which proves the correctness of our implementation of inference engine and knowledge base in the system. Our system could also be useful for medical students as a decision support system. ACKNOWLEDGEMENTS We would like to offer our sincerest gratitude to Shiraz University staff, those who have supported us throughout this Paper with their patience, knowledge, and encouragement, also thankful to Dr. Sharifi, Dr. Kiani, Dr. Afsharian, Dr. Norouzi and Dr. Rezaei for contributing their time and knowledge for us to be able to work on such manner and students of Shiraz university of medical sciences who have helped us evaluate our implemented expert system. REFERENCES [1]. D. shahram Aminzadeh, Generic drugs consuming guidance., Third. SAMAT, 2003. [2]. M. H. Mohammad sadegh javidan nejad, Generic Drug information, Third. SAMAT, 2003. [3]. J. Durkin, “Expert systems: design and development,” 1998. [4]. Smith V, “An expert system for diabetes diagnosis,” CHRIST UNIVERSITY BANGALORE, 2010. [5]. P. D. Joseph C. Giarratano, CLIPS User’s Guide Version Quicksilver Beta. sourceforge.net, 2007. [6]. G. D. R. Joseph C. Giarratano, Expert Systems Principles and Programming Fourth Edition. 2006. [7]. J. B. H. (M.D), Clinical Diagnosis and Management by Laboratory Methods, 19 Ed. Saunders, 1996. [8]. J. Wallach, Interpretation of Diagnosis, 5 ED. A Little Brwon, 1992. [9]. J. C. B. (M. A. C. P. & F. (M.D), Cecil Textbook of Medicine, 20Ed ed. Saunders, 1996. [10]. J. C. B. (M. A. C. P. & F. (M.D), Cecil Essentials of medicine, 4Ed ed. Saunders, 1997. 40.8 16.2 11.4 0 10 20 30 40 50 Weighted average Polyuria Database Expert System 1 Expert System 2