SlideShare una empresa de Scribd logo
1 de 34
Descargar para leer sin conexión
Kouki Nakata
Josephson Effects & Persistent Spin Currents
in Magnon-BEC due to Berry Phase
University of Basel, Switzerland
仲田光樹
Based on [arXiv:1406.7004]
[Note] All the responsibility of this slide rests with “Kouki Nakata”; Sep. 2014.
MAIN AIM
 Persistent spin current
 To CONTROL spin currents
“Directmeasurement”
(i.e. super spin current)
 Rapid PROGRESS of experiments
BACKGROUND
 Spin-wave spin current
 Quasi-equilibrium magnon-BEC
 Achieved even at “room temperature”
by using microwavepumping
(Low temperature is not required.)
Ferromagnetic insulator (YIG)
[Y. Kajiwara et al., Nature 464, 262 (2010)]
[S. O. Demokritov et al., Nature 443, 430 (2006)]
BEC
BEC
“Bose–Einstein condensation of quasi-equilibrium magnons at room temperature under pumping”
[S. O. Demokritov et al., Nature 443, 430 (2006)]
Based on
 Can be semi-classically treated
 Canonically conjugate variables; [𝓝, 𝝑]
𝒂 = 𝓝 𝒆 𝒊𝝑
𝒂 ~ 𝐒+
= 𝐒 𝐱
+ 𝐢𝐒 𝐲
𝝑~ Direction of spin
𝓝~ Length of macroscopicspin
Semantic issue;
Y. M. Bunkov and G. E. Volovik,arXiv:1003.4889.
Textbook by Leggett
D. Snoke, Nature 443, 403 (2006).
C. D. Batista et al., RMP. 86, 563 (2014).
Macroscopiccoherent stateQuantum effectsIndividual spins/quasi-particles
Condensed time:
over a few hundred ns.
𝓝;Magnon-BEC
𝝑; PhaseBEC
Quasi-equilibrium Magnon-BEC
Magnon
picture
Spin
picture
BEC
BEC
“Bose–Einstein condensation of quasi-equilibrium magnons at room temperature under pumping”
[S. O. Demokritov et al., Nature 443, 430 (2006)]
Based on
𝒂 = 𝓝 𝒆 𝒊𝝑
𝒂 ~ 𝐒+
= 𝐒 𝐱
+ 𝐢𝐒 𝐲
Semantic issue;
Y. M. Bunkov and G. E. Volovik,arXiv:1003.4889.
Textbook by Leggett
D. Snoke, Nature 443, 403 (2006).
C. D. Batista et al., RMP. 86, 563 (2014).
Macro
scopic
Spin
BEC
Quasi-equilibrium Magnon-BEC
Magnon
picture
Macroscopiccoherent stateQuantum effectsIndividual spins/quasi-particles
Condensed time:
over a few hundred ns.
𝓝;Magnon-BEC
𝝑; Phase
𝝑~ Direction of spin
𝓝~ Length of macroscopicspin
 Can be semi-classically treated
 Canonically conjugate variables; [𝓝, 𝝑]
Spin
picture
HOW TO ACHIEVE
 Berry phase(Geometric phase)
 Quasi-equilibrium magnon-BEC
Persistent magnon-BEC current
To electro-magnetically control spin currents
“Macroscopic quantum effect (coherence)”
 Spin currents; drastically ENHANCED !!
 Spin Current
”Persistent magnon-BEC current”
Under our control
Directmeasurement
 Electromagnet
Towardthe direct measurementof spin (magnon) current
 Berry Phase
Aharonov-Casher(A-C)位相
Magnon-BEC
(Ferromagnetic insulator)
「MacroscopicEffect」
CONCEPT
OUTLINE
 INTRODUCTION
 REVIEW
 SUMMARY
 RESULT
 Josephson effects
 Persistent magnon-BEC current (i.e. super spin current)
 Magnon-BEC Josephson junction (MJJ)
 SYSTEM
 REVIEW
 Superconductors (SC)
[Cooper pair] = [Boson]
B. D. Josephson, [Phys.Lett.1,251 (1962)]
1962~
𝑑
𝑑𝑡
∆𝑁 𝑡 =
2J
ℏ
sin ∆𝜙(𝑡)
𝑑
𝑑𝑡
∆𝜙 𝑡 = −
2𝑒𝑉(𝑡)
ℏ
Josephsonequations in SC
 dc Josephson effect;
𝑑
𝑑𝑡
∆𝜙 𝑡 ∝ 𝑉 𝑡 = 0
 Relative phase is time-independent;
𝑑
𝑑𝑡
∆𝜙 𝑡 = 0
; Josephson current
”charge current”
Josephson current
J (tunneling)(1973)
Textbook
by Leggett
w.f. w.f.
Josephson Effects Universal Phenomenon of bosonic particles
𝑉(𝑡); the external voltage applied across thejunction
J (> 0); the tunneling amplitude,
∆𝑁 ≔ the relative population, ∆𝜙; the relative phase•
•
•
Figby [Fa Wang and Dung-Hai Lee, Science, 332 (2011) 200]
Fig by[J. Q. You andF. Nori, Nature, 474, 589 (2011)]
Picture by Googlesearch (HPfornovel prize).
 Universal Phenomenon of bosonic particles
Anderson et al., Science (‘95)
Atomic BEC
 Atomic BEC  Magnon BEC
[Magnon] = [Bosonic quasi-particle]
Josephson Effects
B. D. Josephson, [Phys.Lett.1,251 (1962)]
Berry Phase
(Aharonov-Casher phase)
1962~ 1997~ Now
We
(Our present work)
 Superconductors (SC)
[Cooper pair] = [Boson]
A. Smerzi etal., [PRL. 79, 4950 (1997)]
[PRA, 59, 620 (1999)]
[PRL.84, 4521 (2000)]
Leggett[Rev.Mod.Phys. 73, 307 (2001)]
M. Albiezetal.[PRL.95, 010402 (2005)]
S. Levyetal. [Nature 449, 579 (2007)]
(2001)(1973)
Figby [Fa Wang and Dung-Hai Lee, Science, 332 (2011) 200]
Picture by Googlesearch (HPfornovel prize).
Berry Phases
Aharonov- Bohm phase
[Y. Aharonov and D. Bohm, Phys. Rev. 115, 485 (1959)]
Aharonov- Casher phase
[Y. Aharonov and A. Casher, PRL, 53, 319 (1984)]
Charged particle; 𝑒 Magnetic dipole; 𝜇
𝜇 = 𝑔𝜇 𝐵 𝒆 𝑧
;(Magnon)
Magnetic vector potential 𝐴 [Electric field]×[Magnetic dipole]; 𝐸 × 𝜇
𝜑A−B =
𝑒
ℏ𝑐
𝐴 ∙ 𝑑𝑠
=:
𝑒
ℏ𝑐
𝛷A−B
𝜑A−C =
𝑔𝜇 𝐵
ℏ𝑐2 (𝐸 × 𝜇) ∙ 𝑑𝑠
𝐸
𝜇
𝐴
𝑒
𝛷A−B
 Special casesof Berryphase [R.Mignani,J.Phys.A:Math. Gen. 24, L421 (1991)] [X.-G.Hea and B. McKellarb,Phys.Lett.B264, 129(1991)]
A special case of
Berry phase
Microwave Pumping
Magnon
Magnon-BEC
(macroscopicstate)
Magnon pumping Room temperature
[S.O. Demokritov etal.,Nature 443, 430 (2006)]
 Excite additionalmagnons.
 Create a gas of quasi-equilibriummagnons
with a non-zerochemical potential.
 A Bose condensate of magnons is formed.
Microwave pumping
 We can directlyinject magnons so that
it becomes a macroscopicnumber(BEC).
[K.Nakataand G. Tatara, J.Phys.Soc. Jpn. 80, 054602 (2011).]
[K.Nakata,Doctoral Thesis,KyotoUniversity(2014).]
Magnon
Magnon-BEC
(macroscopicstate)
Magnon pumping
Room temperature
𝒂 = 𝑵 𝐁𝐄𝐂 𝒆𝒊𝝁𝒕+𝒊𝜶
 BEC order parameter
Quasi-equilibrium Magnon-BEC
[S.O. Demokritov etal.,Nature 443, 430 (2006)]
𝑛BEC~1018 − 1919cm−3
[Y. M. Bunkov andG. E. Volovik,arXiv:1003.4889.]
[C.D. Batistaet al., Rev.Mod. Phys., 86, 563 (2014).]
[Y. M. Bunkov andG. E. Volovik,arXiv:1003.4889.]
Quasi-equilibrium Magnon-BEC
 [Metastable state]≠[Groundstate]
[J. Hick et al., Phys. Rev. B 86, 184417 (2012)]
[T. Kloss et al., Phys. Rev. B 81, 104308 (2010)]
[S. M. Rezende, Phys. Rev. B 79, 174411(2009)]
[F. S. Vannucchi et al., Phys. Rev. B 82, 140404(R) (2010)]
[F. S. Vannucchi et al., EPJB 86 (2013) 463]
[S. M. Rezende, Phys. Rev. B 79, 174411 (2009)]
Thermalizationprocess
𝒂 = 𝑵 𝐁𝐄𝐂 𝒆𝒊𝝁𝒕+𝒊𝜶
 BEC order parameter
[K.Nakataand G. Tatara, J.Phys.Soc. Jpn. 80, 054602 (2011).]
[K.Nakata,Doctoral Thesis,KyotoUniversity(2014).]
OUR WORK
SYSTEM
E = E𝐞 𝐲
𝒏 𝐋, 𝝑 𝐋 𝒏 𝐑, 𝝑 𝐑
𝐉 𝐞𝐱
J
J
𝒏 𝐋, 𝝑 𝐋
𝒏 𝐑, 𝝑 𝐑
ΓL
ΓR
A-C phase:
Magnon BEC Josephson Junction
 Tunneling Hamiltonian (boundary spins)
 Hamiltonian of each single FIs (Magnon BECs)
with Diag 𝐉 = J{1, 1, 𝜂}, J < 0
E = E𝐞 𝐲
ℋH =(Gross-Pitaevskii Hamiltonian;ℋGP)
Microscopic spin model
Electric field
(E = E𝐞 𝐲)
Magnon picture
−𝜽 𝐀−𝐂
𝜽 𝐀−𝐂
( Jex ≪ J )
Magnon BEC
(Holstein-Primakoff tr.);
~ 𝐒+
= 𝐒 𝐱
+ 𝐢𝐒 𝐲
Magnon
picture
BEC
𝒂 = 𝓝 𝒆𝒊𝝑
~ 𝐒+
= 𝐒 𝐱
+ 𝐢𝐒 𝐲
𝐉 𝐞𝐱
𝐉 𝐞𝐱
𝓝 𝐋, 𝝑 𝐋 𝓝 𝐑, 𝝑 𝐑
CALCULATION PROCEDURE
Spin
picture
Canonically conjugate variables
[𝓝, 𝝑]
BEC BEC
Macro
scopic
Spin
Macro
scopic
Spin
𝓝;Magnon-BEC
𝝑; Phase
𝒩T: = 𝒩L + 𝒩R• Population imbalance; 𝐳 ≔ (𝒩L − 𝒩R)/𝒩T,
• Relative phase; 𝛉 ≔ ϑR − ϑL
~Two macroscopicspins interact with each other through 𝐉 𝐞𝐱
EACH VALUE
E = E𝐞 𝐲
Each Value Our estimation
The exchange interaction between the two FIs Jex = 1μeV
The exchange interaction between the neighboring spins in a single FI J ≈ 0.1eV
The density of magnpn-BECs [S. O. Demokritov et al., Nature (2006).] nBEC = 1019
cm−3
The applied magnetic field 𝐵 ≈ 1mT
The applied electric field to the interface 𝐸 ≈ 5GV/m
The width of the interface Δ𝑥 ≈ 10Å
The lattice constant of a FI 𝛼 ≈ 1Å
 RESULTS
Josephson Equations in MJJ
;Renormalized time 𝜏 = 1 ↔ 𝑡 = 1ns (ex. K0/𝑆 ≡ Jex = 1μeV)
 Josephson spin current ∝
nL, ϑL
E = E𝐞 𝐲
nR, ϑR
−𝜽 𝐀−𝐂
𝜽 𝐀−𝐂
Δ𝐸 & Λ; renormalized magnetic field difference & mag-mag interactionin terms of K0
(K0 ; tunnelingmagnitude)

nT: = nL + nR
• Population imbalance; z ≔ (nL − nR)/nT
• Relativephase; θ ≔ ϑR − ϑL
• A-C phase;
• ∆x; the width of the interface (~Å)
[Period]~𝟔ns
ac Josephson Effect
;Renormalized time 𝜏 = 1 ↔ 𝑡 = 1ns (ex. K0/𝑆 ≡ Jex = 1μeV)
 No Aharonov-Casherphase;
~(Chemical potential difference)
Condensed time:
over a few hundreds ns.
S. O.Demokritovetal., Nature 443, 430 (2006).
 dc Josephson Effects
𝜽 = 𝟎
Time-dependent Magnetic Field
i) Increasing rate; 𝑩 𝟎 ii) Josephson equation (weak coupling)
∝ 𝑬; electric field ∝ 𝑩 𝟎; magnetic field
(increasing rate)
dc effect 𝜽 = 𝟎 (steady-state solution)
θ(τ = 0) = 0
E = E𝐞 𝐲
θ ≔ ϑR − ϑL
z ≔ (nL − nR)/nT nL, ϑL
nR, ϑR
−𝜽 𝐀−𝐂
𝜽 𝐀−𝐂Λ; renormalized mag-mag interaction
in terms of K0 (K0 ; tunneling magnitude)
UL UR
Jex ≪ J
dc Josephson Effect
0
𝜏 = 1 ⟷ 𝑡~1ns
𝜽 ≠ 𝟎 𝜽 = 𝟎(+ small oscillationin “z”)
 AtomicBEC;A. Smerzi etal., [PRL. 79, 4950 (1997)]
[PRA, 59, 620 (1999)]
[PRL.84, 4521 (2000)]
dc-ac Transition; 𝐳 𝟎 = 𝐁 𝟎/𝚲
0
 (c) dc-ac transition; 𝒛 𝟎 ≈ 𝟎. 𝟕𝟐𝟓
𝑧0 = 0.10
𝑧0 = 0.724
𝑧0 = 0.726
𝑧0 = 1.1
dc-ac Transition
 (d) dc-ac transition; 𝒛 𝟎 ≈ 𝟏
𝑧0 = 0.726
𝑧0 = 0.726
Recovery
due to
A-C phase
𝜏 = 1 ⟷ 𝑡~1ns𝜏 = 1 ⟷ 𝑡~1ns
dc effect
ac effect
dc effect
ac effect
 Atomic BEC; A. Smerzi et al.,
[PRL. 79, 4950 (1997)]
[PRA, 59, 620 (1999)]
[PRL. 84, 4521 (2000)]
 Persistent Magnon-BEC Currents
Magnon-BEC Ring
・Electric-gradient flux
 Single-valuednessof the BEC wave function
In analogy to superconductingrings
𝑝 ∈ ℤ; phase winding number
・Electric flux quantum
 Persistent magnon-BEC current
The A-C phase in the ring
Quantized electric-gradientflux
𝐄(𝜌, 𝜑) =
Direct Measurement
≫ 10−13
V
nBEC = 1019cm−3
J ≈ 0.1eV
[F. Meier and D. L., PRL 90, 167204 (2003).]
 [Persistentmagnon-BEC current 𝐈 𝐁𝐄𝐂] = [Steady flow of the magnetic dipoles]
(i.e. magnons or magnetic moment 𝑔𝜇 𝐵 𝒆 𝑧)
 Moving magnetic dipoles  “Electric dipole fields 𝐄 𝐦”  Voltage drop 𝐕 𝐦.
S. O. Demokritov et al., Nature (2006).
; Spin chains
Largely enhanced 
due to
“Macroscopic coherence”
[D.Loss and P.M. Goldbart,PLA215, 197 (1996)]
𝐕 𝐦
𝜌0 = 1mm
𝑟0 = 1mm
Vm~1nV
𝑔 = 2, 𝑆 = 1/2
× 𝟏𝟎, 𝟎𝟎𝟎 times!!
𝑔𝜇 𝐵 𝒆 𝑧
𝑅 ≈ 10mm
𝑝 ≈ 50
(Phase winding number;𝜙 = 𝑝𝜙0 )
 REMARKS
Analogous Phenomenon
Magnon Josephson effect Magnon Hall effect
Dzyaloshinskii-Moriya interaction
Temperature gradient
≈ Onose et al. [Science 329, 297 (2010)]
[Josephson spin current] ⊥ [Electric field] [Thermal spin current] ⊥ [temperature gradient]
≈
Key point; Transverse spin currents
Picture from [Science 329, 297 (2010)]
SIGNIFICANCE
The Bose Josephson junction (BJJ) of atomic BEC
𝜽 𝐀−𝐂 = 𝟎
The magnon Josephson junction (MJJ)
M. Albiez et al. [PRL. 95, 010402 (2005)]
S. Levy et al. [Nature 449, 579 (2007)]
Leggett [Rev. Mod. Phys. 73, 307 (2001)]
A. Smerzi et al., [PRL. 79, 4950 (1997)]
[PRA, 59, 620 (1999)]
[PRL. 84, 4521 (2000)]
[Theory] [Experiment]
 Exact dc Josephson effect
・Time-dependent magnetic field
・Aharonov-Casher phase
・ac-dc transition
・Persistent magnon-BEC
current
 Magnon-interferenceAharonov-Casher
phase
Cold atom
[Our work on MJJ] = [The generalization ofthe preceding studies on BJJ]
Picture byGoogle search.
LAST MESSAGE
Phys. Lett. A, 96 (1983), p. 365
 Our work [arXiv:1406.7004]
Persistent (charge) current due to the Aharonov-Bohm phase
Persistent “magnon-BEC” current due to the Aharonov-Casher phase
K. N., K. A. van Hoogdalem, P. Simon, and D. Loss
SUMMARY
“JosephsonEffects& PersistentSpinCurrentsin Magnon-BECduetoBerryPhase”
I). How to electromagnetically control Josephson spin currents
 [Period of ac Josephson effect]~10ns
III). How to directly measurethe Josephson magnon-BEC currents
 The resulting voltage drop from the flow of the magnons (i.e. magnetic dipoles).
 It is largely enhanced due the macroscopic coherence of magnon-BECs; Vm~1nV ≫ 10−13
V
 This method is applicable to Josephson junction; 0 ≤ Vm ≤ 1𝜇V due to ac or dc effects.
II). Persistentmagnon-BEC current (i.e. super spin current) due to the Berry phase
 It is quantized in the magnon-BEC ring.
Regarding macroscopic quantumself-trapping, please see the preprint [arXiv:1406.7004].
Each Value Our estimation
The exchange interactionbetweenthe twoFIs Jex = 1μeV
The exchange interactionbetweenthe neighboringspinsinasingle FI J ≈ 0.1eV
The densityof magnpn-BECs[S.O.Demokritov etal.,Nature (2006).] nBEC = 1019cm−3
The appliedmagneticfield 𝐵 ≈ 1mT
The appliedelectricfieldtothe interface 𝐸 ≈ 5GV/m
The widthof the interface (The lattice constant 𝛼 ≈ 1Å) Δ𝑥 ≈ 10Å
Based on [arXiv:1406.7004] K. N., K. A. van Hoogdalem, P. Simon, and D. Loss

Más contenido relacionado

La actualidad más candente

slideshare 1-Nanophysics-quantumwells,wires and dots
slideshare 1-Nanophysics-quantumwells,wires and dotsslideshare 1-Nanophysics-quantumwells,wires and dots
slideshare 1-Nanophysics-quantumwells,wires and dots
GURULAKSHMIMR
 
PPT thesis defense_nikhil
PPT thesis defense_nikhilPPT thesis defense_nikhil
PPT thesis defense_nikhil
Nikhil Jain
 

La actualidad más candente (20)

Superconductivity
SuperconductivitySuperconductivity
Superconductivity
 
Superconductivity
SuperconductivitySuperconductivity
Superconductivity
 
Mn alcu2 heusler compound
Mn alcu2 heusler compoundMn alcu2 heusler compound
Mn alcu2 heusler compound
 
Hetero junction
Hetero junctionHetero junction
Hetero junction
 
graphene.pdf
graphene.pdfgraphene.pdf
graphene.pdf
 
Superconductivity and new superconductors
Superconductivity and new superconductorsSuperconductivity and new superconductors
Superconductivity and new superconductors
 
Introduction to DFT Part 1
Introduction to DFT Part 1 Introduction to DFT Part 1
Introduction to DFT Part 1
 
Graphene MOSFET
Graphene MOSFETGraphene MOSFET
Graphene MOSFET
 
06 chapter1
06 chapter106 chapter1
06 chapter1
 
slideshare 1-Nanophysics-quantumwells,wires and dots
slideshare 1-Nanophysics-quantumwells,wires and dotsslideshare 1-Nanophysics-quantumwells,wires and dots
slideshare 1-Nanophysics-quantumwells,wires and dots
 
MoS2
MoS2MoS2
MoS2
 
Giant magnetoresistance ppt
Giant magnetoresistance pptGiant magnetoresistance ppt
Giant magnetoresistance ppt
 
Ldb Convergenze Parallele_08
Ldb Convergenze Parallele_08Ldb Convergenze Parallele_08
Ldb Convergenze Parallele_08
 
Phonons lecture
Phonons lecturePhonons lecture
Phonons lecture
 
Exchange Bias
Exchange Bias Exchange Bias
Exchange Bias
 
Michelson Morley experiment
Michelson Morley experiment Michelson Morley experiment
Michelson Morley experiment
 
Giant magnetoresistance
Giant magnetoresistanceGiant magnetoresistance
Giant magnetoresistance
 
Dft calculation by vasp
Dft calculation by vaspDft calculation by vasp
Dft calculation by vasp
 
Superconductivity
SuperconductivitySuperconductivity
Superconductivity
 
PPT thesis defense_nikhil
PPT thesis defense_nikhilPPT thesis defense_nikhil
PPT thesis defense_nikhil
 

Destacado

Josephson effect presentation
Josephson effect presentationJosephson effect presentation
Josephson effect presentation
barbercummings
 
Superconductivity(as macroscopic phenomena) term paper presentation
Superconductivity(as macroscopic phenomena) term paper presentationSuperconductivity(as macroscopic phenomena) term paper presentation
Superconductivity(as macroscopic phenomena) term paper presentation
sujeet1022
 
The Fermi Level 1
The Fermi Level 1The Fermi Level 1
The Fermi Level 1
RDaCampo
 
Pertemuan 7 vibrational properties-lattice
Pertemuan 7   vibrational properties-latticePertemuan 7   vibrational properties-lattice
Pertemuan 7 vibrational properties-lattice
jayamartha
 

Destacado (20)

Josephson effect presentation
Josephson effect presentationJosephson effect presentation
Josephson effect presentation
 
Wiedemann-Franz Law for Magnon Transport
Wiedemann-Franz Law for Magnon TransportWiedemann-Franz Law for Magnon Transport
Wiedemann-Franz Law for Magnon Transport
 
Magnonic Wiedemann-Franz Law
Magnonic Wiedemann-Franz LawMagnonic Wiedemann-Franz Law
Magnonic Wiedemann-Franz Law
 
Suppl. Mat. for magnon WF law
Suppl. Mat. for magnon WF lawSuppl. Mat. for magnon WF law
Suppl. Mat. for magnon WF law
 
Superconductivity(as macroscopic phenomena) term paper presentation
Superconductivity(as macroscopic phenomena) term paper presentationSuperconductivity(as macroscopic phenomena) term paper presentation
Superconductivity(as macroscopic phenomena) term paper presentation
 
Magnonic Quantum Hall Effect & the Wiedemann-Franz Law
Magnonic Quantum Hall Effect & the Wiedemann-Franz LawMagnonic Quantum Hall Effect & the Wiedemann-Franz Law
Magnonic Quantum Hall Effect & the Wiedemann-Franz Law
 
マグノンWiedemann-Franz則
マグノンWiedemann-Franz則マグノンWiedemann-Franz則
マグノンWiedemann-Franz則
 
Sonjoy kundu
Sonjoy kunduSonjoy kundu
Sonjoy kundu
 
The Fermi Level 1
The Fermi Level 1The Fermi Level 1
The Fermi Level 1
 
Crystal imperfections
Crystal imperfections Crystal imperfections
Crystal imperfections
 
Pertemuan 7 vibrational properties-lattice
Pertemuan 7   vibrational properties-latticePertemuan 7   vibrational properties-lattice
Pertemuan 7 vibrational properties-lattice
 
量子アニーリングを用いたクラスタ分析 (QIT32)
量子アニーリングを用いたクラスタ分析 (QIT32)量子アニーリングを用いたクラスタ分析 (QIT32)
量子アニーリングを用いたクラスタ分析 (QIT32)
 
5.Hall Effect
5.Hall Effect5.Hall Effect
5.Hall Effect
 
Crystal dynamics
Crystal dynamicsCrystal dynamics
Crystal dynamics
 
Squid2
Squid2Squid2
Squid2
 
The hall effect
The hall effectThe hall effect
The hall effect
 
Oleg malishev development of thin films for superconducting rf cavities in ...
Oleg malishev   development of thin films for superconducting rf cavities in ...Oleg malishev   development of thin films for superconducting rf cavities in ...
Oleg malishev development of thin films for superconducting rf cavities in ...
 
Band theory of semiconductor
Band theory of semiconductorBand theory of semiconductor
Band theory of semiconductor
 
Quantization
QuantizationQuantization
Quantization
 
次世代量子情報技術 量子アニーリングが拓く新時代 -- 情報処理と物理学のハーモニー --
次世代量子情報技術 量子アニーリングが拓く新時代 -- 情報処理と物理学のハーモニー --次世代量子情報技術 量子アニーリングが拓く新時代 -- 情報処理と物理学のハーモニー --
次世代量子情報技術 量子アニーリングが拓く新時代 -- 情報処理と物理学のハーモニー --
 

Similar a Josephson and Persistent Spin Currents in Bose-Einstein Condensates of Magnons

Coupling JOREK and STARWALL for Non-linear Resistive-wall Simulations
Coupling JOREK and STARWALL for Non-linear Resistive-wall SimulationsCoupling JOREK and STARWALL for Non-linear Resistive-wall Simulations
Coupling JOREK and STARWALL for Non-linear Resistive-wall Simulations
Rachel McAdams
 
Ugrad_conf_Foss_2015
Ugrad_conf_Foss_2015Ugrad_conf_Foss_2015
Ugrad_conf_Foss_2015
cjfoss
 
Antigravity: Biefeld-Brown Effect / ZPF field
Antigravity: Biefeld-Brown Effect / ZPF fieldAntigravity: Biefeld-Brown Effect / ZPF field
Antigravity: Biefeld-Brown Effect / ZPF field
Vapula
 

Similar a Josephson and Persistent Spin Currents in Bose-Einstein Condensates of Magnons (20)

Direct and indirect excitations in boron nitride: atomic structure and electr...
Direct and indirect excitations in boron nitride: atomic structure and electr...Direct and indirect excitations in boron nitride: atomic structure and electr...
Direct and indirect excitations in boron nitride: atomic structure and electr...
 
Possible Inverse Isotope effect in High Tc Superconductors Using the Non Vari...
Possible Inverse Isotope effect in High Tc Superconductors Using the Non Vari...Possible Inverse Isotope effect in High Tc Superconductors Using the Non Vari...
Possible Inverse Isotope effect in High Tc Superconductors Using the Non Vari...
 
Binping xiao superconducting surface impedance under radiofrequency field
Binping xiao   superconducting surface impedance under radiofrequency fieldBinping xiao   superconducting surface impedance under radiofrequency field
Binping xiao superconducting surface impedance under radiofrequency field
 
The integral & fractional quantum hall effect
The integral & fractional quantum hall effectThe integral & fractional quantum hall effect
The integral & fractional quantum hall effect
 
2DIAGNOSTICSe-p.ppt
2DIAGNOSTICSe-p.ppt2DIAGNOSTICSe-p.ppt
2DIAGNOSTICSe-p.ppt
 
Dipolar and Superexchange Interaction Model.pdf
Dipolar and Superexchange Interaction Model.pdfDipolar and Superexchange Interaction Model.pdf
Dipolar and Superexchange Interaction Model.pdf
 
Calculation of isotopic dipole moments with spectroscopic accuracy
Calculation of isotopic dipole moments with spectroscopic accuracyCalculation of isotopic dipole moments with spectroscopic accuracy
Calculation of isotopic dipole moments with spectroscopic accuracy
 
My presentation Jose M. Escalante Fernandez
My presentation Jose M. Escalante FernandezMy presentation Jose M. Escalante Fernandez
My presentation Jose M. Escalante Fernandez
 
Coupling JOREK and STARWALL for Non-linear Resistive-wall Simulations
Coupling JOREK and STARWALL for Non-linear Resistive-wall SimulationsCoupling JOREK and STARWALL for Non-linear Resistive-wall Simulations
Coupling JOREK and STARWALL for Non-linear Resistive-wall Simulations
 
Elecnem
ElecnemElecnem
Elecnem
 
Optical band gap measurement by diffuse reflectance spectroscopy (drs)
Optical band gap measurement by diffuse reflectance spectroscopy (drs)Optical band gap measurement by diffuse reflectance spectroscopy (drs)
Optical band gap measurement by diffuse reflectance spectroscopy (drs)
 
Ugrad_conf_Foss_2015
Ugrad_conf_Foss_2015Ugrad_conf_Foss_2015
Ugrad_conf_Foss_2015
 
Ugrad conf foss_2015
Ugrad conf foss_2015Ugrad conf foss_2015
Ugrad conf foss_2015
 
Paper
PaperPaper
Paper
 
Antigravity: Biefeld-Brown Effect / ZPF field
Antigravity: Biefeld-Brown Effect / ZPF fieldAntigravity: Biefeld-Brown Effect / ZPF field
Antigravity: Biefeld-Brown Effect / ZPF field
 
UHF Transistors
UHF TransistorsUHF Transistors
UHF Transistors
 
project
projectproject
project
 
Ion energy Distribution of Multi-Frequency Capacitively Coupled Plasma
Ion energy Distribution of Multi-Frequency Capacitively Coupled Plasma Ion energy Distribution of Multi-Frequency Capacitively Coupled Plasma
Ion energy Distribution of Multi-Frequency Capacitively Coupled Plasma
 
reeja seminar.pdf rotational spectroscopy
reeja seminar.pdf rotational spectroscopyreeja seminar.pdf rotational spectroscopy
reeja seminar.pdf rotational spectroscopy
 
Sonjoy
SonjoySonjoy
Sonjoy
 

Último

biology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGYbiology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGY
1301aanya
 
CYTOGENETIC MAP................ ppt.pptx
CYTOGENETIC MAP................ ppt.pptxCYTOGENETIC MAP................ ppt.pptx
CYTOGENETIC MAP................ ppt.pptx
Cherry
 
Porella : features, morphology, anatomy, reproduction etc.
Porella : features, morphology, anatomy, reproduction etc.Porella : features, morphology, anatomy, reproduction etc.
Porella : features, morphology, anatomy, reproduction etc.
Cherry
 
PODOCARPUS...........................pptx
PODOCARPUS...........................pptxPODOCARPUS...........................pptx
PODOCARPUS...........................pptx
Cherry
 
development of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virusdevelopment of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virus
NazaninKarimi6
 
Human genetics..........................pptx
Human genetics..........................pptxHuman genetics..........................pptx
Human genetics..........................pptx
Cherry
 
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
Scintica Instrumentation
 
Phenolics: types, biosynthesis and functions.
Phenolics: types, biosynthesis and functions.Phenolics: types, biosynthesis and functions.
Phenolics: types, biosynthesis and functions.
Cherry
 
Reboulia: features, anatomy, morphology etc.
Reboulia: features, anatomy, morphology etc.Reboulia: features, anatomy, morphology etc.
Reboulia: features, anatomy, morphology etc.
Cherry
 

Último (20)

biology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGYbiology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGY
 
module for grade 9 for distance learning
module for grade 9 for distance learningmodule for grade 9 for distance learning
module for grade 9 for distance learning
 
CYTOGENETIC MAP................ ppt.pptx
CYTOGENETIC MAP................ ppt.pptxCYTOGENETIC MAP................ ppt.pptx
CYTOGENETIC MAP................ ppt.pptx
 
GBSN - Microbiology (Unit 3)Defense Mechanism of the body
GBSN - Microbiology (Unit 3)Defense Mechanism of the body GBSN - Microbiology (Unit 3)Defense Mechanism of the body
GBSN - Microbiology (Unit 3)Defense Mechanism of the body
 
Porella : features, morphology, anatomy, reproduction etc.
Porella : features, morphology, anatomy, reproduction etc.Porella : features, morphology, anatomy, reproduction etc.
Porella : features, morphology, anatomy, reproduction etc.
 
PODOCARPUS...........................pptx
PODOCARPUS...........................pptxPODOCARPUS...........................pptx
PODOCARPUS...........................pptx
 
development of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virusdevelopment of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virus
 
Terpineol and it's characterization pptx
Terpineol and it's characterization pptxTerpineol and it's characterization pptx
Terpineol and it's characterization pptx
 
Plasmid: types, structure and functions.
Plasmid: types, structure and functions.Plasmid: types, structure and functions.
Plasmid: types, structure and functions.
 
Genetics and epigenetics of ADHD and comorbid conditions
Genetics and epigenetics of ADHD and comorbid conditionsGenetics and epigenetics of ADHD and comorbid conditions
Genetics and epigenetics of ADHD and comorbid conditions
 
Clean In Place(CIP).pptx .
Clean In Place(CIP).pptx                 .Clean In Place(CIP).pptx                 .
Clean In Place(CIP).pptx .
 
Human genetics..........................pptx
Human genetics..........................pptxHuman genetics..........................pptx
Human genetics..........................pptx
 
Thyroid Physiology_Dr.E. Muralinath_ Associate Professor
Thyroid Physiology_Dr.E. Muralinath_ Associate ProfessorThyroid Physiology_Dr.E. Muralinath_ Associate Professor
Thyroid Physiology_Dr.E. Muralinath_ Associate Professor
 
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
 
Phenolics: types, biosynthesis and functions.
Phenolics: types, biosynthesis and functions.Phenolics: types, biosynthesis and functions.
Phenolics: types, biosynthesis and functions.
 
Role of AI in seed science Predictive modelling and Beyond.pptx
Role of AI in seed science  Predictive modelling and  Beyond.pptxRole of AI in seed science  Predictive modelling and  Beyond.pptx
Role of AI in seed science Predictive modelling and Beyond.pptx
 
Genome sequencing,shotgun sequencing.pptx
Genome sequencing,shotgun sequencing.pptxGenome sequencing,shotgun sequencing.pptx
Genome sequencing,shotgun sequencing.pptx
 
Reboulia: features, anatomy, morphology etc.
Reboulia: features, anatomy, morphology etc.Reboulia: features, anatomy, morphology etc.
Reboulia: features, anatomy, morphology etc.
 
Selaginella: features, morphology ,anatomy and reproduction.
Selaginella: features, morphology ,anatomy and reproduction.Selaginella: features, morphology ,anatomy and reproduction.
Selaginella: features, morphology ,anatomy and reproduction.
 
FS P2 COMBO MSTA LAST PUSH past exam papers.
FS P2 COMBO MSTA LAST PUSH past exam papers.FS P2 COMBO MSTA LAST PUSH past exam papers.
FS P2 COMBO MSTA LAST PUSH past exam papers.
 

Josephson and Persistent Spin Currents in Bose-Einstein Condensates of Magnons

  • 1. Kouki Nakata Josephson Effects & Persistent Spin Currents in Magnon-BEC due to Berry Phase University of Basel, Switzerland 仲田光樹 Based on [arXiv:1406.7004] [Note] All the responsibility of this slide rests with “Kouki Nakata”; Sep. 2014.
  • 2. MAIN AIM  Persistent spin current  To CONTROL spin currents “Directmeasurement” (i.e. super spin current)
  • 3.  Rapid PROGRESS of experiments BACKGROUND  Spin-wave spin current  Quasi-equilibrium magnon-BEC  Achieved even at “room temperature” by using microwavepumping (Low temperature is not required.) Ferromagnetic insulator (YIG) [Y. Kajiwara et al., Nature 464, 262 (2010)] [S. O. Demokritov et al., Nature 443, 430 (2006)]
  • 4. BEC BEC “Bose–Einstein condensation of quasi-equilibrium magnons at room temperature under pumping” [S. O. Demokritov et al., Nature 443, 430 (2006)] Based on  Can be semi-classically treated  Canonically conjugate variables; [𝓝, 𝝑] 𝒂 = 𝓝 𝒆 𝒊𝝑 𝒂 ~ 𝐒+ = 𝐒 𝐱 + 𝐢𝐒 𝐲 𝝑~ Direction of spin 𝓝~ Length of macroscopicspin Semantic issue; Y. M. Bunkov and G. E. Volovik,arXiv:1003.4889. Textbook by Leggett D. Snoke, Nature 443, 403 (2006). C. D. Batista et al., RMP. 86, 563 (2014). Macroscopiccoherent stateQuantum effectsIndividual spins/quasi-particles Condensed time: over a few hundred ns. 𝓝;Magnon-BEC 𝝑; PhaseBEC Quasi-equilibrium Magnon-BEC Magnon picture Spin picture
  • 5. BEC BEC “Bose–Einstein condensation of quasi-equilibrium magnons at room temperature under pumping” [S. O. Demokritov et al., Nature 443, 430 (2006)] Based on 𝒂 = 𝓝 𝒆 𝒊𝝑 𝒂 ~ 𝐒+ = 𝐒 𝐱 + 𝐢𝐒 𝐲 Semantic issue; Y. M. Bunkov and G. E. Volovik,arXiv:1003.4889. Textbook by Leggett D. Snoke, Nature 443, 403 (2006). C. D. Batista et al., RMP. 86, 563 (2014). Macro scopic Spin BEC Quasi-equilibrium Magnon-BEC Magnon picture Macroscopiccoherent stateQuantum effectsIndividual spins/quasi-particles Condensed time: over a few hundred ns. 𝓝;Magnon-BEC 𝝑; Phase 𝝑~ Direction of spin 𝓝~ Length of macroscopicspin  Can be semi-classically treated  Canonically conjugate variables; [𝓝, 𝝑] Spin picture
  • 6. HOW TO ACHIEVE  Berry phase(Geometric phase)  Quasi-equilibrium magnon-BEC Persistent magnon-BEC current To electro-magnetically control spin currents “Macroscopic quantum effect (coherence)”  Spin currents; drastically ENHANCED !!
  • 7.  Spin Current ”Persistent magnon-BEC current” Under our control Directmeasurement  Electromagnet Towardthe direct measurementof spin (magnon) current  Berry Phase Aharonov-Casher(A-C)位相 Magnon-BEC (Ferromagnetic insulator) 「MacroscopicEffect」 CONCEPT
  • 8. OUTLINE  INTRODUCTION  REVIEW  SUMMARY  RESULT  Josephson effects  Persistent magnon-BEC current (i.e. super spin current)  Magnon-BEC Josephson junction (MJJ)  SYSTEM
  • 10.  Superconductors (SC) [Cooper pair] = [Boson] B. D. Josephson, [Phys.Lett.1,251 (1962)] 1962~ 𝑑 𝑑𝑡 ∆𝑁 𝑡 = 2J ℏ sin ∆𝜙(𝑡) 𝑑 𝑑𝑡 ∆𝜙 𝑡 = − 2𝑒𝑉(𝑡) ℏ Josephsonequations in SC  dc Josephson effect; 𝑑 𝑑𝑡 ∆𝜙 𝑡 ∝ 𝑉 𝑡 = 0  Relative phase is time-independent; 𝑑 𝑑𝑡 ∆𝜙 𝑡 = 0 ; Josephson current ”charge current” Josephson current J (tunneling)(1973) Textbook by Leggett w.f. w.f. Josephson Effects Universal Phenomenon of bosonic particles 𝑉(𝑡); the external voltage applied across thejunction J (> 0); the tunneling amplitude, ∆𝑁 ≔ the relative population, ∆𝜙; the relative phase• • • Figby [Fa Wang and Dung-Hai Lee, Science, 332 (2011) 200] Fig by[J. Q. You andF. Nori, Nature, 474, 589 (2011)] Picture by Googlesearch (HPfornovel prize).
  • 11.  Universal Phenomenon of bosonic particles Anderson et al., Science (‘95) Atomic BEC  Atomic BEC  Magnon BEC [Magnon] = [Bosonic quasi-particle] Josephson Effects B. D. Josephson, [Phys.Lett.1,251 (1962)] Berry Phase (Aharonov-Casher phase) 1962~ 1997~ Now We (Our present work)  Superconductors (SC) [Cooper pair] = [Boson] A. Smerzi etal., [PRL. 79, 4950 (1997)] [PRA, 59, 620 (1999)] [PRL.84, 4521 (2000)] Leggett[Rev.Mod.Phys. 73, 307 (2001)] M. Albiezetal.[PRL.95, 010402 (2005)] S. Levyetal. [Nature 449, 579 (2007)] (2001)(1973) Figby [Fa Wang and Dung-Hai Lee, Science, 332 (2011) 200] Picture by Googlesearch (HPfornovel prize).
  • 12. Berry Phases Aharonov- Bohm phase [Y. Aharonov and D. Bohm, Phys. Rev. 115, 485 (1959)] Aharonov- Casher phase [Y. Aharonov and A. Casher, PRL, 53, 319 (1984)] Charged particle; 𝑒 Magnetic dipole; 𝜇 𝜇 = 𝑔𝜇 𝐵 𝒆 𝑧 ;(Magnon) Magnetic vector potential 𝐴 [Electric field]×[Magnetic dipole]; 𝐸 × 𝜇 𝜑A−B = 𝑒 ℏ𝑐 𝐴 ∙ 𝑑𝑠 =: 𝑒 ℏ𝑐 𝛷A−B 𝜑A−C = 𝑔𝜇 𝐵 ℏ𝑐2 (𝐸 × 𝜇) ∙ 𝑑𝑠 𝐸 𝜇 𝐴 𝑒 𝛷A−B  Special casesof Berryphase [R.Mignani,J.Phys.A:Math. Gen. 24, L421 (1991)] [X.-G.Hea and B. McKellarb,Phys.Lett.B264, 129(1991)] A special case of Berry phase
  • 13. Microwave Pumping Magnon Magnon-BEC (macroscopicstate) Magnon pumping Room temperature [S.O. Demokritov etal.,Nature 443, 430 (2006)]  Excite additionalmagnons.  Create a gas of quasi-equilibriummagnons with a non-zerochemical potential.  A Bose condensate of magnons is formed. Microwave pumping  We can directlyinject magnons so that it becomes a macroscopicnumber(BEC). [K.Nakataand G. Tatara, J.Phys.Soc. Jpn. 80, 054602 (2011).] [K.Nakata,Doctoral Thesis,KyotoUniversity(2014).]
  • 14. Magnon Magnon-BEC (macroscopicstate) Magnon pumping Room temperature 𝒂 = 𝑵 𝐁𝐄𝐂 𝒆𝒊𝝁𝒕+𝒊𝜶  BEC order parameter Quasi-equilibrium Magnon-BEC [S.O. Demokritov etal.,Nature 443, 430 (2006)] 𝑛BEC~1018 − 1919cm−3 [Y. M. Bunkov andG. E. Volovik,arXiv:1003.4889.]
  • 15. [C.D. Batistaet al., Rev.Mod. Phys., 86, 563 (2014).] [Y. M. Bunkov andG. E. Volovik,arXiv:1003.4889.] Quasi-equilibrium Magnon-BEC  [Metastable state]≠[Groundstate] [J. Hick et al., Phys. Rev. B 86, 184417 (2012)] [T. Kloss et al., Phys. Rev. B 81, 104308 (2010)] [S. M. Rezende, Phys. Rev. B 79, 174411(2009)] [F. S. Vannucchi et al., Phys. Rev. B 82, 140404(R) (2010)] [F. S. Vannucchi et al., EPJB 86 (2013) 463] [S. M. Rezende, Phys. Rev. B 79, 174411 (2009)] Thermalizationprocess 𝒂 = 𝑵 𝐁𝐄𝐂 𝒆𝒊𝝁𝒕+𝒊𝜶  BEC order parameter [K.Nakataand G. Tatara, J.Phys.Soc. Jpn. 80, 054602 (2011).] [K.Nakata,Doctoral Thesis,KyotoUniversity(2014).]
  • 17. E = E𝐞 𝐲 𝒏 𝐋, 𝝑 𝐋 𝒏 𝐑, 𝝑 𝐑 𝐉 𝐞𝐱 J J 𝒏 𝐋, 𝝑 𝐋 𝒏 𝐑, 𝝑 𝐑 ΓL ΓR A-C phase: Magnon BEC Josephson Junction  Tunneling Hamiltonian (boundary spins)  Hamiltonian of each single FIs (Magnon BECs) with Diag 𝐉 = J{1, 1, 𝜂}, J < 0 E = E𝐞 𝐲 ℋH =(Gross-Pitaevskii Hamiltonian;ℋGP) Microscopic spin model Electric field (E = E𝐞 𝐲) Magnon picture −𝜽 𝐀−𝐂 𝜽 𝐀−𝐂 ( Jex ≪ J ) Magnon BEC (Holstein-Primakoff tr.); ~ 𝐒+ = 𝐒 𝐱 + 𝐢𝐒 𝐲
  • 18. Magnon picture BEC 𝒂 = 𝓝 𝒆𝒊𝝑 ~ 𝐒+ = 𝐒 𝐱 + 𝐢𝐒 𝐲 𝐉 𝐞𝐱 𝐉 𝐞𝐱 𝓝 𝐋, 𝝑 𝐋 𝓝 𝐑, 𝝑 𝐑 CALCULATION PROCEDURE Spin picture Canonically conjugate variables [𝓝, 𝝑] BEC BEC Macro scopic Spin Macro scopic Spin 𝓝;Magnon-BEC 𝝑; Phase 𝒩T: = 𝒩L + 𝒩R• Population imbalance; 𝐳 ≔ (𝒩L − 𝒩R)/𝒩T, • Relative phase; 𝛉 ≔ ϑR − ϑL ~Two macroscopicspins interact with each other through 𝐉 𝐞𝐱
  • 19. EACH VALUE E = E𝐞 𝐲 Each Value Our estimation The exchange interaction between the two FIs Jex = 1μeV The exchange interaction between the neighboring spins in a single FI J ≈ 0.1eV The density of magnpn-BECs [S. O. Demokritov et al., Nature (2006).] nBEC = 1019 cm−3 The applied magnetic field 𝐵 ≈ 1mT The applied electric field to the interface 𝐸 ≈ 5GV/m The width of the interface Δ𝑥 ≈ 10Å The lattice constant of a FI 𝛼 ≈ 1Å
  • 21. Josephson Equations in MJJ ;Renormalized time 𝜏 = 1 ↔ 𝑡 = 1ns (ex. K0/𝑆 ≡ Jex = 1μeV)  Josephson spin current ∝ nL, ϑL E = E𝐞 𝐲 nR, ϑR −𝜽 𝐀−𝐂 𝜽 𝐀−𝐂 Δ𝐸 & Λ; renormalized magnetic field difference & mag-mag interactionin terms of K0 (K0 ; tunnelingmagnitude)  nT: = nL + nR • Population imbalance; z ≔ (nL − nR)/nT • Relativephase; θ ≔ ϑR − ϑL • A-C phase; • ∆x; the width of the interface (~Å)
  • 22. [Period]~𝟔ns ac Josephson Effect ;Renormalized time 𝜏 = 1 ↔ 𝑡 = 1ns (ex. K0/𝑆 ≡ Jex = 1μeV)  No Aharonov-Casherphase; ~(Chemical potential difference) Condensed time: over a few hundreds ns. S. O.Demokritovetal., Nature 443, 430 (2006).
  • 23.  dc Josephson Effects 𝜽 = 𝟎
  • 24. Time-dependent Magnetic Field i) Increasing rate; 𝑩 𝟎 ii) Josephson equation (weak coupling) ∝ 𝑬; electric field ∝ 𝑩 𝟎; magnetic field (increasing rate) dc effect 𝜽 = 𝟎 (steady-state solution) θ(τ = 0) = 0 E = E𝐞 𝐲 θ ≔ ϑR − ϑL z ≔ (nL − nR)/nT nL, ϑL nR, ϑR −𝜽 𝐀−𝐂 𝜽 𝐀−𝐂Λ; renormalized mag-mag interaction in terms of K0 (K0 ; tunneling magnitude) UL UR Jex ≪ J
  • 25. dc Josephson Effect 0 𝜏 = 1 ⟷ 𝑡~1ns 𝜽 ≠ 𝟎 𝜽 = 𝟎(+ small oscillationin “z”)  AtomicBEC;A. Smerzi etal., [PRL. 79, 4950 (1997)] [PRA, 59, 620 (1999)] [PRL.84, 4521 (2000)]
  • 26. dc-ac Transition; 𝐳 𝟎 = 𝐁 𝟎/𝚲 0  (c) dc-ac transition; 𝒛 𝟎 ≈ 𝟎. 𝟕𝟐𝟓 𝑧0 = 0.10 𝑧0 = 0.724 𝑧0 = 0.726 𝑧0 = 1.1 dc-ac Transition  (d) dc-ac transition; 𝒛 𝟎 ≈ 𝟏 𝑧0 = 0.726 𝑧0 = 0.726 Recovery due to A-C phase 𝜏 = 1 ⟷ 𝑡~1ns𝜏 = 1 ⟷ 𝑡~1ns dc effect ac effect dc effect ac effect  Atomic BEC; A. Smerzi et al., [PRL. 79, 4950 (1997)] [PRA, 59, 620 (1999)] [PRL. 84, 4521 (2000)]
  • 28. Magnon-BEC Ring ・Electric-gradient flux  Single-valuednessof the BEC wave function In analogy to superconductingrings 𝑝 ∈ ℤ; phase winding number ・Electric flux quantum  Persistent magnon-BEC current The A-C phase in the ring Quantized electric-gradientflux 𝐄(𝜌, 𝜑) =
  • 29. Direct Measurement ≫ 10−13 V nBEC = 1019cm−3 J ≈ 0.1eV [F. Meier and D. L., PRL 90, 167204 (2003).]  [Persistentmagnon-BEC current 𝐈 𝐁𝐄𝐂] = [Steady flow of the magnetic dipoles] (i.e. magnons or magnetic moment 𝑔𝜇 𝐵 𝒆 𝑧)  Moving magnetic dipoles  “Electric dipole fields 𝐄 𝐦”  Voltage drop 𝐕 𝐦. S. O. Demokritov et al., Nature (2006). ; Spin chains Largely enhanced  due to “Macroscopic coherence” [D.Loss and P.M. Goldbart,PLA215, 197 (1996)] 𝐕 𝐦 𝜌0 = 1mm 𝑟0 = 1mm Vm~1nV 𝑔 = 2, 𝑆 = 1/2 × 𝟏𝟎, 𝟎𝟎𝟎 times!! 𝑔𝜇 𝐵 𝒆 𝑧 𝑅 ≈ 10mm 𝑝 ≈ 50 (Phase winding number;𝜙 = 𝑝𝜙0 )
  • 31. Analogous Phenomenon Magnon Josephson effect Magnon Hall effect Dzyaloshinskii-Moriya interaction Temperature gradient ≈ Onose et al. [Science 329, 297 (2010)] [Josephson spin current] ⊥ [Electric field] [Thermal spin current] ⊥ [temperature gradient] ≈ Key point; Transverse spin currents Picture from [Science 329, 297 (2010)]
  • 32. SIGNIFICANCE The Bose Josephson junction (BJJ) of atomic BEC 𝜽 𝐀−𝐂 = 𝟎 The magnon Josephson junction (MJJ) M. Albiez et al. [PRL. 95, 010402 (2005)] S. Levy et al. [Nature 449, 579 (2007)] Leggett [Rev. Mod. Phys. 73, 307 (2001)] A. Smerzi et al., [PRL. 79, 4950 (1997)] [PRA, 59, 620 (1999)] [PRL. 84, 4521 (2000)] [Theory] [Experiment]  Exact dc Josephson effect ・Time-dependent magnetic field ・Aharonov-Casher phase ・ac-dc transition ・Persistent magnon-BEC current  Magnon-interferenceAharonov-Casher phase Cold atom [Our work on MJJ] = [The generalization ofthe preceding studies on BJJ] Picture byGoogle search.
  • 33. LAST MESSAGE Phys. Lett. A, 96 (1983), p. 365  Our work [arXiv:1406.7004] Persistent (charge) current due to the Aharonov-Bohm phase Persistent “magnon-BEC” current due to the Aharonov-Casher phase K. N., K. A. van Hoogdalem, P. Simon, and D. Loss
  • 34. SUMMARY “JosephsonEffects& PersistentSpinCurrentsin Magnon-BECduetoBerryPhase” I). How to electromagnetically control Josephson spin currents  [Period of ac Josephson effect]~10ns III). How to directly measurethe Josephson magnon-BEC currents  The resulting voltage drop from the flow of the magnons (i.e. magnetic dipoles).  It is largely enhanced due the macroscopic coherence of magnon-BECs; Vm~1nV ≫ 10−13 V  This method is applicable to Josephson junction; 0 ≤ Vm ≤ 1𝜇V due to ac or dc effects. II). Persistentmagnon-BEC current (i.e. super spin current) due to the Berry phase  It is quantized in the magnon-BEC ring. Regarding macroscopic quantumself-trapping, please see the preprint [arXiv:1406.7004]. Each Value Our estimation The exchange interactionbetweenthe twoFIs Jex = 1μeV The exchange interactionbetweenthe neighboringspinsinasingle FI J ≈ 0.1eV The densityof magnpn-BECs[S.O.Demokritov etal.,Nature (2006).] nBEC = 1019cm−3 The appliedmagneticfield 𝐵 ≈ 1mT The appliedelectricfieldtothe interface 𝐸 ≈ 5GV/m The widthof the interface (The lattice constant 𝛼 ≈ 1Å) Δ𝑥 ≈ 10Å Based on [arXiv:1406.7004] K. N., K. A. van Hoogdalem, P. Simon, and D. Loss