SlideShare una empresa de Scribd logo
1 de 53
Descargar para leer sin conexión
Chord of Contact         y
                                 b
                                              T  x0 , y0 
                      -a                    a x

                                -b

From an external point T, two tangents may be drawn.
Chord of Contact
                                y
                                 b
                                         P x1 , y1 
                                                   T  x0 , y0 
                      -a                     a x

                                -b

From an external point T, two tangents may be drawn.
                             xx yy
   tangent at P has equation 12  12  1
                             a    b
Chord of Contact
                                y
                                 b
                                         P x1 , y1 
                                                   T  x0 , y0 
                      -a                     a x
                                          Q  x2 , y 2 
                                -b

From an external point T, two tangents may be drawn.
                             xx yy
   tangent at P has equation 12  12  1
                             a    b
                             xx y y
   tangent at Q has equation 22  22  1
                             a     b
Chord of Contact
                                y
                                 b
                                         P x1 , y1 
                                                   T  x0 , y0 
                      -a                     a x
                                          Q  x2 , y 2 
                                -b

From an external point T, two tangents may be drawn.
                             xx yy
   tangent at P has equation 12  12  1
                             a    b
                             xx y y
   tangent at Q has equation 22  22  1
Now T lies on both lines,    a     b
Chord of Contact
                              y
                               b
                                       P x1 , y1 
                                                 T  x0 , y0 
                     -a                    a x
                                        Q  x2 , y 2 
                              -b

From an external point T, two tangents may be drawn.
                              xx yy
   tangent at P has equation 12  12  1
                              a     b
                              xx y y
   tangent at Q has equation 22  22  1
Now T lies on both lines,     a      b
                          xx yy                x2 x0 y2 y0
                        1 2 0  1 2 0  1 and    2
                                                     2 1
                           a     b              a     b
y
                                                 x2 x0 y2 y0
                          b                              2 1
                                   P x1 , y1  a
                                                     2
                                                           b
                                             T  x0 , y0 
                -a                     a x
                                    Q  x2 , y 2          x1 x0 y1 y0
                                                                 2 1
                                                              2
                         -b                                 a     b


Thus P and Q both must lie on a line with equation;
y
                                                 x2 x0 y2 y0
                          b                              2 1
                                   P x1 , y1  a
                                                     2
                                                           b
                                             T  x0 , y0 
                -a                     a x
                                    Q  x2 , y 2          x1 x0 y1 y0
                                                                 2 1
                                                              2
                         -b                                 a     b


Thus P and Q both must lie on a line with equation;
                        x0 x y0 y
                          2
                             2 1
                        a    b
y
                                                 x2 x0 y2 y0
                          b                              2 1
                                   P x1 , y1  a
                                                     2
                                                           b
                                             T  x0 , y0 
                -a                     a x
                                    Q  x2 , y 2          x1 x0 y1 y0
                                                                 2 1
                                                              2
                         -b                                 a     b


Thus P and Q both must lie on a line with equation;
                        x0 x y0 y
                          2
                             2 1
                        a    b
which must be the line PQ i.e. chord of contact
y
                                                 x2 x0 y2 y0
                          b                              2 1
                                   P x1 , y1  a
                                                     2
                                                           b
                                             T  x0 , y0 
                -a                     a x
                                    Q  x2 , y 2          x1 x0 y1 y0
                                                                 2 1
                                                              2
                         -b                                 a     b


Thus P and Q both must lie on a line with equation;
                        x0 x y0 y
                          2
                             2 1
                        a    b
which must be the line PQ i.e. chord of contact

Similarly the chord of contact of the hyperbola has the equation;
                        x0 x y0 y
                          2
                             2 1
                        a    b
Rectangular Hyperbola             y
                                 c
                            P cp, 
                                 p     c
                                       Q cq, 
                                         q
                                             x
                 xy  c 2


 1) Show that equation PQ is x  pqy  c p  q  (1)
Rectangular Hyperbola                y
                                    c
                            P cp, 
                                    p        c
                                             Q cq, 
                             T  x0 , y0      q
                                                   x
                 xy  c 2


 1) Show that equation PQ is x  pqy  c p  q  (1)
                                 2cpq 2c 
 2) Show that T has coordinates       ,     
                                 p  q p  q
Rectangular Hyperbola                y
                                    c
                            P cp, 
                                    p        c
                                             Q cq, 
                             T  x0 , y0      q
                                                   x
                 xy  c 2


 1) Show that equation PQ is x  pqy  c p  q  (1)
                                 2cpq 2c 
 2) Show that T has coordinates       ,     
                                 p  q p  q
         2cpq                  2c
   x0                  y0 
         pq                  pq
Rectangular Hyperbola                  y
                                      c
                              P cp, 
                                      p        c
                                               Q cq, 
                               T  x0 , y0      q
                                                     x
                   xy  c 2


 1) Show that equation PQ is x  pqy  c p  q  (1)
                                    2cpq 2c 
 2) Show that T has coordinates           ,       
                                    p  q p  q
         2cpq                     2c
   x0                    y0 
         pq                     pq
   Substituting into (1); x   p  q x0 y  c p  q 
                                  2c
Rectangular Hyperbola                  y
                                      c
                              P cp, 
                                      p        c
                                               Q cq, 
                               T  x0 , y0      q
                                                     x
                   xy  c 2


 1) Show that equation PQ is x  pqy  c p  q  (1)
                                    2cpq 2c 
 2) Show that T has coordinates           ,        
                                    p  q p  q
         2cpq                     2c
   x0                    y0 
         pq                     pq
   Substituting into (1); x   p  q x0 y  c p  q 
                                  2c
                                    2cx0       2c 2
                                x        y
                                    2cy0        y0
Rectangular Hyperbola                  y
                                      c
                              P cp, 
                                      p        c
                                               Q cq, 
                               T  x0 , y0      q
                                                     x
                   xy  c 2


 1) Show that equation PQ is x  pqy  c p  q  (1)
                                    2cpq 2c 
 2) Show that T has coordinates           ,        
                                    p  q p  q
         2cpq                     2c
   x0                    y0 
         pq                     pq
   Substituting into (1); x   p  q x0 y  c p  q 
                                  2c
                                    2cx0       2c 2
                                x        y             xy0  x0 y  2c 2
                                    2cy0        y0
Geometric Properties
Geometric Properties
(1) The chord of contact from a point on the directrix is a focal
    chord.
Geometric Properties
(1) The chord of contact from a point on the directrix is a focal
    chord.
ellipse
                                             a , y  i.e. x  a
As T is on the directrix it has coordinates       0       0
                                             e               e
Geometric Properties
(1) The chord of contact from a point on the directrix is a focal
    chord.
ellipse
                                             a , y  i.e. x  a
As T is on the directrix it has coordinates       0        0
                                             e                  e
 chord of contact will have the equation;            a
                                                    x 
                                                       e   yy0  1
                                                      a2       b2
                                                         x yy0
                                                             2 1
                                                        ae b
Geometric Properties
(1) The chord of contact from a point on the directrix is a focal
    chord.
ellipse
                                             a , y  i.e. x  a
As T is on the directrix it has coordinates       0        0
                                             e                  e
 chord of contact will have the equation;            a
                                                    x 
                                                       e   yy0  1
                                                      a2       b2
                                                         x yy0
                                                             2 1
Substitute in focus (ae,0)                              ae b
Geometric Properties
(1) The chord of contact from a point on the directrix is a focal
    chord.
ellipse
                                             a , y  i.e. x  a
As T is on the directrix it has coordinates       0        0
                                             e                  e
 chord of contact will have the equation;            a
                                                    x 
                                                       e   yy0  1
                                                      a2       b2
                                                         x yy0
                                                             2 1
Substitute in focus (ae,0)                              ae b
     ae
          0  1 0
     ae
             1
Geometric Properties
(1) The chord of contact from a point on the directrix is a focal
    chord.
ellipse
As T is on the directrix it has coordinates    a , y  i.e. x  a
                                                      0        0
                                                e                  e
 chord of contact will have the equation;               a
                                                       x 
                                                          e   yy0  1
                                                         a2       b2
                                                            x yy0
                                                                2 1
Substitute in focus (ae,0)                                 ae b
     ae
          0  1 0           focus lies on chord of contact
     ae
                                 i.e. it is a focal chord
             1
(2) That part of the tangent between the point of contact and the
    directrix subtends a right angle at the corresponding focus.
                                       y
                                           Pa cos , b sin  
                                                                  T
                                             S                        x

                                                                     a
                                                                  x
                                                                     e
(2) That part of the tangent between the point of contact and the
    directrix subtends a right angle at the corresponding focus.
                                       y
                                           Pa cos , b sin  
                                                                  T

Prove: PST  90                            S                        x

                                                                     a
                                                                  x
                                                                     e
(2) That part of the tangent between the point of contact and the
     directrix subtends a right angle at the corresponding focus.
                                        y
                                            Pa cos , b sin  
                                                                   T

Prove: PST  90                             S                        x
                       x cos y sin 
equation of tangent is               1                              a
             a            a       b                                x
               cos                                                   e
          a            y sin 
when x  , e                  1
          e     a         b
(2) That part of the tangent between the point of contact and the
     directrix subtends a right angle at the corresponding focus.
                                          y
                                                Pa cos , b sin  
                                                                       T

Prove: PST  90                                 S                        x
                       x cos y sin 
equation of tangent is                  1                               a
             a            a         b                                  x
               cos                                                       e
          a            y sin 
when x  , e                  1
          e     a         b
               cos y sin 
                              1
                 e        b
                       y sin  e  cos
                               
                          b          e
                                 be  cos 
                             y
                                   e sin 
(2) That part of the tangent between the point of contact and the
     directrix subtends a right angle at the corresponding focus.
                                          y
                                                Pa cos , b sin  
                                                                       T

Prove: PST  90                                 S                        x
                       x cos y sin 
equation of tangent is                  1                               a
             a            a         b                                  x
               cos                                                       e
          a            y sin 
when x  , e                  1
          e     a         b
               cos y sin 
                              1
                 e        b
                       y sin  e  cos                    a be  cos  
                                                     T  ,
                                                                         
                          b          e                   e    e sin  
                                 be  cos 
                             y
                                   e sin 
b sin   0
mPS 
     a cos  ae
        b sin 
   
     acos  e 
b sin   0         be  cos 
mPS                                   0
     a cos  ae    mTS  e sin 
        b sin                 a
                                  ae
   
     acos  e               e
                          be  cos       e
                                      
                            e sin       a  ae 2
b sin   0         be  cos 
mPS                                      0
     a cos  ae    mTS  e sin 
        b sin                  a
                                    ae
   
     acos  e                 e
                          be  cos          e
                                         
                              e sin        a  ae 2
                           be  cos 
                        
                          a 1  e 2 sin 
b sin   0         be  cos 
mPS                                      0
     a cos  ae    mTS  e sin 
        b sin                  a
                                    ae
   
     acos  e                 e
                          be  cos          e
                                         
                              e sin        a  ae 2
                           be  cos 
                        
                          a 1  e 2 sin 
                           be  cos 
                          2
                          a 1  e 2 
                                       sin 
                              a
b sin   0         be  cos 
mPS                                      0
     a cos  ae    mTS  e sin 
        b sin                  a
                                    ae
   
     acos  e                 e
                          be  cos          e
                                         
                              e sin        a  ae 2
                           be  cos 
                        
                          a 1  e 2 sin 
                            be  cos 
                          2
                           a 1  e 2 
                                        sin 
                               a
                           ae  cos 
                         
                             b sin 
b sin   0                    be  cos 
mPS                                                   0
       a cos  ae               mTS  e sin 
          b sin                             a
                                                 ae
     
       acos  e                            e
                                       be  cos          e
                                                      
                                           e sin        a  ae 2
                                        be  cos 
                                     
                                       a 1  e 2 sin 
                                        be  cos 
                                     2
                                      a 1  e 2 
                                                   sin 
                                           a
                                      ae  cos 
                                    
                                         b sin 
              b sin       ae  cos 
mPS  mTS               
            acos  e      b sin 
           1
b sin   0                  be  cos 
mPS                                                 0
       a cos  ae             mTS  e sin 
          b sin                           a
                                               ae
     
       acos  e                          e
                                     be  cos          e
                                                    
                                         e sin        a  ae 2
                                      be  cos 
                                   
                                     a 1  e 2 sin 
                                        be  cos 
                                     2
                                      a 1  e 2 
                                                   sin 
                                           a
                                      ae  cos 
                                    
                                         b sin 
              b sin       ae  cos 
mPS  mTS               
            acos  e      b sin                   PST  90
           1
(3) Reflection Property
    Tangent to an ellipse at a point P on it is equally inclined to
    the focal chords through P.
                       T                  y
                                               P
                                                                  T
                                      S        S                     x
(3) Reflection Property
      Tangent to an ellipse at a point P on it is equally inclined to
      the focal chords through P.
                         T                  y
                                                 P
                                                                    T
                                        S        S                     x


Prove: SPT  S PT 
(3) Reflection Property
       Tangent to an ellipse at a point P on it is equally inclined to
       the focal chords through P.
                          T                  y
                                                  P
                                                                     T
                                         S        S                     x


Prove: SPT  S PT 
  Construct a line || y axis passing through P
(3) Reflection Property
       Tangent to an ellipse at a point P on it is equally inclined to
       the focal chords through P.
                           T                  y
                                                      P
                      N                                             N
                                                                     T
                                          S          S                  x


Prove: SPT  S PT 
  Construct a line || y axis passing through P
   PT PN
                 (ratio of intercepts of || lines)
   PT  PN 
(3) Reflection Property
       Tangent to an ellipse at a point P on it is equally inclined to
       the focal chords through P.
                           T                  y
                                                      P
                      N                                             N
                                                                     T
                                          S          S                  x


Prove: SPT  S PT 
  Construct a line || y axis passing through P
  PT PN
                 (ratio of intercepts of || lines)
  PT  PN 
   PT PT 
      
   PN PN 
ePN  PS   and   ePN   PS 
ePN  PS    and ePN   PS 
         PT PT 
            
         PS PS 
          e    e
ePN  PS    and ePN   PS 
         PT PT 
            
         PS PS 
          e    e
         PT PT 
             
         PS PS 
ePN  PS    and ePN   PS 
         PT PT 
            
         PS PS 
          e    e
         PT PT 
             
         PS PS 
    PST  PS T   90   (proven in property (2))
ePN  PS      and ePN   PS 
           PT PT 
              
           PS PS 
            e    e
           PT PT 
               
           PS PS 
     PST  PS T   90   (proven in property (2))

 sec SPT  sec S PT 
ePN  PS      and ePN   PS 
           PT PT 
              
           PS PS 
            e    e
           PT PT 
               
           PS PS 
     PST  PS T   90   (proven in property (2))

 sec SPT  sec S PT 

     SPT  S PT 
ePN  PS      and ePN   PS 
           PT PT 
              
           PS PS 
            e    e
           PT PT 
               
           PS PS 
     PST  PS T   90   (proven in property (2))

 sec SPT  sec S PT 

     SPT  S PT 
e.g. Find the cartesian equation of z  2  z  2  8
e.g. Find the cartesian equation of z  2  z  2  8
       The sum of the focal lengths of an ellipse is constant
e.g. Find the cartesian equation of z  2  z  2  8
       The sum of the focal lengths of an ellipse is constant

  2a  8
   a4
e.g. Find the cartesian equation of z  2  z  2  8
       The sum of the focal lengths of an ellipse is constant

  2a  8          ae  2
   a4            4e  2
                        1
                   e
                        2
e.g. Find the cartesian equation of z  2  z  2  8
       The sum of the focal lengths of an ellipse is constant

  2a  8          ae  2             b 2  a 2 1  e 2 
   a4            4e  2                       1
                                     b 2  16 1  
                   e
                        1                      4
                        2                 12
e.g. Find the cartesian equation of z  2  z  2  8
       The sum of the focal lengths of an ellipse is constant

  2a  8          ae  2             b 2  a 2 1  e 2 
   a4            4e  2                       1
                                     b 2  16 1  
                   e
                        1                      4
                        2                 12

                                     x2 y2
               locus is the ellipse      1
                                     16 12
e.g. Find the cartesian equation of z  2  z  2  8
       The sum of the focal lengths of an ellipse is constant

  2a  8          ae  2             b 2  a 2 1  e 2 
   a4            4e  2                       1
                                     b 2  16 1  
                   e
                        1                      4
                        2                 12

                                     x2 y2
               locus is the ellipse      1
                                     16 12




                      Exercise 6E; 1, 2, 4, 7, 8, 10

Más contenido relacionado

La actualidad más candente

partial diffrentialequations
partial diffrentialequationspartial diffrentialequations
partial diffrentialequations
8laddu8
 
logic and set theory
logic and set theorylogic and set theory
logic and set theory
Nathan Trillo
 
Unit 1 a) Meaning nature and functions of Assessment
Unit 1 a) Meaning nature and functions of AssessmentUnit 1 a) Meaning nature and functions of Assessment
Unit 1 a) Meaning nature and functions of Assessment
Janardan Mogare
 
6.2 the indefinite integral
6.2 the indefinite integral 6.2 the indefinite integral
6.2 the indefinite integral
dicosmo178
 

La actualidad más candente (20)

partial diffrentialequations
partial diffrentialequationspartial diffrentialequations
partial diffrentialequations
 
What is chi square test
What  is  chi square testWhat  is  chi square test
What is chi square test
 
CONTINUITY & DIFFERENTIABILITY CLASS XII MODULE 1
CONTINUITY & DIFFERENTIABILITY CLASS XII MODULE 1CONTINUITY & DIFFERENTIABILITY CLASS XII MODULE 1
CONTINUITY & DIFFERENTIABILITY CLASS XII MODULE 1
 
Two Proportions
Two Proportions  Two Proportions
Two Proportions
 
Supremum And Infimum
Supremum And InfimumSupremum And Infimum
Supremum And Infimum
 
Lesson 30: The Definite Integral
Lesson 30: The  Definite  IntegralLesson 30: The  Definite  Integral
Lesson 30: The Definite Integral
 
Hypothesis testing
Hypothesis testingHypothesis testing
Hypothesis testing
 
Chapter 4 Cyclic Groups
Chapter 4 Cyclic GroupsChapter 4 Cyclic Groups
Chapter 4 Cyclic Groups
 
logic and set theory
logic and set theorylogic and set theory
logic and set theory
 
Parallelism and Perpendicularity.pptx
Parallelism and Perpendicularity.pptxParallelism and Perpendicularity.pptx
Parallelism and Perpendicularity.pptx
 
Unit 1 a) Meaning nature and functions of Assessment
Unit 1 a) Meaning nature and functions of AssessmentUnit 1 a) Meaning nature and functions of Assessment
Unit 1 a) Meaning nature and functions of Assessment
 
6.2 the indefinite integral
6.2 the indefinite integral 6.2 the indefinite integral
6.2 the indefinite integral
 
1.7 angles and perpendicular lines
1.7 angles and perpendicular lines1.7 angles and perpendicular lines
1.7 angles and perpendicular lines
 
Chapter 5 part2- Sampling Distributions for Counts and Proportions (Binomial ...
Chapter 5 part2- Sampling Distributions for Counts and Proportions (Binomial ...Chapter 5 part2- Sampling Distributions for Counts and Proportions (Binomial ...
Chapter 5 part2- Sampling Distributions for Counts and Proportions (Binomial ...
 
MANOVA DUA JALUR_Nur Maulidiawati Rahman.pptx
MANOVA DUA JALUR_Nur Maulidiawati Rahman.pptxMANOVA DUA JALUR_Nur Maulidiawati Rahman.pptx
MANOVA DUA JALUR_Nur Maulidiawati Rahman.pptx
 
Metric space
Metric spaceMetric space
Metric space
 
Isomorphism
IsomorphismIsomorphism
Isomorphism
 
New item analysis
New item analysisNew item analysis
New item analysis
 
Makalah pegujian hipotesis mas
Makalah pegujian hipotesis masMakalah pegujian hipotesis mas
Makalah pegujian hipotesis mas
 
Group theory notes
Group theory notesGroup theory notes
Group theory notes
 

Similar a X2 T03 06 chord of contact and properties (2010)

X2 t03 06 chord of contact & properties (2013)
X2 t03 06 chord of contact & properties (2013)X2 t03 06 chord of contact & properties (2013)
X2 t03 06 chord of contact & properties (2013)
Nigel Simmons
 
X2 t03 06 chord of contact & properties (2012)
X2 t03 06 chord of contact & properties (2012)X2 t03 06 chord of contact & properties (2012)
X2 t03 06 chord of contact & properties (2012)
Nigel Simmons
 
11X1 T12 07 chord of contact (2011)
11X1 T12 07 chord of contact (2011)11X1 T12 07 chord of contact (2011)
11X1 T12 07 chord of contact (2011)
Nigel Simmons
 
11X1 T011 07 chord of contact (2012)
11X1 T011 07 chord of contact (2012)11X1 T011 07 chord of contact (2012)
11X1 T011 07 chord of contact (2012)
Nigel Simmons
 
11X1 T11 07 chord of contact (2010)
11X1 T11 07 chord of contact (2010)11X1 T11 07 chord of contact (2010)
11X1 T11 07 chord of contact (2010)
Nigel Simmons
 
002 equation of_a_line
002 equation of_a_line002 equation of_a_line
002 equation of_a_line
physics101
 
Special Techniques (Teknik Khusus)
Special Techniques (Teknik Khusus)Special Techniques (Teknik Khusus)
Special Techniques (Teknik Khusus)
Septiko Aji
 
P1 Graph Function Test
P1 Graph Function TestP1 Graph Function Test
P1 Graph Function Test
guest3952880
 
51955900 form-4-chapter-5
51955900 form-4-chapter-551955900 form-4-chapter-5
51955900 form-4-chapter-5
Ragulan Dev
 
Graphs of trigonometric functions
Graphs of trigonometric functionsGraphs of trigonometric functions
Graphs of trigonometric functions
Tarun Gehlot
 
Application of laplace(find k)
Application of  laplace(find k)Application of  laplace(find k)
Application of laplace(find k)
Hazirah Fiyra
 
009 solid geometry
009 solid geometry009 solid geometry
009 solid geometry
physics101
 
11X1 T12 07 chord of contact
11X1 T12 07 chord of contact11X1 T12 07 chord of contact
11X1 T12 07 chord of contact
Nigel Simmons
 
Module 11 graph of functions PMR
Module 11 graph of functions PMRModule 11 graph of functions PMR
Module 11 graph of functions PMR
roszelan
 
Linear conformal mapping
Linear conformal mappingLinear conformal mapping
Linear conformal mapping
Tarun Gehlot
 

Similar a X2 T03 06 chord of contact and properties (2010) (20)

X2 t03 06 chord of contact & properties (2013)
X2 t03 06 chord of contact & properties (2013)X2 t03 06 chord of contact & properties (2013)
X2 t03 06 chord of contact & properties (2013)
 
X2 t03 06 chord of contact & properties (2012)
X2 t03 06 chord of contact & properties (2012)X2 t03 06 chord of contact & properties (2012)
X2 t03 06 chord of contact & properties (2012)
 
11X1 T12 07 chord of contact (2011)
11X1 T12 07 chord of contact (2011)11X1 T12 07 chord of contact (2011)
11X1 T12 07 chord of contact (2011)
 
11X1 T011 07 chord of contact (2012)
11X1 T011 07 chord of contact (2012)11X1 T011 07 chord of contact (2012)
11X1 T011 07 chord of contact (2012)
 
11X1 T11 07 chord of contact (2010)
11X1 T11 07 chord of contact (2010)11X1 T11 07 chord of contact (2010)
11X1 T11 07 chord of contact (2010)
 
1 d wave equation
1 d wave equation1 d wave equation
1 d wave equation
 
002 equation of_a_line
002 equation of_a_line002 equation of_a_line
002 equation of_a_line
 
Special Techniques (Teknik Khusus)
Special Techniques (Teknik Khusus)Special Techniques (Teknik Khusus)
Special Techniques (Teknik Khusus)
 
P1 Graph Function Test
P1 Graph Function TestP1 Graph Function Test
P1 Graph Function Test
 
Figures
FiguresFigures
Figures
 
51955900 form-4-chapter-5
51955900 form-4-chapter-551955900 form-4-chapter-5
51955900 form-4-chapter-5
 
Graphs of trigonometric functions
Graphs of trigonometric functionsGraphs of trigonometric functions
Graphs of trigonometric functions
 
Figures
FiguresFigures
Figures
 
Figures
FiguresFigures
Figures
 
Application of laplace(find k)
Application of  laplace(find k)Application of  laplace(find k)
Application of laplace(find k)
 
009 solid geometry
009 solid geometry009 solid geometry
009 solid geometry
 
Em10 fl
Em10 flEm10 fl
Em10 fl
 
11X1 T12 07 chord of contact
11X1 T12 07 chord of contact11X1 T12 07 chord of contact
11X1 T12 07 chord of contact
 
Module 11 graph of functions PMR
Module 11 graph of functions PMRModule 11 graph of functions PMR
Module 11 graph of functions PMR
 
Linear conformal mapping
Linear conformal mappingLinear conformal mapping
Linear conformal mapping
 

Más de Nigel Simmons

12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
Nigel Simmons
 

Más de Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Último

Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
fonyou31
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
SoniaTolstoy
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
kauryashika82
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
PECB
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
heathfieldcps1
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
QucHHunhnh
 

Último (20)

Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdf
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
fourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writingfourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writing
 
Disha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfDisha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdf
 
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across Sectors
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdf
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communication
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
 

X2 T03 06 chord of contact and properties (2010)

  • 1. Chord of Contact y b T  x0 , y0  -a a x -b From an external point T, two tangents may be drawn.
  • 2. Chord of Contact y b P x1 , y1  T  x0 , y0  -a a x -b From an external point T, two tangents may be drawn. xx yy tangent at P has equation 12  12  1 a b
  • 3. Chord of Contact y b P x1 , y1  T  x0 , y0  -a a x Q  x2 , y 2  -b From an external point T, two tangents may be drawn. xx yy tangent at P has equation 12  12  1 a b xx y y tangent at Q has equation 22  22  1 a b
  • 4. Chord of Contact y b P x1 , y1  T  x0 , y0  -a a x Q  x2 , y 2  -b From an external point T, two tangents may be drawn. xx yy tangent at P has equation 12  12  1 a b xx y y tangent at Q has equation 22  22  1 Now T lies on both lines, a b
  • 5. Chord of Contact y b P x1 , y1  T  x0 , y0  -a a x Q  x2 , y 2  -b From an external point T, two tangents may be drawn. xx yy tangent at P has equation 12  12  1 a b xx y y tangent at Q has equation 22  22  1 Now T lies on both lines, a b xx yy x2 x0 y2 y0  1 2 0  1 2 0  1 and 2  2 1 a b a b
  • 6. y x2 x0 y2 y0 b  2 1 P x1 , y1  a 2 b T  x0 , y0  -a a x Q  x2 , y 2  x1 x0 y1 y0  2 1 2 -b a b Thus P and Q both must lie on a line with equation;
  • 7. y x2 x0 y2 y0 b  2 1 P x1 , y1  a 2 b T  x0 , y0  -a a x Q  x2 , y 2  x1 x0 y1 y0  2 1 2 -b a b Thus P and Q both must lie on a line with equation; x0 x y0 y 2  2 1 a b
  • 8. y x2 x0 y2 y0 b  2 1 P x1 , y1  a 2 b T  x0 , y0  -a a x Q  x2 , y 2  x1 x0 y1 y0  2 1 2 -b a b Thus P and Q both must lie on a line with equation; x0 x y0 y 2  2 1 a b which must be the line PQ i.e. chord of contact
  • 9. y x2 x0 y2 y0 b  2 1 P x1 , y1  a 2 b T  x0 , y0  -a a x Q  x2 , y 2  x1 x0 y1 y0  2 1 2 -b a b Thus P and Q both must lie on a line with equation; x0 x y0 y 2  2 1 a b which must be the line PQ i.e. chord of contact Similarly the chord of contact of the hyperbola has the equation; x0 x y0 y 2  2 1 a b
  • 10. Rectangular Hyperbola y  c P cp,   p  c Q cq,   q x xy  c 2 1) Show that equation PQ is x  pqy  c p  q  (1)
  • 11. Rectangular Hyperbola y  c P cp,   p  c Q cq,  T  x0 , y0   q x xy  c 2 1) Show that equation PQ is x  pqy  c p  q  (1)  2cpq 2c  2) Show that T has coordinates  ,   p  q p  q
  • 12. Rectangular Hyperbola y  c P cp,   p  c Q cq,  T  x0 , y0   q x xy  c 2 1) Show that equation PQ is x  pqy  c p  q  (1)  2cpq 2c  2) Show that T has coordinates  ,   p  q p  q 2cpq 2c  x0  y0  pq pq
  • 13. Rectangular Hyperbola y  c P cp,   p  c Q cq,  T  x0 , y0   q x xy  c 2 1) Show that equation PQ is x  pqy  c p  q  (1)  2cpq 2c  2) Show that T has coordinates  ,   p  q p  q 2cpq 2c  x0  y0  pq pq Substituting into (1); x   p  q x0 y  c p  q  2c
  • 14. Rectangular Hyperbola y  c P cp,   p  c Q cq,  T  x0 , y0   q x xy  c 2 1) Show that equation PQ is x  pqy  c p  q  (1)  2cpq 2c  2) Show that T has coordinates  ,   p  q p  q 2cpq 2c  x0  y0  pq pq Substituting into (1); x   p  q x0 y  c p  q  2c 2cx0 2c 2 x y 2cy0 y0
  • 15. Rectangular Hyperbola y  c P cp,   p  c Q cq,  T  x0 , y0   q x xy  c 2 1) Show that equation PQ is x  pqy  c p  q  (1)  2cpq 2c  2) Show that T has coordinates  ,   p  q p  q 2cpq 2c  x0  y0  pq pq Substituting into (1); x   p  q x0 y  c p  q  2c 2cx0 2c 2 x y xy0  x0 y  2c 2 2cy0 y0
  • 17. Geometric Properties (1) The chord of contact from a point on the directrix is a focal chord.
  • 18. Geometric Properties (1) The chord of contact from a point on the directrix is a focal chord. ellipse  a , y  i.e. x  a As T is on the directrix it has coordinates  0 0  e  e
  • 19. Geometric Properties (1) The chord of contact from a point on the directrix is a focal chord. ellipse  a , y  i.e. x  a As T is on the directrix it has coordinates  0 0  e  e  chord of contact will have the equation; a x   e   yy0  1 a2 b2 x yy0  2 1 ae b
  • 20. Geometric Properties (1) The chord of contact from a point on the directrix is a focal chord. ellipse  a , y  i.e. x  a As T is on the directrix it has coordinates  0 0  e  e  chord of contact will have the equation; a x   e   yy0  1 a2 b2 x yy0  2 1 Substitute in focus (ae,0) ae b
  • 21. Geometric Properties (1) The chord of contact from a point on the directrix is a focal chord. ellipse  a , y  i.e. x  a As T is on the directrix it has coordinates  0 0  e  e  chord of contact will have the equation; a x   e   yy0  1 a2 b2 x yy0  2 1 Substitute in focus (ae,0) ae b ae  0  1 0 ae 1
  • 22. Geometric Properties (1) The chord of contact from a point on the directrix is a focal chord. ellipse As T is on the directrix it has coordinates   a , y  i.e. x  a 0 0  e  e  chord of contact will have the equation; a x   e   yy0  1 a2 b2 x yy0  2 1 Substitute in focus (ae,0) ae b ae  0  1 0  focus lies on chord of contact ae i.e. it is a focal chord 1
  • 23. (2) That part of the tangent between the point of contact and the directrix subtends a right angle at the corresponding focus. y Pa cos , b sin   T S x a x e
  • 24. (2) That part of the tangent between the point of contact and the directrix subtends a right angle at the corresponding focus. y Pa cos , b sin   T Prove: PST  90 S x a x e
  • 25. (2) That part of the tangent between the point of contact and the directrix subtends a right angle at the corresponding focus. y Pa cos , b sin   T Prove: PST  90 S x x cos y sin  equation of tangent is  1 a a a b x cos e a y sin  when x  , e  1 e a b
  • 26. (2) That part of the tangent between the point of contact and the directrix subtends a right angle at the corresponding focus. y Pa cos , b sin   T Prove: PST  90 S x x cos y sin  equation of tangent is  1 a a a b x cos e a y sin  when x  , e  1 e a b cos y sin   1 e b y sin  e  cos  b e be  cos  y e sin 
  • 27. (2) That part of the tangent between the point of contact and the directrix subtends a right angle at the corresponding focus. y Pa cos , b sin   T Prove: PST  90 S x x cos y sin  equation of tangent is  1 a a a b x cos e a y sin  when x  , e  1 e a b cos y sin   1 e b y sin  e  cos a be  cos    T  ,   b e e e sin   be  cos  y e sin 
  • 28. b sin   0 mPS  a cos  ae b sin   acos  e 
  • 29. b sin   0 be  cos  mPS  0 a cos  ae mTS  e sin  b sin  a  ae  acos  e  e be  cos  e   e sin  a  ae 2
  • 30. b sin   0 be  cos  mPS  0 a cos  ae mTS  e sin  b sin  a  ae  acos  e  e be  cos  e   e sin  a  ae 2 be  cos   a 1  e 2 sin 
  • 31. b sin   0 be  cos  mPS  0 a cos  ae mTS  e sin  b sin  a  ae  acos  e  e be  cos  e   e sin  a  ae 2 be  cos   a 1  e 2 sin  be  cos   2 a 1  e 2  sin  a
  • 32. b sin   0 be  cos  mPS  0 a cos  ae mTS  e sin  b sin  a  ae  acos  e  e be  cos  e   e sin  a  ae 2 be  cos   a 1  e 2 sin  be  cos   2 a 1  e 2  sin  a ae  cos   b sin 
  • 33. b sin   0 be  cos  mPS  0 a cos  ae mTS  e sin  b sin  a  ae  acos  e  e be  cos  e   e sin  a  ae 2 be  cos   a 1  e 2 sin  be  cos   2 a 1  e 2  sin  a ae  cos   b sin  b sin  ae  cos  mPS  mTS   acos  e  b sin   1
  • 34. b sin   0 be  cos  mPS  0 a cos  ae mTS  e sin  b sin  a  ae  acos  e  e be  cos  e   e sin  a  ae 2 be  cos   a 1  e 2 sin  be  cos   2 a 1  e 2  sin  a ae  cos   b sin  b sin  ae  cos  mPS  mTS   acos  e  b sin   PST  90  1
  • 35. (3) Reflection Property Tangent to an ellipse at a point P on it is equally inclined to the focal chords through P. T y P T S S x
  • 36. (3) Reflection Property Tangent to an ellipse at a point P on it is equally inclined to the focal chords through P. T y P T S S x Prove: SPT  S PT 
  • 37. (3) Reflection Property Tangent to an ellipse at a point P on it is equally inclined to the focal chords through P. T y P T S S x Prove: SPT  S PT  Construct a line || y axis passing through P
  • 38. (3) Reflection Property Tangent to an ellipse at a point P on it is equally inclined to the focal chords through P. T y P N N T S S x Prove: SPT  S PT  Construct a line || y axis passing through P PT PN  (ratio of intercepts of || lines) PT  PN 
  • 39. (3) Reflection Property Tangent to an ellipse at a point P on it is equally inclined to the focal chords through P. T y P N N T S S x Prove: SPT  S PT  Construct a line || y axis passing through P PT PN  (ratio of intercepts of || lines) PT  PN  PT PT    PN PN 
  • 40. ePN  PS and ePN   PS 
  • 41. ePN  PS and ePN   PS  PT PT    PS PS  e e
  • 42. ePN  PS and ePN   PS  PT PT    PS PS  e e PT PT   PS PS 
  • 43. ePN  PS and ePN   PS  PT PT    PS PS  e e PT PT   PS PS  PST  PS T   90 (proven in property (2))
  • 44. ePN  PS and ePN   PS  PT PT    PS PS  e e PT PT   PS PS  PST  PS T   90 (proven in property (2))  sec SPT  sec S PT 
  • 45. ePN  PS and ePN   PS  PT PT    PS PS  e e PT PT   PS PS  PST  PS T   90 (proven in property (2))  sec SPT  sec S PT  SPT  S PT 
  • 46. ePN  PS and ePN   PS  PT PT    PS PS  e e PT PT   PS PS  PST  PS T   90 (proven in property (2))  sec SPT  sec S PT  SPT  S PT 
  • 47. e.g. Find the cartesian equation of z  2  z  2  8
  • 48. e.g. Find the cartesian equation of z  2  z  2  8 The sum of the focal lengths of an ellipse is constant
  • 49. e.g. Find the cartesian equation of z  2  z  2  8 The sum of the focal lengths of an ellipse is constant 2a  8 a4
  • 50. e.g. Find the cartesian equation of z  2  z  2  8 The sum of the focal lengths of an ellipse is constant 2a  8 ae  2 a4 4e  2 1 e 2
  • 51. e.g. Find the cartesian equation of z  2  z  2  8 The sum of the focal lengths of an ellipse is constant 2a  8 ae  2 b 2  a 2 1  e 2  a4 4e  2  1 b 2  16 1   e 1  4 2  12
  • 52. e.g. Find the cartesian equation of z  2  z  2  8 The sum of the focal lengths of an ellipse is constant 2a  8 ae  2 b 2  a 2 1  e 2  a4 4e  2  1 b 2  16 1   e 1  4 2  12 x2 y2  locus is the ellipse  1 16 12
  • 53. e.g. Find the cartesian equation of z  2  z  2  8 The sum of the focal lengths of an ellipse is constant 2a  8 ae  2 b 2  a 2 1  e 2  a4 4e  2  1 b 2  16 1   e 1  4 2  12 x2 y2  locus is the ellipse  1 16 12 Exercise 6E; 1, 2, 4, 7, 8, 10