Hemos actualizado nuestra política de privacidad. Haga clic aquí para revisar los detalles. Pulse aquí para revisar los detalles
Active su período de prueba de 30 días gratis para desbloquear las lecturas ilimitadas.
Active su período de prueba de 30 días gratis para seguir leyendo.
Descargar para leer sin conexión
This presentation will provide a brief introduction to logical reasoning and overview of the most popular semantic schema and ontology languages: RDFS and the profiles of OWL 2.
While automatic reasoning has always inspired the imagination, numerous projects have failed to deliver to the promises. The typical pitfalls related to ontologies and symbolic reasoning fall into two categories:
- Over-engineered ontologies. The selected ontology language and modeling patterns can be too expressive. This can make the results of inference hard to understand and verify, which in its turn makes KG hard to evolve and maintain. It can also impose performance penalties far greater than the benefits.
- Inappropriate reasoning support. There are many inference algorithms and implementation approaches, which work well with taxonomies and conceptual models of few thousands of concepts, but cannot cope with KG of millions of entities.
- Inappropriate data layer architecture. One such example is reasoning with virtual KG, which is often infeasible.
This presentation will provide a brief introduction to logical reasoning and overview of the most popular semantic schema and ontology languages: RDFS and the profiles of OWL 2.
While automatic reasoning has always inspired the imagination, numerous projects have failed to deliver to the promises. The typical pitfalls related to ontologies and symbolic reasoning fall into two categories:
- Over-engineered ontologies. The selected ontology language and modeling patterns can be too expressive. This can make the results of inference hard to understand and verify, which in its turn makes KG hard to evolve and maintain. It can also impose performance penalties far greater than the benefits.
- Inappropriate reasoning support. There are many inference algorithms and implementation approaches, which work well with taxonomies and conceptual models of few thousands of concepts, but cannot cope with KG of millions of entities.
- Inappropriate data layer architecture. One such example is reasoning with virtual KG, which is often infeasible.
Parece que ya has recortado esta diapositiva en .
¡Acabas de recortar tu primera diapositiva!
Los recortes son una forma práctica de recopilar diapositivas importantes para volver a ellas más tarde. Ahora puedes personalizar el nombre de un tablero de recortes para guardar tus recortes.La familia SlideShare crece. Disfruta de acceso a millones de libros electrónicos, audiolibros, revistas y mucho más de Scribd.
Cancela en cualquier momento.Lecturas ilimitadas
Aprenda más rápido y de forma más inteligente con los mejores expertos
Descargas ilimitadas
Descárguelo para aprender sin necesidad de estar conectado y desde cualquier lugar
¡Además, tiene acceso gratis a Scribd!
Acceso instantáneo a millones de libros electrónicos, audiolibros, revistas, podcasts y mucho más.
Lea y escuche sin conexión desde cualquier dispositivo.
Acceso gratis a servicios prémium como TuneIn, Mubi y muchos más.
Hemos actualizado su política de privacidad para cumplir con las cambiantes normativas de privacidad internacionales y para ofrecerle información sobre las limitadas formas en las que utilizamos sus datos.
Puede leer los detalles a continuación. Al aceptar, usted acepta la política de privacidad actualizada.
¡Gracias!