SlideShare una empresa de Scribd logo
1 de 12
Descargar para leer sin conexión
 
English	
  Translation	
  

	
  

Low-­‐Carbon	
  China:	
  Innovation	
  beyond	
  Efficiency	
  
©2014	
  Anne	
  Arquit	
  Niederberger	
  

	
  

1.

Introduction	
  

	
  
I	
  was	
  asked	
  to	
  address	
  the	
  subject	
  of	
  industrial	
  energy	
  efficiency	
  innovation	
  and	
  technology	
  
cooperation.	
  However,	
  this	
  paper	
  stresses	
  the	
  need	
  to	
  go	
  beyond	
  energy	
  efficiency	
  and	
  
focus	
  on	
  radical	
  innovation	
  to	
  bring	
  about	
  systemic	
  change	
  –	
  specifically	
  business	
  model	
  
innovation	
  –	
  if	
  we	
  are	
  serious	
  about	
  green	
  growth.	
  	
  
	
  
Limiting	
  the	
  warming	
  caused	
  by	
  anthropogenic	
  greenhouse	
  gas	
  emissions	
  with	
  a	
  probability	
  
of	
  >50%	
  to	
  less	
  than	
  2°C	
  (compared	
  with	
  the	
  period	
  1861–1880)	
  will	
  require	
  cumulative	
  
CO2	
  emissions	
  from	
  all	
  anthropogenic	
  sources	
  to	
  stay	
  below	
  820	
  GtC	
  (3010	
  billion	
  tons	
  of	
  
CO2).	
  Roughly	
  two-­‐thirds	
  of	
  this	
  carbon	
  budget	
  (445	
  to	
  585	
  GtC)	
  had	
  already	
  been	
  emitted	
  
by	
  2011	
  (IPCC,	
  2013)	
  and	
  –	
  at	
  the	
  rate	
  of	
  emissions	
  recorded	
  for	
  2012	
  (9.7	
  GtC/y)	
  –	
  the	
  
entire	
  budget	
  will	
  have	
  been	
  used	
  up	
  within	
  roughly	
  30	
  years.	
  This	
  simple	
  calculation	
  
ignores	
  several	
  trends	
  that	
  could	
  shorten	
  this	
  timeframe,	
  including	
  continued	
  growth	
  in	
  
emissions.	
  	
  
	
  
Driving	
  global	
  emissions	
  to	
  zero	
  on	
  a	
  30-­‐year	
  timescale	
  is	
  a	
  daunting	
  task	
  in	
  itself,	
  but	
  it	
  is	
  
not	
  the	
  only	
  challenge	
  we	
  face.	
  UN	
  Secretary	
  General	
  Ban	
  Ki-­‐moon	
  has	
  said	
  that	
  “we	
  all	
  
aspire	
  to	
  reach	
  better	
  living	
  conditions.	
  Yet,	
  this	
  will	
  not	
  be	
  possible	
  by	
  following	
  the	
  
current	
  growth	
  model.	
  .	
  .	
  “	
  He	
  went	
  on	
  to	
  say	
  that	
  “we	
  need	
  a	
  practical	
  21st	
  Century	
  
development	
  model	
  that	
  connects	
  
Figure	
  1.	
  	
  Key	
  Issues	
  of	
  our	
  Time	
  
the	
  dots	
  between	
  the	
  key	
  issues	
  of	
  
our	
  time”.	
  And	
  he	
  gave	
  some	
  
examples	
  of	
  those	
  pressing	
  issues	
  
(Figure	
  1).	
  
	
  
What	
  he	
  referred	
  to	
  as	
  “connecting	
  
the	
  dots”	
  is	
  about	
  associating,	
  and	
  
associating	
  is	
  at	
  the	
  heart	
  of	
  
innovation.	
  Because	
  these	
  societal	
  
challenges	
  –	
  from	
  reducing	
  poverty	
  
and	
  inequality	
  to	
  limiting	
  climate	
  
change	
  and	
  its	
  impacts	
  and	
  ensuring	
  
human	
  security	
  in	
  the	
  broadest	
  sense	
  –	
  are	
  linked	
  through	
  common	
  drivers	
  and	
  flows,	
  
there	
  is	
  an	
  opportunity	
  and	
  a	
  necessity	
  to	
  innovate	
  the	
  technologies,	
  products,	
  services,	
  
and	
  institutions	
  that	
  can	
  pave	
  the	
  way	
  for	
  improving	
  the	
  human	
  condition	
  in	
  a	
  balanced,	
  
comprehensive	
  and	
  sustainable	
  fashion.	
  Air	
  conditioning	
  might	
  appear	
  to	
  be	
  a	
  reasonable	
  
LOW-­‐CARBON	
  CHINA:	
  INNOVATION	
  BEYOND	
  EFFICIENCY	
   1	
  
	
  
 
	
  
adaptation	
  to	
  a	
  warmer	
  world,	
  for	
  example,	
  but	
  conventional	
  technologies	
  can	
  exacerbate	
  
the	
  problem	
  by	
  requiring	
  more	
  electricity	
  to	
  be	
  generated	
  by	
  combusting	
  fossil	
  fuels	
  and	
  
are	
  in	
  any	
  case	
  out	
  of	
  reach	
  for	
  a	
  significant	
  share	
  of	
  the	
  global	
  population	
  without	
  access	
  
to	
  power.	
  
	
  
Error!	
  Reference	
  source	
  not	
  found.	
  aptly	
  illustrates	
  this	
  complexity	
  with	
  another	
  example:	
  
China	
  has	
  managed	
  to	
  reduce	
  its	
  energy	
  and	
  carbon	
  intensity	
  significantly	
  over	
  the	
  past	
  two	
  
decades.	
  But	
  total	
  CO2	
  emissions	
  nonetheless	
  rose	
  by	
  350%	
  over	
  the	
  same	
  period,	
  as	
  a	
  
result	
  of	
  successful	
  poverty	
  
Figure	
  2.	
  	
  Percentage	
  Change	
  in	
  Critical	
  Indicators	
  1990	
  -­‐	
  2011	
  
alleviation	
  efforts	
  and	
  population	
  
growth.	
  This	
  means	
  that	
  –	
  
although	
  “lower	
  carbon”	
  is	
  clearly	
  
happening	
  today	
  –	
  a	
  truly	
  “low-­‐
carbon”	
  and	
  sustainable	
  economy	
  
will	
  require	
  (disruptive)	
  innovation	
  
and	
  solutions	
  that	
  do	
  not	
  yet	
  exist.	
  
	
  
In	
  the	
  12th	
  Five-­‐Year	
  Plan	
  for	
  
Economic	
  and	
  Social	
  Development	
  
(2011	
  –	
  2015),	
  China’s	
  leadership	
  
explicitly	
  highlighted	
  the	
  
imperative	
  to	
  transform	
  the	
  
	
  
economic	
  and	
  political	
  system	
  to	
  
deliver	
  “higher	
  quality”	
  and	
  “inclusive”	
  economic	
  growth	
  that	
  is	
  balanced	
  and	
  sustainable.	
  
And	
  the	
  plan	
  spells	
  out	
  key	
  strategies	
  and	
  targets	
  to	
  achieve	
  the	
  transition.	
  Of	
  particular	
  
relevance	
  to	
  this	
  paper	
  is	
  the	
  emphasis	
  given	
  to	
  innovation,	
  including	
  a	
  specific	
  target	
  to	
  
generate	
  3.3	
  patents	
  per	
  10,000	
  people	
  and	
  a	
  commitment	
  to	
  invest	
  in	
  seven	
  priority	
  
industries	
  that	
  are	
  poised	
  to	
  make	
  a	
  contribution	
  to	
  green	
  growth,	
  while	
  moving	
  up	
  the	
  
economic	
  value	
  chain:	
  energy	
  savings	
  and	
  environmental	
  protection;	
  new	
  energy;	
  clean	
  
energy	
  vehicles;	
  biotechnology;	
  new	
  materials;	
  new	
  IT;	
  and	
  high-­‐end	
  manufacturing.	
  China	
  
also	
  has	
  a	
  recent	
  history	
  of	
  establishing	
  its	
  own	
  and	
  hosting	
  global	
  corporate	
  R&D	
  centers.	
  
But	
  will	
  China	
  manage	
  to	
  realize	
  a	
  sustainable	
  green	
  growth	
  model?	
  The	
  answer	
  will	
  be	
  of	
  
existential	
  interest	
  to	
  us	
  all.	
  	
  
	
  

2.

Innovation	
  Case	
  Studies	
  

	
  
The	
  need	
  for	
  radical	
  new	
  business	
  models	
  is	
  illustrated	
  with	
  three	
  specific	
  examples	
  (Error!	
  
Reference	
  source	
  not	
  found.).	
  The	
  first	
  is	
  fertilizer	
  production,	
  which	
  is	
  responsible	
  for	
  
1.2%	
  of	
  global	
  CO2	
  emissions.	
  It	
  is	
  an	
  energy	
  and	
  carbon-­‐intensive	
  process,	
  with	
  
hydrocarbons	
  serving	
  as	
  both	
  feedstock	
  and	
  energy	
  source.	
  And	
  chemical	
  fertilizer	
  is	
  a	
  
major	
  and	
  uncertain	
  cost	
  factor	
  for	
  farmers,	
  due	
  to	
  global	
  market	
  price	
  volatility,	
  as	
  well	
  as	
  
a	
  major	
  contributor	
  to	
  land	
  and	
  water	
  degradation.	
  
LOW-­‐CARBON	
  CHINA:	
  INNOVATION	
  BEYOND	
  EFFICIENCY	
   2	
  
	
  
 
	
  
	
  
The	
  second	
  example	
  is	
  the	
  
Figure	
  3.	
  	
  Industrial	
  Sector	
  Case	
  Studies	
  
provision	
  of	
  lighting	
  services,	
  
which	
  accounts	
  for	
  an	
  even	
  
greater	
  share	
  of	
  global	
  CO2	
  
emissions,	
  namely	
  6%.	
  Current	
  
business	
  models	
  offer	
  bulbs	
  as	
  
consumable	
  and	
  largely	
  throw-­‐
away	
  products.	
  Consumers	
  
purchase	
  lamps/luminaires	
  from	
  
retailers	
  and	
  pay	
  electric	
  bills	
  to	
  
keep	
  the	
  lights	
  on.	
  Power	
  
producers	
  have	
  a	
  tough	
  time	
  
	
  
keeping	
  up	
  with	
  demand.	
  
Efficient	
  lighting	
  options	
  that	
  could	
  cut	
  household	
  electricity	
  consumption	
  (especially	
  LED)	
  
have	
  a	
  higher	
  purchase	
  price,	
  discouraging	
  their	
  widespread	
  adoption.	
  
	
  	
  
The	
  end-­‐of-­‐life	
  treatment	
  of	
  scrap	
  tires	
  is	
  the	
  third	
  case	
  study.	
  Tires	
  have	
  a	
  similar	
  calorific	
  
value	
  to	
  high-­‐quality	
  coal.	
  Energy-­‐intensive	
  industries	
  (e.g.,	
  cement)	
  increasingly	
  incinerate	
  
tires	
  as	
  a	
  supplemental	
  fuel	
  to	
  lower	
  fuel	
  costs	
  and	
  reduce	
  CO2	
  emissions.	
  In	
  all	
  three	
  cases,	
  
business	
  model	
  innovation	
  can	
  deliver	
  better	
  results	
  for	
  people	
  and	
  the	
  planet	
  than	
  an	
  
incremental	
  approach	
  that	
  strives	
  only	
  to	
  make	
  existing	
  processes	
  more	
  efficient	
  and	
  less	
  
carbon	
  intensive.	
  
	
  
Fertilizer	
  Production	
  
	
  
China	
  is	
  the	
  largest	
  consumer	
  and	
  producer	
  of	
  nitrogen	
  (used	
  to	
  make	
  nitrogenous	
  
fertilizers),	
  accounting	
  for	
  roughly	
  40%	
  of	
  global	
  production	
  capacity.	
  Emissions	
  from	
  the	
  
production	
  and	
  use	
  of	
  synthetic	
  nitrogen	
  fertilizer	
  in	
  China	
  have	
  been	
  estimated	
  at	
  400–840	
  
MtCO2e	
  in	
  2005,	
  accounting	
  for	
  a	
  staggering	
  8	
  to	
  16	
  %	
  of	
  China’s	
  total	
  energy-­‐related	
  CO2	
  
emissions	
  (Kahrl	
  et	
  al.,	
  2010),	
  with	
  fertilizer	
  production	
  responsible	
  for	
  250	
  MtCO2e	
  of	
  the	
  
total	
  (180	
  MtCO2e	
  due	
  to	
  embodied	
  energy	
  use	
  and	
  70	
  MtCO2e	
  from	
  fertilizer	
  synthesis).	
  
The	
  fertilizer	
  manufacturing	
  status	
  quo	
  in	
  China	
  relies	
  on	
  anthracite	
  coal	
  as	
  the	
  
predominant	
  feedstock	
  and	
  emits	
  roughly	
  9	
  tCO2	
  per	
  ton	
  of	
  N	
  fertilizer,	
  including	
  fertilizer	
  
synthesis	
  and	
  embodied	
  energy	
  use	
  associated	
  with	
  the	
  coal	
  feedstock,	
  but	
  not	
  mining	
  or	
  
transportation	
  emissions	
  (Kahrl	
  et	
  al,	
  2010).	
  	
  
	
  
But	
  its	
  global	
  warming	
  impact	
  is	
  not	
  the	
  only	
  concern;	
  synthetic	
  fertilizer	
  use	
  can	
  lead	
  to	
  
poor	
  economic	
  and	
  other	
  ecological	
  outcomes.	
  Fertilizer	
  costs	
  have	
  become	
  one	
  of	
  the	
  
largest	
  and	
  most	
  variable	
  expenses	
  of	
  producing	
  a	
  crop,	
  and	
  directly	
  affect	
  profits.	
  The	
  
average	
  urea	
  price	
  in	
  China,	
  for	
  example,	
  was	
  15%	
  lower	
  at	
  the	
  end	
  of	
  June	
  2013	
  than	
  the	
  
same	
  time	
  the	
  previous	
  year	
  (Error!	
  Reference	
  source	
  not	
  found.).	
  	
  
	
  
LOW-­‐CARBON	
  CHINA:	
  INNOVATION	
  BEYOND	
  EFFICIENCY	
   3	
  
	
  
 

	
  

Energy$Management$
Systems$
Fuel$switch$coal$!$
natural$gas$
Best$Practice$
Technologies$are$30%$
more$energy$efficient$
$
$
1.6&–&3.8&tCO2/t&ammonia&

Source:	
  Specific	
  emissions	
  derived	
  from	
  IFA	
  (2009)	
  

Transformational&

94%$of$the$energy$
consumed$by$the$
fertilizer$industry$is$used$
for$ammonia$synthesis$
Only$25$–$33%$of$
greenhouse$gas$
emissions$from$fossil$
fuel$combustion$(rest$
feedstock)$
$
2&–&5&tCO2/t&ammonia&

Incremental&

Status&Quo&

Figure	
  4.	
  	
  Status	
  quo,	
  Incremental	
  and	
  Transformational	
  Approaches	
  in	
  Fertilizer	
  Production	
  

$
Cornucopia$BioRefinery$
New$business$model:$
Entire$ear$of$corn$!$
Food$(oil/protein$from$
germ)$+$Fertilizer$(bran/
cobs$gasified)$+$Fuel$
(endosperm$fermented)$
&
BioAmmoniaTM&is&net&
carbon&negative&

	
  

	
  
	
  
Although	
  China	
  is	
  among	
  the	
  most	
  
Figure	
  5.	
  	
  Average	
  Urea	
  Price	
  (China)	
  
expensive	
  producers	
  of	
  nitrogen	
  
fertilizer,	
  national	
  policies	
  to	
  facilitate	
  
development	
  of	
  the	
  chemical	
  fertilizer	
  
industry,	
  direct	
  income	
  subsidies	
  to	
  
farmers	
  and	
  heavy	
  taxes	
  to	
  limit	
  
exports	
  have	
  distorted	
  markets	
  and	
  
encouraged	
  farmers	
  with	
  the	
  means	
  
to	
  purchase	
  fertilizer	
  to	
  over-­‐use	
  it.	
  
This	
  contributes	
  to	
  acid	
  rain,	
  water	
  
pollution	
  and	
  the	
  increasing	
  
	
  
Source:	
  China	
  National	
  Chemical	
  Information	
  Center	
  
frequency	
  of	
  red	
  tides.	
  
	
  
Such	
  policies	
  also	
  discourage	
  entrepreneurs	
  from	
  seeking	
  better,	
  more	
  holistic	
  approaches	
  
to	
  transition	
  to	
  sustainable	
  agricultural	
  models	
  that	
  better	
  maintain	
  ecosystem	
  health	
  and	
  
farmer	
  welfare.	
  Instead,	
  the	
  incremental	
  approach	
  calls	
  for	
  large	
  chemical	
  companies	
  to	
  
implement	
  energy	
  efficiency	
  and	
  fuel	
  switching	
  measures.	
  Under	
  such	
  a	
  scenario,	
  emissions	
  
could	
  be	
  cut	
  by	
  roughly	
  25%,	
  but	
  there	
  is	
  not	
  much	
  room	
  to	
  go	
  further,	
  due	
  to	
  the	
  
continued	
  use	
  of	
  fossil	
  fuels	
  as	
  a	
  feedstock,	
  which	
  accounts	
  for	
  over	
  70%	
  of	
  the	
  total	
  
emissions	
  from	
  nitrogen	
  fertilizer	
  production	
  in	
  China.	
  Modern	
  plants	
  are	
  rapidly	
  
approaching	
  the	
  theoretical	
  minimum	
  energy	
  consumption,	
  making	
  it	
  difficult	
  to	
  get	
  below	
  
3.8	
  tCO2/tNH3	
  with	
  coal	
  as	
  the	
  feedstock	
  (IFA,	
  2009).	
  	
  
	
  
Only	
  a	
  transformational	
  approach	
  –	
  inspired	
  by	
  the	
  imperative	
  of	
  and	
  opportunities	
  to	
  
address	
  multiple	
  challenges	
  simultaneously	
  –	
  can	
  eliminate	
  emissions	
  altogether	
  (Figure	
  4).	
  
SynGest	
  is	
  a	
  US-­‐based	
  start-­‐up	
  company	
  that	
  has	
  adopted	
  a	
  completely	
  new	
  business	
  
model,	
  driven	
  by	
  thinking	
  about	
  the	
  best	
  way	
  to	
  use	
  corn,	
  while	
  benefitting	
  farmers.	
  The	
  
process	
  can	
  use	
  any	
  source	
  of	
  untreated	
  biomass,	
  and	
  its	
  calorific	
  value	
  is	
  irrelevant	
  for	
  
LOW-­‐CARBON	
  CHINA:	
  INNOVATION	
  BEYOND	
  EFFICIENCY	
   4	
  
	
  
 
	
  
fertilizer	
  production.	
  This	
  offers	
  farmers	
  the	
  prospect	
  of	
  reducing	
  or	
  eliminating	
  expenses	
  
for	
  chemical	
  fertilizers,	
  as	
  well	
  as	
  a	
  new	
  income	
  stream	
  (selling	
  agricultural	
  waste	
  as	
  a	
  
renewable	
  raw	
  material	
  for	
  organic	
  fertilizer	
  production),	
  while	
  eliminating	
  the	
  pollution	
  
caused	
  by	
  open	
  burning	
  of	
  agricultural	
  waste	
  and	
  even	
  improving	
  soil	
  quality	
  (the	
  process	
  
produces	
  a	
  small	
  amount	
  of	
  the	
  soil	
  conditioner	
  biochar).	
  The	
  SynGest	
  process	
  yields	
  an	
  
impressive	
  slate	
  of	
  end	
  products,	
  including:	
  
•

Anhydrous	
  ammonia	
  fertilizer	
  (0.1	
  ton	
  per	
  year	
  for	
  each	
  acre	
  of	
  corn,	
  plus	
  a	
  
transportable	
  fuel	
  that	
  is	
  the	
  perfect	
  carrier	
  of	
  hydrogen);	
  

•

Food	
  grade	
  corn	
  oil	
  and	
  high	
  protein	
  food	
  for	
  human	
  consumption;	
  

•

Riboflavin	
  rich	
  dry	
  stillage	
  (animal	
  feed);	
  

•

Butanol	
  (drop-­‐in	
  fuel	
  for	
  internal	
  combustion	
  and	
  diesel	
  engines);	
  

•

Biochar.	
  

	
  
The	
  SynGest	
  technology	
  can	
  also	
  address	
  issues	
  that	
  have	
  arisen	
  in	
  conjunction	
  with	
  
growing	
  and	
  distilling	
  corn-­‐based	
  ethanol,	
  which	
  uses	
  immense	
  amounts	
  of	
  water	
  
(contributing	
  to	
  river	
  and	
  aquifer	
  depletion),	
  energy	
  (some	
  scientists	
  argue	
  that	
  more	
  
energy	
  goes	
  into	
  making	
  a	
  gallon	
  of	
  ethanol	
  than	
  is	
  contained	
  in	
  that	
  gallon)	
  and	
  fertilizer	
  
production	
  and	
  use,	
  adding	
  to	
  harmful	
  runoff.	
  As	
  pointed	
  out	
  by	
  	
  Zhao	
  Youshan,	
  Director,	
  
Commercial	
  Petroleum	
  Flow	
  Committee,	
  China	
  General	
  Chamber	
  of	
  Commerce:	
  “Livestock	
  
breeders	
  in	
  China	
  are	
  facing	
  feed	
  shortages	
  as	
  ethanol	
  fuel	
  makers	
  –	
  prompted	
  by	
  
government	
  subsidies	
  of	
  roughly	
  1,900	
  yuan	
  ($279)	
  per	
  tonne	
  of	
  ethanol	
  they	
  produce	
  –	
  
have	
  rushed	
  to	
  buy	
  corn.”	
  SynGest’s	
  syngas	
  technology	
  can	
  make	
  optimal	
  use	
  the	
  whole	
  
ear	
  of	
  corn	
  to	
  produce	
  the	
  “3	
  Fs”	
  (food,	
  fertilizer	
  and	
  fuel)	
  simultaneously.	
  This	
  eliminates	
  
the	
  food	
  vs.	
  fuel	
  dilemma	
  and	
  produces	
  net	
  carbon	
  negative	
  ammonia	
  fertilizer.	
  
	
  
Lighting	
  Services	
  
	
  
The	
  second	
  example	
  of	
  business	
  model	
  innovation	
  is	
  lighting	
  (Figure	
  6).	
  Until	
  the	
  advent	
  of	
  
compact	
  fluorescent	
  lamp	
  (CFL)	
  technology,	
  the	
  status	
  quo	
  had	
  been	
  incandescent,	
  throw-­‐
away	
  technology	
  with	
  a	
  luminous	
  efficacy	
  of	
  roughly	
  15	
  lumen/W.	
  CFLs	
  are	
  four	
  times	
  more	
  
efficient	
  than	
  incandescent	
  lamps,	
  and	
  quality	
  bulbs	
  can	
  operate	
  as	
  long	
  as	
  15,000	
  hours,	
  
but	
  the	
  introduction	
  of	
  the	
  technology	
  did	
  not	
  lead	
  to	
  any	
  major	
  upheaval	
  in	
  the	
  lighting	
  
market.	
  In	
  fact,	
  consumer	
  reaction	
  to	
  early	
  CFL	
  technology	
  was	
  often	
  negative,	
  due	
  to	
  the	
  
poor	
  quality	
  and	
  performance	
  of	
  products,	
  as	
  well	
  as	
  concerns	
  about	
  the	
  mercury.	
  The	
  
resulting	
  market	
  spoilage	
  effect,	
  combined	
  with	
  the	
  current	
  much	
  lower	
  price	
  of	
  CFLs,	
  
makes	
  it	
  hard	
  for	
  solid-­‐state	
  lighting	
  technology	
  –	
  with	
  its	
  longer	
  lifetime	
  and	
  higher	
  retail	
  
price	
  –	
  to	
  penetrate	
  the	
  market.	
  
	
  

LOW-­‐CARBON	
  CHINA:	
  INNOVATION	
  BEYOND	
  EFFICIENCY	
   5	
  
	
  
 

	
  

Consumers*purchase*
inefficient*lamps/
luminaires*from*
retailers*and*pay*high*
electric*bills*
*
14&lumen/W*

Incandescent*!*CFL*
technology*
No*change*in*
manufacturer*or*utility*
business*model*
Slow*uptake*of*LED*
and*widening*energy*
supply*gap*
*
60&lumen/W&

Transformational&

Replacement*bulbs*
are*mass*market*
consumables*

Incremental&

Status&Quo&

Figure	
  6.	
  	
  Status	
  quo,	
  Incremental	
  and	
  Transformational	
  Approaches	
  to	
  Lighting	
  Services	
  

Inefficient*!*LED*
technology*
Utilities*integrate*LED*
technology*into*their*
business*model**
LED*as*infrastructure*
*
*
90&lumen/W*

	
  

Source	
  luminous	
  efficacy:	
  http://www.designingwithleds.com/ledfluorescentincandescent-­‐efficacy-­‐table/	
  

	
  
CFLs	
  brought	
  an	
  incremental	
  improvement	
  in	
  efficiency,	
  but	
  not	
  a	
  fundamental	
  market	
  
transformation.	
  Since	
  2008,	
  a	
  growing	
  number	
  of	
  countries	
  have	
  begun	
  to	
  adopt	
  
regulations	
  to	
  phase-­‐out	
  inefficient	
  incandescent	
  techology,	
  including	
  China,	
  where	
  a	
  ban	
  
on	
  the	
  import	
  and	
  sale	
  of	
  all	
  incandescent	
  lamps	
  above	
  100W	
  came	
  into	
  force	
  on	
  1	
  October	
  
2012	
  (further	
  restrictions	
  on	
  smaller	
  lamp	
  sizes	
  will	
  come	
  into	
  force	
  later).	
  These	
  policies	
  
are	
  driving	
  a	
  profound	
  transition	
  in	
  the	
  lighting	
  market,	
  with	
  rapid	
  advances	
  in	
  solid-­‐state	
  
lighting	
  technology	
  (Climate	
  Group,	
  2012;	
  McKinsey,	
  2012;	
  World	
  Bank,	
  in	
  press).	
  
	
  
The	
  fact	
  that	
  LEDs	
  are	
  long-­‐lived	
  and	
  contollable,	
  makes	
  them	
  well	
  suited	
  as	
  an	
  integral	
  
component	
  of	
  electrified	
  building	
  systems,	
  rather	
  than	
  as	
  a	
  throw-­‐away	
  consumer	
  good.	
  
We	
  have	
  already	
  seen	
  this	
  trend	
  in	
  the	
  off-­‐grid	
  segment,	
  as	
  solar	
  home	
  system	
  providers	
  
offer	
  super-­‐efficient	
  LED	
  lights	
  as	
  part	
  of	
  the	
  package.	
  For	
  energy	
  service	
  companies	
  
(ESCOs),	
  LED	
  lighting	
  has	
  already	
  become	
  a	
  standard	
  component	
  when	
  working	
  with	
  
government	
  and	
  commercial	
  customers,	
  including	
  LED	
  streetlighting,	
  indoor	
  lighting	
  and	
  
controls.	
  Grid	
  electricity	
  suppliers	
  have	
  sometimes	
  resorted	
  to	
  large-­‐scale	
  programs	
  to	
  
distribute	
  CFLs	
  as	
  a	
  short-­‐term	
  fix	
  to	
  severe	
  supply	
  shortages,	
  but	
  LED	
  technology	
  presents	
  
an	
  opportuntity	
  for	
  them	
  to	
  be	
  more	
  proactive	
  (World	
  Bank,	
  in	
  press).	
  Africa’s	
  largest	
  
utility,	
  Eskom,	
  began	
  distributing	
  LED	
  downlights	
  free	
  of	
  charge	
  under	
  its	
  Switch	
  and	
  Save	
  
Residential	
  Mass	
  Rollout	
  and	
  has	
  received	
  authorization	
  to	
  invest	
  ZAR	
  834	
  million	
  in	
  
residential	
  LED	
  programs	
  in	
  the	
  2013/14	
  –	
  2017/18	
  period.	
  	
  
	
  
Even	
  without	
  funding	
  earmarked	
  for	
  demand-­‐side	
  management	
  programs,	
  utilities	
  in	
  
developing	
  countries	
  could	
  expand	
  their	
  business	
  model	
  by	
  directly	
  installing	
  LEDs	
  with	
  
new	
  electricity	
  connections	
  and	
  making	
  it	
  easy	
  for	
  their	
  customers	
  to	
  replace	
  inefficient	
  
lighting.	
  It	
  could	
  be	
  particularly	
  attractive	
  for	
  utilities	
  in	
  Africa	
  to	
  consider.	
  According	
  to	
  a	
  
2013	
  analysis	
  by	
  the	
  International	
  Monetary	
  Fund,	
  effective	
  power	
  tariffs	
  are	
  set	
  30%	
  
below	
  the	
  historical	
  average	
  cost	
  of	
  supplying	
  electricity	
  in	
  sub-­‐Saharan	
  Africa	
  on	
  average	
  
LOW-­‐CARBON	
  CHINA:	
  INNOVATION	
  BEYOND	
  EFFICIENCY	
   6	
  
	
  
 
	
  
(excluding	
  South	
  Africa).	
  In	
  addition,	
  technical	
  line	
  losses	
  average	
  25%	
  and	
  the	
  average	
  
collection	
  rate	
  was	
  only	
  85%,	
  with	
  as	
  many	
  as	
  60%	
  of	
  poor	
  households	
  not	
  paying	
  their	
  
electricity	
  bills	
  (IMF,	
  2013).	
  Under	
  such	
  conditions,	
  and	
  given	
  the	
  sub-­‐Saharan	
  Afican	
  
average	
  electricity	
  tariff	
  of	
  USS	
  0.17/kWh,	
  every	
  kWh	
  of	
  power	
  used	
  represents	
  a	
  fiscal	
  loss.	
  
	
  
Let	
  us	
  take	
  the	
  example	
  of	
  a	
  community	
  of	
  100,000	
  minimum	
  access	
  households	
  living	
  in	
  an	
  
urban	
  slum	
  in	
  Africa	
  (Table	
  1),	
  each	
  of	
  which	
  would	
  use	
  65	
  kWh/y	
  of	
  electricity	
  to	
  power	
  a	
  
single	
  40W	
  incandescent	
  lamp	
  and	
  share	
  a	
  60W	
  TV	
  with	
  three	
  other	
  households	
  for	
  three	
  
hours	
  per	
  day.	
  Assuming	
  that	
  60%	
  of	
  these	
  low-­‐income	
  households	
  had	
  illegal	
  electricity	
  
connections	
  and	
  did	
  not	
  pay	
  for	
  their	
  electricity,	
  the	
  utility	
  would	
  lose	
  just	
  over	
  US$1	
  
million	
  each	
  year	
  on	
  the	
  electricity	
  supplied	
  (or	
  US$11	
  per	
  household),	
  as	
  a	
  result	
  of	
  30%	
  
underpricing,	
  60%	
  non-­‐paying	
  customers	
  and	
  25%	
  line	
  losses	
  
	
  
Table	
  1.	
  	
  Impact	
  of	
  an	
  “LED-­‐Fueled”	
  Efficiency	
  Power	
  Plant	
  

Source:	
  The	
  author,	
  to	
  be	
  included	
  in	
  World	
  Bank	
  (in	
  press)	
  

	
  

	
  
If	
  the	
  utility	
  instead	
  outfitted	
  these	
  grid-­‐connected	
  households	
  with	
  a	
  single	
  high-­‐quality	
  
LED	
  that	
  delivered	
  the	
  same	
  450	
  lumens	
  using	
  only	
  7.5	
  Watts	
  at	
  a	
  cost	
  of	
  US$10	
  per	
  bulb	
  
(“LED	
  Current	
  Technology”	
  scenario),	
  the	
  financial	
  gains	
  to	
  both	
  the	
  utility	
  and	
  the	
  paying	
  
customers	
  would	
  be	
  significant.	
  The	
  utility	
  benefits,	
  because	
  losses	
  associated	
  with	
  meeting	
  
electricity	
  demand	
  are	
  avoided	
  as	
  demand	
  is	
  reduced,	
  and	
  because	
  of	
  the	
  assumption	
  that	
  
the	
  share	
  of	
  households	
  that	
  can	
  afford	
  to	
  pay	
  their	
  electric	
  bills	
  increases	
  from	
  40%	
  to	
  
70%.	
  	
  
In	
  addition,	
  the	
  electricity	
  consumption	
  of	
  these	
  100,000	
  households	
  would	
  decrease	
  by	
  
55%,	
  immediately	
  freeing	
  up	
  enough	
  energy	
  (3.6	
  GWh/y)	
  to	
  double	
  the	
  number	
  of	
  
customers	
  served	
  or	
  the	
  amount	
  of	
  energy	
  that	
  a	
  household	
  could	
  afford	
  to	
  purchase,	
  with	
  
the	
  same	
  installed	
  capacity.	
  Better	
  results	
  could	
  be	
  achieved	
  under	
  an	
  “LED	
  2015	
  

LOW-­‐CARBON	
  CHINA:	
  INNOVATION	
  BEYOND	
  EFFICIENCY	
   7	
  
	
  
 
	
  
Technology”	
  scenario,	
  based	
  on	
  expected	
  technology	
  advances	
  in	
  the	
  next	
  few	
  years	
  (i.e.,	
  
LEDs	
  that	
  cost	
  US$5/bulb	
  and	
  use	
  3.5	
  W/450	
  lumen).	
  
A	
  forthcoming	
  World	
  Bank	
  report	
  makes	
  the	
  case	
  that	
  utility	
  companies	
  in	
  Sub-­‐Saharan	
  
Africa	
  could	
  become	
  profitable,	
  if	
  they	
  adapted	
  their	
  business	
  models	
  to	
  include	
  
constructing	
  efficiency	
  power	
  plants	
  (EPPs)	
  by	
  outfitting	
  households	
  with	
  LEDs	
  (World	
  
Bank,	
  in	
  press).	
  This	
  would	
  have	
  other	
  green	
  economy	
  benefits,	
  as	
  well:	
  
•

Households	
  would	
  see	
  dramatic	
  cuts	
  in	
  their	
  electricity	
  bills;	
  

•

Utilities	
  could	
  use	
  bulk	
  procurement	
  to	
  ensure	
  LED	
  quality	
  and	
  drive	
  down	
  prices;	
  

•

Peak	
  demand	
  and	
  grid	
  losses	
  would	
  be	
  reduced;	
  

•

Utilities	
  could	
  serve	
  more	
  households	
  and	
  businesses	
  with	
  the	
  same	
  installed	
  
capacity.	
  

	
  
Best	
  Use	
  of	
  Scrap	
  Tires	
  
	
  
The	
  final	
  example	
  is	
  scrap	
  tires.	
  The	
  tire	
  industry	
  uses	
  70%	
  of	
  all	
  natural	
  rubber	
  produced	
  
worldwide,	
  and	
  consumption	
  is	
  expected	
  to	
  double	
  within	
  the	
  next	
  30	
  years	
  (ETRMA,	
  
2012).	
  Applications	
  that	
  recycle	
  or	
  recover	
  rubber	
  are	
  therefore	
  critical	
  to	
  preserve	
  this	
  
valuable	
  resource	
  –	
  and	
  can	
  result	
  in	
  significant	
  greenhouse	
  gas	
  emissions	
  reductions.	
  
	
  
Barring	
  specific	
  legislation,	
  tires	
  are	
  generally	
  treated	
  as	
  waste	
  at	
  end-­‐of-­‐life	
  and	
  either	
  
discarded	
  or	
  sent	
  to	
  landfill	
  (Figure	
  7).	
  Countries	
  with	
  waste	
  and	
  resource	
  management	
  
legislation	
  have	
  achieved	
  an	
  incremental	
  improvement,	
  by	
  encouraging	
  the	
  use	
  of	
  scrap	
  
tires	
  for	
  civil	
  engineering	
  purposes	
  (e.g.,	
  shredding	
  tires	
  for	
  use	
  as	
  a	
  drainage	
  layer	
  in	
  
landfills)	
  or	
  as	
  an	
  alternative	
  fuel	
  to	
  be	
  co-­‐combusted	
  in	
  cement	
  production.	
  	
  
	
  
However,	
  there	
  is	
  a	
  better	
  way:	
  material	
  recycling.	
  The	
  material	
  recycling	
  route	
  reduces	
  
potential	
  greenhouse	
  gas	
  emissions	
  by	
  roughly	
  1	
  t	
  CO2e	
  per	
  ton	
  of	
  scrap	
  tires	
  recycled	
  
relative	
  to	
  the	
  cement	
  kiln	
  co-­‐incineration	
  route	
  and	
  by	
  1.8	
  t	
  CO2e,	
  compared	
  with	
  civil	
  
engineering	
  applications	
  (Arquit	
  Niederberger,	
  Shiroff	
  and	
  Raahauge,	
  2012).	
  Genan	
  
Business	
  &	
  Development	
  A/S	
  has	
  developed	
  a	
  mechanical	
  grinding	
  processes	
  that	
  
generates	
  only	
  1%	
  waste	
  from	
  scrap	
  tires,	
  with	
  recovered	
  materials	
  consisting	
  of	
  67%	
  
rubber	
  powder	
  and	
  granulate,	
  18%	
  steel	
  and	
  14%	
  textile.	
  Recycling	
  avoids	
  several	
  
processes,	
  in	
  particular,	
  production	
  of	
  virgin	
  polymers,	
  which	
  saves	
  about	
  50	
  GJ	
  per	
  ton	
  of	
  
tires,	
  and	
  the	
  iron	
  fraction	
  eliminates	
  the	
  need	
  for	
  400	
  kg	
  of	
  iron	
  ore	
  (Arquit	
  Niederberger,	
  
Shiroff	
  and	
  Raahauge,	
  2012).	
  
	
  

LOW-­‐CARBON	
  CHINA:	
  INNOVATION	
  BEYOND	
  EFFICIENCY	
   8	
  
	
  
 

	
  

Figure	
  7.	
  	
  Tire	
  End-­‐of-­‐Life	
  Pathways:	
  Co-­‐Incineration	
  vs.	
  Material	
  Recycling	
  

BEST%USE%OF%SCRAP%TIRES?%

!  Transformational!
approach!
!
Avoids!0.8!tCO2e/!
t!scrap!tires!!
compared!to!!
co<incineration!!

!!Incremental!approach!

!
Arquit!Niederberger,!Anne,!Shiroff,!Samuel,!Raahauge,!Lars!(2012):!Implications!of!Carbon!Markets!
for!Implementing!Circular!Economy!Models.!ICAE!2012!(Suzhou)!
!

	
  
	
  
Advanced	
  tire	
  recycling	
  facilities	
  have	
  been	
  built	
  in	
  Europe	
  and	
  the	
  USA,	
  but	
  many	
  
countries	
  still	
  encourage	
  co-­‐incineration	
  in	
  cement	
  plants,	
  which	
  makes	
  it	
  virtually	
  
impossible	
  for	
  a	
  recycling	
  facility	
  to	
  operate	
  profitably.	
  In	
  China,	
  resource	
  scarcity	
  and	
  
environmental	
  considerations	
  led	
  the	
  Ministry	
  of	
  Industry	
  and	
  Information	
  Technology	
  to	
  
issue	
  “Guidance	
  on	
  comprehensive	
  use	
  of	
  old	
  tires”	
  at	
  the	
  end	
  of	
  2010,	
  which	
  laid	
  out	
  
principles,	
  specific	
  objectives	
  (e.g.,	
  increasing	
  recycled	
  rubber	
  production	
  to	
  3	
  Mt	
  annually	
  
and	
  rubber	
  powder	
  output	
  to	
  100	
  Mt)	
  and	
  policies.	
  With	
  the	
  rapid	
  development	
  of	
  the	
  
national	
  economy	
  and	
  the	
  gradual	
  improvement	
  of	
  living	
  standards,	
  China	
  has	
  become	
  a	
  
large	
  consumer	
  of	
  rubber	
  (accounting	
  for	
  >30%	
  of	
  global	
  consumption),	
  and	
  there	
  is	
  a	
  large	
  
and	
  growing	
  gap	
  between	
  the	
  domestic	
  rubber	
  supply	
  and	
  demand	
  in	
  China	
  (>70%	
  of	
  
natural	
  rubber	
  and	
  >40%	
  of	
  composite	
  rubber	
  was	
  imported	
  in	
  2011).	
  Since	
  2001,	
  tire	
  
production	
  in	
  China	
  has	
  grown	
  over	
  15%	
  annually,	
  reaching	
  470	
  million	
  in	
  2012.	
  	
  
	
  
Were	
  the	
  240	
  million	
  end-­‐of-­‐life	
  tires	
  that	
  were	
  generated	
  in	
  China	
  in	
  2009	
  recycled,	
  rather	
  
than	
  used	
  for	
  energy	
  recovery	
  or	
  civil	
  engineering	
  applications,	
  1.9	
  –	
  4.3	
  MtCO2e	
  emissions	
  
could	
  be	
  avoided	
  (Arquit	
  Niederberger,	
  Shiroff	
  and	
  Raahauge,	
  2012).	
  And	
  there	
  are	
  other	
  
alternatives,	
  as	
  well.	
  In	
  Europe,	
  Michelin	
  Fleet	
  Solutions	
  leases	
  tires	
  and	
  offers	
  tire	
  
upgrades,	
  maintenance	
  and	
  replacement	
  to	
  optimize	
  the	
  performance	
  of	
  trucking	
  fleets	
  
and	
  to	
  lower	
  their	
  total	
  cost	
  of	
  ownership.	
  With	
  this	
  business	
  model,	
  Michelin	
  can	
  collect	
  
tires	
  when	
  they	
  wear	
  out	
  and	
  can	
  extend	
  their	
  technical	
  utility	
  by	
  retreading	
  or	
  regrooving	
  
them	
  for	
  resale.	
  The	
  company	
  estimates	
  that	
  retreads,	
  for	
  example,	
  require	
  half	
  of	
  the	
  raw	
  
materials	
  new	
  tires	
  do	
  (Nguyen,	
  Stuchtey	
  &	
  Zils,	
  2014).	
  On	
  the	
  R&D	
  front,	
  Pirelli	
  is	
  
LOW-­‐CARBON	
  CHINA:	
  INNOVATION	
  BEYOND	
  EFFICIENCY	
   9	
  
	
  
 
	
  
collaborating	
  with	
  Genan	
  to	
  develop	
  a	
  de-­‐vulcanisation	
  process	
  that	
  permits	
  post-­‐
consumer	
  tires	
  to	
  be	
  used	
  as	
  a	
  milled	
  material	
  in	
  new	
  tires,	
  closing	
  the	
  virgin	
  rubber	
  
material	
  loop.	
  	
  
	
  

3.

Culture	
  of	
  (Disruptive)	
  Innovation	
  

	
  
The	
  current	
  linear	
  economic	
  model	
  is	
  fundamentally	
  unsustainable,	
  regardless	
  of	
  how	
  
efficient	
  it	
  becomes,	
  and	
  a	
  radical	
  shift	
  to	
  a	
  circular	
  economy	
  model	
  is	
  urgently	
  needed.	
  The	
  
three	
  case	
  studies	
  presented	
  above	
  show	
  that	
  business	
  model	
  innovation	
  is	
  needed	
  to	
  
achieve	
  low-­‐carbon	
  economies	
  –	
  and	
  they	
  suggest	
  that	
  changes	
  in	
  enterprise	
  business	
  
models	
  can	
  transform	
  entire	
  industries	
  and	
  catalyze	
  broader	
  systems	
  change.	
  
	
  
Conceptually,	
  China’s	
  leadership	
  is	
  quite	
  advanced	
  in	
  its	
  circular	
  economy	
  thinking.	
  Closed-­‐
loop	
  material	
  use	
  along	
  with	
  industrial	
  symbiosis	
  –	
  co-­‐locating	
  or	
  connecting	
  industries	
  so	
  
that	
  a	
  waste	
  or	
  co-­‐product	
  from	
  one	
  becomes	
  an	
  input	
  to	
  another	
  –	
  have	
  become	
  common	
  
considerations	
  in	
  planning	
  economic	
  development	
  zones.	
  Yet	
  government	
  intent	
  is	
  not	
  
enough.	
  	
  
	
  
A	
  culture	
  of	
  innovation	
  is	
  the	
  basis	
  for	
  a	
  low-­‐carbon	
  economy.	
  This	
  demands	
  that	
  we	
  
individually	
  and	
  collectively:	
  
•

Aspire	
  to	
  transformational,	
  not	
  incremental	
  change;	
  

•

Adopt	
  new	
  behaviors	
  and	
  think	
  differently.	
  

	
  
Business	
  model	
  innovation	
  to	
  achieve	
  long-­‐term	
  sustainability	
  has	
  often	
  come	
  from	
  
startups,	
  as	
  in	
  the	
  SynGest	
  example.	
  It	
  is	
  much	
  more	
  challenging	
  to	
  transform	
  a	
  working	
  
business	
  model,	
  due	
  to	
  vested	
  interests.	
  However,	
  it	
  is	
  the	
  incumbent	
  fossil	
  thermal	
  
electricity	
  generators	
  and	
  chemical	
  and	
  petrochemical	
  industry	
  that	
  need	
  to	
  decarbonize	
  
on	
  a	
  massive	
  scale.	
  Government	
  attempts	
  to	
  correct	
  the	
  failure	
  of	
  markets	
  to	
  properly	
  price	
  
resource	
  depletion	
  and	
  greenhouse	
  gas	
  emissions	
  have	
  therefore	
  universally	
  been	
  too	
  
timid.	
  They	
  may	
  have	
  encouraged	
  operational	
  efficiency,	
  but	
  they	
  have	
  failed	
  to	
  encourage	
  
fundamental	
  changes	
  in	
  business	
  models.	
  Researchers	
  have	
  found	
  that	
  –	
  in	
  the	
  absence	
  of	
  
substantial	
  innovation	
  –	
  the	
  financial	
  performance	
  of	
  firms	
  declines	
  as	
  their	
  environmental,	
  
social	
  and	
  governance	
  (ESG)	
  performance	
  improves	
  (Eccles	
  &	
  Serafeim,	
  2013).	
  	
  
	
  
Companies	
  can	
  only	
  create	
  profitable	
  opportunities	
  to	
  transition	
  to	
  circular	
  economy	
  
models,	
  if	
  they	
  invent	
  new	
  products	
  processes,	
  and	
  business	
  models.	
  In	
  addition	
  to	
  
removing	
  barriers	
  to	
  change	
  (e.g.,	
  incentive	
  systems	
  and	
  investor	
  pressure	
  that	
  emphasize	
  
short-­‐term	
  performance),	
  therefore,	
  it	
  will	
  be	
  critical	
  to	
  nurture	
  the	
  behaviors	
  and	
  skills	
  
that	
  set	
  innovative	
  entrepreneurs	
  &	
  managers	
  apart	
  from	
  execution-­‐oriented,	
  results-­‐
driven	
  managers	
  (Table	
  2).	
  	
  
	
  
LOW-­‐CARBON	
  CHINA:	
  INNOVATION	
  BEYOND	
  EFFICIENCY	
   1
	
  
0	
  
 

	
  
Table	
  2.	
  	
  Innovator's	
  DNA	
  

Questioning	
  
Observing	
  
Networking	
  
Experimenting	
  
Associating	
  

Asking	
  questions	
  that	
  challenge	
  common	
  wisdom	
  
Scrutinizing	
  customer,	
  supplier,	
  and	
  competitor	
  behaviors	
  to	
  identify	
  new	
  ways	
  of	
  
doing	
  things	
  
Meeting	
  people	
  with	
  different	
  ideas,	
  backgrounds,	
  and	
  perspectives	
  
Constructing	
  interactive	
  experiences	
  that	
  provoke	
  unorthodox	
  responses	
  to	
  see	
  what	
  
insights	
  emerge	
  
Connecting	
  the	
  unconnected	
  across	
  questions,	
  problems,	
  or	
  ideas	
  from	
  unrelated	
  fields	
  

Source:	
  Christensen,	
  Dyer	
  &	
  Gregersen	
  (2011)	
  

	
  
These	
  skills	
  and	
  behaviors	
  have	
  been	
  referred	
  to	
  as	
  the	
  “innovator’s	
  DNA”	
  (Christensen,	
  
Dyer	
  &	
  Gregersen,	
  2011),	
  and	
  they	
  can	
  be	
  encouraged.	
  Engineers	
  have	
  an	
  established	
  
capability	
  to	
  deliver	
  incremental	
  innovation;	
  radical	
  innovations,	
  however,	
  require	
  new	
  
knowledge	
  and	
  skills.	
  CAPEC	
  is	
  well	
  positioned	
  to	
  advocate	
  for	
  changes	
  in	
  the	
  way	
  in	
  which	
  
engineers	
  are	
  educated	
  and	
  trained,	
  as	
  well	
  as	
  to	
  foster	
  a	
  culture	
  of	
  innovation	
  among	
  
Chinese	
  plant	
  engineers.	
  As	
  called	
  for	
  in	
  the	
  UK	
  context	
  (Royal	
  Academy	
  of	
  Engineering,	
  
2012),	
  CAPEC	
  can	
  consider	
  including	
  the	
  responsibility	
  of	
  engineers	
  to	
  address	
  radical	
  
innovation	
  and	
  drive	
  the	
  innovation	
  economy	
  in	
  its	
  professional	
  competency	
  and	
  training	
  
functions.	
  It	
  can	
  serve	
  a	
  liaison	
  function	
  between	
  institutions	
  of	
  higher	
  education	
  and	
  
employers	
  to	
  encourage	
  greater	
  focus	
  on	
  radical	
  innovation	
  through	
  engineering.	
  
	
  
Transformational	
  innovations	
  are	
  essential,	
  if	
  China	
  is	
  to	
  achieve	
  the	
  12th	
  Five-­‐Year	
  Plan	
  
vision	
  of	
  an	
  “ecological	
  civilization”,	
  which	
  Hu	
  Jintao	
  has	
  suggested	
  can	
  be	
  realized	
  by	
  
pursuing	
  development	
  “…in	
  a	
  scientific	
  way	
  that	
  puts	
  people	
  first	
  and	
  is	
  comprehensive,	
  
balanced	
  and	
  sustainable”.	
  Yet	
  individual	
  corporate	
  actions	
  on	
  their	
  own	
  won’t	
  suffice	
  to	
  
create	
  a	
  circular	
  economy	
  at	
  scale,	
  given	
  the	
  systemic	
  nature	
  of	
  the	
  barriers	
  (Nguyen,	
  
Stuchtey	
  &	
  Zils,	
  2014).	
  Government	
  policymakers	
  must	
  focus	
  society’s	
  attention	
  on	
  
transformational	
  change;	
  this	
  will	
  inspire	
  enterprises	
  and	
  individuals	
  to	
  innovate	
  the	
  
stepping	
  stones	
  of	
  an	
  enduring,	
  high-­‐quality	
  development	
  path.	
  There	
  is	
  a	
  real	
  danger	
  that	
  
a	
  well	
  intentioned	
  rush	
  to	
  achieve	
  incremental	
  improvements	
  could	
  actually	
  hinder	
  the	
  
transformational	
  approaches	
  needed	
  to	
  support	
  circular	
  economy	
  models	
  and	
  green	
  
growth	
  (Arquit	
  Niederberger,	
  Shiroff	
  &	
  Raahauge,	
  2012).	
  	
  
	
  
	
  
Author:	
  	
  
Anne	
  Arquit	
  Niederberger,	
  Ph.D.	
  
Affiliation:	
   Principal,	
  Policy	
  Solutions	
  
Contact:	
  
www.policy-­‐solutions.com	
  
	
  
This	
  paper	
  is	
  the	
  English	
  translation	
  of	
  a	
  paper	
  to	
  be	
  published	
  in	
  Mandarin	
  in	
  the	
  journal	
  Plant	
  
Engineering	
  Consultants,	
  based	
  on	
  a	
  presentation	
  at	
  CAPEC’s	
  2013	
  International	
  F orum	
  on	
  
Low-­‐Carbon	
  Industry	
  and	
  Green	
  Economy,	
  held	
  in	
  Beijing	
  on	
  20	
  November	
  2013.	
  

LOW-­‐CARBON	
  CHINA:	
  INNOVATION	
  BEYOND	
  EFFICIENCY	
   1
	
  
1	
  
 

4.

	
  

References	
  

Arquit	
  Niederberger,	
  A,	
  Shiroff,	
  S,	
  and	
  Raahauge,	
  L,	
  2012:	
  Implications	
  of	
  Carbon	
  Markets	
  
for	
  Implementing	
  Circular	
  Economy	
  Models.	
  White	
  Paper,	
  ICAE	
  2012	
  (Suzhou).	
  
Christensen,	
  C.M.,	
  Dyer,	
  J.,	
  and	
  Gregersen,	
  H.,	
  2011:	
  The	
  Innovator's	
  DNA:	
  Mastering	
  the	
  
Five	
  Skills	
  of	
  Disruptive	
  Innovators.	
  Harvard	
  Business	
  Review	
  Press.	
  
Climate	
  Group,	
  2012:	
  Lighting	
  the	
  Clean	
  Revolution:	
  The	
  Rise	
  of	
  LEDs	
  and	
  What	
  it	
  Means	
  for	
  
Cities.	
  London:	
  The	
  Climate	
  Group,	
  61	
  pp.	
  
Eccles,	
  R.,	
  and	
  Serafeim,	
  G.,	
  2013:	
  The	
  Performance	
  Frontier:	
  Innovating	
  for	
  a	
  Sustainable	
  
Strategy,	
  Harvard	
  Business	
  Review	
  91	
  (5),	
  50–60.	
  
ETRMA,	
  2012:	
  End-­‐of-­‐Life	
  Tires	
  –	
  A	
  Valuable	
  Resource	
  with	
  Growing	
  Potential	
  (2011	
  
Edition).	
  Brussels:	
  European	
  Tyre	
  and	
  Rubber	
  Manufacturers’	
  Association.	
  
IFA,	
  2009:	
  Energy	
  efficiency	
  and	
  CO2	
  emissions	
  in	
  ammonia	
  production,	
  Feeding	
  the	
  Earth	
  
(Issue	
  Brief).	
  International	
  Fertilizer	
  Industry	
  Association,	
  Paris.	
  
IMF,	
  2013:	
  Energy	
  Subsidy	
  Reform	
  in	
  Sub-­‐Saharan	
  Africa:	
  Experiences	
  and	
  Lessons,	
  pre-­‐
publication	
  draft.	
  Washington,	
  D.C.:	
  International	
  Monetary	
  Fund.	
  	
  
IPCC,	
  2013:	
  Summary	
  for	
  Policymakers.	
  In:	
  Climate	
  Change	
  2013:	
  The	
  Physical	
  Science	
  Basis.	
  
Contribution	
  of	
  Working	
  Group	
  I	
  to	
  the	
  Fifth	
  Assessment	
  Report	
  of	
  the	
  Intergovernmental	
  
Panel	
  on	
  Climate	
  Change	
  [Stocker,	
  T.F.,	
  D.	
  Qin,	
  G.-­‐K.	
  Plattner,	
  M.	
  Tignor,	
  S.K.	
  Allen,	
  J.	
  
Boschung,	
  A.	
  Nauels,	
  Y.	
  Xia,	
  V.	
  Bex	
  and	
  P.M.	
  Midgley	
  (eds.)].	
  Cambridge	
  University	
  Press,	
  
Cambridge,	
  United	
  Kingdom	
  and	
  New	
  York,	
  NY,	
  USA.	
  
Kahrl,	
  F,	
  Li,	
  YJ,	
  Su,	
  YF,	
  Tennigkeit,	
  T.,	
  Wilkes,	
  A.,	
  and	
  Xu,	
  JC,	
  2010:	
  Greenhouse	
  Gas	
  Emissions	
  
From	
  Nitrogen	
  Fertilizer	
  Use	
  In	
  China.	
  Environmental	
  Science	
  &	
  Policy,	
  13(8),	
  688-­‐694.	
  
McKinsey,	
  2012:	
  Lighting	
  the	
  way:	
  Perspectives	
  on	
  the	
  Global	
  Lighting	
  Market.,	
  2nd	
  Edition.	
  
McKinsey	
  &	
  Company,	
  57	
  pp.	
  
Nguyen,	
  H.,	
  Stuchtey,	
  M.,	
  and	
  Zils,	
  M.,	
  2014:	
  Remaking	
  the	
  industrial	
  economy,	
  McKinsey	
  
Quarterly,	
  February	
  2014.	
  
Royal	
  Academy	
  of	
  Engineering,	
  2012:	
  Educating	
  Engineers	
  to	
  Drive	
  the	
  Innovation	
  Economy.	
  
London:	
  The	
  Royal	
  Academy	
  of	
  Engineering,	
  28	
  pp.	
  
World	
  Bank,	
  in	
  press:	
  Market	
  Transformation	
  for	
  Energy	
  Efficient	
  Lighting:	
  Focus	
  on	
  Africa.	
  
Washington,	
  D.C.:	
  The	
  World	
  Bank.	
  

LOW-­‐CARBON	
  CHINA:	
  INNOVATION	
  BEYOND	
  EFFICIENCY	
   1
	
  
2	
  

Más contenido relacionado

La actualidad más candente

Business and Sustainable Development - The Green Race is On
Business and Sustainable Development - The Green Race is OnBusiness and Sustainable Development - The Green Race is On
Business and Sustainable Development - The Green Race is OnMichael Soron
 
HEC Presentation about IPEEC and EE
HEC Presentation about IPEEC and EEHEC Presentation about IPEEC and EE
HEC Presentation about IPEEC and EEnooone
 
Reporter’s Guide to the Energiewende 2016
Reporter’s Guide to the Energiewende 2016Reporter’s Guide to the Energiewende 2016
Reporter’s Guide to the Energiewende 2016Clean Energy Wire
 
Green Futures: Sharing the Wealth and Saving the Planet - Presentation for Pe...
Green Futures: Sharing the Wealth and Saving the Planet - Presentation for Pe...Green Futures: Sharing the Wealth and Saving the Planet - Presentation for Pe...
Green Futures: Sharing the Wealth and Saving the Planet - Presentation for Pe...Global Thermostat
 
Dr. Steve Shelley - Multiple Utopias when exploring the future of work and th...
Dr. Steve Shelley - Multiple Utopias when exploring the future of work and th...Dr. Steve Shelley - Multiple Utopias when exploring the future of work and th...
Dr. Steve Shelley - Multiple Utopias when exploring the future of work and th...University of Hertfordshire
 
GGSD 2019 Forum - Opening session - Keynote presentation
GGSD 2019 Forum -  Opening session - Keynote presentationGGSD 2019 Forum -  Opening session - Keynote presentation
GGSD 2019 Forum - Opening session - Keynote presentationOECD Environment
 
Circular Economy Policy in Korea (Ick Jin)
Circular Economy Policy in Korea (Ick Jin)Circular Economy Policy in Korea (Ick Jin)
Circular Economy Policy in Korea (Ick Jin)Ick Jin
 
William Hogan, Research Director, Harvard Electricity Policy Group, Harvard U...
William Hogan, Research Director, Harvard Electricity Policy Group, Harvard U...William Hogan, Research Director, Harvard Electricity Policy Group, Harvard U...
William Hogan, Research Director, Harvard Electricity Policy Group, Harvard U...Sustainable Prosperity
 
The role of energy in economic growth - Stern
The role of energy in economic growth - SternThe role of energy in economic growth - Stern
The role of energy in economic growth - SternZeus Guevara
 
14. history of energy use
14. history of energy use 14. history of energy use
14. history of energy use mkornrei
 
SGS Energy Management White Paper May 2013 Update
SGS Energy Management White Paper May 2013 UpdateSGS Energy Management White Paper May 2013 Update
SGS Energy Management White Paper May 2013 UpdateSGS
 
Review of Green Building Index GBI in Malaysia
Review of Green Building Index GBI in MalaysiaReview of Green Building Index GBI in Malaysia
Review of Green Building Index GBI in Malaysiaijtsrd
 
Linking the energy crisis with climate change, Ritu Mathu, TERI University, I...
Linking the energy crisis with climate change, Ritu Mathu, TERI University, I...Linking the energy crisis with climate change, Ritu Mathu, TERI University, I...
Linking the energy crisis with climate change, Ritu Mathu, TERI University, I...ESD UNU-IAS
 
The US Coal Crash | Evidence for Structural Change
The US Coal Crash | Evidence for Structural ChangeThe US Coal Crash | Evidence for Structural Change
The US Coal Crash | Evidence for Structural ChangeSustainable Brands
 

La actualidad más candente (20)

Business and Sustainable Development - The Green Race is On
Business and Sustainable Development - The Green Race is OnBusiness and Sustainable Development - The Green Race is On
Business and Sustainable Development - The Green Race is On
 
STS TERM PAPER
STS TERM PAPERSTS TERM PAPER
STS TERM PAPER
 
HEC Presentation about IPEEC and EE
HEC Presentation about IPEEC and EEHEC Presentation about IPEEC and EE
HEC Presentation about IPEEC and EE
 
Reporter’s Guide to the Energiewende 2016
Reporter’s Guide to the Energiewende 2016Reporter’s Guide to the Energiewende 2016
Reporter’s Guide to the Energiewende 2016
 
Green Futures: Sharing the Wealth and Saving the Planet - Presentation for Pe...
Green Futures: Sharing the Wealth and Saving the Planet - Presentation for Pe...Green Futures: Sharing the Wealth and Saving the Planet - Presentation for Pe...
Green Futures: Sharing the Wealth and Saving the Planet - Presentation for Pe...
 
Dr. Steve Shelley - Multiple Utopias when exploring the future of work and th...
Dr. Steve Shelley - Multiple Utopias when exploring the future of work and th...Dr. Steve Shelley - Multiple Utopias when exploring the future of work and th...
Dr. Steve Shelley - Multiple Utopias when exploring the future of work and th...
 
GGSD 2019 Forum - Opening session - Keynote presentation
GGSD 2019 Forum -  Opening session - Keynote presentationGGSD 2019 Forum -  Opening session - Keynote presentation
GGSD 2019 Forum - Opening session - Keynote presentation
 
Articulo alemania green construction
Articulo alemania green constructionArticulo alemania green construction
Articulo alemania green construction
 
Business And Climate Change March 2010
Business And Climate Change March 2010Business And Climate Change March 2010
Business And Climate Change March 2010
 
Thoughts - Renewable Energy
Thoughts - Renewable EnergyThoughts - Renewable Energy
Thoughts - Renewable Energy
 
Circular Economy Policy in Korea (Ick Jin)
Circular Economy Policy in Korea (Ick Jin)Circular Economy Policy in Korea (Ick Jin)
Circular Economy Policy in Korea (Ick Jin)
 
20320140503043
2032014050304320320140503043
20320140503043
 
William Hogan, Research Director, Harvard Electricity Policy Group, Harvard U...
William Hogan, Research Director, Harvard Electricity Policy Group, Harvard U...William Hogan, Research Director, Harvard Electricity Policy Group, Harvard U...
William Hogan, Research Director, Harvard Electricity Policy Group, Harvard U...
 
The role of energy in economic growth - Stern
The role of energy in economic growth - SternThe role of energy in economic growth - Stern
The role of energy in economic growth - Stern
 
14. history of energy use
14. history of energy use 14. history of energy use
14. history of energy use
 
SGS Energy Management White Paper May 2013 Update
SGS Energy Management White Paper May 2013 UpdateSGS Energy Management White Paper May 2013 Update
SGS Energy Management White Paper May 2013 Update
 
Review of Green Building Index GBI in Malaysia
Review of Green Building Index GBI in MalaysiaReview of Green Building Index GBI in Malaysia
Review of Green Building Index GBI in Malaysia
 
Challenging Instruments and Capacities to Engage in Sustainable Development
Challenging Instruments and Capacities to Engage in Sustainable DevelopmentChallenging Instruments and Capacities to Engage in Sustainable Development
Challenging Instruments and Capacities to Engage in Sustainable Development
 
Linking the energy crisis with climate change, Ritu Mathu, TERI University, I...
Linking the energy crisis with climate change, Ritu Mathu, TERI University, I...Linking the energy crisis with climate change, Ritu Mathu, TERI University, I...
Linking the energy crisis with climate change, Ritu Mathu, TERI University, I...
 
The US Coal Crash | Evidence for Structural Change
The US Coal Crash | Evidence for Structural ChangeThe US Coal Crash | Evidence for Structural Change
The US Coal Crash | Evidence for Structural Change
 

Similar a Low Carbon China - Innovation Beyond Efficiency

The Circular Economy - a Powerful Force for Climate Mitigation
The Circular Economy - a Powerful Force for Climate MitigationThe Circular Economy - a Powerful Force for Climate Mitigation
The Circular Economy - a Powerful Force for Climate MitigationEIT Climate-KIC
 
Climate Change mitigation: practical measures to limit global warming IPCC re...
Climate Change mitigation: practical measures to limit global warming IPCC re...Climate Change mitigation: practical measures to limit global warming IPCC re...
Climate Change mitigation: practical measures to limit global warming IPCC re...GreenFacts
 
Ab climate change outline_v2
Ab climate change outline_v2Ab climate change outline_v2
Ab climate change outline_v2velgot
 
Climate Change (By Anumita)
Climate Change (By Anumita)Climate Change (By Anumita)
Climate Change (By Anumita)bmbks321
 
Nrt advice-on-energy-climate-change-eng
Nrt advice-on-energy-climate-change-engNrt advice-on-energy-climate-change-eng
Nrt advice-on-energy-climate-change-engNationalRoundTable
 
Positive Energy Buildings - Professional Development Course for Engineers
Positive Energy Buildings - Professional Development Course for EngineersPositive Energy Buildings - Professional Development Course for Engineers
Positive Energy Buildings - Professional Development Course for EngineersMarianneSalama
 
Spreng, D. (2005). Distribution of energy consumption and the 2000 W/capita t...
Spreng, D. (2005). Distribution of energy consumption and the 2000 W/capita t...Spreng, D. (2005). Distribution of energy consumption and the 2000 W/capita t...
Spreng, D. (2005). Distribution of energy consumption and the 2000 W/capita t...morosini1952
 
greeneconomy-150306180005-conversion-gate01.pdf
greeneconomy-150306180005-conversion-gate01.pdfgreeneconomy-150306180005-conversion-gate01.pdf
greeneconomy-150306180005-conversion-gate01.pdfhalemayehu
 
2018 GGSD Forum - Opening Session - Keynote Presentation
2018 GGSD Forum - Opening Session - Keynote Presentation2018 GGSD Forum - Opening Session - Keynote Presentation
2018 GGSD Forum - Opening Session - Keynote PresentationOECD Environment
 
Intro to duall
Intro to duallIntro to duall
Intro to dualldualldmu
 
Green Chemistry - Economical View
Green Chemistry - Economical ViewGreen Chemistry - Economical View
Green Chemistry - Economical ViewRohan Khanna
 
Circular Hotspot COP24 Side-Event: Circular Economy - The missing link in the...
Circular Hotspot COP24 Side-Event: Circular Economy - The missing link in the...Circular Hotspot COP24 Side-Event: Circular Economy - The missing link in the...
Circular Hotspot COP24 Side-Event: Circular Economy - The missing link in the...Diana de Graaf
 
Circular Economy, Cascade Use and Efficiency as Pillars of a Factor Five World
Circular Economy, Cascade Use and Efficiency as Pillars of a Factor Five WorldCircular Economy, Cascade Use and Efficiency as Pillars of a Factor Five World
Circular Economy, Cascade Use and Efficiency as Pillars of a Factor Five WorldErnst Ulrich von Weizsäcker
 
10.1.1.120.7375
10.1.1.120.737510.1.1.120.7375
10.1.1.120.7375sayed30
 

Similar a Low Carbon China - Innovation Beyond Efficiency (20)

The Circular Economy - a Powerful Force for Climate Mitigation
The Circular Economy - a Powerful Force for Climate MitigationThe Circular Economy - a Powerful Force for Climate Mitigation
The Circular Economy - a Powerful Force for Climate Mitigation
 
Climate Change mitigation: practical measures to limit global warming IPCC re...
Climate Change mitigation: practical measures to limit global warming IPCC re...Climate Change mitigation: practical measures to limit global warming IPCC re...
Climate Change mitigation: practical measures to limit global warming IPCC re...
 
Carbon Tax In Canada
Carbon Tax In CanadaCarbon Tax In Canada
Carbon Tax In Canada
 
Ab climate change outline_v2
Ab climate change outline_v2Ab climate change outline_v2
Ab climate change outline_v2
 
Climate Change (By Anumita)
Climate Change (By Anumita)Climate Change (By Anumita)
Climate Change (By Anumita)
 
Nrt advice-on-energy-climate-change-eng
Nrt advice-on-energy-climate-change-engNrt advice-on-energy-climate-change-eng
Nrt advice-on-energy-climate-change-eng
 
Positive Energy Buildings - Professional Development Course for Engineers
Positive Energy Buildings - Professional Development Course for EngineersPositive Energy Buildings - Professional Development Course for Engineers
Positive Energy Buildings - Professional Development Course for Engineers
 
Spreng, D. (2005). Distribution of energy consumption and the 2000 W/capita t...
Spreng, D. (2005). Distribution of energy consumption and the 2000 W/capita t...Spreng, D. (2005). Distribution of energy consumption and the 2000 W/capita t...
Spreng, D. (2005). Distribution of energy consumption and the 2000 W/capita t...
 
Green economy
Green economyGreen economy
Green economy
 
greeneconomy-150306180005-conversion-gate01.pdf
greeneconomy-150306180005-conversion-gate01.pdfgreeneconomy-150306180005-conversion-gate01.pdf
greeneconomy-150306180005-conversion-gate01.pdf
 
2018 GGSD Forum - Opening Session - Keynote Presentation
2018 GGSD Forum - Opening Session - Keynote Presentation2018 GGSD Forum - Opening Session - Keynote Presentation
2018 GGSD Forum - Opening Session - Keynote Presentation
 
BP Technology Outlook - 2015
BP Technology Outlook - 2015BP Technology Outlook - 2015
BP Technology Outlook - 2015
 
Educause Live
Educause LiveEducause Live
Educause Live
 
Intro to duall
Intro to duallIntro to duall
Intro to duall
 
Green Chemistry - Economical View
Green Chemistry - Economical ViewGreen Chemistry - Economical View
Green Chemistry - Economical View
 
Lcs 2050 presented for scg
Lcs 2050 presented for scgLcs 2050 presented for scg
Lcs 2050 presented for scg
 
Circular Hotspot COP24 Side-Event: Circular Economy - The missing link in the...
Circular Hotspot COP24 Side-Event: Circular Economy - The missing link in the...Circular Hotspot COP24 Side-Event: Circular Economy - The missing link in the...
Circular Hotspot COP24 Side-Event: Circular Economy - The missing link in the...
 
P36 37 Chemicals
P36 37 ChemicalsP36 37 Chemicals
P36 37 Chemicals
 
Circular Economy, Cascade Use and Efficiency as Pillars of a Factor Five World
Circular Economy, Cascade Use and Efficiency as Pillars of a Factor Five WorldCircular Economy, Cascade Use and Efficiency as Pillars of a Factor Five World
Circular Economy, Cascade Use and Efficiency as Pillars of a Factor Five World
 
10.1.1.120.7375
10.1.1.120.737510.1.1.120.7375
10.1.1.120.7375
 

Último

HONOR Veterans Event Keynote by Michael Hawkins
HONOR Veterans Event Keynote by Michael HawkinsHONOR Veterans Event Keynote by Michael Hawkins
HONOR Veterans Event Keynote by Michael HawkinsMichael W. Hawkins
 
Monte Carlo simulation : Simulation using MCSM
Monte Carlo simulation : Simulation using MCSMMonte Carlo simulation : Simulation using MCSM
Monte Carlo simulation : Simulation using MCSMRavindra Nath Shukla
 
How to Get Started in Social Media for Art League City
How to Get Started in Social Media for Art League CityHow to Get Started in Social Media for Art League City
How to Get Started in Social Media for Art League CityEric T. Tung
 
7.pdf This presentation captures many uses and the significance of the number...
7.pdf This presentation captures many uses and the significance of the number...7.pdf This presentation captures many uses and the significance of the number...
7.pdf This presentation captures many uses and the significance of the number...Paul Menig
 
Call Girls in Gomti Nagar - 7388211116 - With room Service
Call Girls in Gomti Nagar - 7388211116  - With room ServiceCall Girls in Gomti Nagar - 7388211116  - With room Service
Call Girls in Gomti Nagar - 7388211116 - With room Servicediscovermytutordmt
 
Mysore Call Girls 8617370543 WhatsApp Number 24x7 Best Services
Mysore Call Girls 8617370543 WhatsApp Number 24x7 Best ServicesMysore Call Girls 8617370543 WhatsApp Number 24x7 Best Services
Mysore Call Girls 8617370543 WhatsApp Number 24x7 Best ServicesDipal Arora
 
Boost the utilization of your HCL environment by reevaluating use cases and f...
Boost the utilization of your HCL environment by reevaluating use cases and f...Boost the utilization of your HCL environment by reevaluating use cases and f...
Boost the utilization of your HCL environment by reevaluating use cases and f...Roland Driesen
 
Monthly Social Media Update April 2024 pptx.pptx
Monthly Social Media Update April 2024 pptx.pptxMonthly Social Media Update April 2024 pptx.pptx
Monthly Social Media Update April 2024 pptx.pptxAndy Lambert
 
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756dollysharma2066
 
Best VIP Call Girls Noida Sector 40 Call Me: 8448380779
Best VIP Call Girls Noida Sector 40 Call Me: 8448380779Best VIP Call Girls Noida Sector 40 Call Me: 8448380779
Best VIP Call Girls Noida Sector 40 Call Me: 8448380779Delhi Call girls
 
Russian Call Girls In Gurgaon ❤️8448577510 ⊹Best Escorts Service In 24/7 Delh...
Russian Call Girls In Gurgaon ❤️8448577510 ⊹Best Escorts Service In 24/7 Delh...Russian Call Girls In Gurgaon ❤️8448577510 ⊹Best Escorts Service In 24/7 Delh...
Russian Call Girls In Gurgaon ❤️8448577510 ⊹Best Escorts Service In 24/7 Delh...lizamodels9
 
Call Girls In Panjim North Goa 9971646499 Genuine Service
Call Girls In Panjim North Goa 9971646499 Genuine ServiceCall Girls In Panjim North Goa 9971646499 Genuine Service
Call Girls In Panjim North Goa 9971646499 Genuine Serviceritikaroy0888
 
KYC-Verified Accounts: Helping Companies Handle Challenging Regulatory Enviro...
KYC-Verified Accounts: Helping Companies Handle Challenging Regulatory Enviro...KYC-Verified Accounts: Helping Companies Handle Challenging Regulatory Enviro...
KYC-Verified Accounts: Helping Companies Handle Challenging Regulatory Enviro...Any kyc Account
 
Enhancing and Restoring Safety & Quality Cultures - Dave Litwiller - May 2024...
Enhancing and Restoring Safety & Quality Cultures - Dave Litwiller - May 2024...Enhancing and Restoring Safety & Quality Cultures - Dave Litwiller - May 2024...
Enhancing and Restoring Safety & Quality Cultures - Dave Litwiller - May 2024...Dave Litwiller
 
👉Chandigarh Call Girls 👉9878799926👉Just Call👉Chandigarh Call Girl In Chandiga...
👉Chandigarh Call Girls 👉9878799926👉Just Call👉Chandigarh Call Girl In Chandiga...👉Chandigarh Call Girls 👉9878799926👉Just Call👉Chandigarh Call Girl In Chandiga...
👉Chandigarh Call Girls 👉9878799926👉Just Call👉Chandigarh Call Girl In Chandiga...rajveerescorts2022
 
VIP Call Girls In Saharaganj ( Lucknow ) 🔝 8923113531 🔝 Cash Payment (COD) 👒
VIP Call Girls In Saharaganj ( Lucknow  ) 🔝 8923113531 🔝  Cash Payment (COD) 👒VIP Call Girls In Saharaganj ( Lucknow  ) 🔝 8923113531 🔝  Cash Payment (COD) 👒
VIP Call Girls In Saharaganj ( Lucknow ) 🔝 8923113531 🔝 Cash Payment (COD) 👒anilsa9823
 
The Coffee Bean & Tea Leaf(CBTL), Business strategy case study
The Coffee Bean & Tea Leaf(CBTL), Business strategy case studyThe Coffee Bean & Tea Leaf(CBTL), Business strategy case study
The Coffee Bean & Tea Leaf(CBTL), Business strategy case studyEthan lee
 
Yaroslav Rozhankivskyy: Три складові і три передумови максимальної продуктивн...
Yaroslav Rozhankivskyy: Три складові і три передумови максимальної продуктивн...Yaroslav Rozhankivskyy: Три складові і три передумови максимальної продуктивн...
Yaroslav Rozhankivskyy: Три складові і три передумови максимальної продуктивн...Lviv Startup Club
 
Dr. Admir Softic_ presentation_Green Club_ENG.pdf
Dr. Admir Softic_ presentation_Green Club_ENG.pdfDr. Admir Softic_ presentation_Green Club_ENG.pdf
Dr. Admir Softic_ presentation_Green Club_ENG.pdfAdmir Softic
 

Último (20)

HONOR Veterans Event Keynote by Michael Hawkins
HONOR Veterans Event Keynote by Michael HawkinsHONOR Veterans Event Keynote by Michael Hawkins
HONOR Veterans Event Keynote by Michael Hawkins
 
Monte Carlo simulation : Simulation using MCSM
Monte Carlo simulation : Simulation using MCSMMonte Carlo simulation : Simulation using MCSM
Monte Carlo simulation : Simulation using MCSM
 
How to Get Started in Social Media for Art League City
How to Get Started in Social Media for Art League CityHow to Get Started in Social Media for Art League City
How to Get Started in Social Media for Art League City
 
7.pdf This presentation captures many uses and the significance of the number...
7.pdf This presentation captures many uses and the significance of the number...7.pdf This presentation captures many uses and the significance of the number...
7.pdf This presentation captures many uses and the significance of the number...
 
Call Girls in Gomti Nagar - 7388211116 - With room Service
Call Girls in Gomti Nagar - 7388211116  - With room ServiceCall Girls in Gomti Nagar - 7388211116  - With room Service
Call Girls in Gomti Nagar - 7388211116 - With room Service
 
Mifty kit IN Salmiya (+918133066128) Abortion pills IN Salmiyah Cytotec pills
Mifty kit IN Salmiya (+918133066128) Abortion pills IN Salmiyah Cytotec pillsMifty kit IN Salmiya (+918133066128) Abortion pills IN Salmiyah Cytotec pills
Mifty kit IN Salmiya (+918133066128) Abortion pills IN Salmiyah Cytotec pills
 
Mysore Call Girls 8617370543 WhatsApp Number 24x7 Best Services
Mysore Call Girls 8617370543 WhatsApp Number 24x7 Best ServicesMysore Call Girls 8617370543 WhatsApp Number 24x7 Best Services
Mysore Call Girls 8617370543 WhatsApp Number 24x7 Best Services
 
Boost the utilization of your HCL environment by reevaluating use cases and f...
Boost the utilization of your HCL environment by reevaluating use cases and f...Boost the utilization of your HCL environment by reevaluating use cases and f...
Boost the utilization of your HCL environment by reevaluating use cases and f...
 
Monthly Social Media Update April 2024 pptx.pptx
Monthly Social Media Update April 2024 pptx.pptxMonthly Social Media Update April 2024 pptx.pptx
Monthly Social Media Update April 2024 pptx.pptx
 
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
 
Best VIP Call Girls Noida Sector 40 Call Me: 8448380779
Best VIP Call Girls Noida Sector 40 Call Me: 8448380779Best VIP Call Girls Noida Sector 40 Call Me: 8448380779
Best VIP Call Girls Noida Sector 40 Call Me: 8448380779
 
Russian Call Girls In Gurgaon ❤️8448577510 ⊹Best Escorts Service In 24/7 Delh...
Russian Call Girls In Gurgaon ❤️8448577510 ⊹Best Escorts Service In 24/7 Delh...Russian Call Girls In Gurgaon ❤️8448577510 ⊹Best Escorts Service In 24/7 Delh...
Russian Call Girls In Gurgaon ❤️8448577510 ⊹Best Escorts Service In 24/7 Delh...
 
Call Girls In Panjim North Goa 9971646499 Genuine Service
Call Girls In Panjim North Goa 9971646499 Genuine ServiceCall Girls In Panjim North Goa 9971646499 Genuine Service
Call Girls In Panjim North Goa 9971646499 Genuine Service
 
KYC-Verified Accounts: Helping Companies Handle Challenging Regulatory Enviro...
KYC-Verified Accounts: Helping Companies Handle Challenging Regulatory Enviro...KYC-Verified Accounts: Helping Companies Handle Challenging Regulatory Enviro...
KYC-Verified Accounts: Helping Companies Handle Challenging Regulatory Enviro...
 
Enhancing and Restoring Safety & Quality Cultures - Dave Litwiller - May 2024...
Enhancing and Restoring Safety & Quality Cultures - Dave Litwiller - May 2024...Enhancing and Restoring Safety & Quality Cultures - Dave Litwiller - May 2024...
Enhancing and Restoring Safety & Quality Cultures - Dave Litwiller - May 2024...
 
👉Chandigarh Call Girls 👉9878799926👉Just Call👉Chandigarh Call Girl In Chandiga...
👉Chandigarh Call Girls 👉9878799926👉Just Call👉Chandigarh Call Girl In Chandiga...👉Chandigarh Call Girls 👉9878799926👉Just Call👉Chandigarh Call Girl In Chandiga...
👉Chandigarh Call Girls 👉9878799926👉Just Call👉Chandigarh Call Girl In Chandiga...
 
VIP Call Girls In Saharaganj ( Lucknow ) 🔝 8923113531 🔝 Cash Payment (COD) 👒
VIP Call Girls In Saharaganj ( Lucknow  ) 🔝 8923113531 🔝  Cash Payment (COD) 👒VIP Call Girls In Saharaganj ( Lucknow  ) 🔝 8923113531 🔝  Cash Payment (COD) 👒
VIP Call Girls In Saharaganj ( Lucknow ) 🔝 8923113531 🔝 Cash Payment (COD) 👒
 
The Coffee Bean & Tea Leaf(CBTL), Business strategy case study
The Coffee Bean & Tea Leaf(CBTL), Business strategy case studyThe Coffee Bean & Tea Leaf(CBTL), Business strategy case study
The Coffee Bean & Tea Leaf(CBTL), Business strategy case study
 
Yaroslav Rozhankivskyy: Три складові і три передумови максимальної продуктивн...
Yaroslav Rozhankivskyy: Три складові і три передумови максимальної продуктивн...Yaroslav Rozhankivskyy: Три складові і три передумови максимальної продуктивн...
Yaroslav Rozhankivskyy: Три складові і три передумови максимальної продуктивн...
 
Dr. Admir Softic_ presentation_Green Club_ENG.pdf
Dr. Admir Softic_ presentation_Green Club_ENG.pdfDr. Admir Softic_ presentation_Green Club_ENG.pdf
Dr. Admir Softic_ presentation_Green Club_ENG.pdf
 

Low Carbon China - Innovation Beyond Efficiency

  • 1.   English  Translation     Low-­‐Carbon  China:  Innovation  beyond  Efficiency   ©2014  Anne  Arquit  Niederberger     1. Introduction     I  was  asked  to  address  the  subject  of  industrial  energy  efficiency  innovation  and  technology   cooperation.  However,  this  paper  stresses  the  need  to  go  beyond  energy  efficiency  and   focus  on  radical  innovation  to  bring  about  systemic  change  –  specifically  business  model   innovation  –  if  we  are  serious  about  green  growth.       Limiting  the  warming  caused  by  anthropogenic  greenhouse  gas  emissions  with  a  probability   of  >50%  to  less  than  2°C  (compared  with  the  period  1861–1880)  will  require  cumulative   CO2  emissions  from  all  anthropogenic  sources  to  stay  below  820  GtC  (3010  billion  tons  of   CO2).  Roughly  two-­‐thirds  of  this  carbon  budget  (445  to  585  GtC)  had  already  been  emitted   by  2011  (IPCC,  2013)  and  –  at  the  rate  of  emissions  recorded  for  2012  (9.7  GtC/y)  –  the   entire  budget  will  have  been  used  up  within  roughly  30  years.  This  simple  calculation   ignores  several  trends  that  could  shorten  this  timeframe,  including  continued  growth  in   emissions.       Driving  global  emissions  to  zero  on  a  30-­‐year  timescale  is  a  daunting  task  in  itself,  but  it  is   not  the  only  challenge  we  face.  UN  Secretary  General  Ban  Ki-­‐moon  has  said  that  “we  all   aspire  to  reach  better  living  conditions.  Yet,  this  will  not  be  possible  by  following  the   current  growth  model.  .  .  “  He  went  on  to  say  that  “we  need  a  practical  21st  Century   development  model  that  connects   Figure  1.    Key  Issues  of  our  Time   the  dots  between  the  key  issues  of   our  time”.  And  he  gave  some   examples  of  those  pressing  issues   (Figure  1).     What  he  referred  to  as  “connecting   the  dots”  is  about  associating,  and   associating  is  at  the  heart  of   innovation.  Because  these  societal   challenges  –  from  reducing  poverty   and  inequality  to  limiting  climate   change  and  its  impacts  and  ensuring   human  security  in  the  broadest  sense  –  are  linked  through  common  drivers  and  flows,   there  is  an  opportunity  and  a  necessity  to  innovate  the  technologies,  products,  services,   and  institutions  that  can  pave  the  way  for  improving  the  human  condition  in  a  balanced,   comprehensive  and  sustainable  fashion.  Air  conditioning  might  appear  to  be  a  reasonable   LOW-­‐CARBON  CHINA:  INNOVATION  BEYOND  EFFICIENCY   1    
  • 2.     adaptation  to  a  warmer  world,  for  example,  but  conventional  technologies  can  exacerbate   the  problem  by  requiring  more  electricity  to  be  generated  by  combusting  fossil  fuels  and   are  in  any  case  out  of  reach  for  a  significant  share  of  the  global  population  without  access   to  power.     Error!  Reference  source  not  found.  aptly  illustrates  this  complexity  with  another  example:   China  has  managed  to  reduce  its  energy  and  carbon  intensity  significantly  over  the  past  two   decades.  But  total  CO2  emissions  nonetheless  rose  by  350%  over  the  same  period,  as  a   result  of  successful  poverty   Figure  2.    Percentage  Change  in  Critical  Indicators  1990  -­‐  2011   alleviation  efforts  and  population   growth.  This  means  that  –   although  “lower  carbon”  is  clearly   happening  today  –  a  truly  “low-­‐ carbon”  and  sustainable  economy   will  require  (disruptive)  innovation   and  solutions  that  do  not  yet  exist.     In  the  12th  Five-­‐Year  Plan  for   Economic  and  Social  Development   (2011  –  2015),  China’s  leadership   explicitly  highlighted  the   imperative  to  transform  the     economic  and  political  system  to   deliver  “higher  quality”  and  “inclusive”  economic  growth  that  is  balanced  and  sustainable.   And  the  plan  spells  out  key  strategies  and  targets  to  achieve  the  transition.  Of  particular   relevance  to  this  paper  is  the  emphasis  given  to  innovation,  including  a  specific  target  to   generate  3.3  patents  per  10,000  people  and  a  commitment  to  invest  in  seven  priority   industries  that  are  poised  to  make  a  contribution  to  green  growth,  while  moving  up  the   economic  value  chain:  energy  savings  and  environmental  protection;  new  energy;  clean   energy  vehicles;  biotechnology;  new  materials;  new  IT;  and  high-­‐end  manufacturing.  China   also  has  a  recent  history  of  establishing  its  own  and  hosting  global  corporate  R&D  centers.   But  will  China  manage  to  realize  a  sustainable  green  growth  model?  The  answer  will  be  of   existential  interest  to  us  all.       2. Innovation  Case  Studies     The  need  for  radical  new  business  models  is  illustrated  with  three  specific  examples  (Error!   Reference  source  not  found.).  The  first  is  fertilizer  production,  which  is  responsible  for   1.2%  of  global  CO2  emissions.  It  is  an  energy  and  carbon-­‐intensive  process,  with   hydrocarbons  serving  as  both  feedstock  and  energy  source.  And  chemical  fertilizer  is  a   major  and  uncertain  cost  factor  for  farmers,  due  to  global  market  price  volatility,  as  well  as   a  major  contributor  to  land  and  water  degradation.   LOW-­‐CARBON  CHINA:  INNOVATION  BEYOND  EFFICIENCY   2    
  • 3.       The  second  example  is  the   Figure  3.    Industrial  Sector  Case  Studies   provision  of  lighting  services,   which  accounts  for  an  even   greater  share  of  global  CO2   emissions,  namely  6%.  Current   business  models  offer  bulbs  as   consumable  and  largely  throw-­‐ away  products.  Consumers   purchase  lamps/luminaires  from   retailers  and  pay  electric  bills  to   keep  the  lights  on.  Power   producers  have  a  tough  time     keeping  up  with  demand.   Efficient  lighting  options  that  could  cut  household  electricity  consumption  (especially  LED)   have  a  higher  purchase  price,  discouraging  their  widespread  adoption.       The  end-­‐of-­‐life  treatment  of  scrap  tires  is  the  third  case  study.  Tires  have  a  similar  calorific   value  to  high-­‐quality  coal.  Energy-­‐intensive  industries  (e.g.,  cement)  increasingly  incinerate   tires  as  a  supplemental  fuel  to  lower  fuel  costs  and  reduce  CO2  emissions.  In  all  three  cases,   business  model  innovation  can  deliver  better  results  for  people  and  the  planet  than  an   incremental  approach  that  strives  only  to  make  existing  processes  more  efficient  and  less   carbon  intensive.     Fertilizer  Production     China  is  the  largest  consumer  and  producer  of  nitrogen  (used  to  make  nitrogenous   fertilizers),  accounting  for  roughly  40%  of  global  production  capacity.  Emissions  from  the   production  and  use  of  synthetic  nitrogen  fertilizer  in  China  have  been  estimated  at  400–840   MtCO2e  in  2005,  accounting  for  a  staggering  8  to  16  %  of  China’s  total  energy-­‐related  CO2   emissions  (Kahrl  et  al.,  2010),  with  fertilizer  production  responsible  for  250  MtCO2e  of  the   total  (180  MtCO2e  due  to  embodied  energy  use  and  70  MtCO2e  from  fertilizer  synthesis).   The  fertilizer  manufacturing  status  quo  in  China  relies  on  anthracite  coal  as  the   predominant  feedstock  and  emits  roughly  9  tCO2  per  ton  of  N  fertilizer,  including  fertilizer   synthesis  and  embodied  energy  use  associated  with  the  coal  feedstock,  but  not  mining  or   transportation  emissions  (Kahrl  et  al,  2010).       But  its  global  warming  impact  is  not  the  only  concern;  synthetic  fertilizer  use  can  lead  to   poor  economic  and  other  ecological  outcomes.  Fertilizer  costs  have  become  one  of  the   largest  and  most  variable  expenses  of  producing  a  crop,  and  directly  affect  profits.  The   average  urea  price  in  China,  for  example,  was  15%  lower  at  the  end  of  June  2013  than  the   same  time  the  previous  year  (Error!  Reference  source  not  found.).       LOW-­‐CARBON  CHINA:  INNOVATION  BEYOND  EFFICIENCY   3    
  • 4.     Energy$Management$ Systems$ Fuel$switch$coal$!$ natural$gas$ Best$Practice$ Technologies$are$30%$ more$energy$efficient$ $ $ 1.6&–&3.8&tCO2/t&ammonia& Source:  Specific  emissions  derived  from  IFA  (2009)   Transformational& 94%$of$the$energy$ consumed$by$the$ fertilizer$industry$is$used$ for$ammonia$synthesis$ Only$25$–$33%$of$ greenhouse$gas$ emissions$from$fossil$ fuel$combustion$(rest$ feedstock)$ $ 2&–&5&tCO2/t&ammonia& Incremental& Status&Quo& Figure  4.    Status  quo,  Incremental  and  Transformational  Approaches  in  Fertilizer  Production   $ Cornucopia$BioRefinery$ New$business$model:$ Entire$ear$of$corn$!$ Food$(oil/protein$from$ germ)$+$Fertilizer$(bran/ cobs$gasified)$+$Fuel$ (endosperm$fermented)$ & BioAmmoniaTM&is&net& carbon&negative&       Although  China  is  among  the  most   Figure  5.    Average  Urea  Price  (China)   expensive  producers  of  nitrogen   fertilizer,  national  policies  to  facilitate   development  of  the  chemical  fertilizer   industry,  direct  income  subsidies  to   farmers  and  heavy  taxes  to  limit   exports  have  distorted  markets  and   encouraged  farmers  with  the  means   to  purchase  fertilizer  to  over-­‐use  it.   This  contributes  to  acid  rain,  water   pollution  and  the  increasing     Source:  China  National  Chemical  Information  Center   frequency  of  red  tides.     Such  policies  also  discourage  entrepreneurs  from  seeking  better,  more  holistic  approaches   to  transition  to  sustainable  agricultural  models  that  better  maintain  ecosystem  health  and   farmer  welfare.  Instead,  the  incremental  approach  calls  for  large  chemical  companies  to   implement  energy  efficiency  and  fuel  switching  measures.  Under  such  a  scenario,  emissions   could  be  cut  by  roughly  25%,  but  there  is  not  much  room  to  go  further,  due  to  the   continued  use  of  fossil  fuels  as  a  feedstock,  which  accounts  for  over  70%  of  the  total   emissions  from  nitrogen  fertilizer  production  in  China.  Modern  plants  are  rapidly   approaching  the  theoretical  minimum  energy  consumption,  making  it  difficult  to  get  below   3.8  tCO2/tNH3  with  coal  as  the  feedstock  (IFA,  2009).       Only  a  transformational  approach  –  inspired  by  the  imperative  of  and  opportunities  to   address  multiple  challenges  simultaneously  –  can  eliminate  emissions  altogether  (Figure  4).   SynGest  is  a  US-­‐based  start-­‐up  company  that  has  adopted  a  completely  new  business   model,  driven  by  thinking  about  the  best  way  to  use  corn,  while  benefitting  farmers.  The   process  can  use  any  source  of  untreated  biomass,  and  its  calorific  value  is  irrelevant  for   LOW-­‐CARBON  CHINA:  INNOVATION  BEYOND  EFFICIENCY   4    
  • 5.     fertilizer  production.  This  offers  farmers  the  prospect  of  reducing  or  eliminating  expenses   for  chemical  fertilizers,  as  well  as  a  new  income  stream  (selling  agricultural  waste  as  a   renewable  raw  material  for  organic  fertilizer  production),  while  eliminating  the  pollution   caused  by  open  burning  of  agricultural  waste  and  even  improving  soil  quality  (the  process   produces  a  small  amount  of  the  soil  conditioner  biochar).  The  SynGest  process  yields  an   impressive  slate  of  end  products,  including:   • Anhydrous  ammonia  fertilizer  (0.1  ton  per  year  for  each  acre  of  corn,  plus  a   transportable  fuel  that  is  the  perfect  carrier  of  hydrogen);   • Food  grade  corn  oil  and  high  protein  food  for  human  consumption;   • Riboflavin  rich  dry  stillage  (animal  feed);   • Butanol  (drop-­‐in  fuel  for  internal  combustion  and  diesel  engines);   • Biochar.     The  SynGest  technology  can  also  address  issues  that  have  arisen  in  conjunction  with   growing  and  distilling  corn-­‐based  ethanol,  which  uses  immense  amounts  of  water   (contributing  to  river  and  aquifer  depletion),  energy  (some  scientists  argue  that  more   energy  goes  into  making  a  gallon  of  ethanol  than  is  contained  in  that  gallon)  and  fertilizer   production  and  use,  adding  to  harmful  runoff.  As  pointed  out  by    Zhao  Youshan,  Director,   Commercial  Petroleum  Flow  Committee,  China  General  Chamber  of  Commerce:  “Livestock   breeders  in  China  are  facing  feed  shortages  as  ethanol  fuel  makers  –  prompted  by   government  subsidies  of  roughly  1,900  yuan  ($279)  per  tonne  of  ethanol  they  produce  –   have  rushed  to  buy  corn.”  SynGest’s  syngas  technology  can  make  optimal  use  the  whole   ear  of  corn  to  produce  the  “3  Fs”  (food,  fertilizer  and  fuel)  simultaneously.  This  eliminates   the  food  vs.  fuel  dilemma  and  produces  net  carbon  negative  ammonia  fertilizer.     Lighting  Services     The  second  example  of  business  model  innovation  is  lighting  (Figure  6).  Until  the  advent  of   compact  fluorescent  lamp  (CFL)  technology,  the  status  quo  had  been  incandescent,  throw-­‐ away  technology  with  a  luminous  efficacy  of  roughly  15  lumen/W.  CFLs  are  four  times  more   efficient  than  incandescent  lamps,  and  quality  bulbs  can  operate  as  long  as  15,000  hours,   but  the  introduction  of  the  technology  did  not  lead  to  any  major  upheaval  in  the  lighting   market.  In  fact,  consumer  reaction  to  early  CFL  technology  was  often  negative,  due  to  the   poor  quality  and  performance  of  products,  as  well  as  concerns  about  the  mercury.  The   resulting  market  spoilage  effect,  combined  with  the  current  much  lower  price  of  CFLs,   makes  it  hard  for  solid-­‐state  lighting  technology  –  with  its  longer  lifetime  and  higher  retail   price  –  to  penetrate  the  market.     LOW-­‐CARBON  CHINA:  INNOVATION  BEYOND  EFFICIENCY   5    
  • 6.     Consumers*purchase* inefficient*lamps/ luminaires*from* retailers*and*pay*high* electric*bills* * 14&lumen/W* Incandescent*!*CFL* technology* No*change*in* manufacturer*or*utility* business*model* Slow*uptake*of*LED* and*widening*energy* supply*gap* * 60&lumen/W& Transformational& Replacement*bulbs* are*mass*market* consumables* Incremental& Status&Quo& Figure  6.    Status  quo,  Incremental  and  Transformational  Approaches  to  Lighting  Services   Inefficient*!*LED* technology* Utilities*integrate*LED* technology*into*their* business*model** LED*as*infrastructure* * * 90&lumen/W*   Source  luminous  efficacy:  http://www.designingwithleds.com/ledfluorescentincandescent-­‐efficacy-­‐table/     CFLs  brought  an  incremental  improvement  in  efficiency,  but  not  a  fundamental  market   transformation.  Since  2008,  a  growing  number  of  countries  have  begun  to  adopt   regulations  to  phase-­‐out  inefficient  incandescent  techology,  including  China,  where  a  ban   on  the  import  and  sale  of  all  incandescent  lamps  above  100W  came  into  force  on  1  October   2012  (further  restrictions  on  smaller  lamp  sizes  will  come  into  force  later).  These  policies   are  driving  a  profound  transition  in  the  lighting  market,  with  rapid  advances  in  solid-­‐state   lighting  technology  (Climate  Group,  2012;  McKinsey,  2012;  World  Bank,  in  press).     The  fact  that  LEDs  are  long-­‐lived  and  contollable,  makes  them  well  suited  as  an  integral   component  of  electrified  building  systems,  rather  than  as  a  throw-­‐away  consumer  good.   We  have  already  seen  this  trend  in  the  off-­‐grid  segment,  as  solar  home  system  providers   offer  super-­‐efficient  LED  lights  as  part  of  the  package.  For  energy  service  companies   (ESCOs),  LED  lighting  has  already  become  a  standard  component  when  working  with   government  and  commercial  customers,  including  LED  streetlighting,  indoor  lighting  and   controls.  Grid  electricity  suppliers  have  sometimes  resorted  to  large-­‐scale  programs  to   distribute  CFLs  as  a  short-­‐term  fix  to  severe  supply  shortages,  but  LED  technology  presents   an  opportuntity  for  them  to  be  more  proactive  (World  Bank,  in  press).  Africa’s  largest   utility,  Eskom,  began  distributing  LED  downlights  free  of  charge  under  its  Switch  and  Save   Residential  Mass  Rollout  and  has  received  authorization  to  invest  ZAR  834  million  in   residential  LED  programs  in  the  2013/14  –  2017/18  period.       Even  without  funding  earmarked  for  demand-­‐side  management  programs,  utilities  in   developing  countries  could  expand  their  business  model  by  directly  installing  LEDs  with   new  electricity  connections  and  making  it  easy  for  their  customers  to  replace  inefficient   lighting.  It  could  be  particularly  attractive  for  utilities  in  Africa  to  consider.  According  to  a   2013  analysis  by  the  International  Monetary  Fund,  effective  power  tariffs  are  set  30%   below  the  historical  average  cost  of  supplying  electricity  in  sub-­‐Saharan  Africa  on  average   LOW-­‐CARBON  CHINA:  INNOVATION  BEYOND  EFFICIENCY   6    
  • 7.     (excluding  South  Africa).  In  addition,  technical  line  losses  average  25%  and  the  average   collection  rate  was  only  85%,  with  as  many  as  60%  of  poor  households  not  paying  their   electricity  bills  (IMF,  2013).  Under  such  conditions,  and  given  the  sub-­‐Saharan  Afican   average  electricity  tariff  of  USS  0.17/kWh,  every  kWh  of  power  used  represents  a  fiscal  loss.     Let  us  take  the  example  of  a  community  of  100,000  minimum  access  households  living  in  an   urban  slum  in  Africa  (Table  1),  each  of  which  would  use  65  kWh/y  of  electricity  to  power  a   single  40W  incandescent  lamp  and  share  a  60W  TV  with  three  other  households  for  three   hours  per  day.  Assuming  that  60%  of  these  low-­‐income  households  had  illegal  electricity   connections  and  did  not  pay  for  their  electricity,  the  utility  would  lose  just  over  US$1   million  each  year  on  the  electricity  supplied  (or  US$11  per  household),  as  a  result  of  30%   underpricing,  60%  non-­‐paying  customers  and  25%  line  losses     Table  1.    Impact  of  an  “LED-­‐Fueled”  Efficiency  Power  Plant   Source:  The  author,  to  be  included  in  World  Bank  (in  press)       If  the  utility  instead  outfitted  these  grid-­‐connected  households  with  a  single  high-­‐quality   LED  that  delivered  the  same  450  lumens  using  only  7.5  Watts  at  a  cost  of  US$10  per  bulb   (“LED  Current  Technology”  scenario),  the  financial  gains  to  both  the  utility  and  the  paying   customers  would  be  significant.  The  utility  benefits,  because  losses  associated  with  meeting   electricity  demand  are  avoided  as  demand  is  reduced,  and  because  of  the  assumption  that   the  share  of  households  that  can  afford  to  pay  their  electric  bills  increases  from  40%  to   70%.     In  addition,  the  electricity  consumption  of  these  100,000  households  would  decrease  by   55%,  immediately  freeing  up  enough  energy  (3.6  GWh/y)  to  double  the  number  of   customers  served  or  the  amount  of  energy  that  a  household  could  afford  to  purchase,  with   the  same  installed  capacity.  Better  results  could  be  achieved  under  an  “LED  2015   LOW-­‐CARBON  CHINA:  INNOVATION  BEYOND  EFFICIENCY   7    
  • 8.     Technology”  scenario,  based  on  expected  technology  advances  in  the  next  few  years  (i.e.,   LEDs  that  cost  US$5/bulb  and  use  3.5  W/450  lumen).   A  forthcoming  World  Bank  report  makes  the  case  that  utility  companies  in  Sub-­‐Saharan   Africa  could  become  profitable,  if  they  adapted  their  business  models  to  include   constructing  efficiency  power  plants  (EPPs)  by  outfitting  households  with  LEDs  (World   Bank,  in  press).  This  would  have  other  green  economy  benefits,  as  well:   • Households  would  see  dramatic  cuts  in  their  electricity  bills;   • Utilities  could  use  bulk  procurement  to  ensure  LED  quality  and  drive  down  prices;   • Peak  demand  and  grid  losses  would  be  reduced;   • Utilities  could  serve  more  households  and  businesses  with  the  same  installed   capacity.     Best  Use  of  Scrap  Tires     The  final  example  is  scrap  tires.  The  tire  industry  uses  70%  of  all  natural  rubber  produced   worldwide,  and  consumption  is  expected  to  double  within  the  next  30  years  (ETRMA,   2012).  Applications  that  recycle  or  recover  rubber  are  therefore  critical  to  preserve  this   valuable  resource  –  and  can  result  in  significant  greenhouse  gas  emissions  reductions.     Barring  specific  legislation,  tires  are  generally  treated  as  waste  at  end-­‐of-­‐life  and  either   discarded  or  sent  to  landfill  (Figure  7).  Countries  with  waste  and  resource  management   legislation  have  achieved  an  incremental  improvement,  by  encouraging  the  use  of  scrap   tires  for  civil  engineering  purposes  (e.g.,  shredding  tires  for  use  as  a  drainage  layer  in   landfills)  or  as  an  alternative  fuel  to  be  co-­‐combusted  in  cement  production.       However,  there  is  a  better  way:  material  recycling.  The  material  recycling  route  reduces   potential  greenhouse  gas  emissions  by  roughly  1  t  CO2e  per  ton  of  scrap  tires  recycled   relative  to  the  cement  kiln  co-­‐incineration  route  and  by  1.8  t  CO2e,  compared  with  civil   engineering  applications  (Arquit  Niederberger,  Shiroff  and  Raahauge,  2012).  Genan   Business  &  Development  A/S  has  developed  a  mechanical  grinding  processes  that   generates  only  1%  waste  from  scrap  tires,  with  recovered  materials  consisting  of  67%   rubber  powder  and  granulate,  18%  steel  and  14%  textile.  Recycling  avoids  several   processes,  in  particular,  production  of  virgin  polymers,  which  saves  about  50  GJ  per  ton  of   tires,  and  the  iron  fraction  eliminates  the  need  for  400  kg  of  iron  ore  (Arquit  Niederberger,   Shiroff  and  Raahauge,  2012).     LOW-­‐CARBON  CHINA:  INNOVATION  BEYOND  EFFICIENCY   8    
  • 9.     Figure  7.    Tire  End-­‐of-­‐Life  Pathways:  Co-­‐Incineration  vs.  Material  Recycling   BEST%USE%OF%SCRAP%TIRES?% !  Transformational! approach! ! Avoids!0.8!tCO2e/! t!scrap!tires!! compared!to!! co<incineration!! !!Incremental!approach! ! Arquit!Niederberger,!Anne,!Shiroff,!Samuel,!Raahauge,!Lars!(2012):!Implications!of!Carbon!Markets! for!Implementing!Circular!Economy!Models.!ICAE!2012!(Suzhou)! !     Advanced  tire  recycling  facilities  have  been  built  in  Europe  and  the  USA,  but  many   countries  still  encourage  co-­‐incineration  in  cement  plants,  which  makes  it  virtually   impossible  for  a  recycling  facility  to  operate  profitably.  In  China,  resource  scarcity  and   environmental  considerations  led  the  Ministry  of  Industry  and  Information  Technology  to   issue  “Guidance  on  comprehensive  use  of  old  tires”  at  the  end  of  2010,  which  laid  out   principles,  specific  objectives  (e.g.,  increasing  recycled  rubber  production  to  3  Mt  annually   and  rubber  powder  output  to  100  Mt)  and  policies.  With  the  rapid  development  of  the   national  economy  and  the  gradual  improvement  of  living  standards,  China  has  become  a   large  consumer  of  rubber  (accounting  for  >30%  of  global  consumption),  and  there  is  a  large   and  growing  gap  between  the  domestic  rubber  supply  and  demand  in  China  (>70%  of   natural  rubber  and  >40%  of  composite  rubber  was  imported  in  2011).  Since  2001,  tire   production  in  China  has  grown  over  15%  annually,  reaching  470  million  in  2012.       Were  the  240  million  end-­‐of-­‐life  tires  that  were  generated  in  China  in  2009  recycled,  rather   than  used  for  energy  recovery  or  civil  engineering  applications,  1.9  –  4.3  MtCO2e  emissions   could  be  avoided  (Arquit  Niederberger,  Shiroff  and  Raahauge,  2012).  And  there  are  other   alternatives,  as  well.  In  Europe,  Michelin  Fleet  Solutions  leases  tires  and  offers  tire   upgrades,  maintenance  and  replacement  to  optimize  the  performance  of  trucking  fleets   and  to  lower  their  total  cost  of  ownership.  With  this  business  model,  Michelin  can  collect   tires  when  they  wear  out  and  can  extend  their  technical  utility  by  retreading  or  regrooving   them  for  resale.  The  company  estimates  that  retreads,  for  example,  require  half  of  the  raw   materials  new  tires  do  (Nguyen,  Stuchtey  &  Zils,  2014).  On  the  R&D  front,  Pirelli  is   LOW-­‐CARBON  CHINA:  INNOVATION  BEYOND  EFFICIENCY   9    
  • 10.     collaborating  with  Genan  to  develop  a  de-­‐vulcanisation  process  that  permits  post-­‐ consumer  tires  to  be  used  as  a  milled  material  in  new  tires,  closing  the  virgin  rubber   material  loop.       3. Culture  of  (Disruptive)  Innovation     The  current  linear  economic  model  is  fundamentally  unsustainable,  regardless  of  how   efficient  it  becomes,  and  a  radical  shift  to  a  circular  economy  model  is  urgently  needed.  The   three  case  studies  presented  above  show  that  business  model  innovation  is  needed  to   achieve  low-­‐carbon  economies  –  and  they  suggest  that  changes  in  enterprise  business   models  can  transform  entire  industries  and  catalyze  broader  systems  change.     Conceptually,  China’s  leadership  is  quite  advanced  in  its  circular  economy  thinking.  Closed-­‐ loop  material  use  along  with  industrial  symbiosis  –  co-­‐locating  or  connecting  industries  so   that  a  waste  or  co-­‐product  from  one  becomes  an  input  to  another  –  have  become  common   considerations  in  planning  economic  development  zones.  Yet  government  intent  is  not   enough.       A  culture  of  innovation  is  the  basis  for  a  low-­‐carbon  economy.  This  demands  that  we   individually  and  collectively:   • Aspire  to  transformational,  not  incremental  change;   • Adopt  new  behaviors  and  think  differently.     Business  model  innovation  to  achieve  long-­‐term  sustainability  has  often  come  from   startups,  as  in  the  SynGest  example.  It  is  much  more  challenging  to  transform  a  working   business  model,  due  to  vested  interests.  However,  it  is  the  incumbent  fossil  thermal   electricity  generators  and  chemical  and  petrochemical  industry  that  need  to  decarbonize   on  a  massive  scale.  Government  attempts  to  correct  the  failure  of  markets  to  properly  price   resource  depletion  and  greenhouse  gas  emissions  have  therefore  universally  been  too   timid.  They  may  have  encouraged  operational  efficiency,  but  they  have  failed  to  encourage   fundamental  changes  in  business  models.  Researchers  have  found  that  –  in  the  absence  of   substantial  innovation  –  the  financial  performance  of  firms  declines  as  their  environmental,   social  and  governance  (ESG)  performance  improves  (Eccles  &  Serafeim,  2013).       Companies  can  only  create  profitable  opportunities  to  transition  to  circular  economy   models,  if  they  invent  new  products  processes,  and  business  models.  In  addition  to   removing  barriers  to  change  (e.g.,  incentive  systems  and  investor  pressure  that  emphasize   short-­‐term  performance),  therefore,  it  will  be  critical  to  nurture  the  behaviors  and  skills   that  set  innovative  entrepreneurs  &  managers  apart  from  execution-­‐oriented,  results-­‐ driven  managers  (Table  2).       LOW-­‐CARBON  CHINA:  INNOVATION  BEYOND  EFFICIENCY   1   0  
  • 11.     Table  2.    Innovator's  DNA   Questioning   Observing   Networking   Experimenting   Associating   Asking  questions  that  challenge  common  wisdom   Scrutinizing  customer,  supplier,  and  competitor  behaviors  to  identify  new  ways  of   doing  things   Meeting  people  with  different  ideas,  backgrounds,  and  perspectives   Constructing  interactive  experiences  that  provoke  unorthodox  responses  to  see  what   insights  emerge   Connecting  the  unconnected  across  questions,  problems,  or  ideas  from  unrelated  fields   Source:  Christensen,  Dyer  &  Gregersen  (2011)     These  skills  and  behaviors  have  been  referred  to  as  the  “innovator’s  DNA”  (Christensen,   Dyer  &  Gregersen,  2011),  and  they  can  be  encouraged.  Engineers  have  an  established   capability  to  deliver  incremental  innovation;  radical  innovations,  however,  require  new   knowledge  and  skills.  CAPEC  is  well  positioned  to  advocate  for  changes  in  the  way  in  which   engineers  are  educated  and  trained,  as  well  as  to  foster  a  culture  of  innovation  among   Chinese  plant  engineers.  As  called  for  in  the  UK  context  (Royal  Academy  of  Engineering,   2012),  CAPEC  can  consider  including  the  responsibility  of  engineers  to  address  radical   innovation  and  drive  the  innovation  economy  in  its  professional  competency  and  training   functions.  It  can  serve  a  liaison  function  between  institutions  of  higher  education  and   employers  to  encourage  greater  focus  on  radical  innovation  through  engineering.     Transformational  innovations  are  essential,  if  China  is  to  achieve  the  12th  Five-­‐Year  Plan   vision  of  an  “ecological  civilization”,  which  Hu  Jintao  has  suggested  can  be  realized  by   pursuing  development  “…in  a  scientific  way  that  puts  people  first  and  is  comprehensive,   balanced  and  sustainable”.  Yet  individual  corporate  actions  on  their  own  won’t  suffice  to   create  a  circular  economy  at  scale,  given  the  systemic  nature  of  the  barriers  (Nguyen,   Stuchtey  &  Zils,  2014).  Government  policymakers  must  focus  society’s  attention  on   transformational  change;  this  will  inspire  enterprises  and  individuals  to  innovate  the   stepping  stones  of  an  enduring,  high-­‐quality  development  path.  There  is  a  real  danger  that   a  well  intentioned  rush  to  achieve  incremental  improvements  could  actually  hinder  the   transformational  approaches  needed  to  support  circular  economy  models  and  green   growth  (Arquit  Niederberger,  Shiroff  &  Raahauge,  2012).         Author:     Anne  Arquit  Niederberger,  Ph.D.   Affiliation:   Principal,  Policy  Solutions   Contact:   www.policy-­‐solutions.com     This  paper  is  the  English  translation  of  a  paper  to  be  published  in  Mandarin  in  the  journal  Plant   Engineering  Consultants,  based  on  a  presentation  at  CAPEC’s  2013  International  F orum  on   Low-­‐Carbon  Industry  and  Green  Economy,  held  in  Beijing  on  20  November  2013.   LOW-­‐CARBON  CHINA:  INNOVATION  BEYOND  EFFICIENCY   1   1  
  • 12.   4.   References   Arquit  Niederberger,  A,  Shiroff,  S,  and  Raahauge,  L,  2012:  Implications  of  Carbon  Markets   for  Implementing  Circular  Economy  Models.  White  Paper,  ICAE  2012  (Suzhou).   Christensen,  C.M.,  Dyer,  J.,  and  Gregersen,  H.,  2011:  The  Innovator's  DNA:  Mastering  the   Five  Skills  of  Disruptive  Innovators.  Harvard  Business  Review  Press.   Climate  Group,  2012:  Lighting  the  Clean  Revolution:  The  Rise  of  LEDs  and  What  it  Means  for   Cities.  London:  The  Climate  Group,  61  pp.   Eccles,  R.,  and  Serafeim,  G.,  2013:  The  Performance  Frontier:  Innovating  for  a  Sustainable   Strategy,  Harvard  Business  Review  91  (5),  50–60.   ETRMA,  2012:  End-­‐of-­‐Life  Tires  –  A  Valuable  Resource  with  Growing  Potential  (2011   Edition).  Brussels:  European  Tyre  and  Rubber  Manufacturers’  Association.   IFA,  2009:  Energy  efficiency  and  CO2  emissions  in  ammonia  production,  Feeding  the  Earth   (Issue  Brief).  International  Fertilizer  Industry  Association,  Paris.   IMF,  2013:  Energy  Subsidy  Reform  in  Sub-­‐Saharan  Africa:  Experiences  and  Lessons,  pre-­‐ publication  draft.  Washington,  D.C.:  International  Monetary  Fund.     IPCC,  2013:  Summary  for  Policymakers.  In:  Climate  Change  2013:  The  Physical  Science  Basis.   Contribution  of  Working  Group  I  to  the  Fifth  Assessment  Report  of  the  Intergovernmental   Panel  on  Climate  Change  [Stocker,  T.F.,  D.  Qin,  G.-­‐K.  Plattner,  M.  Tignor,  S.K.  Allen,  J.   Boschung,  A.  Nauels,  Y.  Xia,  V.  Bex  and  P.M.  Midgley  (eds.)].  Cambridge  University  Press,   Cambridge,  United  Kingdom  and  New  York,  NY,  USA.   Kahrl,  F,  Li,  YJ,  Su,  YF,  Tennigkeit,  T.,  Wilkes,  A.,  and  Xu,  JC,  2010:  Greenhouse  Gas  Emissions   From  Nitrogen  Fertilizer  Use  In  China.  Environmental  Science  &  Policy,  13(8),  688-­‐694.   McKinsey,  2012:  Lighting  the  way:  Perspectives  on  the  Global  Lighting  Market.,  2nd  Edition.   McKinsey  &  Company,  57  pp.   Nguyen,  H.,  Stuchtey,  M.,  and  Zils,  M.,  2014:  Remaking  the  industrial  economy,  McKinsey   Quarterly,  February  2014.   Royal  Academy  of  Engineering,  2012:  Educating  Engineers  to  Drive  the  Innovation  Economy.   London:  The  Royal  Academy  of  Engineering,  28  pp.   World  Bank,  in  press:  Market  Transformation  for  Energy  Efficient  Lighting:  Focus  on  Africa.   Washington,  D.C.:  The  World  Bank.   LOW-­‐CARBON  CHINA:  INNOVATION  BEYOND  EFFICIENCY   1   2