SlideShare una empresa de Scribd logo
1 de 15
Descargar para leer sin conexión
Series: EMF Theory
Lecture: #1.13
Dr R S Rao
Professor, ECE
ELECTROSTATICS
Passionate
Teaching
Joyful
Learning
Electric field intensity due to various charge distributions like infinite straight line charge,
infinite plane sheet charge, spherical shell charge and solid spherical charge.
Expressions of field intensity due to different charge distributions.
Electric Field Intensity, E
Electrostatics
Electrostatic
Fields
Expressions of field intensity for standard charge distributions.
Electric Field Intensity, E
Electrostatics
Electrostatic
Fields
Electrostatics
Electrostatic
Fields
4
Example I
A point charge, Q= 12πεo C is located over the origin. Determine field intensity, E at the
points (a) (1,2,1)m (b) (1,π/4,2) and (c) (4,π/4, π/4).
Solution:
Field intensity due to a point charge is,
2
1
ˆ V/m
4 o
Q
r


E r
It is in spherical coordinate system. To use this relation, it requires finding r and 𝐫 from given
coordinates.
(a) Point (1,2,1)m: Coordinates are in Cartesian system.
2 2 2 1 2 1
2.45
ˆ ˆ ˆ ˆ
(1 2 1 ) 2.45m ; ( 2 )
r       
r x y z
2 3
12
1 1
ˆ ˆ ˆ ˆ ˆ ˆ ˆ
( 2 ) 0.20( 2 )V/m
4 4 2.45
o
o o
Q
r

 
      
E r x y z x y z
(b) Point (1,π/4,2): Coordinates are in cylindrical system.
2 2 2 2 1 1
1 2 2.24m ; =tan ( )=tan (1 2) 0.464
r z z
  
 
     
ˆ ˆ ˆ
ˆ ˆ
=( sin cos )=(0.447 0.894 )
 
 
r z z
 
2 2
12
1 1
ˆ ˆ ˆ
ˆ ˆ
(0.447 0.894 ) 0.598(0.447 0.894 ) V/m
4 4 2.24
o
o o
Q
r

 
    
E r z z
 
(c) Point (4,π/4, π/4): Coordinates are in spherical system.
2 2
12
1 1
ˆ ˆ ˆ
0.1875 V/m
4 4 4
o
o o
Q
r

 
  
E r r r
Electrostatics
Electrostatic
Fields
5
Example II
Consider a point charge, Q1 =10nC located at point, P1(3,‒2,1)m and another point charge, Q2
=‒10nC at point, P2(1,‒2,3)m in free space. Determine field, E at a point, Po(2,3,4)m due to
both the charges and express it in spherical coordinates.
Solution:
Radial distance from P1(3,‒2,1)m to Po(2,3,4)m is,
2 2 2 1 2
1 [(2 3) (3 2) (4 1) ] 5.92m
o
R       
Unit vector from P1(3,‒2,1)m to Po(2,3,4)m is
1
1
1
ˆ ˆ ˆ ˆ ˆ ˆ
(2 3) (3 2) (4 1) ( 5 3 )
ˆ
5.92 5.92
o
o
o
R
       
  
R x y z x y z
R
Field intensity at Po(2,3,4)m due to charge at P1(3,‒2,1)m is,
9
1 1
2 2
1
ˆ ˆ ˆ
1 1 10 10 ( 5 3 )
ˆ V/m
4 4 5.92 5.92
o o
o o o
Q
R
 

   
 
x y z
E R
Radial distance from P2(1,‒2,3)m to Po(2,3,4)m is,
2 2 2 1 2
2 [(2 1) (3 2) (4 3) ] 5.20m
o
R       
Unit vector from P2(1,‒2,3)m to Po(2,3,4)m is,
2
2
2
ˆ ˆ ˆ ˆ ˆ ˆ
(2 1) (3 2) (4 3) ( 5 )
ˆ
5.20 5.20
o
o
o
R
      
  
R x y z x y z
R
Field intensity at Po(2,3,4)m due to charge at P2(1,‒2,3)m is,
9
2 2
2 2
2
ˆ ˆ ˆ
1 1 10 10 ( 5 )
ˆ V/m
4 4 5.20 5.20
o o
o o o
Q
R
 

   
 
x y z
E R
Electrostatics
Electrostatic
Fields
6
Example II
Field intensity obeys superposition principle. Hence, total field intensity at Po(2,3,4)m due to
both the charges is,
9
1 2 3 3
ˆ ˆ ˆ ˆ ˆ ˆ
10 10 ( 5 3 ) ( 5 )
4 5.92 5.20
o o
o


     
 
   
 
 
x y z x y z
E E E
 
ˆ ˆ ˆ ˆ ˆ ˆ
0.09 4.82( 5 3 ) 7.11( 5 )
      
x y z x y z
ˆ ˆ ˆ ˆ ˆ ˆ
0.10(10.73 10.30 6.61 )V/m ( )(say)
x y z
E E E
      
x y z x y z
The result is in Cartesian system and it requires to be converted into spherical system.
1 2 2
tan ( 2 3 4) 0.733 rad

  
1
tan (3/ 2) 0.983 rad

 
sin cos sin sin cos
r x y z
E E E E
    
  
1.073sin cos 1.030sin sin 0.661cos
    
   
0.398 0.573 0.491 1.463 V/m
     
cos cos cos sin sin
x y z
E E E E
     
  
1.073cos cos 1.030cos sin 0.661sin
    
   
0.442 0.637 0.442 0.637 V/m
     
sin cos 1.073sin 1.030cos
x y
E E E
    
    
0.893 0.571 0.322V/m
  
Using these values, the vector field in spherical system becomes,
ˆ ˆ ˆ ˆ
ˆ ˆ
(1.463 +0.637 0.322 ) V/m
r
E E E
 
    
E r r
    
1 2 2
tan x y z
  
 
 
 
 
1
tan y x
 

Electrostatics
Electrostatic
Fields
7
Example III
Three line charges located in free space, each with a length, L =1m, are carrying charge
densities, λ1=2πεo λ2=2λ1 and λ3=3λ1 C/m. Determine the field intensity, E at the center of
quadrilateral triangle when line charges are arranged in the form of an equilateral triangle.
Solution:
Distance of center from any one side is L/2 tan (π/6)=h=0.289m. Let us suppose triangle is
placed over z=0 plane, with its center over origin and side 1 normal to x-axis as shown in
Figure. Field at triangle center due to side 1 is
1
1 1
2 2 1 2 2 2 1 2
ˆ
ˆ 2
λ 1 ˆ
3.325
2 ( ) 2 0.289 (0.289 1 )
o
o o
L
h h L

 
  
  
E
E E

Figure Electric field intensity due to equilateral
triangle line charge.
Fields at triangle center due to sides two and three become,
2 1 2 2 3 1 3 3
ˆ ˆ ˆ ˆ
2 6.65 & 3 9.97
E E
   
E E E E E E
Field due to each side, 2 and 3, can be decomposed into two, one
parallel to E1 and another normal to it.
2 2
6.65cos(2 3) 3.325 & 6.65sin(2 3) 5.76
E E
 

    
3 3
9.97cos( 2 3) 4.985 & 9.97sin( 2 3) 8.634
E E
 

       
Component fields parallel and perpendicular to E1 are
3.325 3.325 4.985 4.985 & 5.76 8.634 2.87
E E
       
In Cartesian coordinates, for the arrangement shown, it becomes,
ˆ ˆ
4.985 2.87 V/m
 
E x y
Electrostatics
Electrostatic
Fields
8
Example IV
Three straight line charges, each with a length, L =1m, carrying charge densities, λ1=2πεo
λ2=2λ1 and λ3=λ1 C/m are lying in free space. They are arranged at the vertices of an equilateral
triangle, side length a=1m, perpendicular to its plane. Determine field, E at the center of
triangle.
Solution:
Distance of triangle center from any one vertices, equal to height of
center from line charge is L/2 sec (π/6)=h=0.577m. Suppose triangle is
placed over z=0 plane, with its center over origin and side 1 normal to
x-axis as shown in Figure. Field at triangle center due to line charge
one is
1
1 1
2 2 1 2 2 2 1 2
ˆ
ˆ 2
λ 1 ˆ
1.50
2 ( ) 2 0.577 (0.577 1 )
o
o o
L
h h L

 
  
  
E
E E

Fields at triangle center due to line charges two and three become,
2 1 2 2 3 1 3 3
ˆ ˆ ˆ ˆ
2 3.00 & 1.50
E E
   
E E E E E E
Figure Electric field intensity due to line charges at
vertices of equilateral triangle.
Field due to each line charge, two and three, can be decomposed into
two, one parallel to E1 and another normal to it.
2 2
3.00cos(2 3) 1.50 & 3.00sin(2 3) 2.60
E E
 

    
3 3
1.50cos( 2 3) 0.75 & 1.50sin( 2 3) 1.30
E E
 

       
Component fields parallel and perpendicular to E1 are,
1.50 1.50 0.75 0.75 & 2.60 1.30 1.30
E E
      
In Cartesian coordinates, for the arrangement shown it becomes,
ˆ ˆ
0.75 1.30 V/m
 
E x y
Electrostatics
Electrostatic
Fields
9
Example V
Consider a straight line charge of length L m carrying a uniform density of λ C/m. (a)
Assuming free space medium, determine field intensity, E at a height h m from one of its ends.
(b) Also extend the result to find E due to a semi-infinite straight line charge and express the
result in Cartesian coordinates when λ =4πεo and h=0.5m at point P(2, π/4,3).
Solution:
For solution, place the line charge along z-axis, extending from z=0 to z=L. Orient the charge
such that field point, P is over the xy-plane, as shown in Figure .
(a).The field intensity at the observation point P located at (h, ,0 ) due to differential line
charge, dQ= λdl =λdz at the source point (0, ,z ) is,
2 2 2 2 2 1 2
ˆ ˆ
1 1 λ ( )
ˆ
4 4 ( ) ( )
o o
dQ dz h z
d
R h z h z
 

 
ρ z
E = R =
Field intensity due to total charge then is
2 2 3 2 2 2 3 2
0 0
ˆ ˆ
λ λ
4 ( ) 4 ( )
L L
o o
hdz zdz
h z h z
 

 
 
ρ z
E =
2 2 2 1 2 2 2 1 2
0 0
ˆ ˆ
λ λ
4 ( ) 4 ( )
L L
o o
z h
h h z h z
 

 
ρ z
=
2 2 1 2 2 2 1 2
ˆ ˆ ˆ
λ
4 ( ) ( )
o
L
h h L h L h

 
 
 
 
 
ρ z z
E =
Figure Field intensity due to finite length line charge above one end point.
Electrostatics
Electrostatic
Fields
10
Example V
(b).Semi-infinite line charge is one which extends from origin to infinity. Field intensity due to
this charge distribution can be obtained by extending the length to infinity i.e. L→∞.
lim
L 2 2 1 2 2 2 1 2
ˆ ˆ
ˆ ˆ ˆ
λ λ( )
4 ( ) ( ) 4
o o
L
h h L h L h h
 
  
  
 
 
 
ρ z z ρ z
When λ =4πεo and h=0.5m field intensity then becomes,
ˆ
ˆ ˆ
ˆ 4 ( )
λ( )
ˆ ˆ
ˆ ˆ
2( )
4 4 0.5
o
z
o o
E E
h


 


     

ρ z
ρ z
E ρ z ρ z
The result is in cylindrical coordinates and at point P(2,π/4,3) i.e. with = π/4, it can be
converted into Cartesian coordinates as,
cos sin 1.414
x
E E E
 
 
  
sin cos 1.414
y
E E E
 
 
  
2
z z
E E
  
Hence, field due to semi-infinite line charge in Cartesian coordinates is,
ˆ ˆ ˆ ˆ ˆ ˆ
1.414 1.414 2 V/m
x y z
E E E
     
E x y z x y z
Electrostatics
Electrostatic
Fields
11
Example VI
Three identical infinite line charges, each with a charge density, λ= 2πεo C/m, are lying in free
space along x-, y- and z- axes. Determine field intensity, E at (3,2,2)m and express it in
spherical system.
Solution:
Given three infinite line charges are shown in Figure. Radial distance of point at (3,2,2)m to x-
axis is,
2 2 1 2
(2 2 ) 2 2 2.83m
    
Unit vector from x-axis to point at (3,2,2)m is,
ˆ ˆ
2 2
ˆ ˆ ˆ
= = 0.707( )
2.83


 
y z
y z


Field due to line charge over x-axis at (3,2,2)m is,
2
1 λ 1
ˆ ˆ ˆ ˆ ˆ
0.707( ) 0.25( ) V/m
2 2 2.83
o
o o

  
    
E y z y z

Figure Electric field intensity due to three
infinite line charges.
Radial distance and unit vector corresponding to point at (3,2,2)m to y-axis is,
2 2 1 2 ˆ ˆ
3 2
ˆ ˆ ˆ
(3 2 ) 13 3.60m & = = (0.833 0.555 )
3.60



     
x z
x z


Electrostatics
Electrostatic
Fields
12
Example VI
Field due to line charge over y-axis at (3,2,2)m is,
2
1 λ 1
ˆ ˆ ˆ ˆ ˆ
(0.833 0.555 ) (0.23 0.15 ) V/m
2 2 3.60
o
o o

  
    
E x z x z

Similarly, radial distance and unit vector corresponding to point at (3,2,2)m to z-axis is,
2 2 1 2 ˆ ˆ
3 2
ˆ ˆ ˆ
(3 2 ) 13 3.60m & = = (0.833 0.555 )
3.60



     
x y
x y


Field due to line charge over z-axis at (3,2,2)m is,
2
1 λ 1
ˆ ˆ ˆ ˆ ˆ
(0.833 0.555 ) (0.23 0.15 ) V/m
2 2 3.60
o
o o

  
    
E x y x y

Total field due to the three line charges then is,
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
0.25( ) (0.23 0.15 ) (0.23 0.15 ) (0.46 0.40 0.40 )V/m
t         
E y z x z x y x y z
Cartesian to Spherical:
1 2 2 1 2 2
1 1
2
tan ( ) tan ( 3 2 ) 1.064 rad
z x y
  
    
1
tan (2 3) 0.59

 
Vector E in spherical coordinates is,
sin cos sin sin cos
r x y z
E E E E
    
  
0.46sin cos 0.40sin sin 0.40cos 0.725
    
   
cos cos cos sin sin
x y z
E E E E
     
  
0.46cos cos 0.40cos sin 0.40sin 0.06
    
    
sin cos 0.46sin 0.40cos 0.08
x y
E E E
    
      
Thus, field in spherical coordinates is,
ˆ ˆ ˆ ˆ
ˆ ˆ
(0.725 0.06 0.08 )V/m
r
E E E
 
   
E r r
     
 
1
tan y x
 

Electrostatics
Electrostatic
Fields
13
Example VIII
Assuming free space medium, find the field intensity, E at a height of h m from the center
of a circular sheet of radius, a m carrying a uniform surface charge density of σ C/m2
.
Solution:
As circular sheet can be considered as a zero-height solid
cylinder, solution becomes simple if it is attempted in cylindrical
coordinate system. Now, place the given charged sheet charge
over xy-plane with field point, P over positive z-axis at (0,,h), as
shown in Figure. As radius of the sheet is ′a′, the charge extends
to a m in all directions from origin i.e. ρ→0 to a.
Figure Electric field intensity due to circular
charge disc.
The field intensity at the field point, P(0,,h), due to differential
charge, dQ=σda= σρdρd at (ρ,,0) is,
2 2 2 2 2 1 2
ˆ
ˆ
1 1 σ ( )
ˆ
4 4 ( ) ( )
o o
dQ d d h
d
R h h
   
   

 
z ρ
E = R =
Since for every dQ over the plane charge, there is another charge dQ on the sheet
ρ
ˆ
σ σ 1 σ 1 1
ˆ ˆ

    
 

 
Electrostatics
Electrostatic
Fields
14
Example VIII

σ σρ ρ  ρ 
ˆ
ˆ
σ ( )
ˆ
4 4 ( ) ( )
o o
R h h
   
   

 
ρ
Since for every dQ over the plane charge, there is another charge dQ on the sheet
diametrically opposite to it, resulting in the cancellation of ρ-components of the fields.
Thus,
2
2 2 3 2 2 2 1 2 2 2 1 2
0 0 0
ˆ
1 σ σ 1 σ 1 1
ˆ ˆ
4 ( ) 2 ( ) 2 ( )
a
a
o o o
h d d h h
h h a h h

  
    
 
 

 
  
 
 
z
E = z = = z
If the observation point P is below the sheet, the expression for field becomes,
2 2 1 2
σ 1 1
ˆ
( )
2 ( )
o
h
a h h

 

 
 

 
E = z
From this expression, field due to infinite sheet can be found. As a→∞, circular disc
becomes infinite plane sheet and field of disc becomes field due to infinite sheet.
σ
ˆ
2
a
o


 
E z
ENOUGH
FOR
TODAY
ENOUGH
FOR
TODAY
ENOUGH
FOR
TODAY
ENOUGH
FOR
TODAY
ENOUGH
FOR
TODAY
15

Más contenido relacionado

Similar a EMF.1.13.ElectricField-P.pdf

Lecture 09 em transmission lines
Lecture 09   em transmission linesLecture 09   em transmission lines
Lecture 09 em transmission linesAmit Rastogi
 
WaveEquationDerivation.pdf
WaveEquationDerivation.pdfWaveEquationDerivation.pdf
WaveEquationDerivation.pdfENYUTU ELIA
 
CBSE-Class-12-Physics-Question-Paper-Solution-2019-Set-1.pdf
CBSE-Class-12-Physics-Question-Paper-Solution-2019-Set-1.pdfCBSE-Class-12-Physics-Question-Paper-Solution-2019-Set-1.pdf
CBSE-Class-12-Physics-Question-Paper-Solution-2019-Set-1.pdfPratimaAditya2
 
Optical properties of semiconductors ppt
Optical properties of semiconductors pptOptical properties of semiconductors ppt
Optical properties of semiconductors ppttedoado
 
Sergey seriy thomas fermi-dirac theory
Sergey seriy thomas fermi-dirac theorySergey seriy thomas fermi-dirac theory
Sergey seriy thomas fermi-dirac theorySergey Seriy
 
Solutions manual for optoelectronics and photonics principles and practices 2...
Solutions manual for optoelectronics and photonics principles and practices 2...Solutions manual for optoelectronics and photonics principles and practices 2...
Solutions manual for optoelectronics and photonics principles and practices 2...Kreitner5687
 
Nonlinear Electromagnetic Response in Quark-Gluon Plasma
Nonlinear Electromagnetic Response in Quark-Gluon PlasmaNonlinear Electromagnetic Response in Quark-Gluon Plasma
Nonlinear Electromagnetic Response in Quark-Gluon PlasmaDaisuke Satow
 
Electric Field (PHY N1203 - L01)
Electric Field (PHY N1203 - L01)Electric Field (PHY N1203 - L01)
Electric Field (PHY N1203 - L01)Sean Dowling
 
TwoLevelMedium
TwoLevelMediumTwoLevelMedium
TwoLevelMediumJohn Paul
 
3rd Year Undergraduate Cyclic Voltammetry Practical
3rd Year Undergraduate Cyclic Voltammetry Practical3rd Year Undergraduate Cyclic Voltammetry Practical
3rd Year Undergraduate Cyclic Voltammetry PracticalJames McAssey
 
Magnetic effect of current
Magnetic effect of currentMagnetic effect of current
Magnetic effect of currentjoseherbertraj
 
tripple e 136 EMII2013_Chapter_10_P2.pdf
tripple e 136 EMII2013_Chapter_10_P2.pdftripple e 136 EMII2013_Chapter_10_P2.pdf
tripple e 136 EMII2013_Chapter_10_P2.pdfAbdulgafforBaimpal1
 
Electromagntic fields and waves Lecture 1
Electromagntic fields and waves Lecture 1Electromagntic fields and waves Lecture 1
Electromagntic fields and waves Lecture 1MdJubayerFaisalEmon
 

Similar a EMF.1.13.ElectricField-P.pdf (19)

Lecture 09 em transmission lines
Lecture 09   em transmission linesLecture 09   em transmission lines
Lecture 09 em transmission lines
 
WaveEquationDerivation.pdf
WaveEquationDerivation.pdfWaveEquationDerivation.pdf
WaveEquationDerivation.pdf
 
DIELECTRICS PPT
DIELECTRICS PPTDIELECTRICS PPT
DIELECTRICS PPT
 
CBSE-Class-12-Physics-Question-Paper-Solution-2019-Set-1.pdf
CBSE-Class-12-Physics-Question-Paper-Solution-2019-Set-1.pdfCBSE-Class-12-Physics-Question-Paper-Solution-2019-Set-1.pdf
CBSE-Class-12-Physics-Question-Paper-Solution-2019-Set-1.pdf
 
AIPMT Physics 2008
AIPMT Physics   2008AIPMT Physics   2008
AIPMT Physics 2008
 
5 slides
5 slides5 slides
5 slides
 
Lect1
Lect1Lect1
Lect1
 
Solution a ph o 1
Solution a ph o 1Solution a ph o 1
Solution a ph o 1
 
Optical properties of semiconductors ppt
Optical properties of semiconductors pptOptical properties of semiconductors ppt
Optical properties of semiconductors ppt
 
Sergey seriy thomas fermi-dirac theory
Sergey seriy thomas fermi-dirac theorySergey seriy thomas fermi-dirac theory
Sergey seriy thomas fermi-dirac theory
 
Solutions manual for optoelectronics and photonics principles and practices 2...
Solutions manual for optoelectronics and photonics principles and practices 2...Solutions manual for optoelectronics and photonics principles and practices 2...
Solutions manual for optoelectronics and photonics principles and practices 2...
 
Nonlinear Electromagnetic Response in Quark-Gluon Plasma
Nonlinear Electromagnetic Response in Quark-Gluon PlasmaNonlinear Electromagnetic Response in Quark-Gluon Plasma
Nonlinear Electromagnetic Response in Quark-Gluon Plasma
 
Electric Field (PHY N1203 - L01)
Electric Field (PHY N1203 - L01)Electric Field (PHY N1203 - L01)
Electric Field (PHY N1203 - L01)
 
TwoLevelMedium
TwoLevelMediumTwoLevelMedium
TwoLevelMedium
 
3rd Year Undergraduate Cyclic Voltammetry Practical
3rd Year Undergraduate Cyclic Voltammetry Practical3rd Year Undergraduate Cyclic Voltammetry Practical
3rd Year Undergraduate Cyclic Voltammetry Practical
 
Magnetic effect of current
Magnetic effect of currentMagnetic effect of current
Magnetic effect of current
 
tripple e 136 EMII2013_Chapter_10_P2.pdf
tripple e 136 EMII2013_Chapter_10_P2.pdftripple e 136 EMII2013_Chapter_10_P2.pdf
tripple e 136 EMII2013_Chapter_10_P2.pdf
 
Electromagntic fields and waves Lecture 1
Electromagntic fields and waves Lecture 1Electromagntic fields and waves Lecture 1
Electromagntic fields and waves Lecture 1
 
NEET 2022 (1).pdf
NEET 2022 (1).pdfNEET 2022 (1).pdf
NEET 2022 (1).pdf
 

Más de rsrao8

EMF.1.33.ElectricScalarPotential-P.pdf
EMF.1.33.ElectricScalarPotential-P.pdfEMF.1.33.ElectricScalarPotential-P.pdf
EMF.1.33.ElectricScalarPotential-P.pdfrsrao8
 
EMF.1.32.LaplaceEquation.pdf
EMF.1.32.LaplaceEquation.pdfEMF.1.32.LaplaceEquation.pdf
EMF.1.32.LaplaceEquation.pdfrsrao8
 
EMF.1.21.GaussLaw-II.pdf
EMF.1.21.GaussLaw-II.pdfEMF.1.21.GaussLaw-II.pdf
EMF.1.21.GaussLaw-II.pdfrsrao8
 
EMF.1.20.GaussLaw-I.pdf
EMF.1.20.GaussLaw-I.pdfEMF.1.20.GaussLaw-I.pdf
EMF.1.20.GaussLaw-I.pdfrsrao8
 
EMF.1.10.CoulombsLaw.pdf
EMF.1.10.CoulombsLaw.pdfEMF.1.10.CoulombsLaw.pdf
EMF.1.10.CoulombsLaw.pdfrsrao8
 
EMF.1.11.ElectricField-I.pdf
EMF.1.11.ElectricField-I.pdfEMF.1.11.ElectricField-I.pdf
EMF.1.11.ElectricField-I.pdfrsrao8
 
EMF.1.12.ElectricField-II.pdf
EMF.1.12.ElectricField-II.pdfEMF.1.12.ElectricField-II.pdf
EMF.1.12.ElectricField-II.pdfrsrao8
 
EMF.0.12.VectorCalculus-II.pdf
EMF.0.12.VectorCalculus-II.pdfEMF.0.12.VectorCalculus-II.pdf
EMF.0.12.VectorCalculus-II.pdfrsrao8
 
EMF.1.30.ElectricScalarPotential-I.pdf
EMF.1.30.ElectricScalarPotential-I.pdfEMF.1.30.ElectricScalarPotential-I.pdf
EMF.1.30.ElectricScalarPotential-I.pdfrsrao8
 
EMF.1.31.ElectricScalarPotential-II.pdf
EMF.1.31.ElectricScalarPotential-II.pdfEMF.1.31.ElectricScalarPotential-II.pdf
EMF.1.31.ElectricScalarPotential-II.pdfrsrao8
 
EMF.0.11.VectorCalculus-I.pdf
EMF.0.11.VectorCalculus-I.pdfEMF.0.11.VectorCalculus-I.pdf
EMF.0.11.VectorCalculus-I.pdfrsrao8
 
EMF.0.13.VectorCalculus-III.pdf
EMF.0.13.VectorCalculus-III.pdfEMF.0.13.VectorCalculus-III.pdf
EMF.0.13.VectorCalculus-III.pdfrsrao8
 
EMF.0.14.VectorCalculus-IV.pdf
EMF.0.14.VectorCalculus-IV.pdfEMF.0.14.VectorCalculus-IV.pdf
EMF.0.14.VectorCalculus-IV.pdfrsrao8
 
EMF.0.15.VectorCalculus-V.pdf
EMF.0.15.VectorCalculus-V.pdfEMF.0.15.VectorCalculus-V.pdf
EMF.0.15.VectorCalculus-V.pdfrsrao8
 
EMF.0.00.ElectroMagneticFields.pdf
EMF.0.00.ElectroMagneticFields.pdfEMF.0.00.ElectroMagneticFields.pdf
EMF.0.00.ElectroMagneticFields.pdfrsrao8
 

Más de rsrao8 (15)

EMF.1.33.ElectricScalarPotential-P.pdf
EMF.1.33.ElectricScalarPotential-P.pdfEMF.1.33.ElectricScalarPotential-P.pdf
EMF.1.33.ElectricScalarPotential-P.pdf
 
EMF.1.32.LaplaceEquation.pdf
EMF.1.32.LaplaceEquation.pdfEMF.1.32.LaplaceEquation.pdf
EMF.1.32.LaplaceEquation.pdf
 
EMF.1.21.GaussLaw-II.pdf
EMF.1.21.GaussLaw-II.pdfEMF.1.21.GaussLaw-II.pdf
EMF.1.21.GaussLaw-II.pdf
 
EMF.1.20.GaussLaw-I.pdf
EMF.1.20.GaussLaw-I.pdfEMF.1.20.GaussLaw-I.pdf
EMF.1.20.GaussLaw-I.pdf
 
EMF.1.10.CoulombsLaw.pdf
EMF.1.10.CoulombsLaw.pdfEMF.1.10.CoulombsLaw.pdf
EMF.1.10.CoulombsLaw.pdf
 
EMF.1.11.ElectricField-I.pdf
EMF.1.11.ElectricField-I.pdfEMF.1.11.ElectricField-I.pdf
EMF.1.11.ElectricField-I.pdf
 
EMF.1.12.ElectricField-II.pdf
EMF.1.12.ElectricField-II.pdfEMF.1.12.ElectricField-II.pdf
EMF.1.12.ElectricField-II.pdf
 
EMF.0.12.VectorCalculus-II.pdf
EMF.0.12.VectorCalculus-II.pdfEMF.0.12.VectorCalculus-II.pdf
EMF.0.12.VectorCalculus-II.pdf
 
EMF.1.30.ElectricScalarPotential-I.pdf
EMF.1.30.ElectricScalarPotential-I.pdfEMF.1.30.ElectricScalarPotential-I.pdf
EMF.1.30.ElectricScalarPotential-I.pdf
 
EMF.1.31.ElectricScalarPotential-II.pdf
EMF.1.31.ElectricScalarPotential-II.pdfEMF.1.31.ElectricScalarPotential-II.pdf
EMF.1.31.ElectricScalarPotential-II.pdf
 
EMF.0.11.VectorCalculus-I.pdf
EMF.0.11.VectorCalculus-I.pdfEMF.0.11.VectorCalculus-I.pdf
EMF.0.11.VectorCalculus-I.pdf
 
EMF.0.13.VectorCalculus-III.pdf
EMF.0.13.VectorCalculus-III.pdfEMF.0.13.VectorCalculus-III.pdf
EMF.0.13.VectorCalculus-III.pdf
 
EMF.0.14.VectorCalculus-IV.pdf
EMF.0.14.VectorCalculus-IV.pdfEMF.0.14.VectorCalculus-IV.pdf
EMF.0.14.VectorCalculus-IV.pdf
 
EMF.0.15.VectorCalculus-V.pdf
EMF.0.15.VectorCalculus-V.pdfEMF.0.15.VectorCalculus-V.pdf
EMF.0.15.VectorCalculus-V.pdf
 
EMF.0.00.ElectroMagneticFields.pdf
EMF.0.00.ElectroMagneticFields.pdfEMF.0.00.ElectroMagneticFields.pdf
EMF.0.00.ElectroMagneticFields.pdf
 

Último

Online banking management system project.pdf
Online banking management system project.pdfOnline banking management system project.pdf
Online banking management system project.pdfKamal Acharya
 
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...Call Girls in Nagpur High Profile
 
Unit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdfUnit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdfRagavanV2
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Dr.Costas Sachpazis
 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdfankushspencer015
 
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordAsst.prof M.Gokilavani
 
UNIT-IFLUID PROPERTIES & FLOW CHARACTERISTICS
UNIT-IFLUID PROPERTIES & FLOW CHARACTERISTICSUNIT-IFLUID PROPERTIES & FLOW CHARACTERISTICS
UNIT-IFLUID PROPERTIES & FLOW CHARACTERISTICSrknatarajan
 
Double rodded leveling 1 pdf activity 01
Double rodded leveling 1 pdf activity 01Double rodded leveling 1 pdf activity 01
Double rodded leveling 1 pdf activity 01KreezheaRecto
 
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptxBSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptxfenichawla
 
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingUNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingrknatarajan
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Bookingdharasingh5698
 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptDineshKumar4165
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Christo Ananth
 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSISrknatarajan
 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...Call Girls in Nagpur High Profile
 
chapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineeringchapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineeringmulugeta48
 

Último (20)

Online banking management system project.pdf
Online banking management system project.pdfOnline banking management system project.pdf
Online banking management system project.pdf
 
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...Booking open Available Pune Call Girls Pargaon  6297143586 Call Hot Indian Gi...
Booking open Available Pune Call Girls Pargaon 6297143586 Call Hot Indian Gi...
 
Unit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdfUnit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdf
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
 
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdf
 
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
 
UNIT-IFLUID PROPERTIES & FLOW CHARACTERISTICS
UNIT-IFLUID PROPERTIES & FLOW CHARACTERISTICSUNIT-IFLUID PROPERTIES & FLOW CHARACTERISTICS
UNIT-IFLUID PROPERTIES & FLOW CHARACTERISTICS
 
Double rodded leveling 1 pdf activity 01
Double rodded leveling 1 pdf activity 01Double rodded leveling 1 pdf activity 01
Double rodded leveling 1 pdf activity 01
 
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptxBSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
 
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingUNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
 
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort ServiceCall Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
 
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.ppt
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSIS
 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
 
Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024
 
chapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineeringchapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineering
 

EMF.1.13.ElectricField-P.pdf

  • 1. Series: EMF Theory Lecture: #1.13 Dr R S Rao Professor, ECE ELECTROSTATICS Passionate Teaching Joyful Learning Electric field intensity due to various charge distributions like infinite straight line charge, infinite plane sheet charge, spherical shell charge and solid spherical charge.
  • 2. Expressions of field intensity due to different charge distributions. Electric Field Intensity, E Electrostatics Electrostatic Fields
  • 3. Expressions of field intensity for standard charge distributions. Electric Field Intensity, E Electrostatics Electrostatic Fields
  • 4. Electrostatics Electrostatic Fields 4 Example I A point charge, Q= 12πεo C is located over the origin. Determine field intensity, E at the points (a) (1,2,1)m (b) (1,π/4,2) and (c) (4,π/4, π/4). Solution: Field intensity due to a point charge is, 2 1 ˆ V/m 4 o Q r   E r It is in spherical coordinate system. To use this relation, it requires finding r and 𝐫 from given coordinates. (a) Point (1,2,1)m: Coordinates are in Cartesian system. 2 2 2 1 2 1 2.45 ˆ ˆ ˆ ˆ (1 2 1 ) 2.45m ; ( 2 ) r        r x y z 2 3 12 1 1 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ( 2 ) 0.20( 2 )V/m 4 4 2.45 o o o Q r           E r x y z x y z (b) Point (1,π/4,2): Coordinates are in cylindrical system. 2 2 2 2 1 1 1 2 2.24m ; =tan ( )=tan (1 2) 0.464 r z z            ˆ ˆ ˆ ˆ ˆ =( sin cos )=(0.447 0.894 )     r z z   2 2 12 1 1 ˆ ˆ ˆ ˆ ˆ (0.447 0.894 ) 0.598(0.447 0.894 ) V/m 4 4 2.24 o o o Q r         E r z z   (c) Point (4,π/4, π/4): Coordinates are in spherical system. 2 2 12 1 1 ˆ ˆ ˆ 0.1875 V/m 4 4 4 o o o Q r       E r r r
  • 5. Electrostatics Electrostatic Fields 5 Example II Consider a point charge, Q1 =10nC located at point, P1(3,‒2,1)m and another point charge, Q2 =‒10nC at point, P2(1,‒2,3)m in free space. Determine field, E at a point, Po(2,3,4)m due to both the charges and express it in spherical coordinates. Solution: Radial distance from P1(3,‒2,1)m to Po(2,3,4)m is, 2 2 2 1 2 1 [(2 3) (3 2) (4 1) ] 5.92m o R        Unit vector from P1(3,‒2,1)m to Po(2,3,4)m is 1 1 1 ˆ ˆ ˆ ˆ ˆ ˆ (2 3) (3 2) (4 1) ( 5 3 ) ˆ 5.92 5.92 o o o R            R x y z x y z R Field intensity at Po(2,3,4)m due to charge at P1(3,‒2,1)m is, 9 1 1 2 2 1 ˆ ˆ ˆ 1 1 10 10 ( 5 3 ) ˆ V/m 4 4 5.92 5.92 o o o o o Q R          x y z E R Radial distance from P2(1,‒2,3)m to Po(2,3,4)m is, 2 2 2 1 2 2 [(2 1) (3 2) (4 3) ] 5.20m o R        Unit vector from P2(1,‒2,3)m to Po(2,3,4)m is, 2 2 2 ˆ ˆ ˆ ˆ ˆ ˆ (2 1) (3 2) (4 3) ( 5 ) ˆ 5.20 5.20 o o o R           R x y z x y z R Field intensity at Po(2,3,4)m due to charge at P2(1,‒2,3)m is, 9 2 2 2 2 2 ˆ ˆ ˆ 1 1 10 10 ( 5 ) ˆ V/m 4 4 5.20 5.20 o o o o o Q R          x y z E R
  • 6. Electrostatics Electrostatic Fields 6 Example II Field intensity obeys superposition principle. Hence, total field intensity at Po(2,3,4)m due to both the charges is, 9 1 2 3 3 ˆ ˆ ˆ ˆ ˆ ˆ 10 10 ( 5 3 ) ( 5 ) 4 5.92 5.20 o o o                   x y z x y z E E E   ˆ ˆ ˆ ˆ ˆ ˆ 0.09 4.82( 5 3 ) 7.11( 5 )        x y z x y z ˆ ˆ ˆ ˆ ˆ ˆ 0.10(10.73 10.30 6.61 )V/m ( )(say) x y z E E E        x y z x y z The result is in Cartesian system and it requires to be converted into spherical system. 1 2 2 tan ( 2 3 4) 0.733 rad     1 tan (3/ 2) 0.983 rad    sin cos sin sin cos r x y z E E E E         1.073sin cos 1.030sin sin 0.661cos          0.398 0.573 0.491 1.463 V/m       cos cos cos sin sin x y z E E E E          1.073cos cos 1.030cos sin 0.661sin          0.442 0.637 0.442 0.637 V/m       sin cos 1.073sin 1.030cos x y E E E           0.893 0.571 0.322V/m    Using these values, the vector field in spherical system becomes, ˆ ˆ ˆ ˆ ˆ ˆ (1.463 +0.637 0.322 ) V/m r E E E        E r r      1 2 2 tan x y z            1 tan y x   
  • 7. Electrostatics Electrostatic Fields 7 Example III Three line charges located in free space, each with a length, L =1m, are carrying charge densities, λ1=2πεo λ2=2λ1 and λ3=3λ1 C/m. Determine the field intensity, E at the center of quadrilateral triangle when line charges are arranged in the form of an equilateral triangle. Solution: Distance of center from any one side is L/2 tan (π/6)=h=0.289m. Let us suppose triangle is placed over z=0 plane, with its center over origin and side 1 normal to x-axis as shown in Figure. Field at triangle center due to side 1 is 1 1 1 2 2 1 2 2 2 1 2 ˆ ˆ 2 λ 1 ˆ 3.325 2 ( ) 2 0.289 (0.289 1 ) o o o L h h L          E E E  Figure Electric field intensity due to equilateral triangle line charge. Fields at triangle center due to sides two and three become, 2 1 2 2 3 1 3 3 ˆ ˆ ˆ ˆ 2 6.65 & 3 9.97 E E     E E E E E E Field due to each side, 2 and 3, can be decomposed into two, one parallel to E1 and another normal to it. 2 2 6.65cos(2 3) 3.325 & 6.65sin(2 3) 5.76 E E         3 3 9.97cos( 2 3) 4.985 & 9.97sin( 2 3) 8.634 E E            Component fields parallel and perpendicular to E1 are 3.325 3.325 4.985 4.985 & 5.76 8.634 2.87 E E         In Cartesian coordinates, for the arrangement shown, it becomes, ˆ ˆ 4.985 2.87 V/m   E x y
  • 8. Electrostatics Electrostatic Fields 8 Example IV Three straight line charges, each with a length, L =1m, carrying charge densities, λ1=2πεo λ2=2λ1 and λ3=λ1 C/m are lying in free space. They are arranged at the vertices of an equilateral triangle, side length a=1m, perpendicular to its plane. Determine field, E at the center of triangle. Solution: Distance of triangle center from any one vertices, equal to height of center from line charge is L/2 sec (π/6)=h=0.577m. Suppose triangle is placed over z=0 plane, with its center over origin and side 1 normal to x-axis as shown in Figure. Field at triangle center due to line charge one is 1 1 1 2 2 1 2 2 2 1 2 ˆ ˆ 2 λ 1 ˆ 1.50 2 ( ) 2 0.577 (0.577 1 ) o o o L h h L          E E E  Fields at triangle center due to line charges two and three become, 2 1 2 2 3 1 3 3 ˆ ˆ ˆ ˆ 2 3.00 & 1.50 E E     E E E E E E Figure Electric field intensity due to line charges at vertices of equilateral triangle. Field due to each line charge, two and three, can be decomposed into two, one parallel to E1 and another normal to it. 2 2 3.00cos(2 3) 1.50 & 3.00sin(2 3) 2.60 E E         3 3 1.50cos( 2 3) 0.75 & 1.50sin( 2 3) 1.30 E E            Component fields parallel and perpendicular to E1 are, 1.50 1.50 0.75 0.75 & 2.60 1.30 1.30 E E        In Cartesian coordinates, for the arrangement shown it becomes, ˆ ˆ 0.75 1.30 V/m   E x y
  • 9. Electrostatics Electrostatic Fields 9 Example V Consider a straight line charge of length L m carrying a uniform density of λ C/m. (a) Assuming free space medium, determine field intensity, E at a height h m from one of its ends. (b) Also extend the result to find E due to a semi-infinite straight line charge and express the result in Cartesian coordinates when λ =4πεo and h=0.5m at point P(2, π/4,3). Solution: For solution, place the line charge along z-axis, extending from z=0 to z=L. Orient the charge such that field point, P is over the xy-plane, as shown in Figure . (a).The field intensity at the observation point P located at (h, ,0 ) due to differential line charge, dQ= λdl =λdz at the source point (0, ,z ) is, 2 2 2 2 2 1 2 ˆ ˆ 1 1 λ ( ) ˆ 4 4 ( ) ( ) o o dQ dz h z d R h z h z      ρ z E = R = Field intensity due to total charge then is 2 2 3 2 2 2 3 2 0 0 ˆ ˆ λ λ 4 ( ) 4 ( ) L L o o hdz zdz h z h z        ρ z E = 2 2 2 1 2 2 2 1 2 0 0 ˆ ˆ λ λ 4 ( ) 4 ( ) L L o o z h h h z h z      ρ z = 2 2 1 2 2 2 1 2 ˆ ˆ ˆ λ 4 ( ) ( ) o L h h L h L h            ρ z z E = Figure Field intensity due to finite length line charge above one end point.
  • 10. Electrostatics Electrostatic Fields 10 Example V (b).Semi-infinite line charge is one which extends from origin to infinity. Field intensity due to this charge distribution can be obtained by extending the length to infinity i.e. L→∞. lim L 2 2 1 2 2 2 1 2 ˆ ˆ ˆ ˆ ˆ λ λ( ) 4 ( ) ( ) 4 o o L h h L h L h h               ρ z z ρ z When λ =4πεo and h=0.5m field intensity then becomes, ˆ ˆ ˆ ˆ 4 ( ) λ( ) ˆ ˆ ˆ ˆ 2( ) 4 4 0.5 o z o o E E h              ρ z ρ z E ρ z ρ z The result is in cylindrical coordinates and at point P(2,π/4,3) i.e. with = π/4, it can be converted into Cartesian coordinates as, cos sin 1.414 x E E E        sin cos 1.414 y E E E        2 z z E E    Hence, field due to semi-infinite line charge in Cartesian coordinates is, ˆ ˆ ˆ ˆ ˆ ˆ 1.414 1.414 2 V/m x y z E E E       E x y z x y z
  • 11. Electrostatics Electrostatic Fields 11 Example VI Three identical infinite line charges, each with a charge density, λ= 2πεo C/m, are lying in free space along x-, y- and z- axes. Determine field intensity, E at (3,2,2)m and express it in spherical system. Solution: Given three infinite line charges are shown in Figure. Radial distance of point at (3,2,2)m to x- axis is, 2 2 1 2 (2 2 ) 2 2 2.83m      Unit vector from x-axis to point at (3,2,2)m is, ˆ ˆ 2 2 ˆ ˆ ˆ = = 0.707( ) 2.83     y z y z   Field due to line charge over x-axis at (3,2,2)m is, 2 1 λ 1 ˆ ˆ ˆ ˆ ˆ 0.707( ) 0.25( ) V/m 2 2 2.83 o o o          E y z y z  Figure Electric field intensity due to three infinite line charges. Radial distance and unit vector corresponding to point at (3,2,2)m to y-axis is, 2 2 1 2 ˆ ˆ 3 2 ˆ ˆ ˆ (3 2 ) 13 3.60m & = = (0.833 0.555 ) 3.60          x z x z  
  • 12. Electrostatics Electrostatic Fields 12 Example VI Field due to line charge over y-axis at (3,2,2)m is, 2 1 λ 1 ˆ ˆ ˆ ˆ ˆ (0.833 0.555 ) (0.23 0.15 ) V/m 2 2 3.60 o o o          E x z x z  Similarly, radial distance and unit vector corresponding to point at (3,2,2)m to z-axis is, 2 2 1 2 ˆ ˆ 3 2 ˆ ˆ ˆ (3 2 ) 13 3.60m & = = (0.833 0.555 ) 3.60          x y x y   Field due to line charge over z-axis at (3,2,2)m is, 2 1 λ 1 ˆ ˆ ˆ ˆ ˆ (0.833 0.555 ) (0.23 0.15 ) V/m 2 2 3.60 o o o          E x y x y  Total field due to the three line charges then is, ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ 0.25( ) (0.23 0.15 ) (0.23 0.15 ) (0.46 0.40 0.40 )V/m t          E y z x z x y x y z Cartesian to Spherical: 1 2 2 1 2 2 1 1 2 tan ( ) tan ( 3 2 ) 1.064 rad z x y         1 tan (2 3) 0.59    Vector E in spherical coordinates is, sin cos sin sin cos r x y z E E E E         0.46sin cos 0.40sin sin 0.40cos 0.725          cos cos cos sin sin x y z E E E E          0.46cos cos 0.40cos sin 0.40sin 0.06           sin cos 0.46sin 0.40cos 0.08 x y E E E             Thus, field in spherical coordinates is, ˆ ˆ ˆ ˆ ˆ ˆ (0.725 0.06 0.08 )V/m r E E E       E r r         1 tan y x   
  • 13. Electrostatics Electrostatic Fields 13 Example VIII Assuming free space medium, find the field intensity, E at a height of h m from the center of a circular sheet of radius, a m carrying a uniform surface charge density of σ C/m2 . Solution: As circular sheet can be considered as a zero-height solid cylinder, solution becomes simple if it is attempted in cylindrical coordinate system. Now, place the given charged sheet charge over xy-plane with field point, P over positive z-axis at (0,,h), as shown in Figure. As radius of the sheet is ′a′, the charge extends to a m in all directions from origin i.e. ρ→0 to a. Figure Electric field intensity due to circular charge disc. The field intensity at the field point, P(0,,h), due to differential charge, dQ=σda= σρdρd at (ρ,,0) is, 2 2 2 2 2 1 2 ˆ ˆ 1 1 σ ( ) ˆ 4 4 ( ) ( ) o o dQ d d h d R h h            z ρ E = R = Since for every dQ over the plane charge, there is another charge dQ on the sheet ρ ˆ σ σ 1 σ 1 1 ˆ ˆ           
  • 14. Electrostatics Electrostatic Fields 14 Example VIII  σ σρ ρ  ρ  ˆ ˆ σ ( ) ˆ 4 4 ( ) ( ) o o R h h            ρ Since for every dQ over the plane charge, there is another charge dQ on the sheet diametrically opposite to it, resulting in the cancellation of ρ-components of the fields. Thus, 2 2 2 3 2 2 2 1 2 2 2 1 2 0 0 0 ˆ 1 σ σ 1 σ 1 1 ˆ ˆ 4 ( ) 2 ( ) 2 ( ) a a o o o h d d h h h h a h h                        z E = z = = z If the observation point P is below the sheet, the expression for field becomes, 2 2 1 2 σ 1 1 ˆ ( ) 2 ( ) o h a h h            E = z From this expression, field due to infinite sheet can be found. As a→∞, circular disc becomes infinite plane sheet and field of disc becomes field due to infinite sheet. σ ˆ 2 a o     E z