SlideShare una empresa de Scribd logo
1 de 45
Descargar para leer sin conexión
Chapter 4-1
Microwave Transistor Amplifier Design
Chien-Jung Li
Department of Electronics Engineering
National Taipei University of Technology
Department of Electronic Engineering, NTUT
Power Gain Equations
2 2
2
212 2
22
1 1
1 1
s LL
T
AVS in s L
P
G S
P S
   
 
    
2 2
2
212 2
11
1 1
1 1
s LL
T
AVS s out L
P
G S
P S
   
 
    
2
2
212 2
22
11
1 1
LL
p
in in L
P
G S
P S
 
 
   
2
2
212 2
11
1 1
1 1
sAVN
A
AVS s out
P
G S
P S
 
 
   
• Transducer Power Gain
• Operating Power Gain
• Available Power Gain
Transistor
[S]


sE
sZ
LZ
PAVNPAVS PLPin
Ms
interface interface
ML
2/45
Department of Electronic Engineering, NTUT
Example (I)
• Calculate the PAVS, Pin, PAVN, and PL
1 50Z  
Input
Matching
Network
Output
Matching
Network
1 10 0E  
2 50Z  
0.5 120s   in
out 0.4 90L  
sZ inZ outZ LZ
 S
  11 12
21 22
0.6 160 0.045 16
2.5 30 0.5 90
S S
S
S S
     
    
     
Transistor S parameters:
12 21
11
22
0.627 164.6
1
L
in
L
S S
S
S

     
 
12 21
22
11
0.471 97.63
1
s
out
s
S S
S
S

     
 
2 2
2
212 2
22
1 1
9.43
1 1
s LL
T
AVS in s L
P
G S
P S
   
  
    
 or 9.75 dB
3/45
Department of Electronic Engineering, NTUT
Example (II)
2
2
212 2
22
11
13.51
1 1
LL
p
in in L
P
G S
P S
 
  
   
 or 11.31 dB
2
2
212 2
11
1 1
9.55
1 1
sAVN
A
AVS s out
P
G S
P S
 
  
   
 or 9.8 dB
in AVS sP P M T p sG G Mand      
9.43
0.698 1.56 dB
13.51
T
s
p
G
M
G
    
   
   
  
2 2
2
1 1
0.6983 1.56 dB
1
s in
s
s in
M
L AVN LP P M T A LG G Mand      
9.43
0.9874 0.055 dB
9.55
T
L
A
G
M
G
    
   
   
  
2 2
2
1 1
0.9874 0.055 dB
1
L out
L
out L
M  

2 2
1
1
10
0.25 W
8 8 50
AVS
E
P
R
   0.25 W 0.1745 Win sP M
   0.25 W 2.358 WL TP G
  2.358 WL AVN LP P M  2.39 WAVNP
4/45
Department of Electronic Engineering, NTUT
Stability
12 21
11
221
L
in
L
S S
S
S

  
 
12 21
22
111
s
out
s
S S
S
S

  
 
• The stability of an amplifier, or its resistance to oscillate, is a very
important consideration in a design and can be determined from the
S parameters, the matching networks, and the terminations.
• Oscillations are possible when either the input or output port presents
a negative resistance, i.e., or ( or for a
unilateral device).
  1in   1out 22 1S11 1S
Transistor
[S]

sE
sZ
out
LZ
in
s L
• The two-port network is said to be unconditionally stable at a given
frequency if the real parts of Zin and Zout are greater then zero for a
passive load and source impedances. For potentially unstable, that is,
some passive load and source terminations can produce input and
output impedances having a negative real part.
5/45
Department of Electronic Engineering, NTUT
Stability Considerations
1s 
12 21
22
11
1
1
s
out
s
S S
S
S

   
 
1L 
12 21
11
22
1
1
L
in
L
S S
S
S

   
 
 22 11 12 21
2 2 2 2
22 22
L
S S S S
S S

 
  
   
 11 22 12 21
2 2 2 2
11 11
s
S S S S
S S

 
  
   
11 22 12 21S S S S  
• In terms of reflection coefficients, the conditions for unconditionally
stability at a given frequency are
• The region where produces is determined.L 1in 
• Stability Circles include
and
Transistor
[S]

sE
sZ
out
LZ
in
s L
• The region where produces is determined.s 1out 
and
where
6/45
Department of Electronic Engineering, NTUT
The Stability Circles
12 21
2 2
22
L
S S
r
S

 
 22 11
2 2
22
L
S S
C
S

 

 
12 21
2 2
11
s
S S
r
S

 
 11 22
2 2
11
s
S S
C
S

 

 
• Output Stability Circle ( values for )L 1in 
 Center
 Radius
• Input Stability Circle ( values for )
 Center
 Radius
s 1out 
1in 
1out 
LC
Lr
LC
sC
sr
sC
-planeL
-planes
7/45
Department of Electronic Engineering, NTUT
Determine the Stable Region
LC
LC
Lr 1in 
sr
sC
sC
1out 
• How do we determine the stable region? Inside or outside the
stability circle? The and can help! (see next two slides)11S
-planeL -planes
Output Stability Circle Input Stability Circle
22S
8/45
Department of Electronic Engineering, NTUT
Determine the Stable Region of Plane
LC
LC
Lr
1in 
11 1S 
12 21
11
221
L
in
L
S S
S
S

  
 
0L 
LC
LC
0L 
Lr
1in 
• Criteria: virtually make , then and0L  11in S L oZ Z
-planeL -planeL
L
Case (1): 11 1S Case (2):
stable region stable region
9/45
Department of Electronic Engineering, NTUT
Determine the Stable Region of Plane
12 21
22
111
s
out
s
S S
S
S

  
 
22 1S  22 1S 
s
Case (1): Case (2):
• Criteria: virtually make , then and0s  22out S s oZ Z
stable region stable region
-planes -planes
0s 0s 
sC sC
sC
srsr
sC
1out  1out 
10/45
Department of Electronic Engineering, NTUT
Unconditionally Stable (I)
-planeL -planes
0s 0L 
LC
sC
sC
sr
Lr
LC
1in 
1out 
• For the cases of and11 1S  22 1S 
Make the stability circles completely outside the Smith Chart!
11/45
Department of Electronic Engineering, NTUT
Unconditionally Stable (II)
• For the cases of and11 1S  22 1S 
Make the stability circles completely enclose the Smith Chart!
-planeL -planes
0s 
0L 
LC sCsC
sr
Lr
LC
1in 
1out 
12/45
Department of Electronic Engineering, NTUT
Stability Tests
   
 
2 2 2
11 22
12 21
1
1
2
S S
K
S S
• Rollet’s Condition (K-∆ test):
For unconditional stability
   11 22 12 21 1S S S Sand
 The K-∆ test is a mathematically rigorous condition for unconditional stability.
However, it cannot be used to compare the relative stability of two or more
devices (or bias conditions) since it involves constraints on two parameters.
K>1 and |∆|<1 must
simultaneously hold for
unconditionally stable
• In 1992, Edwards, et. al. derived a new criterion that involves only a
single parameter μ for unconditional stability. Thus, if μ > 1, the device
is unconditionally stable. In addition, it can be said that larger values of
μ imply greater stability.
2
11
22 11 12 21
1
1
S
S S S S
 

 
  
13/45
Department of Electronic Engineering, NTUT
Example (I)
Determined the stability. If the transistor is potentially unstable at a
given frequency, draw the input and output stability circles.
2 2 2
11 22
12 21
1
1
2
S S
K
S S
   
 
   11 22 12 21 1S S S S
K 
0.482 0.221 123 
0.857 0.173 162.9 
1.31 0.174 160
1.535 0.226 121
(GHz)f
0.5
1
2
4
• The S-parameter of a BJT at VCE = 15 V and IC = 15 mA at f=500 MHz,
1 GHz, and 4 GHz are as follows:
2
11
22 11 12 21
1
1
S
S S S S
 

 
  

0.49



14/45
Department of Electronic Engineering, NTUT
Example (II)
 22 11
2 2
22
L
S S
C
S

 

 
12 21
2 2
22
L
S S
r
S

 
 11 22
2 2
11
s
S S
C
S

 

 
12 21
2 2
11
s
S S
r
S

 
sC sr
1.36 157.6 0.558 2.8 57.86 2.18
1.28 169 0.315 2.62 51.3
(GHz)f
0.5
1
LC Lr
1.71
15/45
Department of Electronic Engineering, NTUT
Stabilization Methods
• Stabilization methods described below are used to stabilize the
transistor unconditionally.
1R
2R
6R
5R
3R
4R
 Stabilization of input port through series or shunt resistance, eg., R1, R2.
 Stabilization of output port through series or shunt resistance, eg., R3, R4.
 Stabilization using series or shunt negative feedback, eg., R5, R6. Inductances
and capacitances are also commonly used as feedback elements.
 Stabilization results in a loss of gain and an increase in noise figure.
16/45
Department of Electronic Engineering, NTUT
Example (I)
• The S-parameter of a transistor at f=800 MHz are :
11 0.65 95S    12 0.035 40S   21 5 115S   22 0.8 35S   
Determine the stability circle and show how resistive loading can stabilize the
transistor.
2 2 2
11 22
12 21
1
0.547
2
S S
K
S S
   
 
11 22 12 21 0.504 249.6S S S S    
Since K<1, the transistor is potentially unstable at f=800MHz.
1.79 122sC   1.04sr 
1.3 48LC    0.45Lr
 Input Stability Circle:
 Output Stability Circle:
17/45
Department of Electronic Engineering, NTUT
Input and Output Stability Circle
1.79 122sC  
1.3 48LC  
18/45
Department of Electronic Engineering, NTUT
Stabilization – Input Series Resistance
1.79 122sC  
1.3 48LC  
9 
s
9s sZ Z  
s

sZ
19/45
Department of Electronic Engineering, NTUT
Stabilization – Input Shunt Resistance
1.79 122sC  
1.3 48LC  
71.5 
20/45
Department of Electronic Engineering, NTUT
Stabilization – Output Series Resistance
1.79 122sC  
1.3 48LC  
29 
21/45
Department of Electronic Engineering, NTUT
Stabilization – Output Shunt Resistance
1.79 122sC  
1.3 48LC  
500 
22/45
Department of Electronic Engineering, NTUT
Stability Considerations (I)
• For a unilateral transistor, S12=0 (or it is so small that can be set to
zero). In unilateral case, and (the transistor
output signal would not go through back to the input). If , the
transistor presents a negative resistance at the input, and if the
transistor presents a negative resistance at the output.
11in S  22out S 
11 0S 
22 0S 
• For unconditionally stability any passive load and or source in the
network must produce a stable condition. For and ,
we want the stability circles to fall completely outside the Smith Chart.
(Or completely enclosed for and )
11 0S  22 0S 
11 0S  22 0S 
• It is convenient to use the μ parameter to check the stability, the
transistor will be more stable for a larger μ.
• For the unilateral case, we have unconditionally stability if
and for all passive source and load terminations.11 0S  22 0S 
23/45
Department of Electronic Engineering, NTUT
Stability Considerations (II)
• A potentially unstable transistor can be made unconditionally stable
by either resistively loading the transistor or by adding negative
feedback. These techniques are nor recommended in narrowband
amplifiers because of the resulting degradation in power gain, noise
figure, and VSWRs.
• Usually, stabilizing one port of a transistor results in an
unconditionally stable device.
• All four choices of resistive loading affects the gain performance of
the amplifier. In practice, resistive loading at the input is not used
because it produces a significant deterioration in the noise
performance of the amplifier.
• Negative feedback can be used to stabilize a transistor by neutralizing
S12 (making S12=0). However, this is not commonly done. In a
broadband design, a common procedure is to use resistive loading to
stabilize the transistor and negative feedback to provide the proper ac
performance (constant gain and low input and output VSWR).
24/45
Department of Electronic Engineering, NTUT
Unilateral Transducer Power Gain
11S
1E
oZ
oZ
Transistor
oG
Output
matching
LG
Input
matching
sG
s L22S
   
 
   
2 2
2
212 2
11 22
1 1
1 1
s L
TU s o L
s L
G S G G G
S S
2
2
11
1
1
s
s
s
G
S
 

 
2
21oG S
2
2
22
1
1
L
L
L
G
S
 

 
(dB) (dB) (dB) (dB)TU s o LG G G G  
• Unilateral Transducer Power Gain GTU
• The term Gs and GL represent the gain or loss produced by the
matching or mismatching of the input or output circuits.
12 0S
25/45
Department of Electronic Engineering, NTUT
Maximum Unilateral Transducer Power Gain
11S
1E
oZ
oZ
Transistor
oG
Output
matching
,maxLG
Input
matching
,maxsG
11s S
  22L S
 22S
11s S
  22L S
 
,max 2
11
1
1
sG
S


,max 2
22
1
1
LG
S


2
,max ,max ,max 212 2
11 22
1 1
1 1
TU s o LG G G G S
S S
 
 
• Maximum Unilateral Transducer Power Gain GTU,max
Optimize and to provide maximum gain in Gs and GL.s L
and
2
2
11
1
1
s
s
s
G
S
 

 
2
2
22
1
1
L
L
L
G
S
 

 
and
and
26/45
Department of Electronic Engineering, NTUT
General Form of the Matching Gain
2
2
1
1
i
i
ii i
G
S
 

 
• General form of the matching gains Gs and GL :
 with 11, and with 22i s ii i L ii   
(1) Unconditionally stable case: 1iiS 
,max 2
1
1
i
ii
G
S


,max0 i iG G 
i iiS
 For optimum terminations:
Other values of (mismatched) produce Gi between zero and Gi,max:i
• The values of that produce a constant gain Gi will be shown to lie in a
circle in the Smith Chart. These circles are called constant Gi circles.
i
Constant Gs circles: i = s
Constant GL circles: i = L
27/45
Department of Electronic Engineering, NTUT
Constant Gi Circle – Unconditionally Stable
• Normalized Gain Factor:
   
2
2 2
,max
1
1 1
1
ii
i i ii ii
i ii i
G
g G S S
G S
 
    
 
such that 0 1ig 
• Constant Gi circle in the Smith Chart
The values of that produce a constant values
of gi lie in a circle.
i
i ii g gC r  
 
2
1 1i
i ii
g
ii i
g S
C
S g


 
 
 
2
2
1 1
1 1i
i ii
g
ii i
g S
r
S g
 

 
Each gi generates a constant Gi circle.
When gi =1 gives
0igr  ig iiC S
and
Maximum gain is
represented by a
point located at iiS
giC
gir
iiS
i iiS 
 
iU
iV
-planei
Maximum gain Gi,max occurs
 Locate iiS
 Determine Gi and gi
 Use gi to find igr,igC
 Center:
 Radius:
28/45
Department of Electronic Engineering, NTUT
Example (I)
• The S parameters of a BJT measured at VCE = 10 V, IC = 30 mA, and
the operating frequency f = 1 GHz, in a 50-Ohm system, are:
11 0.73 175 ,S   12 0,S  21 4.45 65 , andS   22 0.21 80S   
(a) Calculate the optimum terminations.
(b) Calculate Gs,max, GL,max, and GTU,max in dB.
(c) Draw several Gs constant-gain circles.
(d) Design the input network for Gs = 2 dB.
(a)
11 0.73 175s S
    
12 0S  unilateral
Optimum terminations: 22 0.21 80L S
   and
7.6 2.35sZ j   and 48.5 21.5LZ j  
29/45
Department of Electronic Engineering, NTUT
Example (II)
(b)
 ,max 2
11
1
2.141 3.31 dB
1
sG
S
  

 ,max 2
22
1
1.046 0.195 dB
1
LG
S
  

 
2
21 19.8 12.97 dBoG S  
The transistor inherently provides 12.97 dB gain
   ,max dB 3.31 12.97 0.195 16.47 dBTUG    
Input and output matching networks provide
excess gain for transducer power
(c) ,max 3.31 dBsG 
30/45
Department of Electronic Engineering, NTUT
Example (III)
(d) Matching to Gs = 2dB
31/45
Department of Electronic Engineering, NTUT
Constant Gi Circle – Potentially Unstable
(2) Potentially unstable case: 1iiS 
2
2
1
1
i
i
ii i
G
S
 

 
Critical value of
,
1
, andi c i
ii
G
S
   
i
   
2
2 21
1 1
1
i
i i ii ii
ii i
g G S S
S
 
   
 
Since , thus 0ig 1iiS 
 
2
1 1i
i ii
g
ii i
g S
C
S g


 
 
 
2
2
1 1
1 1i
i ii
g
ii i
g S
r
S g
 

 
Maximum gain Gi,max (infinite) occurs
 Center
 Radius
32/45
Department of Electronic Engineering, NTUT
 When and , has a maximum value, and the ratio is bounded
by
Unilateral Figure of Merit (I)
• When S12 can be set to zero, the design procedure is much simpler. In
order to determine the error involved in assuming S12 = 0, we form
the magnitude ratio of GT and GTU, namely,
2
1
1
T
TU
G
G X


2 2
2
212 2
11
1 1
1 1
s L
T
s out L
G S
S
   

    
2 2
2
212 2
11 22
1 1
1 1
s L
TU
s L
G S
S S
   

   
  
12 21
11 221 1
s L
s L
S S
X
S S
 

   
2 2
1 1
1 1
T
TU
G
GX X
 
 
11s S
  22L S
  TUG
   
2 2
1 1
1 1
T
TU
G
GU U
 
 
is known as the
Unilateral Figure of Merit
and
where
  

 
12 21 11 22
2 2
11 221 1
S S S S
U
S S
where
33/45
Department of Electronic Engineering, NTUT
Unilateral Figure of Merit (II)
f
 dBU
5
10
15
• The value of U varies with frequency because of its dependence on
the S parameter.
100 MHz 1 GHz
   @100 MHz, and 1 GHz 15 dB 0.03U   
   
2 2
1 1
1 0.03 1 0.03
T
TU
G
G
 
 
0.9426 1.031T
TU
G
G
  0.26 dB 0.26 dBT
TU
G
G
  
• The maximum error is ±0.26 dB at 100 MHz and 1 GHz. In some
designs this error is small enough to justify the unilateral assumption.
34/45
Department of Electronic Engineering, NTUT
Simultaneous Conjugate Match: Bilateral Case
in
1E
oZ
oZ
Transistor
oG
Output
matching
LG
Input
matching
sG
s Lout
s in

   L out

  
• Maximum Simultaneous Conjugate Matched Transducer Power Gain GT,max
and
 
 
22
1 1 1
1
4
2
Ms
B B C
C
and
12 21
11
221
L
in s
L
S S
S
S
 
    
 
12 21
22
111
s
out L
s
S S
S
S
 
    
 
and
 
 
22
2 2 2
2
4
2
ML
B B C
C
    
2 2 2
1 11 221B S S     
2 2 2
2 22 111B S S

  1 11 22C S S 
  2 22 11C S S
where
35/45
Department of Electronic Engineering, NTUT
Stability and Simultaneous Conjugate Match
 
 
22
1 1 1
1
4
2
Ms
B B C
C
 
 
22
2 2 2
2
4
2
ML
B B C
C
 1K  1K
 1K  1K
Simultaneous conjugate
match can be achieved
Simultaneous conjugate
match doesn’t exist
Potentially unstable or
Unstable
  1   1
Unconditionally
stable
Potentially
unstable
Any reference to a simultaneous conjugate match assumes
that the two port network is unconditionally stable.
36/45
Department of Electronic Engineering, NTUT
Maximum Stable and Available Gain
   

    
2 2
2
212 2
22
1 1
1 1
s L
T
in s L
G S
S
in
1E
oZ
oZ
Transistor
oG
Output
matching
LG
Input
matching
sG
s Lout

    s in Ms

    L out ML
  
   
   
2
2 21 2
,max 212 2
1222
11
1
1 1
ML
T
Ms ML
S
G S K K
SS
• Maximum Simultaneous Conjugate Matched Transducer Power Gain GT,max
and
• Maximum Stable Gain (MSG) is defined when K =1:
 21
12
MSG
S
G
S
(potentially unstable)
(unconditionally stable)
37/45
Department of Electronic Engineering, NTUT
Operating Power-Gain Circle
  
  
  
   
  
 
2 2
21 2
212
211
22
22
1
1 1
1
L
p p
L
L
L
S
G S g
S
S
S
• Unconditionally stable bilateral case:
   
   
 
           
2 2
2 2 2 2 2 2
22 11 11 22 2
1 1
1 1 2Re
L L
p
L L L L
g
S S S S C

  2 22 11C S S
Gp and gp are the functions of the device
S parameters and ΓL. The values of ΓL
that produce a constant gp are shown to
lie on a circle, known as an operating
power-gain circle.
  L p pC r
 


  
2
2 2
221
p
p
p
g C
C
g S  
 

  
2 2
12 21 12 21
2 2
22
1 2
1
p p
p
p
K S S g S S g
r
g S
 Center  Radius
where
• Operating Power-Gain Circle:
38/45
Department of Electronic Engineering, NTUT
Maximum Operating Power-Gain
 
 

  
2 2
12 21 12 21
2 2
22
1 2
1
p p
p
p
K S S g S S g
r
g S
• The maximum operating power gain occurs when rp = 0.
  
2 2
12 21 ,max 12 21 ,max1 2 0p pK S S g S S g
   2
,max
12 21
1
1pg K K
S S
    21 2
,max ,max
12
1p T
S
G K K G
S
• The value of ΓL that produces Gp,max follows by substituting gp =
gp,max for Cp. This value of ΓL = Cp,max must be equal to ΓML.
 

  
  
,max 2
,max 2 2
,max 221
p
ML p
p
g C
C
g S
39/45
Department of Electronic Engineering, NTUT
Maximum Operating Power Gain
• For a given Gp,ΓL is selected from the constant operating power-gain
circles. Gp,max, results when ΓL is selected at the distance where
gp,max = Gp,max /|S21|2 . The maximum output power results when a
conjugate match is selected at the input (i.e., ), and it follows
that the input power is equal to the maximum available input power.
Therefore, in this circumstances GT,max = Gp,max . The values of Γs and
ΓL that result in Gp,max are identical to ΓMs and ΓML , respectively.

  s in
in
1E
oZ
oZ
Transistor
oG
Output
matching
LG
Input
matching
sG
s L

• Design Procedure:
40/45
Department of Electronic Engineering, NTUT
Example (I)
• Design a microwave amplifier using a GaAs FET to operate f = 6 GHz
with maximum transducer power gain. The transistor S parameters
at the linear bias point, VDS = 4 V and IDS = 0.5 IDDS, are
  11 0.641 171.3S  12 0.057 16.3S  21 2.058 28.5S   22 0.572 95.7S
Use (1) Transducer power gain method (2) Operating power gain
method to find the matching networks (3) Gp=9 dB amplifier design
(1) Transducer power gain method
 1.504K   0.3014 109.88 Unconditionally stable
 0.1085UCheck unilateral:   0.89 dB 1 dBT
TU
G
G
S12 cannot be neglected
(bilateral case)
       1 2 1 20.9928, 0.8255, 0.4786 177.3 , 0.3911 103.9B B C C
  0.762 177.3Ms
  0.718 103.9ML
        
 
2
,max
2.058
1.504 1.504 1 13.74 or 11.38 dB
0.057
TG
41/45
Department of Electronic Engineering, NTUT
Example (II)
(2) Operating power gain method:
 

    
  
,max 2
,max 2 2
,max 22
0.718 103.9
1
p
ML p
p
g C
C
g S
 
  ,max
,max 2 2
21
13.74
3.24
2.058
p
p
G
g
S
,max 0pr

  
       
  
12 21
11
22
0.762 177.3
1
ML
Ms in
ML
S S
S
S
(3) Operating power gain method: Gp = 9 dB
 ,max ,max 13.74T pG G
    
2 2
21 2.058 4.235 or 6.27 dBS
  2
21
7.94
1.875
4.235
p
p
G
g
S
1.504K   0.3014 109.88   2 0.3911 103.9C  0.431pr  0.508 103.9pC
42/45
Department of Electronic Engineering, NTUT
Example (III)
 Select point A for matching:   0.36 47.5L

  
       
  
12 21
11
22
0.629 175.51
1
L
s in
L
S S
S
S
 Since , it follows that
GT = Gp = 9 dB

  s in
 

 

1 0.622
4.3
1 0.622out
VSWR
43/45
Department of Electronic Engineering, NTUT
Available Power-Gain Circle
  
  
  
   
  
 
2 2
21 2
212
222
11
11
1
1 1
1
s
A a
s
s
s
S
G S g
S
S
S
• Unconditionally stable bilateral case:
   
 
 
      
2
2 2 2 2 2
21 22 11 1
1
1 2Re
sA
a
s s
G
g
S S S C

  1 11 22C S S
Ga and ga are the functions of the device
S parameters and Γs. The values of Γs
that produce a constant ga are shown to
lie on a circle, known as an available
power-gain circle.
  s a aC r
 


  
1
2 2
111
a
a
a
g C
C
g S  
 

  
2 2
12 21 12 21
2 2
11
1 2
1
a a
a
a
K S S g S S g
r
g S
 Center  Radius
• Available Power-Gain Circle:
where
44/45
Department of Electronic Engineering, NTUT
Design Procedures
1E
oZ
oZ
Transistor
oG
Output
matching
LG
Input
matching
sG
s Lout
• Design using operating power gain:
• Design using available power gain:
in
1E
oZ
oZ
Transistor
oG
Output
matching
LG
Input
matching
sG
s L

  
45/45

Más contenido relacionado

La actualidad más candente

La actualidad más candente (20)

RF Circuit Design - [Ch1-1] Sinusoidal Steady-state Analysis
RF Circuit Design - [Ch1-1] Sinusoidal Steady-state AnalysisRF Circuit Design - [Ch1-1] Sinusoidal Steady-state Analysis
RF Circuit Design - [Ch1-1] Sinusoidal Steady-state Analysis
 
RF Module Design - [Chapter 3] Linearity
RF Module Design - [Chapter 3]  LinearityRF Module Design - [Chapter 3]  Linearity
RF Module Design - [Chapter 3] Linearity
 
RF Module Design - [Chapter 5] Low Noise Amplifier
RF Module Design - [Chapter 5]  Low Noise AmplifierRF Module Design - [Chapter 5]  Low Noise Amplifier
RF Module Design - [Chapter 5] Low Noise Amplifier
 
RF Circuit Design - [Ch1-2] Transmission Line Theory
RF Circuit Design - [Ch1-2] Transmission Line TheoryRF Circuit Design - [Ch1-2] Transmission Line Theory
RF Circuit Design - [Ch1-2] Transmission Line Theory
 
Multiband Transceivers - [Chapter 6] Multi-mode and Multi-band Transceivers
Multiband Transceivers - [Chapter 6] Multi-mode and Multi-band TransceiversMultiband Transceivers - [Chapter 6] Multi-mode and Multi-band Transceivers
Multiband Transceivers - [Chapter 6] Multi-mode and Multi-band Transceivers
 
Phase-locked Loops - Theory and Design
Phase-locked Loops - Theory and DesignPhase-locked Loops - Theory and Design
Phase-locked Loops - Theory and Design
 
RF Module Design - [Chapter 2] Noises
RF Module Design - [Chapter 2] NoisesRF Module Design - [Chapter 2] Noises
RF Module Design - [Chapter 2] Noises
 
RF Module Design - [Chapter 4] Transceiver Architecture
RF Module Design - [Chapter 4] Transceiver ArchitectureRF Module Design - [Chapter 4] Transceiver Architecture
RF Module Design - [Chapter 4] Transceiver Architecture
 
射頻電子 - [第五章] 射頻放大器設計
射頻電子 - [第五章] 射頻放大器設計射頻電子 - [第五章] 射頻放大器設計
射頻電子 - [第五章] 射頻放大器設計
 
Low noise amplifier
Low noise amplifierLow noise amplifier
Low noise amplifier
 
RF Module Design - [Chapter 7] Voltage-Controlled Oscillator
RF Module Design - [Chapter 7] Voltage-Controlled OscillatorRF Module Design - [Chapter 7] Voltage-Controlled Oscillator
RF Module Design - [Chapter 7] Voltage-Controlled Oscillator
 
射頻電子 - [第一章] 知識回顧與通訊系統簡介
射頻電子 - [第一章] 知識回顧與通訊系統簡介射頻電子 - [第一章] 知識回顧與通訊系統簡介
射頻電子 - [第一章] 知識回顧與通訊系統簡介
 
Multiband Transceivers - [Chapter 5] Software-Defined Radios
Multiband Transceivers - [Chapter 5]  Software-Defined RadiosMultiband Transceivers - [Chapter 5]  Software-Defined Radios
Multiband Transceivers - [Chapter 5] Software-Defined Radios
 
RF Module Design - [Chapter 6] Power Amplifier
RF Module Design - [Chapter 6]  Power AmplifierRF Module Design - [Chapter 6]  Power Amplifier
RF Module Design - [Chapter 6] Power Amplifier
 
Multiband Transceivers - [Chapter 4] Design Parameters of Wireless Radios
Multiband Transceivers - [Chapter 4] Design Parameters of Wireless RadiosMultiband Transceivers - [Chapter 4] Design Parameters of Wireless Radios
Multiband Transceivers - [Chapter 4] Design Parameters of Wireless Radios
 
射頻電子 - [第三章] 史密斯圖與阻抗匹配
射頻電子 - [第三章] 史密斯圖與阻抗匹配射頻電子 - [第三章] 史密斯圖與阻抗匹配
射頻電子 - [第三章] 史密斯圖與阻抗匹配
 
Multiband Transceivers - [Chapter 2] Noises and Linearities
Multiband Transceivers - [Chapter 2]  Noises and LinearitiesMultiband Transceivers - [Chapter 2]  Noises and Linearities
Multiband Transceivers - [Chapter 2] Noises and Linearities
 
RF Transceivers
RF TransceiversRF Transceivers
RF Transceivers
 
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013
 
Chapter 4b
Chapter 4bChapter 4b
Chapter 4b
 

Destacado

Destacado (17)

電路學 - [第五章] 一階RC/RL電路
電路學 - [第五章] 一階RC/RL電路電路學 - [第五章] 一階RC/RL電路
電路學 - [第五章] 一階RC/RL電路
 
電路學 - [第八章] 磁耦合電路
電路學 - [第八章] 磁耦合電路電路學 - [第八章] 磁耦合電路
電路學 - [第八章] 磁耦合電路
 
Circuit Network Analysis - [Chapter1] Basic Circuit Laws
Circuit Network Analysis - [Chapter1] Basic Circuit LawsCircuit Network Analysis - [Chapter1] Basic Circuit Laws
Circuit Network Analysis - [Chapter1] Basic Circuit Laws
 
電路學 - [第六章] 二階RLC電路
電路學 - [第六章] 二階RLC電路電路學 - [第六章] 二階RLC電路
電路學 - [第六章] 二階RLC電路
 
Circuit Network Analysis - [Chapter3] Fourier Analysis
Circuit Network Analysis - [Chapter3] Fourier AnalysisCircuit Network Analysis - [Chapter3] Fourier Analysis
Circuit Network Analysis - [Chapter3] Fourier Analysis
 
射頻電子 - [第四章] 散射參數網路
射頻電子 - [第四章] 散射參數網路射頻電子 - [第四章] 散射參數網路
射頻電子 - [第四章] 散射參數網路
 
Circuit Network Analysis - [Chapter2] Sinusoidal Steady-state Analysis
Circuit Network Analysis - [Chapter2] Sinusoidal Steady-state AnalysisCircuit Network Analysis - [Chapter2] Sinusoidal Steady-state Analysis
Circuit Network Analysis - [Chapter2] Sinusoidal Steady-state Analysis
 
電路學 - [第七章] 正弦激勵, 相量與穩態分析
電路學 - [第七章] 正弦激勵, 相量與穩態分析電路學 - [第七章] 正弦激勵, 相量與穩態分析
電路學 - [第七章] 正弦激勵, 相量與穩態分析
 
Circuit Network Analysis - [Chapter4] Laplace Transform
Circuit Network Analysis - [Chapter4] Laplace TransformCircuit Network Analysis - [Chapter4] Laplace Transform
Circuit Network Analysis - [Chapter4] Laplace Transform
 
Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...
Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...
Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...
 
電路學 - [第四章] 儲能元件
電路學 - [第四章] 儲能元件電路學 - [第四章] 儲能元件
電路學 - [第四章] 儲能元件
 
電路學 - [第三章] 網路定理
電路學 - [第三章] 網路定理電路學 - [第三章] 網路定理
電路學 - [第三章] 網路定理
 
射頻電子 - [第六章] 低雜訊放大器設計
射頻電子 - [第六章] 低雜訊放大器設計射頻電子 - [第六章] 低雜訊放大器設計
射頻電子 - [第六章] 低雜訊放大器設計
 
射頻電子 - [第二章] 傳輸線理論
射頻電子 - [第二章] 傳輸線理論射頻電子 - [第二章] 傳輸線理論
射頻電子 - [第二章] 傳輸線理論
 
射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬
射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬
射頻電子實驗手冊 [實驗1 ~ 5] ADS入門, 傳輸線模擬, 直流模擬, 暫態模擬, 交流模擬
 
射頻電子 - [實驗第一章] 基頻放大器設計
射頻電子 - [實驗第一章] 基頻放大器設計射頻電子 - [實驗第一章] 基頻放大器設計
射頻電子 - [實驗第一章] 基頻放大器設計
 
全端物聯網探索之旅 - 重點整理版
全端物聯網探索之旅 - 重點整理版全端物聯網探索之旅 - 重點整理版
全端物聯網探索之旅 - 重點整理版
 

Similar a RF Circuit Design - [Ch4-1] Microwave Transistor Amplifier

Hardware combinational
Hardware combinationalHardware combinational
Hardware combinational
Defri Tan
 
Advanced motion controls sr10a40
Advanced motion controls sr10a40Advanced motion controls sr10a40
Advanced motion controls sr10a40
Electromate
 
Advanced motion controls sr30a40
Advanced motion controls sr30a40Advanced motion controls sr30a40
Advanced motion controls sr30a40
Electromate
 
ddc cinverter control design process.ppt
ddc cinverter control design process.pptddc cinverter control design process.ppt
ddc cinverter control design process.ppt
ShivamChaturvedi67
 
The making of the Perfect MOSFET Final
The making of the Perfect MOSFET FinalThe making of the Perfect MOSFET Final
The making of the Perfect MOSFET Final
Alan Elbanhawy
 
EPE352 DC-DC converter.ppt
EPE352 DC-DC converter.pptEPE352 DC-DC converter.ppt
EPE352 DC-DC converter.ppt
ssuser4c4e76
 

Similar a RF Circuit Design - [Ch4-1] Microwave Transistor Amplifier (20)

Lab sheet
Lab sheetLab sheet
Lab sheet
 
Hardware combinational
Hardware combinationalHardware combinational
Hardware combinational
 
Thesis presentation
Thesis presentationThesis presentation
Thesis presentation
 
L13 ic based triggering circuit
L13 ic based triggering circuitL13 ic based triggering circuit
L13 ic based triggering circuit
 
PPT FINAL (1)-1 (1).ppt
PPT FINAL (1)-1 (1).pptPPT FINAL (1)-1 (1).ppt
PPT FINAL (1)-1 (1).ppt
 
Advanced motion controls sr10a40
Advanced motion controls sr10a40Advanced motion controls sr10a40
Advanced motion controls sr10a40
 
Advanced motion controls sr30a40
Advanced motion controls sr30a40Advanced motion controls sr30a40
Advanced motion controls sr30a40
 
ddc cinverter control design process.ppt
ddc cinverter control design process.pptddc cinverter control design process.ppt
ddc cinverter control design process.ppt
 
Use s parameters-determining_inductance_capacitance
Use s parameters-determining_inductance_capacitanceUse s parameters-determining_inductance_capacitance
Use s parameters-determining_inductance_capacitance
 
PROJECT ENGINEERIING (1)
PROJECT ENGINEERIING (1)PROJECT ENGINEERIING (1)
PROJECT ENGINEERIING (1)
 
Design Basics on Power Amplifiers
Design Basics on Power Amplifiers Design Basics on Power Amplifiers
Design Basics on Power Amplifiers
 
PARASITIC-AWARE FULL PHYSICAL CHIP DESIGN OF LNA RFIC AT 2.45GHZ USING IBM 13...
PARASITIC-AWARE FULL PHYSICAL CHIP DESIGN OF LNA RFIC AT 2.45GHZ USING IBM 13...PARASITIC-AWARE FULL PHYSICAL CHIP DESIGN OF LNA RFIC AT 2.45GHZ USING IBM 13...
PARASITIC-AWARE FULL PHYSICAL CHIP DESIGN OF LNA RFIC AT 2.45GHZ USING IBM 13...
 
STATE-SPACE AVERAGING METHOD
STATE-SPACE AVERAGING METHOD STATE-SPACE AVERAGING METHOD
STATE-SPACE AVERAGING METHOD
 
S_parameters.pdf
S_parameters.pdfS_parameters.pdf
S_parameters.pdf
 
Snubber circuits mosfet
Snubber circuits mosfetSnubber circuits mosfet
Snubber circuits mosfet
 
The making of the Perfect MOSFET Final
The making of the Perfect MOSFET FinalThe making of the Perfect MOSFET Final
The making of the Perfect MOSFET Final
 
power electronics FiringCkt.pdf.crdownload.pptx
power electronics FiringCkt.pdf.crdownload.pptxpower electronics FiringCkt.pdf.crdownload.pptx
power electronics FiringCkt.pdf.crdownload.pptx
 
IRJET- A Novel Topology for a Single Phase Hyperlevel Inverter using a Single...
IRJET- A Novel Topology for a Single Phase Hyperlevel Inverter using a Single...IRJET- A Novel Topology for a Single Phase Hyperlevel Inverter using a Single...
IRJET- A Novel Topology for a Single Phase Hyperlevel Inverter using a Single...
 
EPE352 DC-DC converter.ppt
EPE352 DC-DC converter.pptEPE352 DC-DC converter.ppt
EPE352 DC-DC converter.ppt
 
Switched capacitor
Switched capacitorSwitched capacitor
Switched capacitor
 

Más de Simen Li

Más de Simen Li (20)

2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII)
2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII)2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII)
2018 VLSI/CAD Symposium Tutorial (Aug. 7, 20:00-21:00 Room 3F-VII)
 
Node.js Event Loop & EventEmitter
Node.js Event Loop & EventEmitterNode.js Event Loop & EventEmitter
Node.js Event Loop & EventEmitter
 
專題製作發想與報告撰寫技巧
專題製作發想與報告撰寫技巧專題製作發想與報告撰寫技巧
專題製作發想與報告撰寫技巧
 
ADF4113 Frequency Synthesizer 驅動程式實作
ADF4113 Frequency Synthesizer 驅動程式實作ADF4113 Frequency Synthesizer 驅動程式實作
ADF4113 Frequency Synthesizer 驅動程式實作
 
Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬
Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬
Agilent ADS 模擬手冊 [實習3] 壓控振盪器模擬
 
Agilent ADS 模擬手冊 [實習2] 放大器設計
Agilent ADS 模擬手冊 [實習2]  放大器設計Agilent ADS 模擬手冊 [實習2]  放大器設計
Agilent ADS 模擬手冊 [實習2] 放大器設計
 
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
 
射頻電子實驗手冊 - [實驗8] 低雜訊放大器模擬
射頻電子實驗手冊 - [實驗8] 低雜訊放大器模擬射頻電子實驗手冊 - [實驗8] 低雜訊放大器模擬
射頻電子實驗手冊 - [實驗8] 低雜訊放大器模擬
 
射頻電子實驗手冊 - [實驗7] 射頻放大器模擬
射頻電子實驗手冊 - [實驗7] 射頻放大器模擬射頻電子實驗手冊 - [實驗7] 射頻放大器模擬
射頻電子實驗手冊 - [實驗7] 射頻放大器模擬
 
射頻電子實驗手冊 [實驗6] 阻抗匹配模擬
射頻電子實驗手冊 [實驗6] 阻抗匹配模擬射頻電子實驗手冊 [實驗6] 阻抗匹配模擬
射頻電子實驗手冊 [實驗6] 阻抗匹配模擬
 
[ZigBee 嵌入式系統] ZigBee Architecture 與 TI Z-Stack Firmware
[ZigBee 嵌入式系統] ZigBee Architecture 與 TI Z-Stack Firmware[ZigBee 嵌入式系統] ZigBee Architecture 與 TI Z-Stack Firmware
[ZigBee 嵌入式系統] ZigBee Architecture 與 TI Z-Stack Firmware
 
[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack Firmware
[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack Firmware[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack Firmware
[ZigBee 嵌入式系統] ZigBee 應用實作 - 使用 TI Z-Stack Firmware
 
[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (3)
 
[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (2)
 
[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)
[嵌入式系統] MCS-51 實驗 - 使用 IAR (1)
 
深入淺出C語言
深入淺出C語言深入淺出C語言
深入淺出C語言
 
[嵌入式系統] 嵌入式系統進階
[嵌入式系統] 嵌入式系統進階[嵌入式系統] 嵌入式系統進階
[嵌入式系統] 嵌入式系統進階
 
Multiband Transceivers - [Chapter 7] Spec. Table
Multiband Transceivers - [Chapter 7]  Spec. TableMultiband Transceivers - [Chapter 7]  Spec. Table
Multiband Transceivers - [Chapter 7] Spec. Table
 
Multiband Transceivers - [Chapter 7] Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...
Multiband Transceivers - [Chapter 7]  Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...Multiband Transceivers - [Chapter 7]  Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...
Multiband Transceivers - [Chapter 7] Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...
 
RF Module Design - [Chapter 8] Phase-Locked Loops
RF Module Design - [Chapter 8] Phase-Locked LoopsRF Module Design - [Chapter 8] Phase-Locked Loops
RF Module Design - [Chapter 8] Phase-Locked Loops
 

Último

Último (20)

Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
 
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINEDJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
 
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptxBSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
BSides Seattle 2024 - Stopping Ethan Hunt From Taking Your Data.pptx
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptx
 
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
 
University management System project report..pdf
University management System project report..pdfUniversity management System project report..pdf
University management System project report..pdf
 
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
 
UNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular ConduitsUNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular Conduits
 
Russian Call Girls in Nagpur Grishma Call 7001035870 Meet With Nagpur Escorts
Russian Call Girls in Nagpur Grishma Call 7001035870 Meet With Nagpur EscortsRussian Call Girls in Nagpur Grishma Call 7001035870 Meet With Nagpur Escorts
Russian Call Girls in Nagpur Grishma Call 7001035870 Meet With Nagpur Escorts
 
Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptx
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations
 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSIS
 
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptx
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
 

RF Circuit Design - [Ch4-1] Microwave Transistor Amplifier

  • 1. Chapter 4-1 Microwave Transistor Amplifier Design Chien-Jung Li Department of Electronics Engineering National Taipei University of Technology
  • 2. Department of Electronic Engineering, NTUT Power Gain Equations 2 2 2 212 2 22 1 1 1 1 s LL T AVS in s L P G S P S            2 2 2 212 2 11 1 1 1 1 s LL T AVS s out L P G S P S            2 2 212 2 22 11 1 1 LL p in in L P G S P S         2 2 212 2 11 1 1 1 1 sAVN A AVS s out P G S P S         • Transducer Power Gain • Operating Power Gain • Available Power Gain Transistor [S]   sE sZ LZ PAVNPAVS PLPin Ms interface interface ML 2/45
  • 3. Department of Electronic Engineering, NTUT Example (I) • Calculate the PAVS, Pin, PAVN, and PL 1 50Z   Input Matching Network Output Matching Network 1 10 0E   2 50Z   0.5 120s   in out 0.4 90L   sZ inZ outZ LZ  S   11 12 21 22 0.6 160 0.045 16 2.5 30 0.5 90 S S S S S                  Transistor S parameters: 12 21 11 22 0.627 164.6 1 L in L S S S S          12 21 22 11 0.471 97.63 1 s out s S S S S          2 2 2 212 2 22 1 1 9.43 1 1 s LL T AVS in s L P G S P S              or 9.75 dB 3/45
  • 4. Department of Electronic Engineering, NTUT Example (II) 2 2 212 2 22 11 13.51 1 1 LL p in in L P G S P S           or 11.31 dB 2 2 212 2 11 1 1 9.55 1 1 sAVN A AVS s out P G S P S           or 9.8 dB in AVS sP P M T p sG G Mand       9.43 0.698 1.56 dB 13.51 T s p G M G                 2 2 2 1 1 0.6983 1.56 dB 1 s in s s in M L AVN LP P M T A LG G Mand       9.43 0.9874 0.055 dB 9.55 T L A G M G                 2 2 2 1 1 0.9874 0.055 dB 1 L out L out L M    2 2 1 1 10 0.25 W 8 8 50 AVS E P R    0.25 W 0.1745 Win sP M    0.25 W 2.358 WL TP G   2.358 WL AVN LP P M  2.39 WAVNP 4/45
  • 5. Department of Electronic Engineering, NTUT Stability 12 21 11 221 L in L S S S S       12 21 22 111 s out s S S S S       • The stability of an amplifier, or its resistance to oscillate, is a very important consideration in a design and can be determined from the S parameters, the matching networks, and the terminations. • Oscillations are possible when either the input or output port presents a negative resistance, i.e., or ( or for a unilateral device).   1in   1out 22 1S11 1S Transistor [S]  sE sZ out LZ in s L • The two-port network is said to be unconditionally stable at a given frequency if the real parts of Zin and Zout are greater then zero for a passive load and source impedances. For potentially unstable, that is, some passive load and source terminations can produce input and output impedances having a negative real part. 5/45
  • 6. Department of Electronic Engineering, NTUT Stability Considerations 1s  12 21 22 11 1 1 s out s S S S S        1L  12 21 11 22 1 1 L in L S S S S         22 11 12 21 2 2 2 2 22 22 L S S S S S S            11 22 12 21 2 2 2 2 11 11 s S S S S S S           11 22 12 21S S S S   • In terms of reflection coefficients, the conditions for unconditionally stability at a given frequency are • The region where produces is determined.L 1in  • Stability Circles include and Transistor [S]  sE sZ out LZ in s L • The region where produces is determined.s 1out  and where 6/45
  • 7. Department of Electronic Engineering, NTUT The Stability Circles 12 21 2 2 22 L S S r S     22 11 2 2 22 L S S C S       12 21 2 2 11 s S S r S     11 22 2 2 11 s S S C S       • Output Stability Circle ( values for )L 1in   Center  Radius • Input Stability Circle ( values for )  Center  Radius s 1out  1in  1out  LC Lr LC sC sr sC -planeL -planes 7/45
  • 8. Department of Electronic Engineering, NTUT Determine the Stable Region LC LC Lr 1in  sr sC sC 1out  • How do we determine the stable region? Inside or outside the stability circle? The and can help! (see next two slides)11S -planeL -planes Output Stability Circle Input Stability Circle 22S 8/45
  • 9. Department of Electronic Engineering, NTUT Determine the Stable Region of Plane LC LC Lr 1in  11 1S  12 21 11 221 L in L S S S S       0L  LC LC 0L  Lr 1in  • Criteria: virtually make , then and0L  11in S L oZ Z -planeL -planeL L Case (1): 11 1S Case (2): stable region stable region 9/45
  • 10. Department of Electronic Engineering, NTUT Determine the Stable Region of Plane 12 21 22 111 s out s S S S S       22 1S  22 1S  s Case (1): Case (2): • Criteria: virtually make , then and0s  22out S s oZ Z stable region stable region -planes -planes 0s 0s  sC sC sC srsr sC 1out  1out  10/45
  • 11. Department of Electronic Engineering, NTUT Unconditionally Stable (I) -planeL -planes 0s 0L  LC sC sC sr Lr LC 1in  1out  • For the cases of and11 1S  22 1S  Make the stability circles completely outside the Smith Chart! 11/45
  • 12. Department of Electronic Engineering, NTUT Unconditionally Stable (II) • For the cases of and11 1S  22 1S  Make the stability circles completely enclose the Smith Chart! -planeL -planes 0s  0L  LC sCsC sr Lr LC 1in  1out  12/45
  • 13. Department of Electronic Engineering, NTUT Stability Tests       2 2 2 11 22 12 21 1 1 2 S S K S S • Rollet’s Condition (K-∆ test): For unconditional stability    11 22 12 21 1S S S Sand  The K-∆ test is a mathematically rigorous condition for unconditional stability. However, it cannot be used to compare the relative stability of two or more devices (or bias conditions) since it involves constraints on two parameters. K>1 and |∆|<1 must simultaneously hold for unconditionally stable • In 1992, Edwards, et. al. derived a new criterion that involves only a single parameter μ for unconditional stability. Thus, if μ > 1, the device is unconditionally stable. In addition, it can be said that larger values of μ imply greater stability. 2 11 22 11 12 21 1 1 S S S S S         13/45
  • 14. Department of Electronic Engineering, NTUT Example (I) Determined the stability. If the transistor is potentially unstable at a given frequency, draw the input and output stability circles. 2 2 2 11 22 12 21 1 1 2 S S K S S          11 22 12 21 1S S S S K  0.482 0.221 123  0.857 0.173 162.9  1.31 0.174 160 1.535 0.226 121 (GHz)f 0.5 1 2 4 • The S-parameter of a BJT at VCE = 15 V and IC = 15 mA at f=500 MHz, 1 GHz, and 4 GHz are as follows: 2 11 22 11 12 21 1 1 S S S S S          0.49    14/45
  • 15. Department of Electronic Engineering, NTUT Example (II)  22 11 2 2 22 L S S C S       12 21 2 2 22 L S S r S     11 22 2 2 11 s S S C S       12 21 2 2 11 s S S r S    sC sr 1.36 157.6 0.558 2.8 57.86 2.18 1.28 169 0.315 2.62 51.3 (GHz)f 0.5 1 LC Lr 1.71 15/45
  • 16. Department of Electronic Engineering, NTUT Stabilization Methods • Stabilization methods described below are used to stabilize the transistor unconditionally. 1R 2R 6R 5R 3R 4R  Stabilization of input port through series or shunt resistance, eg., R1, R2.  Stabilization of output port through series or shunt resistance, eg., R3, R4.  Stabilization using series or shunt negative feedback, eg., R5, R6. Inductances and capacitances are also commonly used as feedback elements.  Stabilization results in a loss of gain and an increase in noise figure. 16/45
  • 17. Department of Electronic Engineering, NTUT Example (I) • The S-parameter of a transistor at f=800 MHz are : 11 0.65 95S    12 0.035 40S   21 5 115S   22 0.8 35S    Determine the stability circle and show how resistive loading can stabilize the transistor. 2 2 2 11 22 12 21 1 0.547 2 S S K S S       11 22 12 21 0.504 249.6S S S S     Since K<1, the transistor is potentially unstable at f=800MHz. 1.79 122sC   1.04sr  1.3 48LC    0.45Lr  Input Stability Circle:  Output Stability Circle: 17/45
  • 18. Department of Electronic Engineering, NTUT Input and Output Stability Circle 1.79 122sC   1.3 48LC   18/45
  • 19. Department of Electronic Engineering, NTUT Stabilization – Input Series Resistance 1.79 122sC   1.3 48LC   9  s 9s sZ Z   s  sZ 19/45
  • 20. Department of Electronic Engineering, NTUT Stabilization – Input Shunt Resistance 1.79 122sC   1.3 48LC   71.5  20/45
  • 21. Department of Electronic Engineering, NTUT Stabilization – Output Series Resistance 1.79 122sC   1.3 48LC   29  21/45
  • 22. Department of Electronic Engineering, NTUT Stabilization – Output Shunt Resistance 1.79 122sC   1.3 48LC   500  22/45
  • 23. Department of Electronic Engineering, NTUT Stability Considerations (I) • For a unilateral transistor, S12=0 (or it is so small that can be set to zero). In unilateral case, and (the transistor output signal would not go through back to the input). If , the transistor presents a negative resistance at the input, and if the transistor presents a negative resistance at the output. 11in S  22out S  11 0S  22 0S  • For unconditionally stability any passive load and or source in the network must produce a stable condition. For and , we want the stability circles to fall completely outside the Smith Chart. (Or completely enclosed for and ) 11 0S  22 0S  11 0S  22 0S  • It is convenient to use the μ parameter to check the stability, the transistor will be more stable for a larger μ. • For the unilateral case, we have unconditionally stability if and for all passive source and load terminations.11 0S  22 0S  23/45
  • 24. Department of Electronic Engineering, NTUT Stability Considerations (II) • A potentially unstable transistor can be made unconditionally stable by either resistively loading the transistor or by adding negative feedback. These techniques are nor recommended in narrowband amplifiers because of the resulting degradation in power gain, noise figure, and VSWRs. • Usually, stabilizing one port of a transistor results in an unconditionally stable device. • All four choices of resistive loading affects the gain performance of the amplifier. In practice, resistive loading at the input is not used because it produces a significant deterioration in the noise performance of the amplifier. • Negative feedback can be used to stabilize a transistor by neutralizing S12 (making S12=0). However, this is not commonly done. In a broadband design, a common procedure is to use resistive loading to stabilize the transistor and negative feedback to provide the proper ac performance (constant gain and low input and output VSWR). 24/45
  • 25. Department of Electronic Engineering, NTUT Unilateral Transducer Power Gain 11S 1E oZ oZ Transistor oG Output matching LG Input matching sG s L22S           2 2 2 212 2 11 22 1 1 1 1 s L TU s o L s L G S G G G S S 2 2 11 1 1 s s s G S      2 21oG S 2 2 22 1 1 L L L G S      (dB) (dB) (dB) (dB)TU s o LG G G G   • Unilateral Transducer Power Gain GTU • The term Gs and GL represent the gain or loss produced by the matching or mismatching of the input or output circuits. 12 0S 25/45
  • 26. Department of Electronic Engineering, NTUT Maximum Unilateral Transducer Power Gain 11S 1E oZ oZ Transistor oG Output matching ,maxLG Input matching ,maxsG 11s S   22L S  22S 11s S   22L S   ,max 2 11 1 1 sG S   ,max 2 22 1 1 LG S   2 ,max ,max ,max 212 2 11 22 1 1 1 1 TU s o LG G G G S S S     • Maximum Unilateral Transducer Power Gain GTU,max Optimize and to provide maximum gain in Gs and GL.s L and 2 2 11 1 1 s s s G S      2 2 22 1 1 L L L G S      and and 26/45
  • 27. Department of Electronic Engineering, NTUT General Form of the Matching Gain 2 2 1 1 i i ii i G S      • General form of the matching gains Gs and GL :  with 11, and with 22i s ii i L ii    (1) Unconditionally stable case: 1iiS  ,max 2 1 1 i ii G S   ,max0 i iG G  i iiS  For optimum terminations: Other values of (mismatched) produce Gi between zero and Gi,max:i • The values of that produce a constant gain Gi will be shown to lie in a circle in the Smith Chart. These circles are called constant Gi circles. i Constant Gs circles: i = s Constant GL circles: i = L 27/45
  • 28. Department of Electronic Engineering, NTUT Constant Gi Circle – Unconditionally Stable • Normalized Gain Factor:     2 2 2 ,max 1 1 1 1 ii i i ii ii i ii i G g G S S G S          such that 0 1ig  • Constant Gi circle in the Smith Chart The values of that produce a constant values of gi lie in a circle. i i ii g gC r     2 1 1i i ii g ii i g S C S g         2 2 1 1 1 1i i ii g ii i g S r S g      Each gi generates a constant Gi circle. When gi =1 gives 0igr  ig iiC S and Maximum gain is represented by a point located at iiS giC gir iiS i iiS    iU iV -planei Maximum gain Gi,max occurs  Locate iiS  Determine Gi and gi  Use gi to find igr,igC  Center:  Radius: 28/45
  • 29. Department of Electronic Engineering, NTUT Example (I) • The S parameters of a BJT measured at VCE = 10 V, IC = 30 mA, and the operating frequency f = 1 GHz, in a 50-Ohm system, are: 11 0.73 175 ,S   12 0,S  21 4.45 65 , andS   22 0.21 80S    (a) Calculate the optimum terminations. (b) Calculate Gs,max, GL,max, and GTU,max in dB. (c) Draw several Gs constant-gain circles. (d) Design the input network for Gs = 2 dB. (a) 11 0.73 175s S      12 0S  unilateral Optimum terminations: 22 0.21 80L S    and 7.6 2.35sZ j   and 48.5 21.5LZ j   29/45
  • 30. Department of Electronic Engineering, NTUT Example (II) (b)  ,max 2 11 1 2.141 3.31 dB 1 sG S      ,max 2 22 1 1.046 0.195 dB 1 LG S       2 21 19.8 12.97 dBoG S   The transistor inherently provides 12.97 dB gain    ,max dB 3.31 12.97 0.195 16.47 dBTUG     Input and output matching networks provide excess gain for transducer power (c) ,max 3.31 dBsG  30/45
  • 31. Department of Electronic Engineering, NTUT Example (III) (d) Matching to Gs = 2dB 31/45
  • 32. Department of Electronic Engineering, NTUT Constant Gi Circle – Potentially Unstable (2) Potentially unstable case: 1iiS  2 2 1 1 i i ii i G S      Critical value of , 1 , andi c i ii G S     i     2 2 21 1 1 1 i i i ii ii ii i g G S S S         Since , thus 0ig 1iiS    2 1 1i i ii g ii i g S C S g         2 2 1 1 1 1i i ii g ii i g S r S g      Maximum gain Gi,max (infinite) occurs  Center  Radius 32/45
  • 33. Department of Electronic Engineering, NTUT  When and , has a maximum value, and the ratio is bounded by Unilateral Figure of Merit (I) • When S12 can be set to zero, the design procedure is much simpler. In order to determine the error involved in assuming S12 = 0, we form the magnitude ratio of GT and GTU, namely, 2 1 1 T TU G G X   2 2 2 212 2 11 1 1 1 1 s L T s out L G S S           2 2 2 212 2 11 22 1 1 1 1 s L TU s L G S S S             12 21 11 221 1 s L s L S S X S S        2 2 1 1 1 1 T TU G GX X     11s S   22L S   TUG     2 2 1 1 1 1 T TU G GU U     is known as the Unilateral Figure of Merit and where       12 21 11 22 2 2 11 221 1 S S S S U S S where 33/45
  • 34. Department of Electronic Engineering, NTUT Unilateral Figure of Merit (II) f  dBU 5 10 15 • The value of U varies with frequency because of its dependence on the S parameter. 100 MHz 1 GHz    @100 MHz, and 1 GHz 15 dB 0.03U        2 2 1 1 1 0.03 1 0.03 T TU G G     0.9426 1.031T TU G G   0.26 dB 0.26 dBT TU G G    • The maximum error is ±0.26 dB at 100 MHz and 1 GHz. In some designs this error is small enough to justify the unilateral assumption. 34/45
  • 35. Department of Electronic Engineering, NTUT Simultaneous Conjugate Match: Bilateral Case in 1E oZ oZ Transistor oG Output matching LG Input matching sG s Lout s in     L out     • Maximum Simultaneous Conjugate Matched Transducer Power Gain GT,max and     22 1 1 1 1 4 2 Ms B B C C and 12 21 11 221 L in s L S S S S          12 21 22 111 s out L s S S S S          and     22 2 2 2 2 4 2 ML B B C C      2 2 2 1 11 221B S S      2 2 2 2 22 111B S S    1 11 22C S S    2 22 11C S S where 35/45
  • 36. Department of Electronic Engineering, NTUT Stability and Simultaneous Conjugate Match     22 1 1 1 1 4 2 Ms B B C C     22 2 2 2 2 4 2 ML B B C C  1K  1K  1K  1K Simultaneous conjugate match can be achieved Simultaneous conjugate match doesn’t exist Potentially unstable or Unstable   1   1 Unconditionally stable Potentially unstable Any reference to a simultaneous conjugate match assumes that the two port network is unconditionally stable. 36/45
  • 37. Department of Electronic Engineering, NTUT Maximum Stable and Available Gain           2 2 2 212 2 22 1 1 1 1 s L T in s L G S S in 1E oZ oZ Transistor oG Output matching LG Input matching sG s Lout      s in Ms      L out ML            2 2 21 2 ,max 212 2 1222 11 1 1 1 ML T Ms ML S G S K K SS • Maximum Simultaneous Conjugate Matched Transducer Power Gain GT,max and • Maximum Stable Gain (MSG) is defined when K =1:  21 12 MSG S G S (potentially unstable) (unconditionally stable) 37/45
  • 38. Department of Electronic Engineering, NTUT Operating Power-Gain Circle                   2 2 21 2 212 211 22 22 1 1 1 1 L p p L L L S G S g S S S • Unconditionally stable bilateral case:                       2 2 2 2 2 2 2 2 22 11 11 22 2 1 1 1 1 2Re L L p L L L L g S S S S C    2 22 11C S S Gp and gp are the functions of the device S parameters and ΓL. The values of ΓL that produce a constant gp are shown to lie on a circle, known as an operating power-gain circle.   L p pC r        2 2 2 221 p p p g C C g S         2 2 12 21 12 21 2 2 22 1 2 1 p p p p K S S g S S g r g S  Center  Radius where • Operating Power-Gain Circle: 38/45
  • 39. Department of Electronic Engineering, NTUT Maximum Operating Power-Gain         2 2 12 21 12 21 2 2 22 1 2 1 p p p p K S S g S S g r g S • The maximum operating power gain occurs when rp = 0.    2 2 12 21 ,max 12 21 ,max1 2 0p pK S S g S S g    2 ,max 12 21 1 1pg K K S S     21 2 ,max ,max 12 1p T S G K K G S • The value of ΓL that produces Gp,max follows by substituting gp = gp,max for Cp. This value of ΓL = Cp,max must be equal to ΓML.          ,max 2 ,max 2 2 ,max 221 p ML p p g C C g S 39/45
  • 40. Department of Electronic Engineering, NTUT Maximum Operating Power Gain • For a given Gp,ΓL is selected from the constant operating power-gain circles. Gp,max, results when ΓL is selected at the distance where gp,max = Gp,max /|S21|2 . The maximum output power results when a conjugate match is selected at the input (i.e., ), and it follows that the input power is equal to the maximum available input power. Therefore, in this circumstances GT,max = Gp,max . The values of Γs and ΓL that result in Gp,max are identical to ΓMs and ΓML , respectively.    s in in 1E oZ oZ Transistor oG Output matching LG Input matching sG s L  • Design Procedure: 40/45
  • 41. Department of Electronic Engineering, NTUT Example (I) • Design a microwave amplifier using a GaAs FET to operate f = 6 GHz with maximum transducer power gain. The transistor S parameters at the linear bias point, VDS = 4 V and IDS = 0.5 IDDS, are   11 0.641 171.3S  12 0.057 16.3S  21 2.058 28.5S   22 0.572 95.7S Use (1) Transducer power gain method (2) Operating power gain method to find the matching networks (3) Gp=9 dB amplifier design (1) Transducer power gain method  1.504K   0.3014 109.88 Unconditionally stable  0.1085UCheck unilateral:   0.89 dB 1 dBT TU G G S12 cannot be neglected (bilateral case)        1 2 1 20.9928, 0.8255, 0.4786 177.3 , 0.3911 103.9B B C C   0.762 177.3Ms   0.718 103.9ML            2 ,max 2.058 1.504 1.504 1 13.74 or 11.38 dB 0.057 TG 41/45
  • 42. Department of Electronic Engineering, NTUT Example (II) (2) Operating power gain method:            ,max 2 ,max 2 2 ,max 22 0.718 103.9 1 p ML p p g C C g S     ,max ,max 2 2 21 13.74 3.24 2.058 p p G g S ,max 0pr                12 21 11 22 0.762 177.3 1 ML Ms in ML S S S S (3) Operating power gain method: Gp = 9 dB  ,max ,max 13.74T pG G      2 2 21 2.058 4.235 or 6.27 dBS   2 21 7.94 1.875 4.235 p p G g S 1.504K   0.3014 109.88   2 0.3911 103.9C  0.431pr  0.508 103.9pC 42/45
  • 43. Department of Electronic Engineering, NTUT Example (III)  Select point A for matching:   0.36 47.5L                12 21 11 22 0.629 175.51 1 L s in L S S S S  Since , it follows that GT = Gp = 9 dB    s in       1 0.622 4.3 1 0.622out VSWR 43/45
  • 44. Department of Electronic Engineering, NTUT Available Power-Gain Circle                   2 2 21 2 212 222 11 11 1 1 1 1 s A a s s s S G S g S S S • Unconditionally stable bilateral case:                2 2 2 2 2 2 21 22 11 1 1 1 2Re sA a s s G g S S S C    1 11 22C S S Ga and ga are the functions of the device S parameters and Γs. The values of Γs that produce a constant ga are shown to lie on a circle, known as an available power-gain circle.   s a aC r        1 2 2 111 a a a g C C g S         2 2 12 21 12 21 2 2 11 1 2 1 a a a a K S S g S S g r g S  Center  Radius • Available Power-Gain Circle: where 44/45
  • 45. Department of Electronic Engineering, NTUT Design Procedures 1E oZ oZ Transistor oG Output matching LG Input matching sG s Lout • Design using operating power gain: • Design using available power gain: in 1E oZ oZ Transistor oG Output matching LG Input matching sG s L     45/45