SlideShare una empresa de Scribd logo
1 de 77
Scaling up Machine Learning
algorithms for classification
Department of Mathematical Informatics
The University of Tokyo
Shin Matsushima
How can we scale up Machine Learning to
Massive datasets?
• Exploit hardware traits
– Disk IO is bottleneck
– Dual Cached Loops
– Run Disk IO and Computation simultaneously
• Distributed asynchronous optimization
(ongoing)
– Current work using multiple machines
2
LINEAR SUPPORT VECTOR MACHINES
VIA DUAL CACHED LOOPS
3
• Intuition of linear SVM
– xi: i-th datapoint
– yi: i-th label. +1 or -1
– yi w・ xi : larger is better, smaller is worse
4
×
×
×
×
×
×
×
×
×
×: yi = +1
×: yi = -1
• Formulation of Linear SVM
– n: number of data points
– d: number of features
– Convex non-smooth optimization
5
• Formulation of Linear SVM
– Primal
– Dual
6
Coordinate descent
7
8
9
10
11
12
13
14
• Coordinate Descent Method
– For each update we solve one-variable optimization
problem with respect to the variable to update.
15
• Applying Coordinate Descent for Dual
formulation of SVM
16
17
• Applying Coordinate Descent for Dual
formulation of SVM
Dual Coordinate Descent [Hsieh et al. 2008]
18
Attractive property
• Suitable for large scale learning
– We need only one data for each update.
• Theoretical guarantees
– Linear convergence(cf. SGD)
• Shrinking[Joachims 1999]
– We can eliminate “uninformative” data:
cf.
19
Shrinking[Joachims 1999]
• Intuition: a datapoint far from the current decision
boundary is unlikely to become a support vector
20
×
×
×
×
○
○
Shrinking[Joachims 1999]
• Condition
• Available only in the dual problem
21
Problem in scaling up to massive data
• In dealing with small-scale data, we first copy the
entire dataset into main memory
• In dealing with large-scale data, we cannot copy
the dataset at once
22
Read
Disk
Memory
Data
Read
Data
• Schemes when data cannot fit in memory
1. Block Minimization [Yu et al. 2010]
– Split the entire dataset into blocks so that each
block can fit in memory
Train RAM
• Schemes when data cannot fit in memory
1. Block Minimization [Yu et al. 2010]
– Split the entire dataset into blocks so that each
block can fit in memory
Read
Data
• Schemes when data cannot fit in memory
1. Block Minimization [Yu et al. 2010]
– Split the entire dataset into blocks so that each
block can fit in memory
Train RAM
• Schemes when data cannot fit in memory
1. Block Minimization [Yu et al. 2010]
– Split the entire dataset into blocks so that each
block can fit in memory
Block Minimization[Yu et al. 2010]
27
Read
Data
• Schemes when data cannot fit in memory
2. Selective Block Minimization [Chang and Roth 2011]
– Keep “informative data” in memory
Train RAM
Block
• Schemes when data cannot fit in memory
2. Selective Block Minimization [Chang and Roth 2011]
– Keep “informative data” in memory
Train RAM
Block
• Schemes when data cannot fit in memory
2. Selective Block Minimization [Chang and Roth 2011]
– Keep “informative data” in memory
Read
Data
• Schemes when data cannot fit in memory
2. Selective Block Minimization [Chang and Roth 2011]
– Keep “informative data” in memory
Train RAM
Block
• Schemes when data cannot fit in memory
2. Selective Block Minimization [Chang and Roth 2011]
– Keep “informative data” in memory
Train RAM
Block
• Schemes when data cannot fit in memory
2. Selective Block Minimization [Chang and Roth 2011]
– Keep “informative data” in memory
Selective Block Minimization[Chang and Roth 2011]
34
• Previous schemes switch CPU and DiskIO
– Training (CPU) is idle while reading
– Reading (DiskIO) is idle while training
35
• We want to exploit modern hardware
1. Multicore processors are commonplace
2. CPU(Memory IO) is often 10-100 times
faster than Hard disk IO
36
1.Make reader and trainer run
simultaneously and almost asynchronously.
2.Trainer updates the parameter many
times faster than reader loads new
datapoints.
3.Keep informative data in main memory.
(=Evict uninformative data primarily from main memory)
37
Dual Cached Loops
Reader
Thread
Trainer
Thread
Parameter
Dual Cached Loops
RAM
Disk
Memory
Data
38
Reader
Thread
Trainer
Thread
Parameter
Dual Cached Loops
RAM
Disk
Memory
Data
39
Read
Disk
Memory
Data
W: working
index set
40
Train
ParameterMemory
41
Which data is “uninformative”?
• A datapoint far from the current decision
boundary is unlikely to become a support vector
• Ignore the datapoint for a while.
42
×
×
×
×
×
○
○○
Which data is “uninformative”?
– Condition
43
• Datasets with Various Characteristics:
• 2GB Memory for storing datapoints
• Measured Relative Function Value
45
• Comparison with (Selective) Block Minimization
(implemented in Liblinear)
– ocr:dense, 45GB
46
47
• Comparison with (Selective) Block Minimization
(implemented in Liblinear)
– dna: dense, 63GB
48
Comparison with (Selective) Block Minimization
(implemented in Liblinear)
– webspam:sparse, 20GB
49
Comparison with (Selective) Block Minimization
(implemented in Liblinear)
– kddb: sparse, 4.7GB
• When C gets larger (dna C=1)
51
• When C gets larger(dna C=10)
52
• When C gets larger(dna C=100)
53
• When C gets larger(dna C=1000)
54
• When memory gets larger(ocr C=1)
55
• Expanding Features on the fly
– Expand features explicitly when the reader thread
loads an example into memory.
• Read (y,x) from the Disk
• Compute f(x) and load (y,f(x)) into RAM
Read
Disk
Data
12495340
( )xf R
x=GTCCCACCT…
56
2TB
data
16GB
memory
10hrs
50M
examples
12M
features
corresponding to
2TB
57
• Summary
– Linear SVM Optimization when data cannot fit in
memory
– Use the scheme of Dual Cached Loops
– Outperforms state of the art by orders of magnitude
– Can be extended to
• Logistic regression
• Support vector regression
• Multiclass classification
58
DISTRIBUTED ASYNCHRONOUS
OPTIMIZATION (CURRENT WORK)
59
Future/Current Work
• Utilize the same principle as dual cached loops in
multi-machine algorithm
– Transportation of data can be efficiently done
without harming optimization performance
– The key is to run Communication and Computation
simultaneously and asynchronously
– Can we do more sophisticated communication
emerging in multi-machine optimization?
60
• (Selective) Block Minimization scheme for Large-
scale SVM
61
Move data Process Optimization
HDD/ File
system
One
machine
One
machine
• Map-Reduce scheme for multi-machine algorithm
62
Move parameters Process Optimization
Master
node
Worker
node
Worker
node
63
64
65
Stratified Stochastic Gradient Descent
[Gemulla, 2011]
66
67
68
• Map-Reduce scheme for multi-machine algorithm
69
Move parameters Process Optimization
Master
node
Worker
node
Worker
node
Asynchronous multi-machine scheme
70
Parameter
Communication
Parameter
Updates
NOMAD
71
NOMAD
72
73
74
75
76
Asynchronous multi-machine scheme
• Each machine holds a subset of data
• Keep communicating a potion of parameter from
each other
• Simultaneously run updating parameters for
those each machine possesses
77
• Distributed stochastic gradient descent for saddle
point problems
– Another formulation of SVM (Regularized Risk
Minimization in general)
– Suitable for parallelization
78
How can we scale up Machine Learning to
Massive datasets?
• Exploit hardware traits
– Disk IO is bottleneck
– Run Disk IO and Computation simultaneously
• Distributed asynchronous optimization
(ongoing)
– Current work using multiple machines
79

Más contenido relacionado

La actualidad más candente

Full introduction to_parallel_computing
Full introduction to_parallel_computingFull introduction to_parallel_computing
Full introduction to_parallel_computing
Supasit Kajkamhaeng
 
Memory management early_systems
Memory management early_systemsMemory management early_systems
Memory management early_systems
Mybej Che
 
Lecture 6
Lecture  6Lecture  6
Lecture 6
Mr SMAK
 
Flynns classification
Flynns classificationFlynns classification
Flynns classification
Yasir Khan
 

La actualidad más candente (20)

Lecture02 types
Lecture02 typesLecture02 types
Lecture02 types
 
Full introduction to_parallel_computing
Full introduction to_parallel_computingFull introduction to_parallel_computing
Full introduction to_parallel_computing
 
Memory management early_systems
Memory management early_systemsMemory management early_systems
Memory management early_systems
 
Parallel processing
Parallel processingParallel processing
Parallel processing
 
Introduction to Parallel Computing
Introduction to Parallel ComputingIntroduction to Parallel Computing
Introduction to Parallel Computing
 
Introduction to parallel computing
Introduction to parallel computingIntroduction to parallel computing
Introduction to parallel computing
 
Computer architecture multi processor
Computer architecture multi processorComputer architecture multi processor
Computer architecture multi processor
 
Aca2 07 new
Aca2 07 newAca2 07 new
Aca2 07 new
 
multiprocessors and multicomputers
 multiprocessors and multicomputers multiprocessors and multicomputers
multiprocessors and multicomputers
 
Introduction to parallel_computing
Introduction to parallel_computingIntroduction to parallel_computing
Introduction to parallel_computing
 
Parallel Computing
Parallel Computing Parallel Computing
Parallel Computing
 
Ch01
Ch01Ch01
Ch01
 
Multi Processors And Multi Computers
 Multi Processors And Multi Computers Multi Processors And Multi Computers
Multi Processors And Multi Computers
 
Parallel processing (simd and mimd)
Parallel processing (simd and mimd)Parallel processing (simd and mimd)
Parallel processing (simd and mimd)
 
13. multiprocessing
13. multiprocessing13. multiprocessing
13. multiprocessing
 
Lecture 6
Lecture  6Lecture  6
Lecture 6
 
multi processors
multi processorsmulti processors
multi processors
 
INTRODUCTION TO PARALLEL PROCESSING
INTRODUCTION TO PARALLEL PROCESSINGINTRODUCTION TO PARALLEL PROCESSING
INTRODUCTION TO PARALLEL PROCESSING
 
Multiple processor (ppt 2010)
Multiple processor (ppt 2010)Multiple processor (ppt 2010)
Multiple processor (ppt 2010)
 
Flynns classification
Flynns classificationFlynns classification
Flynns classification
 

Destacado

Aishima140714
Aishima140714Aishima140714
Aishima140714
nwpmq516
 
Spectral divide-and-conquer algorithms for eigenvalue problems and the SVD
Spectral divide-and-conquer algorithms for eigenvalue problems and the SVDSpectral divide-and-conquer algorithms for eigenvalue problems and the SVD
Spectral divide-and-conquer algorithms for eigenvalue problems and the SVD
yuji_nakatsukasa
 
Jokyonokai130531
Jokyonokai130531Jokyonokai130531
Jokyonokai130531
nwpmq516
 
Multi-state extension of asymmetric simple exclusion process
Multi-state extension of asymmetric simple exclusion processMulti-state extension of asymmetric simple exclusion process
Multi-state extension of asymmetric simple exclusion process
Chihiro Matsui
 
Asymptotically optimal policies in multiarmed bandit problems
Asymptotically optimal policies in multiarmed bandit problemsAsymptotically optimal policies in multiarmed bandit problems
Asymptotically optimal policies in multiarmed bandit problems
j_honda
 
低ランク行列補完のためのマトロイド理論
低ランク行列補完のためのマトロイド理論低ランク行列補完のためのマトロイド理論
低ランク行列補完のためのマトロイド理論
ryotat
 
FIT2012招待講演「異常検知技術のビジネス応用最前線」
FIT2012招待講演「異常検知技術のビジネス応用最前線」FIT2012招待講演「異常検知技術のビジネス応用最前線」
FIT2012招待講演「異常検知技術のビジネス応用最前線」
Shohei Hido
 
時系列分析による異常検知入門
時系列分析による異常検知入門時系列分析による異常検知入門
時系列分析による異常検知入門
Yohei Sato
 

Destacado (20)

Aishima140714
Aishima140714Aishima140714
Aishima140714
 
Kobayashi 20140409
Kobayashi 20140409Kobayashi 20140409
Kobayashi 20140409
 
Polar符号および非対称通信路の符号化について
Polar符号および非対称通信路の符号化についてPolar符号および非対称通信路の符号化について
Polar符号および非対称通信路の符号化について
 
Spectral divide-and-conquer algorithms for eigenvalue problems and the SVD
Spectral divide-and-conquer algorithms for eigenvalue problems and the SVDSpectral divide-and-conquer algorithms for eigenvalue problems and the SVD
Spectral divide-and-conquer algorithms for eigenvalue problems and the SVD
 
coordinate descent 法について
coordinate descent 法についてcoordinate descent 法について
coordinate descent 法について
 
Jokyonokai130531
Jokyonokai130531Jokyonokai130531
Jokyonokai130531
 
Multi-state extension of asymmetric simple exclusion process
Multi-state extension of asymmetric simple exclusion processMulti-state extension of asymmetric simple exclusion process
Multi-state extension of asymmetric simple exclusion process
 
Asymptotically optimal policies in multiarmed bandit problems
Asymptotically optimal policies in multiarmed bandit problemsAsymptotically optimal policies in multiarmed bandit problems
Asymptotically optimal policies in multiarmed bandit problems
 
Jokyo20130218
Jokyo20130218Jokyo20130218
Jokyo20130218
 
低ランク行列補完のためのマトロイド理論
低ランク行列補完のためのマトロイド理論低ランク行列補完のためのマトロイド理論
低ランク行列補完のためのマトロイド理論
 
人工知能はどんな夢を見るか?
人工知能はどんな夢を見るか?人工知能はどんな夢を見るか?
人工知能はどんな夢を見るか?
 
Online algorithms in Machine Learning
Online algorithms in Machine LearningOnline algorithms in Machine Learning
Online algorithms in Machine Learning
 
FIT2012招待講演「異常検知技術のビジネス応用最前線」
FIT2012招待講演「異常検知技術のビジネス応用最前線」FIT2012招待講演「異常検知技術のビジネス応用最前線」
FIT2012招待講演「異常検知技術のビジネス応用最前線」
 
時系列分析による異常検知入門
時系列分析による異常検知入門時系列分析による異常検知入門
時系列分析による異常検知入門
 
A
AA
A
 
IBMModel2
IBMModel2IBMModel2
IBMModel2
 
Talk
TalkTalk
Talk
 
OnlineClassifiers
OnlineClassifiersOnlineClassifiers
OnlineClassifiers
 
AI&BigData Lab 2016. Артем Чернодуб: Обучение глубоких, очень глубоких и реку...
AI&BigData Lab 2016. Артем Чернодуб: Обучение глубоких, очень глубоких и реку...AI&BigData Lab 2016. Артем Чернодуб: Обучение глубоких, очень глубоких и реку...
AI&BigData Lab 2016. Артем Чернодуб: Обучение глубоких, очень глубоких и реку...
 
Pfi last seminar
Pfi last seminarPfi last seminar
Pfi last seminar
 

Similar a Scaling up Machine Learning Algorithms for Classification

Tachyon_meetup_5-28-2015-IBM
Tachyon_meetup_5-28-2015-IBMTachyon_meetup_5-28-2015-IBM
Tachyon_meetup_5-28-2015-IBM
Shaoshan Liu
 
Building a Unified Data Pipeline with Apache Spark and XGBoost with Nan Zhu
Building a Unified Data Pipeline with Apache Spark and XGBoost with Nan ZhuBuilding a Unified Data Pipeline with Apache Spark and XGBoost with Nan Zhu
Building a Unified Data Pipeline with Apache Spark and XGBoost with Nan Zhu
Databricks
 

Similar a Scaling up Machine Learning Algorithms for Classification (20)

7. Key-Value Databases: In Depth
7. Key-Value Databases: In Depth7. Key-Value Databases: In Depth
7. Key-Value Databases: In Depth
 
4 memory management bb
4   memory management bb4   memory management bb
4 memory management bb
 
Oracle real application_cluster
Oracle real application_clusterOracle real application_cluster
Oracle real application_cluster
 
Tachyon_meetup_5-28-2015-IBM
Tachyon_meetup_5-28-2015-IBMTachyon_meetup_5-28-2015-IBM
Tachyon_meetup_5-28-2015-IBM
 
Ch4 memory management
Ch4 memory managementCh4 memory management
Ch4 memory management
 
cache memory
 cache memory cache memory
cache memory
 
Sql server tips from the field
Sql server tips from the fieldSql server tips from the field
Sql server tips from the field
 
Presentation by TachyonNexus & Intel at Strata Singapore 2015
Presentation by TachyonNexus & Intel at Strata Singapore 2015Presentation by TachyonNexus & Intel at Strata Singapore 2015
Presentation by TachyonNexus & Intel at Strata Singapore 2015
 
Mis chapter 5
Mis  chapter 5Mis  chapter 5
Mis chapter 5
 
Making Machine Learning Scale: Single Machine and Distributed
Making Machine Learning Scale: Single Machine and DistributedMaking Machine Learning Scale: Single Machine and Distributed
Making Machine Learning Scale: Single Machine and Distributed
 
Linux performance tuning & stabilization tips (mysqlconf2010)
Linux performance tuning & stabilization tips (mysqlconf2010)Linux performance tuning & stabilization tips (mysqlconf2010)
Linux performance tuning & stabilization tips (mysqlconf2010)
 
IS_Ch03.ppt
IS_Ch03.pptIS_Ch03.ppt
IS_Ch03.ppt
 
Is ch03
Is ch03Is ch03
Is ch03
 
Memory presentation
Memory presentationMemory presentation
Memory presentation
 
Building a Unified Data Pipeline with Apache Spark and XGBoost with Nan Zhu
Building a Unified Data Pipeline with Apache Spark and XGBoost with Nan ZhuBuilding a Unified Data Pipeline with Apache Spark and XGBoost with Nan Zhu
Building a Unified Data Pipeline with Apache Spark and XGBoost with Nan Zhu
 
Large Data Analyze With PyTables
Large Data Analyze With PyTablesLarge Data Analyze With PyTables
Large Data Analyze With PyTables
 
PyTables
PyTablesPyTables
PyTables
 
Py tables
Py tablesPy tables
Py tables
 
Operating System
Operating SystemOperating System
Operating System
 
SQL Server Compression
SQL Server CompressionSQL Server Compression
SQL Server Compression
 

Último

Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptx
negromaestrong
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
heathfieldcps1
 
Making and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfMaking and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdf
Chris Hunter
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
PECB
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
QucHHunhnh
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
ciinovamais
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
QucHHunhnh
 

Último (20)

Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptx
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibit
 
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural Resources
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural ResourcesEnergy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural Resources
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural Resources
 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdf
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
Making and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfMaking and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdf
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.
 
Role Of Transgenic Animal In Target Validation-1.pptx
Role Of Transgenic Animal In Target Validation-1.pptxRole Of Transgenic Animal In Target Validation-1.pptx
Role Of Transgenic Animal In Target Validation-1.pptx
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 

Scaling up Machine Learning Algorithms for Classification