SlideShare una empresa de Scribd logo
1 de 12
Trigonometry and Vector
Calculus(18UMTC42) -
Gauss divergence theorem &
Stokes theorem Problems
By
A.Sujatha M.Sc.,M.Phil.,PGDCA.,
Department of Mathematics
Gauss divergence theorem
If V is the volume bounded by a closed surface S and 𝑓 is a vector
valued function having continuous partial derivatives then 𝑆
𝑓 . 𝑛 𝑑𝑆 =
𝑉
𝛻. 𝑓 𝑑𝑉
Example:
Verify Gauss divergence theorem for
𝑓 = 𝑥2
− 𝑦𝑧 𝑖 + 𝑦2
− 𝑧𝑥 𝑗 + (𝑧2
− 𝑥𝑦)𝑘) taken over the rectangle
parallelepiped, 0 ≤ 𝑥 ≤ 𝑎, 0 ≤ 𝑦 ≤ 𝑏, 0 ≤ 𝑧 ≤ 𝑐.
Solution:
Gauss divergence theorem is 𝑆
𝑓 . 𝑛 𝑑𝑆 = 𝑉
𝛻. 𝑓 𝑑𝑉
Now Consider, 𝑉
𝛻. 𝑓 𝑑𝑉 = 0
𝑎
0
𝑏
0
𝑐
2 𝑥 + 𝑦 + 𝑧 𝑑𝑧 𝑑𝑦 𝑑𝑥
[∵ 𝛻. 𝑓 =
𝜕
𝜕𝑥
𝑖 +
𝜕
𝜕𝑦
𝑗 +
𝜕
𝜕𝑧
𝑘 . [ 𝑥2 − 𝑦𝑧 𝑖 + 𝑦2 − 𝑧𝑥 𝑗 + (𝑧2 − 𝑥𝑦)𝑘)]
=
𝜕
𝜕𝑥
𝑥2
− 𝑦𝑧 +
𝜕
𝜕𝑦
𝑦2
− 𝑧𝑥 +
𝜕
𝜕𝑧
𝑧2
− 𝑥𝑦 = 2(𝑥 + 𝑦 + 𝑧)]
= 2
0
𝑎
0
𝑏
𝑥𝑧 + 𝑦𝑧 +
𝑧2
2 0
𝑐
𝑑𝑦 𝑑𝑥
= 2
0
𝑎
0
𝑏
𝑥𝑐 + 𝑦𝑐 +
𝑐2
2
𝑑𝑦 𝑑𝑥
= 2
0
𝑎
𝑥𝑦𝑐 +
𝑦2
2
𝑐 +
𝑦𝑐2
2 0
𝑏
𝑑𝑥
= 2
0
𝑎
[𝑥𝑏𝑐 +
𝑏2
2
𝑐 +
𝑏𝑐2
2
]𝑑𝑥
= 2
𝑥2
2
𝑏𝑐 + 𝑥
𝑏2
2
𝑐 +
𝑥𝑏𝑐2
2 0
𝑎
= 2[
𝑎2
2
𝑏𝑐 + 𝑎
𝑏2
2
𝑐 +
𝑎𝑏𝑐2
2
]
𝑉
𝛻. 𝑓 𝑑𝑉 = 𝑎𝑏𝑐 𝑎 + 𝑏 + 𝑐 → 𝟏
Now Consider, 𝑆
𝑓 . 𝑛 𝑑𝑆 Where S is the surface of the
rectangle parallelepiped given by
0 ≤ 𝑥 ≤ 𝑎, 0 ≤ 𝑦 ≤ 𝑏, 0 ≤ 𝑧 ≤ 𝑐.
It has the following six faces OABC (xz-plane); OAFE (xy-plane); OEDC (yz-plane);
DEFG (opposite to xz-plane); AFGB (opposite to (yz-plane); BCDG (opposite to xy-
plane)
On the face OABC we have 𝑦 = 0, 𝑛 = − 𝑗, 0 ≤ 𝑥 ≤ 𝑎 and 0 ≤ 𝑧 ≤ 𝑐.
∴
𝑂𝐴𝐵𝐶
𝑓 . 𝑛 𝑑𝑆 =
0
𝑎
0
𝑐
[ 𝑥2 − 𝑦𝑧 𝑖 + 𝑦2 − 𝑧𝑥 𝑗 + (𝑧2 − 𝑥𝑦)𝑘)]. (− 𝑗) 𝑑𝑧 𝑑𝑥
=
0
𝑎
0
𝑐
𝑦2 − 𝑧𝑥 𝑑𝑧 𝑑𝑥
= 0
𝑎
0
𝑐
𝑧𝑥 𝑑𝑧 𝑑𝑥 (since y = 0)
=
0
𝑎
𝑥
𝑧2
2 0
𝑐
𝑑𝑥
=
𝑎
𝑥
𝑐2
𝑑𝑥
On the face DEFG we have 𝑦 = 𝑏, 𝑛 = 𝑗, 0 ≤ 𝑥 ≤ 𝑎 and 0 ≤ 𝑧 ≤ 𝑐.
∴
𝐷𝐸𝐹𝐺
𝑓 . 𝑛 𝑑𝑆 =
0
𝑎
0
𝑐
[ 𝑥2
− 𝑦𝑧 𝑖 + 𝑦2
− 𝑧𝑥 𝑗 + (𝑧2
− 𝑥𝑦)𝑘)]. ( 𝑗) 𝑑𝑧 𝑑𝑥
=
0
𝑎
0
𝑐
𝑦2
− 𝑧𝑥 𝑑𝑧 𝑑𝑥
= 0
𝑎
0
𝑐
(𝑏2
− 𝑧𝑥) 𝑑𝑧 𝑑𝑥 (since y = b)
=
0
𝑎
𝑏2
𝑧 − 𝑥
𝑧2
2 0
𝑐
𝑑𝑥
=
0
𝑎
[𝑏2 𝑐 − 𝑥
𝑐2
2
]𝑑𝑥
= 𝑥𝑏2
𝑐 −
𝑐2
2
𝑥2
2 0
𝑎
= 𝑎𝑏2
𝑐 −
𝑎2 𝑐2
4
→ 𝟑
On the face OAFE we have 𝑧 = 0, 𝑛 = −𝑘, 0 ≤ 𝑥 ≤ 𝑎 and 0 ≤ 𝑦 ≤ 𝑏.
∴ 𝑓 . 𝑛 𝑑𝑆 =
𝑎 𝑏
[ 𝑥2
− 𝑦𝑧 𝑖 + 𝑦2
− 𝑧𝑥 𝑗 + (𝑧2
− 𝑥𝑦)𝑘)]. (−𝑘) 𝑑𝑦 𝑑𝑥
=
𝑏2
2
𝑥2
2 0
𝑎
=
𝑎2 𝑏2
4
→ 𝟒
On the face BCDG we have 𝑧 = 𝑐, 𝑛 = 𝑘, 0 ≤ 𝑥 ≤ 𝑎 and 0 ≤ 𝑦 ≤ 𝑏.
∴
𝐵𝐶𝐷𝐺
𝑓 . 𝑛 𝑑𝑆 =
0
𝑎
0
𝑏
[ 𝑥2
− 𝑦𝑧 𝑖 + 𝑦2
− 𝑧𝑥 𝑗 + (𝑧2
− 𝑥𝑦)𝑘)]. (𝑘) 𝑑𝑦 𝑑𝑥
=
0
𝑎
0
𝑏
𝑧2
− 𝑥𝑦 𝑑𝑦 𝑑𝑥
= 0
𝑎
0
𝑏
(𝑐2
− 𝑥𝑦) 𝑑𝑦 𝑑𝑥 (since z = c)
=
0
𝑎
𝑐2 𝑦 − 𝑥
𝑦2
2 0
𝑏
𝑑𝑥
=
0
𝑎
[𝑐2 𝑏 − 𝑥
𝑏2
2
]𝑑𝑥
= 𝑥𝑐2
𝑏 −
𝑏2
2
𝑥2
2 0
𝑎
= 𝑎𝑐2
𝑏 −
𝑎2
𝑏2
4
→ 𝟓
On the face OEDC we have 𝑥 = 0, 𝑛 = − 𝑖, 0 ≤ 𝑦 ≤ 𝑏 and 0 ≤ 𝑧 ≤ 𝑐.
𝑏 𝑐
=
0
𝑎
𝑥
𝑦2
2 0
𝑏
𝑑𝑥
=
0
𝑎
𝑥
𝑏2
2
𝑑𝑥
= 0
𝑏
0
𝑐
𝑦𝑧 𝑑𝑧 𝑑𝑦 (since x = 0)
=
0
𝑏
𝑦
𝑧2
2 0
𝑐
𝑑𝑦
=
0
𝑏
𝑦
𝑐2
2
𝑑𝑦
=
𝑐2
2
𝑦2
2 0
𝑏
=
𝑏2 𝑐2
4
→ 𝟔
On the face ABGF we have 𝑥 = 𝑎, 𝑛 = 𝑖, 0 ≤ 𝑦 ≤ 𝑏 and 0 ≤ 𝑧 ≤ 𝑐.
∴
𝐴𝐵𝐺𝐹
𝑓 . 𝑛 𝑑𝑆 =
0
𝑏
0
𝑐
[ 𝑥2 − 𝑦𝑧 𝑖 + 𝑦2 − 𝑧𝑥 𝑗 + (𝑧2 − 𝑥𝑦)𝑘)]. ( 𝑖) 𝑑𝑧 𝑑𝑦
=
0
𝑏
0
𝑐
𝑥2
− 𝑦𝑧 𝑑𝑧 𝑑𝑦
= 0
𝑏
0
𝑐
(𝑎2
− 𝑦𝑧) 𝑑𝑧 𝑑𝑦 (since x = a)
=
0
𝑏
𝑎2
𝑧 − 𝑦
𝑧2
2 0
𝑐
𝑑𝑦
=
0
𝑏
[𝑎2 𝑐 − 𝑦
𝑐2
2
]𝑑𝑦
= 𝑦𝑎2
𝑐 −
𝑐2
2
𝑦2
2 0
𝑏
= 𝑎2
𝑏𝑐 −
𝑏2
𝑐2
4
→ 𝟕
Adding equations 2, 3, 4, 5, 6 & 7 we get
𝑆
𝑓 . 𝑛 𝑑𝑆 = 𝑎𝑏𝑐 𝑎 + 𝑏 + 𝑐 → 𝟖
From equations 1 & 8 we get
𝑆
𝑓 . 𝑛 𝑑𝑆 =
𝑉
𝛻. 𝑓 𝑑𝑉
Hence Gauss divergence theorem is verified.
---------------------------------------------------------------------------------------------------------------
----------
Stokes theorem:
If S is an open two sides surface bounded by a simple closed curve C
and 𝑓 is a vector valued function having continuous first order partial
derivatives then 𝐶
𝑓 . 𝑑 𝑟 = 𝑆
(𝛻 × 𝑓). 𝑛 𝑑𝑆 where C is transverse in the
anticlockwise direction.
Example:
Verify Stokes theorem for 𝑓 = 𝑥2 − 𝑦2 𝑖 + 2𝑥𝑦 𝑗 in the rectangular
region
x = 0, y = 0, x = a, y = b.
Solution:
W.K.T Stokes theorem is 𝐶
𝑓 . 𝑑 𝑟 = 𝑆
(𝛻 × 𝑓). 𝑛 𝑑𝑆
Let O = (0,0), A = (a,0), B = (a, b), C = (0,b) be the vertices of the given
rectangle
∴
𝐶
𝑓 . 𝑑 𝑟 =
𝑂𝐴
𝑓 . 𝑑 𝑟 +
𝐴𝐵
𝑓 . 𝑑 𝑟 +
𝐵𝐶
𝑓 . 𝑑 𝑟 +
𝐶𝑂
𝑓 . 𝑑 𝑟 → 𝟏
∴ The parametric equation of OA can be taken as x = t, y = 0 where 0 ≤ 𝑡 ≤ 𝑎
𝑂𝐴
𝑓 . 𝑑 𝑟 =
𝑂𝐴
𝑥2
− 𝑦2
𝑖 + 2𝑥𝑦 𝑗 . [𝑑𝑥 𝑖 + 𝑑𝑦 𝑗 + 𝑑𝑧 𝑘]
=
𝑂𝐴
𝑥2
− 𝑦2
𝑑𝑥 + 2𝑥𝑦 𝑑𝑦
= 0
𝑎
𝑡2
− 0 𝑑𝑡 (since x = t, y = 0, dx = dt)
=
𝑡3
3 0
𝑎
=
𝑎3
3
→ 𝟐
∴ The parametric equation of AB can be taken as x = a, y = t where 0 ≤ 𝑡 ≤ 𝑏
𝐴𝐵
𝑓 . 𝑑 𝑟 =
𝐴𝐵
𝑥2
− 𝑦2
𝑖 + 2𝑥𝑦 𝑗 . [𝑑𝑥 𝑖 + 𝑑𝑦 𝑗 + 𝑑𝑧 𝑘]
=
𝐴𝐵
𝑥2
− 𝑦2
𝑑𝑥 + 2𝑥𝑦 𝑑𝑦
= 0
𝑏
2𝑎𝑡 𝑑𝑡 (since x = a, y = t, dy = dt)
The parametric equation of BC can be taken as x = t, y = b where 0 ≤ 𝑡 ≤ 𝑎
𝐵𝐶
𝑓 . 𝑑 𝑟 = −
𝐶𝐵
𝑥2 − 𝑦2 𝑖 + 2𝑥𝑦 𝑗 . [𝑑𝑥 𝑖 + 𝑑𝑦 𝑗 + 𝑑𝑧 𝑘]
= −
𝐶𝐵
𝑥2 − 𝑦2 𝑑𝑥 + 2𝑥𝑦 𝑑𝑦
= − 0
𝑎
(𝑡2
− 𝑏2
) 𝑑𝑡 (since x = t, y = b, dx = dt)
=
𝑡3
3
− 𝑏2 𝑡
0
𝑎
= −
𝑎3
3
+ 𝑎𝑏2 → 𝟒
∴ The parametric equation of BC can be taken as x = 0, y = t where 0 ≤ 𝑡 ≤ 𝑎
𝐶𝑂
𝑓 . 𝑑 𝑟 = −
𝑂𝐶
𝑓 . 𝑑 𝑟 = −
0
𝑏
0 𝑑𝑡 = 0 → 𝟓
Substitute equations 2, 3, 4&5 in equation 1 we get
𝐶
𝑓 . 𝑑 𝑟 = 2𝑎𝑏2
→ 𝟔
Now,
𝛻 × 𝑓 = 𝑐𝑢𝑟𝑙 𝑓 =
𝑖 𝑗 𝑘
𝜕
𝜕𝑥
𝜕
𝜕𝑦
𝜕
𝜕𝑧
𝑥2
− 𝑦2
2𝑥𝑦 0
= 𝑖 0 − 𝑗 0 + 𝑘 2𝑦 + 2𝑦 = 4𝑦𝑘
𝑆
(𝛻 × 𝑓). 𝑛 𝑑𝑆 =
𝑅
(𝛻 × 𝑓). 𝑛
𝑛. 𝑘
𝑑𝑥 𝑑𝑦
Here the surface S denotes the rectangular and the unit outward normal 𝑛 is
𝑘
𝑆
(𝛻 × 𝑓). 𝑛 𝑑𝑆 =
0
𝑏
0
𝑎
4𝑦 𝑑𝑥 𝑑𝑦
=
0
𝑏
4𝑥𝑦 0
𝑎
𝑑𝑦
=
0
𝑏
4𝑎𝑦 𝑑𝑦 = 2𝑎𝑏2
→ 𝟕
From equations 6 & 7 we get

Más contenido relacionado

La actualidad más candente

B.Tech-II_Unit-III
B.Tech-II_Unit-IIIB.Tech-II_Unit-III
B.Tech-II_Unit-III
Kundan Kumar
 

La actualidad más candente (20)

Btech_II_ engineering mathematics_unit3
Btech_II_ engineering mathematics_unit3Btech_II_ engineering mathematics_unit3
Btech_II_ engineering mathematics_unit3
 
B.Tech-II_Unit-II
B.Tech-II_Unit-IIB.Tech-II_Unit-II
B.Tech-II_Unit-II
 
B.tech ii unit-5 material vector integration
B.tech ii unit-5 material vector integrationB.tech ii unit-5 material vector integration
B.tech ii unit-5 material vector integration
 
3 capitulo-iii-matriz-asociada-sem-15-t-l-e
3 capitulo-iii-matriz-asociada-sem-15-t-l-e3 capitulo-iii-matriz-asociada-sem-15-t-l-e
3 capitulo-iii-matriz-asociada-sem-15-t-l-e
 
Gamma beta functions-1
Gamma   beta functions-1Gamma   beta functions-1
Gamma beta functions-1
 
B.Tech-II_Unit-IV
B.Tech-II_Unit-IVB.Tech-II_Unit-IV
B.Tech-II_Unit-IV
 
Ejercicios resueltos de analisis matematico 1
Ejercicios resueltos de analisis matematico 1Ejercicios resueltos de analisis matematico 1
Ejercicios resueltos de analisis matematico 1
 
BSC_Computer Science_Discrete Mathematics_Unit-I
BSC_Computer Science_Discrete Mathematics_Unit-IBSC_Computer Science_Discrete Mathematics_Unit-I
BSC_Computer Science_Discrete Mathematics_Unit-I
 
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
 
B.tech ii unit-2 material beta gamma function
B.tech ii unit-2 material beta gamma functionB.tech ii unit-2 material beta gamma function
B.tech ii unit-2 material beta gamma function
 
BSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICS
 
B.Tech-II_Unit-V
B.Tech-II_Unit-VB.Tech-II_Unit-V
B.Tech-II_Unit-V
 
HERMITE SERIES
HERMITE SERIESHERMITE SERIES
HERMITE SERIES
 
Analysis of a self-sustained vibration of mass-spring oscillator on moving belt
Analysis of a self-sustained vibration of mass-spring oscillator on moving beltAnalysis of a self-sustained vibration of mass-spring oscillator on moving belt
Analysis of a self-sustained vibration of mass-spring oscillator on moving belt
 
B.Tech-II_Unit-III
B.Tech-II_Unit-IIIB.Tech-II_Unit-III
B.Tech-II_Unit-III
 
Gamma & Beta functions
Gamma & Beta functionsGamma & Beta functions
Gamma & Beta functions
 
INVERSION OF MATRIX BY GAUSS ELIMINATION METHOD
INVERSION OF MATRIX BY GAUSS ELIMINATION METHODINVERSION OF MATRIX BY GAUSS ELIMINATION METHOD
INVERSION OF MATRIX BY GAUSS ELIMINATION METHOD
 
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-II
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-IIEngineering Mathematics-IV_B.Tech_Semester-IV_Unit-II
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-II
 
Solovay Kitaev theorem
Solovay Kitaev theoremSolovay Kitaev theorem
Solovay Kitaev theorem
 
B.tech ii unit-4 material vector differentiation
B.tech ii unit-4 material vector differentiationB.tech ii unit-4 material vector differentiation
B.tech ii unit-4 material vector differentiation
 

Similar a Vector calculus

graphs of quadratic function grade 9.pptx
graphs of quadratic function grade 9.pptxgraphs of quadratic function grade 9.pptx
graphs of quadratic function grade 9.pptx
MeryAnnMAlday
 

Similar a Vector calculus (20)

2-VECTOR INTEGRATION of mathematics subject
2-VECTOR INTEGRATION of mathematics subject2-VECTOR INTEGRATION of mathematics subject
2-VECTOR INTEGRATION of mathematics subject
 
Functions of severable variables
Functions of severable variablesFunctions of severable variables
Functions of severable variables
 
PRODUCT RULES
PRODUCT RULESPRODUCT RULES
PRODUCT RULES
 
Semana 24 funciones iv álgebra uni ccesa007
Semana 24 funciones iv álgebra uni ccesa007Semana 24 funciones iv álgebra uni ccesa007
Semana 24 funciones iv álgebra uni ccesa007
 
Piii taller transformaciones lineales
Piii taller transformaciones linealesPiii taller transformaciones lineales
Piii taller transformaciones lineales
 
Taller 1 parcial 3
Taller 1 parcial 3Taller 1 parcial 3
Taller 1 parcial 3
 
Sistempertidaksamaanduavariabel2122
Sistempertidaksamaanduavariabel2122Sistempertidaksamaanduavariabel2122
Sistempertidaksamaanduavariabel2122
 
Assignment_1_solutions.pdf
Assignment_1_solutions.pdfAssignment_1_solutions.pdf
Assignment_1_solutions.pdf
 
C0560913
C0560913C0560913
C0560913
 
Reducible equation to quadratic form
Reducible equation to quadratic formReducible equation to quadratic form
Reducible equation to quadratic form
 
Tugas 5.3 kalkulus integral
Tugas 5.3 kalkulus integralTugas 5.3 kalkulus integral
Tugas 5.3 kalkulus integral
 
graphs of quadratic function grade 9.pptx
graphs of quadratic function grade 9.pptxgraphs of quadratic function grade 9.pptx
graphs of quadratic function grade 9.pptx
 
SUEC 高中 Adv Maths (Trigo Equation) (Part 4)
SUEC 高中 Adv Maths (Trigo Equation) (Part 4)SUEC 高中 Adv Maths (Trigo Equation) (Part 4)
SUEC 高中 Adv Maths (Trigo Equation) (Part 4)
 
Penjelasan Integral Lipat dua dan Penerapan pada momen inersia
Penjelasan Integral Lipat dua dan Penerapan pada momen inersiaPenjelasan Integral Lipat dua dan Penerapan pada momen inersia
Penjelasan Integral Lipat dua dan Penerapan pada momen inersia
 
Application of Integration
Application of IntegrationApplication of Integration
Application of Integration
 
Study Material Numerical Differentiation and Integration
Study Material Numerical Differentiation and IntegrationStudy Material Numerical Differentiation and Integration
Study Material Numerical Differentiation and Integration
 
derivatives part 1.pptx
derivatives part 1.pptxderivatives part 1.pptx
derivatives part 1.pptx
 
Johelbys campos2
Johelbys campos2Johelbys campos2
Johelbys campos2
 
Semana 16 desigualdades ii álgebra-uni ccesa007
Semana 16   desigualdades  ii   álgebra-uni ccesa007Semana 16   desigualdades  ii   álgebra-uni ccesa007
Semana 16 desigualdades ii álgebra-uni ccesa007
 
09.sdcd_lugar_geometrico_raices
09.sdcd_lugar_geometrico_raices09.sdcd_lugar_geometrico_raices
09.sdcd_lugar_geometrico_raices
 

Más de sujathavvv (14)

Complex analysis
Complex analysisComplex analysis
Complex analysis
 
Formatted Console I/O Operations in C++
Formatted Console I/O Operations in C++Formatted Console I/O Operations in C++
Formatted Console I/O Operations in C++
 
Programming in c++ ppt
Programming in c++ pptProgramming in c++ ppt
Programming in c++ ppt
 
Vector calculus
Vector calculusVector calculus
Vector calculus
 
Programming in c++
Programming in c++Programming in c++
Programming in c++
 
Complex analysis
Complex analysisComplex analysis
Complex analysis
 
Trigonometry & vector calculus
Trigonometry & vector calculusTrigonometry & vector calculus
Trigonometry & vector calculus
 
Complex analysis
Complex analysisComplex analysis
Complex analysis
 
Differential equation and Laplace Transform
Differential equation and Laplace TransformDifferential equation and Laplace Transform
Differential equation and Laplace Transform
 
Differential equation and Laplace transform
Differential equation and Laplace transformDifferential equation and Laplace transform
Differential equation and Laplace transform
 
Sequences and Series
Sequences and SeriesSequences and Series
Sequences and Series
 
Sequences and Series
Sequences and SeriesSequences and Series
Sequences and Series
 
Programming in C
Programming in CProgramming in C
Programming in C
 
Programming in c
Programming in cProgramming in c
Programming in c
 

Último

Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
KarakKing
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
heathfieldcps1
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
ciinovamais
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
QucHHunhnh
 
Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please Practise
AnaAcapella
 
Vishram Singh - Textbook of Anatomy Upper Limb and Thorax.. Volume 1 (1).pdf
Vishram Singh - Textbook of Anatomy  Upper Limb and Thorax.. Volume 1 (1).pdfVishram Singh - Textbook of Anatomy  Upper Limb and Thorax.. Volume 1 (1).pdf
Vishram Singh - Textbook of Anatomy Upper Limb and Thorax.. Volume 1 (1).pdf
ssuserdda66b
 

Último (20)

Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptx
 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 
FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - English
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POS
 
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptxSKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
 
Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please Practise
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentation
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and Modifications
 
Vishram Singh - Textbook of Anatomy Upper Limb and Thorax.. Volume 1 (1).pdf
Vishram Singh - Textbook of Anatomy  Upper Limb and Thorax.. Volume 1 (1).pdfVishram Singh - Textbook of Anatomy  Upper Limb and Thorax.. Volume 1 (1).pdf
Vishram Singh - Textbook of Anatomy Upper Limb and Thorax.. Volume 1 (1).pdf
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 

Vector calculus

  • 1. Trigonometry and Vector Calculus(18UMTC42) - Gauss divergence theorem & Stokes theorem Problems By A.Sujatha M.Sc.,M.Phil.,PGDCA., Department of Mathematics
  • 2. Gauss divergence theorem If V is the volume bounded by a closed surface S and 𝑓 is a vector valued function having continuous partial derivatives then 𝑆 𝑓 . 𝑛 𝑑𝑆 = 𝑉 𝛻. 𝑓 𝑑𝑉 Example: Verify Gauss divergence theorem for 𝑓 = 𝑥2 − 𝑦𝑧 𝑖 + 𝑦2 − 𝑧𝑥 𝑗 + (𝑧2 − 𝑥𝑦)𝑘) taken over the rectangle parallelepiped, 0 ≤ 𝑥 ≤ 𝑎, 0 ≤ 𝑦 ≤ 𝑏, 0 ≤ 𝑧 ≤ 𝑐. Solution: Gauss divergence theorem is 𝑆 𝑓 . 𝑛 𝑑𝑆 = 𝑉 𝛻. 𝑓 𝑑𝑉 Now Consider, 𝑉 𝛻. 𝑓 𝑑𝑉 = 0 𝑎 0 𝑏 0 𝑐 2 𝑥 + 𝑦 + 𝑧 𝑑𝑧 𝑑𝑦 𝑑𝑥 [∵ 𝛻. 𝑓 = 𝜕 𝜕𝑥 𝑖 + 𝜕 𝜕𝑦 𝑗 + 𝜕 𝜕𝑧 𝑘 . [ 𝑥2 − 𝑦𝑧 𝑖 + 𝑦2 − 𝑧𝑥 𝑗 + (𝑧2 − 𝑥𝑦)𝑘)] = 𝜕 𝜕𝑥 𝑥2 − 𝑦𝑧 + 𝜕 𝜕𝑦 𝑦2 − 𝑧𝑥 + 𝜕 𝜕𝑧 𝑧2 − 𝑥𝑦 = 2(𝑥 + 𝑦 + 𝑧)]
  • 3. = 2 0 𝑎 0 𝑏 𝑥𝑧 + 𝑦𝑧 + 𝑧2 2 0 𝑐 𝑑𝑦 𝑑𝑥 = 2 0 𝑎 0 𝑏 𝑥𝑐 + 𝑦𝑐 + 𝑐2 2 𝑑𝑦 𝑑𝑥 = 2 0 𝑎 𝑥𝑦𝑐 + 𝑦2 2 𝑐 + 𝑦𝑐2 2 0 𝑏 𝑑𝑥 = 2 0 𝑎 [𝑥𝑏𝑐 + 𝑏2 2 𝑐 + 𝑏𝑐2 2 ]𝑑𝑥 = 2 𝑥2 2 𝑏𝑐 + 𝑥 𝑏2 2 𝑐 + 𝑥𝑏𝑐2 2 0 𝑎 = 2[ 𝑎2 2 𝑏𝑐 + 𝑎 𝑏2 2 𝑐 + 𝑎𝑏𝑐2 2 ] 𝑉 𝛻. 𝑓 𝑑𝑉 = 𝑎𝑏𝑐 𝑎 + 𝑏 + 𝑐 → 𝟏 Now Consider, 𝑆 𝑓 . 𝑛 𝑑𝑆 Where S is the surface of the rectangle parallelepiped given by 0 ≤ 𝑥 ≤ 𝑎, 0 ≤ 𝑦 ≤ 𝑏, 0 ≤ 𝑧 ≤ 𝑐.
  • 4. It has the following six faces OABC (xz-plane); OAFE (xy-plane); OEDC (yz-plane); DEFG (opposite to xz-plane); AFGB (opposite to (yz-plane); BCDG (opposite to xy- plane) On the face OABC we have 𝑦 = 0, 𝑛 = − 𝑗, 0 ≤ 𝑥 ≤ 𝑎 and 0 ≤ 𝑧 ≤ 𝑐. ∴ 𝑂𝐴𝐵𝐶 𝑓 . 𝑛 𝑑𝑆 = 0 𝑎 0 𝑐 [ 𝑥2 − 𝑦𝑧 𝑖 + 𝑦2 − 𝑧𝑥 𝑗 + (𝑧2 − 𝑥𝑦)𝑘)]. (− 𝑗) 𝑑𝑧 𝑑𝑥 = 0 𝑎 0 𝑐 𝑦2 − 𝑧𝑥 𝑑𝑧 𝑑𝑥 = 0 𝑎 0 𝑐 𝑧𝑥 𝑑𝑧 𝑑𝑥 (since y = 0) = 0 𝑎 𝑥 𝑧2 2 0 𝑐 𝑑𝑥 = 𝑎 𝑥 𝑐2 𝑑𝑥
  • 5. On the face DEFG we have 𝑦 = 𝑏, 𝑛 = 𝑗, 0 ≤ 𝑥 ≤ 𝑎 and 0 ≤ 𝑧 ≤ 𝑐. ∴ 𝐷𝐸𝐹𝐺 𝑓 . 𝑛 𝑑𝑆 = 0 𝑎 0 𝑐 [ 𝑥2 − 𝑦𝑧 𝑖 + 𝑦2 − 𝑧𝑥 𝑗 + (𝑧2 − 𝑥𝑦)𝑘)]. ( 𝑗) 𝑑𝑧 𝑑𝑥 = 0 𝑎 0 𝑐 𝑦2 − 𝑧𝑥 𝑑𝑧 𝑑𝑥 = 0 𝑎 0 𝑐 (𝑏2 − 𝑧𝑥) 𝑑𝑧 𝑑𝑥 (since y = b) = 0 𝑎 𝑏2 𝑧 − 𝑥 𝑧2 2 0 𝑐 𝑑𝑥 = 0 𝑎 [𝑏2 𝑐 − 𝑥 𝑐2 2 ]𝑑𝑥 = 𝑥𝑏2 𝑐 − 𝑐2 2 𝑥2 2 0 𝑎 = 𝑎𝑏2 𝑐 − 𝑎2 𝑐2 4 → 𝟑 On the face OAFE we have 𝑧 = 0, 𝑛 = −𝑘, 0 ≤ 𝑥 ≤ 𝑎 and 0 ≤ 𝑦 ≤ 𝑏. ∴ 𝑓 . 𝑛 𝑑𝑆 = 𝑎 𝑏 [ 𝑥2 − 𝑦𝑧 𝑖 + 𝑦2 − 𝑧𝑥 𝑗 + (𝑧2 − 𝑥𝑦)𝑘)]. (−𝑘) 𝑑𝑦 𝑑𝑥
  • 6. = 𝑏2 2 𝑥2 2 0 𝑎 = 𝑎2 𝑏2 4 → 𝟒 On the face BCDG we have 𝑧 = 𝑐, 𝑛 = 𝑘, 0 ≤ 𝑥 ≤ 𝑎 and 0 ≤ 𝑦 ≤ 𝑏. ∴ 𝐵𝐶𝐷𝐺 𝑓 . 𝑛 𝑑𝑆 = 0 𝑎 0 𝑏 [ 𝑥2 − 𝑦𝑧 𝑖 + 𝑦2 − 𝑧𝑥 𝑗 + (𝑧2 − 𝑥𝑦)𝑘)]. (𝑘) 𝑑𝑦 𝑑𝑥 = 0 𝑎 0 𝑏 𝑧2 − 𝑥𝑦 𝑑𝑦 𝑑𝑥 = 0 𝑎 0 𝑏 (𝑐2 − 𝑥𝑦) 𝑑𝑦 𝑑𝑥 (since z = c) = 0 𝑎 𝑐2 𝑦 − 𝑥 𝑦2 2 0 𝑏 𝑑𝑥 = 0 𝑎 [𝑐2 𝑏 − 𝑥 𝑏2 2 ]𝑑𝑥 = 𝑥𝑐2 𝑏 − 𝑏2 2 𝑥2 2 0 𝑎 = 𝑎𝑐2 𝑏 − 𝑎2 𝑏2 4 → 𝟓 On the face OEDC we have 𝑥 = 0, 𝑛 = − 𝑖, 0 ≤ 𝑦 ≤ 𝑏 and 0 ≤ 𝑧 ≤ 𝑐. 𝑏 𝑐 = 0 𝑎 𝑥 𝑦2 2 0 𝑏 𝑑𝑥 = 0 𝑎 𝑥 𝑏2 2 𝑑𝑥
  • 7. = 0 𝑏 0 𝑐 𝑦𝑧 𝑑𝑧 𝑑𝑦 (since x = 0) = 0 𝑏 𝑦 𝑧2 2 0 𝑐 𝑑𝑦 = 0 𝑏 𝑦 𝑐2 2 𝑑𝑦 = 𝑐2 2 𝑦2 2 0 𝑏 = 𝑏2 𝑐2 4 → 𝟔 On the face ABGF we have 𝑥 = 𝑎, 𝑛 = 𝑖, 0 ≤ 𝑦 ≤ 𝑏 and 0 ≤ 𝑧 ≤ 𝑐. ∴ 𝐴𝐵𝐺𝐹 𝑓 . 𝑛 𝑑𝑆 = 0 𝑏 0 𝑐 [ 𝑥2 − 𝑦𝑧 𝑖 + 𝑦2 − 𝑧𝑥 𝑗 + (𝑧2 − 𝑥𝑦)𝑘)]. ( 𝑖) 𝑑𝑧 𝑑𝑦 = 0 𝑏 0 𝑐 𝑥2 − 𝑦𝑧 𝑑𝑧 𝑑𝑦 = 0 𝑏 0 𝑐 (𝑎2 − 𝑦𝑧) 𝑑𝑧 𝑑𝑦 (since x = a) = 0 𝑏 𝑎2 𝑧 − 𝑦 𝑧2 2 0 𝑐 𝑑𝑦
  • 8. = 0 𝑏 [𝑎2 𝑐 − 𝑦 𝑐2 2 ]𝑑𝑦 = 𝑦𝑎2 𝑐 − 𝑐2 2 𝑦2 2 0 𝑏 = 𝑎2 𝑏𝑐 − 𝑏2 𝑐2 4 → 𝟕 Adding equations 2, 3, 4, 5, 6 & 7 we get 𝑆 𝑓 . 𝑛 𝑑𝑆 = 𝑎𝑏𝑐 𝑎 + 𝑏 + 𝑐 → 𝟖 From equations 1 & 8 we get 𝑆 𝑓 . 𝑛 𝑑𝑆 = 𝑉 𝛻. 𝑓 𝑑𝑉 Hence Gauss divergence theorem is verified. --------------------------------------------------------------------------------------------------------------- ----------
  • 9. Stokes theorem: If S is an open two sides surface bounded by a simple closed curve C and 𝑓 is a vector valued function having continuous first order partial derivatives then 𝐶 𝑓 . 𝑑 𝑟 = 𝑆 (𝛻 × 𝑓). 𝑛 𝑑𝑆 where C is transverse in the anticlockwise direction. Example: Verify Stokes theorem for 𝑓 = 𝑥2 − 𝑦2 𝑖 + 2𝑥𝑦 𝑗 in the rectangular region x = 0, y = 0, x = a, y = b. Solution: W.K.T Stokes theorem is 𝐶 𝑓 . 𝑑 𝑟 = 𝑆 (𝛻 × 𝑓). 𝑛 𝑑𝑆 Let O = (0,0), A = (a,0), B = (a, b), C = (0,b) be the vertices of the given rectangle ∴ 𝐶 𝑓 . 𝑑 𝑟 = 𝑂𝐴 𝑓 . 𝑑 𝑟 + 𝐴𝐵 𝑓 . 𝑑 𝑟 + 𝐵𝐶 𝑓 . 𝑑 𝑟 + 𝐶𝑂 𝑓 . 𝑑 𝑟 → 𝟏
  • 10. ∴ The parametric equation of OA can be taken as x = t, y = 0 where 0 ≤ 𝑡 ≤ 𝑎 𝑂𝐴 𝑓 . 𝑑 𝑟 = 𝑂𝐴 𝑥2 − 𝑦2 𝑖 + 2𝑥𝑦 𝑗 . [𝑑𝑥 𝑖 + 𝑑𝑦 𝑗 + 𝑑𝑧 𝑘] = 𝑂𝐴 𝑥2 − 𝑦2 𝑑𝑥 + 2𝑥𝑦 𝑑𝑦 = 0 𝑎 𝑡2 − 0 𝑑𝑡 (since x = t, y = 0, dx = dt) = 𝑡3 3 0 𝑎 = 𝑎3 3 → 𝟐 ∴ The parametric equation of AB can be taken as x = a, y = t where 0 ≤ 𝑡 ≤ 𝑏 𝐴𝐵 𝑓 . 𝑑 𝑟 = 𝐴𝐵 𝑥2 − 𝑦2 𝑖 + 2𝑥𝑦 𝑗 . [𝑑𝑥 𝑖 + 𝑑𝑦 𝑗 + 𝑑𝑧 𝑘] = 𝐴𝐵 𝑥2 − 𝑦2 𝑑𝑥 + 2𝑥𝑦 𝑑𝑦 = 0 𝑏 2𝑎𝑡 𝑑𝑡 (since x = a, y = t, dy = dt)
  • 11. The parametric equation of BC can be taken as x = t, y = b where 0 ≤ 𝑡 ≤ 𝑎 𝐵𝐶 𝑓 . 𝑑 𝑟 = − 𝐶𝐵 𝑥2 − 𝑦2 𝑖 + 2𝑥𝑦 𝑗 . [𝑑𝑥 𝑖 + 𝑑𝑦 𝑗 + 𝑑𝑧 𝑘] = − 𝐶𝐵 𝑥2 − 𝑦2 𝑑𝑥 + 2𝑥𝑦 𝑑𝑦 = − 0 𝑎 (𝑡2 − 𝑏2 ) 𝑑𝑡 (since x = t, y = b, dx = dt) = 𝑡3 3 − 𝑏2 𝑡 0 𝑎 = − 𝑎3 3 + 𝑎𝑏2 → 𝟒 ∴ The parametric equation of BC can be taken as x = 0, y = t where 0 ≤ 𝑡 ≤ 𝑎 𝐶𝑂 𝑓 . 𝑑 𝑟 = − 𝑂𝐶 𝑓 . 𝑑 𝑟 = − 0 𝑏 0 𝑑𝑡 = 0 → 𝟓 Substitute equations 2, 3, 4&5 in equation 1 we get 𝐶 𝑓 . 𝑑 𝑟 = 2𝑎𝑏2 → 𝟔
  • 12. Now, 𝛻 × 𝑓 = 𝑐𝑢𝑟𝑙 𝑓 = 𝑖 𝑗 𝑘 𝜕 𝜕𝑥 𝜕 𝜕𝑦 𝜕 𝜕𝑧 𝑥2 − 𝑦2 2𝑥𝑦 0 = 𝑖 0 − 𝑗 0 + 𝑘 2𝑦 + 2𝑦 = 4𝑦𝑘 𝑆 (𝛻 × 𝑓). 𝑛 𝑑𝑆 = 𝑅 (𝛻 × 𝑓). 𝑛 𝑛. 𝑘 𝑑𝑥 𝑑𝑦 Here the surface S denotes the rectangular and the unit outward normal 𝑛 is 𝑘 𝑆 (𝛻 × 𝑓). 𝑛 𝑑𝑆 = 0 𝑏 0 𝑎 4𝑦 𝑑𝑥 𝑑𝑦 = 0 𝑏 4𝑥𝑦 0 𝑎 𝑑𝑦 = 0 𝑏 4𝑎𝑦 𝑑𝑦 = 2𝑎𝑏2 → 𝟕 From equations 6 & 7 we get