SlideShare una empresa de Scribd logo
1 de 32
Anatomy of DDoS
Dissecting Large Scale Internet Attacks
Suzanne Aldrich
Anatomy of DDoS
Dissecting Large Scale Internet Attacks
Performance & Scaling
https://events.drupal.org/vienna2017/sessions/anatomy-ddos
Suzanne Aldrich
Solutions Engineer
Cloudflare
What is a DDoS Attack?
DDoS Attacks Are Like Traffic Jams
❖ Malicious attempt to disrupt
normal traffic
❖ Overwhelm target with flood
❖ Utilize multiple compromised
systems
❖ Motive can be political, social,
or financial
❖ Targets in every industry
Subject: ddos attack
Hi!
If you dont pay 8 bitcoin until 17. january your network will be
hardly ddosed! Our attacks are super powerfull. And if you dont pay
until 17.
january ddos attack will start and price to stop will double!
We are not kidding and we will do small demo now on [XXXXXXXX] to
show we are serious.
Pay and you are safe from us forever.
OUR BITCOIN ADDRESS: [XXXXXXXX]
Dont reply, we will ignore! Pay and we will be notify you payed and
you are safe.
Cheers!
Elements of a DDoS Attack
An Example DDoS Ransom Note
In the winter of 2016, we mitigated
the largest Layer 3 DDoS attack to
date. We were not only able to
mitigate it, but accurately measure
and analyze it as well.
Mitigating Historic Attacks
Some of the Largest DDoS attacks
DDoS attacks take all shapes and
forms. In this 400Gbps
amplification attack, an attacker
used 4,529 NTP servers to amplify
an attack from a mere 87Mbps
source server.
Cloudflare has been fighting
historic DDoS attacks for over 5
years. Back in 2013, the 120Gbs on
Spamhaus was a “big” attack, and
we were able to keep their website
online.
Details Behind a 400Gbps NTP
Amplification Attack
400Gbps: Winter of Whopping
Layer 3 DDoS Attacks
The DDoS Attack That Almost
Broke the Internet
The Evolution of DDoS
DDoS attacks are evolving in size and complexity
2016
2013
2012
1Tbps // IoT Botnet Layer 7 Attack
400Gbps // NTP Reflection
300Gbps // Volumetric Layer 3/4
DDoS Attacks:
How Do They Work?
Botnet = Robot + Network
❖ Home & Office Computers
❖ Servers
❖ Mobile Phones
❖ IP Cameras
❖ DVR boxes
❖ Internet Connected Devices
Botnets
Operations:
❖ Attacker sends instructions to botnet
❖ Bots send requests to target
❖ Target server or network overflows
capacity
❖ Difficult to separate good from bad traffic
Botnets
What are common types of DDoS
attacks?
Open Systems Interconnection (OSI) Model
A network connection on the Internet is composed of many different
components or “layers”.
Types of DDoS Attack Traffic
Degrades availability and performance of applications, websites, and APIs
Volumetric DNS Flood
Bots
DNS Server
DNS Server Server
Amplification (Layer 3 & 4)
HTTP Flood (Layer 7)
Bots
Bots
HTTP
Application
Application/Login
A DNS Amplification attack is like if someone
were to call a restaurant and say “I’ll have one of
everything, please call me back and tell me my
whole order,” where the callback phone
number they give is the target’s number. With
very little effort, a long response is generated.
DNS Amplification AttackVolumetric Attacks
A SYN Flood Attack is analogous to a worker in
a supply room receiving requests from the front
of the store. The worker receives a request, goes
and gets the package, and waits for
confirmation before bringing the package out
front. The worker then gets many more
package requests without confirmation until
they can’t carry any more packages, become
overwhelmed, and requests start going
unanswered.
SYN Flood AttackProtocol Attacks
This attack is similar to pressing refresh in a web
browser over and over on many different
computers at once – large numbers of HTTP
requests flood the server, resulting in denial-of-
service.
HTTP Flood AttackApplication Layer Attacks
How are DDoS attacks mitigated?
Black Hole Routing
Drop traffic from the network
Rate Limiting
Limiting requests over a time period
Web Application Firewall (WAF)
Filtering L7 requests with rules
Anycast Network Diffusion
Scatter attack traffic across distributed servers
What is a UDP flood attack?
1. Server checks for running programs
listening at a specified port.
2. If no programs are receiving packets,
server responds with a ICMP (ping) packet
to inform sender that the destination was
unreachable.
Normal UDP TrafficUDP Flood Attack
As a result of the targeted server utilizing
resources to check and then respond to each
received UDP packet, the target’s resources can
become quickly exhausted when a large flood
of UDP packets are received, resulting in denial-
of-service to normal traffic.
Attack UDP TrafficUDP Flood Attack
What is a SYN flood attack?
1. Client sends a SYN packet to the server in
order to initiate the connection.
2. Server responds with a SYN/ACK packet,
in order to acknowledge the
communication.
3. Client returns an ACK packet to
acknowledge the receipt of the packet
from the server. After completing this
sequence of packet sending and
receiving, the TCP connection is open and
able to send and receive data.
Normal TCP ConnectionSYN Flood Attack
1. Attacker sends high volume of SYN
packets to the targeted server, often with
spoofed IP addresses.
2. Server responds to each connection
request and leaves an open port ready to
receive the response.
3. While the server waits for the final ACK
packet, attacker sends more SYN packets.
Each new SYN packet causes the server to
maintain new open port connection, and
once all the available ports have been
utilized the server is unable to function
normally.
SYN Flood TrafficSYN Flood Attack
1. Increasing Backlog queue.
2. Recycling the Oldest Half-Open TCP
connection
3. SYN cookies
4. Using a Proxy Service
SYN Flood MitigationsSYN Flood Attack
What is a DNS Flood?
DNS floods represent a change from traditional
amplification based attack methods. With
easily accessible high bandwidth botnets,
attackers can now target large organizations.
Until compromised IoT devices can be updated
or replaced, the only way to withstand these
types of attacks is to use a very large and highly
distributed DNS system that can monitor,
absorb, and block the attack traffic in realtime.
DNS Flood MitigationDNS Flood Attack
❖ 10MM Requests/second
❖ 10% Internet requests everyday
❖ 38% of all DNS queries
❖ 115+ Data centers globally
❖ 10+ Tbps network capacity
❖ 2.5B Monthly unique visitors
❖ 6M+ websites, apps & APIs in 150 countries
Cloudflare Global NetworkCloudflare DDoS Protection
JOIN US FOR
CONTRIBUTION SPRINT
Friday, 29 September, 2017
First time
Sprinter Workshop
Mentored
Core Sprint General Sprint
9:00-12:00
Room: Lehar 1 - Lehar
2
9:00-18:00
Room: Stolz
2
9:00-18:00
Room: Mall
#drupalspri
WHAT DID YOU THINK?
Locate this session at the DrupalCon Vienna website:
http://vienna2017.drupal.org/schedule
Take the survey!
https://www.surveymonkey.com/r/drupalconvienna

Más contenido relacionado

La actualidad más candente

DDoS Open Threat Signaling (DOTS) Working Group Presentation on draft-ietf-do...
DDoS Open Threat Signaling (DOTS) Working Group Presentation on draft-ietf-do...DDoS Open Threat Signaling (DOTS) Working Group Presentation on draft-ietf-do...
DDoS Open Threat Signaling (DOTS) Working Group Presentation on draft-ietf-do...ShortestPathFirst
 
DNS DDoS Attack and Risk
DNS DDoS Attack and RiskDNS DDoS Attack and Risk
DNS DDoS Attack and RiskSukbum Hong
 
Ddos and mitigation methods.pptx (1)
Ddos and mitigation methods.pptx (1)Ddos and mitigation methods.pptx (1)
Ddos and mitigation methods.pptx (1)btpsec
 
DDoS Attack Preparation and Mitigation
DDoS Attack Preparation and MitigationDDoS Attack Preparation and Mitigation
DDoS Attack Preparation and MitigationJerod Brennen
 
Entropy based DDos Detection in SDN
Entropy based DDos Detection in SDNEntropy based DDos Detection in SDN
Entropy based DDos Detection in SDNVishal Vasudev
 
DDoS 101: Attack Types and Mitigation
DDoS 101: Attack Types and MitigationDDoS 101: Attack Types and Mitigation
DDoS 101: Attack Types and MitigationCloudflare
 
KHNOG 3: DDoS Attack Prevention
KHNOG 3: DDoS Attack PreventionKHNOG 3: DDoS Attack Prevention
KHNOG 3: DDoS Attack PreventionAPNIC
 
DDoS mitigation EPIC FAIL collection - 32C3
DDoS mitigation EPIC FAIL collection - 32C3DDoS mitigation EPIC FAIL collection - 32C3
DDoS mitigation EPIC FAIL collection - 32C3Moshe Zioni
 
Denial of-service (do s) attack
Denial of-service (do s) attackDenial of-service (do s) attack
Denial of-service (do s) attackHTS Hosting
 
DMMS presentation29
DMMS presentation29DMMS presentation29
DMMS presentation29Yuri Alimov
 
DMMS presentation25
DMMS presentation25DMMS presentation25
DMMS presentation25Yuri Alimov
 
DDoS Attacks and Countermeasures
DDoS Attacks and CountermeasuresDDoS Attacks and Countermeasures
DDoS Attacks and Countermeasuresthaidn
 
DDoS Attack and Mitigation
DDoS Attack and MitigationDDoS Attack and Mitigation
DDoS Attack and MitigationDevang Badrakiya
 
Ddos and mitigation methods.pptx
Ddos and mitigation methods.pptxDdos and mitigation methods.pptx
Ddos and mitigation methods.pptxOzkan E
 
Time-based DDoS Detection and Mitigation for SDN Controller
Time-based DDoS Detection and Mitigation for SDN ControllerTime-based DDoS Detection and Mitigation for SDN Controller
Time-based DDoS Detection and Mitigation for SDN ControllerLippo Group Digital
 
Sample Network Analysis Report based on Wireshark Analysis
Sample Network Analysis Report based on Wireshark AnalysisSample Network Analysis Report based on Wireshark Analysis
Sample Network Analysis Report based on Wireshark AnalysisDavid Sweigert
 
Denial of service attack
Denial of service attackDenial of service attack
Denial of service attackAhmed Ghazey
 

La actualidad más candente (20)

DDoS Open Threat Signaling (DOTS) Working Group Presentation on draft-ietf-do...
DDoS Open Threat Signaling (DOTS) Working Group Presentation on draft-ietf-do...DDoS Open Threat Signaling (DOTS) Working Group Presentation on draft-ietf-do...
DDoS Open Threat Signaling (DOTS) Working Group Presentation on draft-ietf-do...
 
DNS DDoS Attack and Risk
DNS DDoS Attack and RiskDNS DDoS Attack and Risk
DNS DDoS Attack and Risk
 
Ddos and mitigation methods.pptx (1)
Ddos and mitigation methods.pptx (1)Ddos and mitigation methods.pptx (1)
Ddos and mitigation methods.pptx (1)
 
DDoS Attack Preparation and Mitigation
DDoS Attack Preparation and MitigationDDoS Attack Preparation and Mitigation
DDoS Attack Preparation and Mitigation
 
DDoS Attack
DDoS AttackDDoS Attack
DDoS Attack
 
Entropy based DDos Detection in SDN
Entropy based DDos Detection in SDNEntropy based DDos Detection in SDN
Entropy based DDos Detection in SDN
 
DDoS 101: Attack Types and Mitigation
DDoS 101: Attack Types and MitigationDDoS 101: Attack Types and Mitigation
DDoS 101: Attack Types and Mitigation
 
KHNOG 3: DDoS Attack Prevention
KHNOG 3: DDoS Attack PreventionKHNOG 3: DDoS Attack Prevention
KHNOG 3: DDoS Attack Prevention
 
DDoS mitigation EPIC FAIL collection - 32C3
DDoS mitigation EPIC FAIL collection - 32C3DDoS mitigation EPIC FAIL collection - 32C3
DDoS mitigation EPIC FAIL collection - 32C3
 
DDoS-bdNOG
DDoS-bdNOGDDoS-bdNOG
DDoS-bdNOG
 
Denial of-service (do s) attack
Denial of-service (do s) attackDenial of-service (do s) attack
Denial of-service (do s) attack
 
DMMS presentation29
DMMS presentation29DMMS presentation29
DMMS presentation29
 
DMMS presentation25
DMMS presentation25DMMS presentation25
DMMS presentation25
 
DDoS Attacks and Countermeasures
DDoS Attacks and CountermeasuresDDoS Attacks and Countermeasures
DDoS Attacks and Countermeasures
 
DDoS Attack and Mitigation
DDoS Attack and MitigationDDoS Attack and Mitigation
DDoS Attack and Mitigation
 
Ddos and mitigation methods.pptx
Ddos and mitigation methods.pptxDdos and mitigation methods.pptx
Ddos and mitigation methods.pptx
 
Time-based DDoS Detection and Mitigation for SDN Controller
Time-based DDoS Detection and Mitigation for SDN ControllerTime-based DDoS Detection and Mitigation for SDN Controller
Time-based DDoS Detection and Mitigation for SDN Controller
 
Sample Network Analysis Report based on Wireshark Analysis
Sample Network Analysis Report based on Wireshark AnalysisSample Network Analysis Report based on Wireshark Analysis
Sample Network Analysis Report based on Wireshark Analysis
 
Denial of service attack
Denial of service attackDenial of service attack
Denial of service attack
 
DoS/DDoS
DoS/DDoSDoS/DDoS
DoS/DDoS
 

Similar a Anatomy of DDoS: Dissecting Large Scale Internet Attacks

Denial of Service Attacks (DoS/DDoS)
Denial of Service Attacks (DoS/DDoS)Denial of Service Attacks (DoS/DDoS)
Denial of Service Attacks (DoS/DDoS)Gaurav Sharma
 
12 types of DDoS attacks
12 types of DDoS attacks12 types of DDoS attacks
12 types of DDoS attacksHaltdos
 
Whitepaper on DDoS Mitigation
Whitepaper on DDoS MitigationWhitepaper on DDoS Mitigation
Whitepaper on DDoS MitigationGaurav Bhatia
 
MS_ISAC__DDoS_Attacks_Guide__2023_05.pdf
MS_ISAC__DDoS_Attacks_Guide__2023_05.pdfMS_ISAC__DDoS_Attacks_Guide__2023_05.pdf
MS_ISAC__DDoS_Attacks_Guide__2023_05.pdfssuser262297
 
Fortinet_FortiDDoS_Introduction
Fortinet_FortiDDoS_IntroductionFortinet_FortiDDoS_Introduction
Fortinet_FortiDDoS_Introductionswang2010
 
Unleash the Hammer on Denial-of-Service: Conquer DDos Attacks!
Unleash the Hammer on Denial-of-Service: Conquer DDos Attacks!Unleash the Hammer on Denial-of-Service: Conquer DDos Attacks!
Unleash the Hammer on Denial-of-Service: Conquer DDos Attacks!PriyadharshiniHemaku
 
Denial of services : limiting the threat
Denial of services : limiting the threatDenial of services : limiting the threat
Denial of services : limiting the threatSensePost
 
Session for InfoSecGirls - New age threat management vol 1
Session for InfoSecGirls - New age threat management vol 1Session for InfoSecGirls - New age threat management vol 1
Session for InfoSecGirls - New age threat management vol 1InfoSec Girls
 
DDoS Threat Landscape - Ron Winward CHINOG16
DDoS Threat Landscape - Ron Winward CHINOG16DDoS Threat Landscape - Ron Winward CHINOG16
DDoS Threat Landscape - Ron Winward CHINOG16Radware
 
A10 issa d do s 5-2014
A10 issa d do s 5-2014A10 issa d do s 5-2014
A10 issa d do s 5-2014Raleigh ISSA
 
denialofservice.pdfdos attacck basic details with interactive design
denialofservice.pdfdos attacck basic details with interactive designdenialofservice.pdfdos attacck basic details with interactive design
denialofservice.pdfdos attacck basic details with interactive designperfetbyedshareen
 
A SURVEY OF TRENDS IN MASSIVE DDOS ATTACKS AND CLOUD-BASED MITIGATIONS
A SURVEY OF TRENDS IN MASSIVE DDOS ATTACKS AND CLOUD-BASED MITIGATIONSA SURVEY OF TRENDS IN MASSIVE DDOS ATTACKS AND CLOUD-BASED MITIGATIONS
A SURVEY OF TRENDS IN MASSIVE DDOS ATTACKS AND CLOUD-BASED MITIGATIONSIJNSA Journal
 
A survey of trends in massive ddos attacks and cloud based mitigations
A survey of trends in massive ddos attacks and cloud based mitigationsA survey of trends in massive ddos attacks and cloud based mitigations
A survey of trends in massive ddos attacks and cloud based mitigationsIJNSA Journal
 
A survey of trends in massive ddos attacks and cloud based mitigations
A survey of trends in massive ddos attacks and cloud based mitigationsA survey of trends in massive ddos attacks and cloud based mitigations
A survey of trends in massive ddos attacks and cloud based mitigationsIJNSA Journal
 
DDOS Mitigation Experience from IP ServerOne by CL Lee
DDOS Mitigation Experience from IP ServerOne by CL LeeDDOS Mitigation Experience from IP ServerOne by CL Lee
DDOS Mitigation Experience from IP ServerOne by CL LeeMyNOG
 
Arbor Presentation
Arbor Presentation Arbor Presentation
Arbor Presentation J Hartig
 
Protecting your business from ddos attacks
Protecting your business from ddos attacksProtecting your business from ddos attacks
Protecting your business from ddos attacksSaptha Wanniarachchi
 

Similar a Anatomy of DDoS: Dissecting Large Scale Internet Attacks (20)

Denial of Service Attacks (DoS/DDoS)
Denial of Service Attacks (DoS/DDoS)Denial of Service Attacks (DoS/DDoS)
Denial of Service Attacks (DoS/DDoS)
 
12 types of DDoS attacks
12 types of DDoS attacks12 types of DDoS attacks
12 types of DDoS attacks
 
Whitepaper on DDoS Mitigation
Whitepaper on DDoS MitigationWhitepaper on DDoS Mitigation
Whitepaper on DDoS Mitigation
 
MS_ISAC__DDoS_Attacks_Guide__2023_05.pdf
MS_ISAC__DDoS_Attacks_Guide__2023_05.pdfMS_ISAC__DDoS_Attacks_Guide__2023_05.pdf
MS_ISAC__DDoS_Attacks_Guide__2023_05.pdf
 
Ix3615551559
Ix3615551559Ix3615551559
Ix3615551559
 
Fortinet_FortiDDoS_Introduction
Fortinet_FortiDDoS_IntroductionFortinet_FortiDDoS_Introduction
Fortinet_FortiDDoS_Introduction
 
Unleash the Hammer on Denial-of-Service: Conquer DDos Attacks!
Unleash the Hammer on Denial-of-Service: Conquer DDos Attacks!Unleash the Hammer on Denial-of-Service: Conquer DDos Attacks!
Unleash the Hammer on Denial-of-Service: Conquer DDos Attacks!
 
Denial of services : limiting the threat
Denial of services : limiting the threatDenial of services : limiting the threat
Denial of services : limiting the threat
 
Session for InfoSecGirls - New age threat management vol 1
Session for InfoSecGirls - New age threat management vol 1Session for InfoSecGirls - New age threat management vol 1
Session for InfoSecGirls - New age threat management vol 1
 
DDoS Threat Landscape - Ron Winward CHINOG16
DDoS Threat Landscape - Ron Winward CHINOG16DDoS Threat Landscape - Ron Winward CHINOG16
DDoS Threat Landscape - Ron Winward CHINOG16
 
A10 issa d do s 5-2014
A10 issa d do s 5-2014A10 issa d do s 5-2014
A10 issa d do s 5-2014
 
A041201010
A041201010A041201010
A041201010
 
denialofservice.pdfdos attacck basic details with interactive design
denialofservice.pdfdos attacck basic details with interactive designdenialofservice.pdfdos attacck basic details with interactive design
denialofservice.pdfdos attacck basic details with interactive design
 
Denial of service
Denial of serviceDenial of service
Denial of service
 
A SURVEY OF TRENDS IN MASSIVE DDOS ATTACKS AND CLOUD-BASED MITIGATIONS
A SURVEY OF TRENDS IN MASSIVE DDOS ATTACKS AND CLOUD-BASED MITIGATIONSA SURVEY OF TRENDS IN MASSIVE DDOS ATTACKS AND CLOUD-BASED MITIGATIONS
A SURVEY OF TRENDS IN MASSIVE DDOS ATTACKS AND CLOUD-BASED MITIGATIONS
 
A survey of trends in massive ddos attacks and cloud based mitigations
A survey of trends in massive ddos attacks and cloud based mitigationsA survey of trends in massive ddos attacks and cloud based mitigations
A survey of trends in massive ddos attacks and cloud based mitigations
 
A survey of trends in massive ddos attacks and cloud based mitigations
A survey of trends in massive ddos attacks and cloud based mitigationsA survey of trends in massive ddos attacks and cloud based mitigations
A survey of trends in massive ddos attacks and cloud based mitigations
 
DDOS Mitigation Experience from IP ServerOne by CL Lee
DDOS Mitigation Experience from IP ServerOne by CL LeeDDOS Mitigation Experience from IP ServerOne by CL Lee
DDOS Mitigation Experience from IP ServerOne by CL Lee
 
Arbor Presentation
Arbor Presentation Arbor Presentation
Arbor Presentation
 
Protecting your business from ddos attacks
Protecting your business from ddos attacksProtecting your business from ddos attacks
Protecting your business from ddos attacks
 

Último

Call Girls In Ashram Chowk Delhi 💯Call Us 🔝8264348440🔝
Call Girls In Ashram Chowk Delhi 💯Call Us 🔝8264348440🔝Call Girls In Ashram Chowk Delhi 💯Call Us 🔝8264348440🔝
Call Girls In Ashram Chowk Delhi 💯Call Us 🔝8264348440🔝soniya singh
 
FULL ENJOY Call Girls In Mayur Vihar Delhi Contact Us 8377087607
FULL ENJOY Call Girls In Mayur Vihar Delhi Contact Us 8377087607FULL ENJOY Call Girls In Mayur Vihar Delhi Contact Us 8377087607
FULL ENJOY Call Girls In Mayur Vihar Delhi Contact Us 8377087607dollysharma2066
 
'Future Evolution of the Internet' delivered by Geoff Huston at Everything Op...
'Future Evolution of the Internet' delivered by Geoff Huston at Everything Op...'Future Evolution of the Internet' delivered by Geoff Huston at Everything Op...
'Future Evolution of the Internet' delivered by Geoff Huston at Everything Op...APNIC
 
Delhi Call Girls Rohini 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Call
Delhi Call Girls Rohini 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip CallDelhi Call Girls Rohini 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Call
Delhi Call Girls Rohini 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Callshivangimorya083
 
DDoS In Oceania and the Pacific, presented by Dave Phelan at NZNOG 2024
DDoS In Oceania and the Pacific, presented by Dave Phelan at NZNOG 2024DDoS In Oceania and the Pacific, presented by Dave Phelan at NZNOG 2024
DDoS In Oceania and the Pacific, presented by Dave Phelan at NZNOG 2024APNIC
 
Call Girls In Defence Colony Delhi 💯Call Us 🔝8264348440🔝
Call Girls In Defence Colony Delhi 💯Call Us 🔝8264348440🔝Call Girls In Defence Colony Delhi 💯Call Us 🔝8264348440🔝
Call Girls In Defence Colony Delhi 💯Call Us 🔝8264348440🔝soniya singh
 
Call Girls In Saket Delhi 💯Call Us 🔝8264348440🔝
Call Girls In Saket Delhi 💯Call Us 🔝8264348440🔝Call Girls In Saket Delhi 💯Call Us 🔝8264348440🔝
Call Girls In Saket Delhi 💯Call Us 🔝8264348440🔝soniya singh
 
Russian Call girls in Dubai +971563133746 Dubai Call girls
Russian  Call girls in Dubai +971563133746 Dubai  Call girlsRussian  Call girls in Dubai +971563133746 Dubai  Call girls
Russian Call girls in Dubai +971563133746 Dubai Call girlsstephieert
 
AWS Community DAY Albertini-Ellan Cloud Security (1).pptx
AWS Community DAY Albertini-Ellan Cloud Security (1).pptxAWS Community DAY Albertini-Ellan Cloud Security (1).pptx
AWS Community DAY Albertini-Ellan Cloud Security (1).pptxellan12
 
Russian Call girl in Ajman +971563133746 Ajman Call girl Service
Russian Call girl in Ajman +971563133746 Ajman Call girl ServiceRussian Call girl in Ajman +971563133746 Ajman Call girl Service
Russian Call girl in Ajman +971563133746 Ajman Call girl Servicegwenoracqe6
 
VIP Kolkata Call Girl Dum Dum 👉 8250192130 Available With Room
VIP Kolkata Call Girl Dum Dum 👉 8250192130  Available With RoomVIP Kolkata Call Girl Dum Dum 👉 8250192130  Available With Room
VIP Kolkata Call Girl Dum Dum 👉 8250192130 Available With Roomdivyansh0kumar0
 
VIP Call Girls Kolkata Ananya 🤌 8250192130 🚀 Vip Call Girls Kolkata
VIP Call Girls Kolkata Ananya 🤌  8250192130 🚀 Vip Call Girls KolkataVIP Call Girls Kolkata Ananya 🤌  8250192130 🚀 Vip Call Girls Kolkata
VIP Call Girls Kolkata Ananya 🤌 8250192130 🚀 Vip Call Girls Kolkataanamikaraghav4
 
Russian Call Girls in Kolkata Samaira 🤌 8250192130 🚀 Vip Call Girls Kolkata
Russian Call Girls in Kolkata Samaira 🤌  8250192130 🚀 Vip Call Girls KolkataRussian Call Girls in Kolkata Samaira 🤌  8250192130 🚀 Vip Call Girls Kolkata
Russian Call Girls in Kolkata Samaira 🤌 8250192130 🚀 Vip Call Girls Kolkataanamikaraghav4
 
VIP Kolkata Call Girl Kestopur 👉 8250192130 Available With Room
VIP Kolkata Call Girl Kestopur 👉 8250192130  Available With RoomVIP Kolkata Call Girl Kestopur 👉 8250192130  Available With Room
VIP Kolkata Call Girl Kestopur 👉 8250192130 Available With Roomdivyansh0kumar0
 
Challengers I Told Ya ShirtChallengers I Told Ya Shirt
Challengers I Told Ya ShirtChallengers I Told Ya ShirtChallengers I Told Ya ShirtChallengers I Told Ya Shirt
Challengers I Told Ya ShirtChallengers I Told Ya Shirtrahman018755
 
₹5.5k {Cash Payment}New Friends Colony Call Girls In [Delhi NIHARIKA] 🔝|97111...
₹5.5k {Cash Payment}New Friends Colony Call Girls In [Delhi NIHARIKA] 🔝|97111...₹5.5k {Cash Payment}New Friends Colony Call Girls In [Delhi NIHARIKA] 🔝|97111...
₹5.5k {Cash Payment}New Friends Colony Call Girls In [Delhi NIHARIKA] 🔝|97111...Diya Sharma
 
VIP 7001035870 Find & Meet Hyderabad Call Girls LB Nagar high-profile Call Girl
VIP 7001035870 Find & Meet Hyderabad Call Girls LB Nagar high-profile Call GirlVIP 7001035870 Find & Meet Hyderabad Call Girls LB Nagar high-profile Call Girl
VIP 7001035870 Find & Meet Hyderabad Call Girls LB Nagar high-profile Call Girladitipandeya
 
Call Girls In Pratap Nagar Delhi 💯Call Us 🔝8264348440🔝
Call Girls In Pratap Nagar Delhi 💯Call Us 🔝8264348440🔝Call Girls In Pratap Nagar Delhi 💯Call Us 🔝8264348440🔝
Call Girls In Pratap Nagar Delhi 💯Call Us 🔝8264348440🔝soniya singh
 

Último (20)

Call Girls In Ashram Chowk Delhi 💯Call Us 🔝8264348440🔝
Call Girls In Ashram Chowk Delhi 💯Call Us 🔝8264348440🔝Call Girls In Ashram Chowk Delhi 💯Call Us 🔝8264348440🔝
Call Girls In Ashram Chowk Delhi 💯Call Us 🔝8264348440🔝
 
FULL ENJOY Call Girls In Mayur Vihar Delhi Contact Us 8377087607
FULL ENJOY Call Girls In Mayur Vihar Delhi Contact Us 8377087607FULL ENJOY Call Girls In Mayur Vihar Delhi Contact Us 8377087607
FULL ENJOY Call Girls In Mayur Vihar Delhi Contact Us 8377087607
 
'Future Evolution of the Internet' delivered by Geoff Huston at Everything Op...
'Future Evolution of the Internet' delivered by Geoff Huston at Everything Op...'Future Evolution of the Internet' delivered by Geoff Huston at Everything Op...
'Future Evolution of the Internet' delivered by Geoff Huston at Everything Op...
 
Delhi Call Girls Rohini 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Call
Delhi Call Girls Rohini 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip CallDelhi Call Girls Rohini 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Call
Delhi Call Girls Rohini 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Call
 
Rohini Sector 26 Call Girls Delhi 9999965857 @Sabina Saikh No Advance
Rohini Sector 26 Call Girls Delhi 9999965857 @Sabina Saikh No AdvanceRohini Sector 26 Call Girls Delhi 9999965857 @Sabina Saikh No Advance
Rohini Sector 26 Call Girls Delhi 9999965857 @Sabina Saikh No Advance
 
DDoS In Oceania and the Pacific, presented by Dave Phelan at NZNOG 2024
DDoS In Oceania and the Pacific, presented by Dave Phelan at NZNOG 2024DDoS In Oceania and the Pacific, presented by Dave Phelan at NZNOG 2024
DDoS In Oceania and the Pacific, presented by Dave Phelan at NZNOG 2024
 
Call Girls In Defence Colony Delhi 💯Call Us 🔝8264348440🔝
Call Girls In Defence Colony Delhi 💯Call Us 🔝8264348440🔝Call Girls In Defence Colony Delhi 💯Call Us 🔝8264348440🔝
Call Girls In Defence Colony Delhi 💯Call Us 🔝8264348440🔝
 
Call Girls In Saket Delhi 💯Call Us 🔝8264348440🔝
Call Girls In Saket Delhi 💯Call Us 🔝8264348440🔝Call Girls In Saket Delhi 💯Call Us 🔝8264348440🔝
Call Girls In Saket Delhi 💯Call Us 🔝8264348440🔝
 
Russian Call girls in Dubai +971563133746 Dubai Call girls
Russian  Call girls in Dubai +971563133746 Dubai  Call girlsRussian  Call girls in Dubai +971563133746 Dubai  Call girls
Russian Call girls in Dubai +971563133746 Dubai Call girls
 
AWS Community DAY Albertini-Ellan Cloud Security (1).pptx
AWS Community DAY Albertini-Ellan Cloud Security (1).pptxAWS Community DAY Albertini-Ellan Cloud Security (1).pptx
AWS Community DAY Albertini-Ellan Cloud Security (1).pptx
 
Russian Call girl in Ajman +971563133746 Ajman Call girl Service
Russian Call girl in Ajman +971563133746 Ajman Call girl ServiceRussian Call girl in Ajman +971563133746 Ajman Call girl Service
Russian Call girl in Ajman +971563133746 Ajman Call girl Service
 
VIP Kolkata Call Girl Dum Dum 👉 8250192130 Available With Room
VIP Kolkata Call Girl Dum Dum 👉 8250192130  Available With RoomVIP Kolkata Call Girl Dum Dum 👉 8250192130  Available With Room
VIP Kolkata Call Girl Dum Dum 👉 8250192130 Available With Room
 
Rohini Sector 6 Call Girls Delhi 9999965857 @Sabina Saikh No Advance
Rohini Sector 6 Call Girls Delhi 9999965857 @Sabina Saikh No AdvanceRohini Sector 6 Call Girls Delhi 9999965857 @Sabina Saikh No Advance
Rohini Sector 6 Call Girls Delhi 9999965857 @Sabina Saikh No Advance
 
VIP Call Girls Kolkata Ananya 🤌 8250192130 🚀 Vip Call Girls Kolkata
VIP Call Girls Kolkata Ananya 🤌  8250192130 🚀 Vip Call Girls KolkataVIP Call Girls Kolkata Ananya 🤌  8250192130 🚀 Vip Call Girls Kolkata
VIP Call Girls Kolkata Ananya 🤌 8250192130 🚀 Vip Call Girls Kolkata
 
Russian Call Girls in Kolkata Samaira 🤌 8250192130 🚀 Vip Call Girls Kolkata
Russian Call Girls in Kolkata Samaira 🤌  8250192130 🚀 Vip Call Girls KolkataRussian Call Girls in Kolkata Samaira 🤌  8250192130 🚀 Vip Call Girls Kolkata
Russian Call Girls in Kolkata Samaira 🤌 8250192130 🚀 Vip Call Girls Kolkata
 
VIP Kolkata Call Girl Kestopur 👉 8250192130 Available With Room
VIP Kolkata Call Girl Kestopur 👉 8250192130  Available With RoomVIP Kolkata Call Girl Kestopur 👉 8250192130  Available With Room
VIP Kolkata Call Girl Kestopur 👉 8250192130 Available With Room
 
Challengers I Told Ya ShirtChallengers I Told Ya Shirt
Challengers I Told Ya ShirtChallengers I Told Ya ShirtChallengers I Told Ya ShirtChallengers I Told Ya Shirt
Challengers I Told Ya ShirtChallengers I Told Ya Shirt
 
₹5.5k {Cash Payment}New Friends Colony Call Girls In [Delhi NIHARIKA] 🔝|97111...
₹5.5k {Cash Payment}New Friends Colony Call Girls In [Delhi NIHARIKA] 🔝|97111...₹5.5k {Cash Payment}New Friends Colony Call Girls In [Delhi NIHARIKA] 🔝|97111...
₹5.5k {Cash Payment}New Friends Colony Call Girls In [Delhi NIHARIKA] 🔝|97111...
 
VIP 7001035870 Find & Meet Hyderabad Call Girls LB Nagar high-profile Call Girl
VIP 7001035870 Find & Meet Hyderabad Call Girls LB Nagar high-profile Call GirlVIP 7001035870 Find & Meet Hyderabad Call Girls LB Nagar high-profile Call Girl
VIP 7001035870 Find & Meet Hyderabad Call Girls LB Nagar high-profile Call Girl
 
Call Girls In Pratap Nagar Delhi 💯Call Us 🔝8264348440🔝
Call Girls In Pratap Nagar Delhi 💯Call Us 🔝8264348440🔝Call Girls In Pratap Nagar Delhi 💯Call Us 🔝8264348440🔝
Call Girls In Pratap Nagar Delhi 💯Call Us 🔝8264348440🔝
 

Anatomy of DDoS: Dissecting Large Scale Internet Attacks

  • 1. Anatomy of DDoS Dissecting Large Scale Internet Attacks Suzanne Aldrich
  • 2. Anatomy of DDoS Dissecting Large Scale Internet Attacks Performance & Scaling https://events.drupal.org/vienna2017/sessions/anatomy-ddos Suzanne Aldrich Solutions Engineer Cloudflare
  • 3. What is a DDoS Attack? DDoS Attacks Are Like Traffic Jams
  • 4. ❖ Malicious attempt to disrupt normal traffic ❖ Overwhelm target with flood ❖ Utilize multiple compromised systems ❖ Motive can be political, social, or financial ❖ Targets in every industry Subject: ddos attack Hi! If you dont pay 8 bitcoin until 17. january your network will be hardly ddosed! Our attacks are super powerfull. And if you dont pay until 17. january ddos attack will start and price to stop will double! We are not kidding and we will do small demo now on [XXXXXXXX] to show we are serious. Pay and you are safe from us forever. OUR BITCOIN ADDRESS: [XXXXXXXX] Dont reply, we will ignore! Pay and we will be notify you payed and you are safe. Cheers! Elements of a DDoS Attack An Example DDoS Ransom Note
  • 5. In the winter of 2016, we mitigated the largest Layer 3 DDoS attack to date. We were not only able to mitigate it, but accurately measure and analyze it as well. Mitigating Historic Attacks Some of the Largest DDoS attacks DDoS attacks take all shapes and forms. In this 400Gbps amplification attack, an attacker used 4,529 NTP servers to amplify an attack from a mere 87Mbps source server. Cloudflare has been fighting historic DDoS attacks for over 5 years. Back in 2013, the 120Gbs on Spamhaus was a “big” attack, and we were able to keep their website online. Details Behind a 400Gbps NTP Amplification Attack 400Gbps: Winter of Whopping Layer 3 DDoS Attacks The DDoS Attack That Almost Broke the Internet
  • 6. The Evolution of DDoS DDoS attacks are evolving in size and complexity 2016 2013 2012 1Tbps // IoT Botnet Layer 7 Attack 400Gbps // NTP Reflection 300Gbps // Volumetric Layer 3/4
  • 7. DDoS Attacks: How Do They Work?
  • 8. Botnet = Robot + Network ❖ Home & Office Computers ❖ Servers ❖ Mobile Phones ❖ IP Cameras ❖ DVR boxes ❖ Internet Connected Devices Botnets
  • 9. Operations: ❖ Attacker sends instructions to botnet ❖ Bots send requests to target ❖ Target server or network overflows capacity ❖ Difficult to separate good from bad traffic Botnets
  • 10. What are common types of DDoS attacks?
  • 11. Open Systems Interconnection (OSI) Model A network connection on the Internet is composed of many different components or “layers”.
  • 12. Types of DDoS Attack Traffic Degrades availability and performance of applications, websites, and APIs Volumetric DNS Flood Bots DNS Server DNS Server Server Amplification (Layer 3 & 4) HTTP Flood (Layer 7) Bots Bots HTTP Application Application/Login
  • 13. A DNS Amplification attack is like if someone were to call a restaurant and say “I’ll have one of everything, please call me back and tell me my whole order,” where the callback phone number they give is the target’s number. With very little effort, a long response is generated. DNS Amplification AttackVolumetric Attacks
  • 14. A SYN Flood Attack is analogous to a worker in a supply room receiving requests from the front of the store. The worker receives a request, goes and gets the package, and waits for confirmation before bringing the package out front. The worker then gets many more package requests without confirmation until they can’t carry any more packages, become overwhelmed, and requests start going unanswered. SYN Flood AttackProtocol Attacks
  • 15. This attack is similar to pressing refresh in a web browser over and over on many different computers at once – large numbers of HTTP requests flood the server, resulting in denial-of- service. HTTP Flood AttackApplication Layer Attacks
  • 16. How are DDoS attacks mitigated?
  • 17. Black Hole Routing Drop traffic from the network
  • 18. Rate Limiting Limiting requests over a time period
  • 19. Web Application Firewall (WAF) Filtering L7 requests with rules
  • 20. Anycast Network Diffusion Scatter attack traffic across distributed servers
  • 21. What is a UDP flood attack?
  • 22. 1. Server checks for running programs listening at a specified port. 2. If no programs are receiving packets, server responds with a ICMP (ping) packet to inform sender that the destination was unreachable. Normal UDP TrafficUDP Flood Attack
  • 23. As a result of the targeted server utilizing resources to check and then respond to each received UDP packet, the target’s resources can become quickly exhausted when a large flood of UDP packets are received, resulting in denial- of-service to normal traffic. Attack UDP TrafficUDP Flood Attack
  • 24. What is a SYN flood attack?
  • 25. 1. Client sends a SYN packet to the server in order to initiate the connection. 2. Server responds with a SYN/ACK packet, in order to acknowledge the communication. 3. Client returns an ACK packet to acknowledge the receipt of the packet from the server. After completing this sequence of packet sending and receiving, the TCP connection is open and able to send and receive data. Normal TCP ConnectionSYN Flood Attack
  • 26. 1. Attacker sends high volume of SYN packets to the targeted server, often with spoofed IP addresses. 2. Server responds to each connection request and leaves an open port ready to receive the response. 3. While the server waits for the final ACK packet, attacker sends more SYN packets. Each new SYN packet causes the server to maintain new open port connection, and once all the available ports have been utilized the server is unable to function normally. SYN Flood TrafficSYN Flood Attack
  • 27. 1. Increasing Backlog queue. 2. Recycling the Oldest Half-Open TCP connection 3. SYN cookies 4. Using a Proxy Service SYN Flood MitigationsSYN Flood Attack
  • 28. What is a DNS Flood?
  • 29. DNS floods represent a change from traditional amplification based attack methods. With easily accessible high bandwidth botnets, attackers can now target large organizations. Until compromised IoT devices can be updated or replaced, the only way to withstand these types of attacks is to use a very large and highly distributed DNS system that can monitor, absorb, and block the attack traffic in realtime. DNS Flood MitigationDNS Flood Attack
  • 30. ❖ 10MM Requests/second ❖ 10% Internet requests everyday ❖ 38% of all DNS queries ❖ 115+ Data centers globally ❖ 10+ Tbps network capacity ❖ 2.5B Monthly unique visitors ❖ 6M+ websites, apps & APIs in 150 countries Cloudflare Global NetworkCloudflare DDoS Protection
  • 31. JOIN US FOR CONTRIBUTION SPRINT Friday, 29 September, 2017 First time Sprinter Workshop Mentored Core Sprint General Sprint 9:00-12:00 Room: Lehar 1 - Lehar 2 9:00-18:00 Room: Stolz 2 9:00-18:00 Room: Mall #drupalspri
  • 32. WHAT DID YOU THINK? Locate this session at the DrupalCon Vienna website: http://vienna2017.drupal.org/schedule Take the survey! https://www.surveymonkey.com/r/drupalconvienna

Notas del editor

  1. DDoS attacks make headlines every day, but how do they work, and how can you defend against them? DDoS attacks can be high volume UDP traffic floods, SYN floods, NTP amplification, or Layer 7 HTTP attacks, amongst others. Understanding how to protect yourself from DDoS is critical to doing business on the internet today. This talk will cover how these attacks work, what is being targeted by the attackers, and how you can protect against the different attack types.
  2. From a high level, a DDoS attack is like a traffic jam clogging up the highway, preventing regular traffic from arriving at its desired destination.
  3. A distributed denial-of-service (DDoS) attack is a malicious attempt to disrupt normal traffic of a targeted server, service or network by overwhelming the target or its surrounding infrastructure with a flood of Internet traffic. DDoS attacks achieve effectiveness by utilizing multiple compromised computer systems as sources of attack traffic. Exploited machines can include computers and other networked resources such as IoT devices. The motive behind such attacks are often based on political, social, or religious animus, or utilized for financial gain when hackers threaten a website owner with an attack unless they pay a cryptocurrency ransom. DDoS attacks are a reality for all industries. Last Thanksgiving we saw an attacker try to take out a web site during business hours in the US by attacking it daily (https://blog.cloudflare.com/the-daily-ddos-ten-days-of-massive-attacks/) with over 200Mpps and 400Gbps of traffic. They appeared to take the night off each night when their DDoS attack wouldn't cause the disruption they were hoping for.
  4. Cloudflare engineers have witnessed some of the largest DDoS attacks in history unfold. In the winter of 2016, we mitigated the largest Layer 3 DDoS attack to date. We were not only able to mitigate it, but accurately measure and analyze it as well. DDoS attacks take all shapes and forms. In this 400Gbps amplification attack, an attacker used 4,529 NTP servers to amplify an attack from a mere 87Mbps source server. Cloudflare has been fighting historic DDoS attacks for over 5 years. Back in 2013, the 120Gbs on Spamhaus was a “big” attack, and we were able to keep their website online.
  5. DDoS attacks are evolving in size and complexity. 2016 saw 3 attacks over 1 Tbps; one of these was launched at Cloudflare and we successfully protected our clients. 10 days later a similarly sized attack, launched through the Mirai botnet, brought down a good part of the internet in North America. We see an L3/L4 DDoS attack every 6 minutes; we see an L7 DDoS attack every 8 minutes. In addition, L7 attacks have been increasing in size and complexity. For completeness, an attack every 6 minutes is over 80,000 attacks in a year; every 8 minutes is over 60,000. It's not uncommon for an L3 attack to be > 50Gbps, which means any normal server Internet connection (which would likely be 10Gbps max) would be overwhelmed.
  6. How does a DDoS attack work?
  7. A DDoS attack requires an attacker to gain control of a network of online machines in order to carry out an attack. Computers and other machines (such as IoT devices) are infected with malware, turning each one into a bot (or zombie). The attacker then has remote control over the group of bots, which is called a botnet.
  8. Once a botnet has been established, the attacker is able to direct the machines by sending updated instructions to each bot via a method of remote control. When the IP address of a victim is targeted by the botnet, each bot will respond by sending requests to the target, potentially causing the targeted server or network to overflow capacity, resulting in a denial-of-service to normal traffic. Because each bot is a legitimate Internet device, separating the attack traffic from normal traffic can be difficult.
  9. What are common types of DDoS attacks?
  10. Different DDoS attack vectors target varying components of a network connection. In order to understand how different DDoS attacks work, it is necessary to know how a network connection is made. A network connection on the Internet is composed of many different components or “layers”. Like building a house from the ground up, each step in the model has a different purpose. The Open Systems Interconnection (OSI) model is a conceptual framework used to describe network connectivity in 7 distinct layers. This framework helps to reduce the complexity when discussing networks. Each layer provides service to the previous layer in the protocol stack. L1 - Physical Layer - The physical medium for transferring data. Cat5E, Cat6, Fibre Optic, WiFi. Bits - Electrical pulses on the wire. Light transmission. L2 - Datalink Layer - Defines the format of data on the network. Switching, MAC addresses. L3 - Network Layer - Decides which physical path the data will take. NICs / Routers, combination of hardware and software. IPv4 and IPv6 addressing. L4 - Transport Layer - Transmits data using transmission protocolss. TCP, UDP. Port numbers. Well Known Ports = 21, 22, 25, 53, 80, 443 L5 - Session Layer - Manages the sequence and flow of events that initiate and tear down network connections. L6 - Presentation Layer - Simplest in function of any piece of the OSI model. Handles syntax processing of message data such as format conversions and encryption / decryption needed to support the Application layer above it. L7 - Application Layer - Human-computer interaction layer, where applications can access the network services. HTTP, SMTP, DNS etc. Attackers exploit the different layers: Layer 3 flood - Reflection and Amplification attack. Layer 4 - TCP SYN Flood. Layer 7 - Slow Lloris, DNS Flood.
  11. The important take-away is that these attacks are layered. In other words, a DDoS can attack different parts of your infrastructure. Volumetric DNS Flood: volumetric DNS queries against your DNS servers to make the DNS server unavailable Amplification: using DNS to amplify requests and overload your server over UDP HTTP Flood: volumetric HTTP attack to bring down the application All of those attacks impacts availability and performance of of websites, applications and API’s.
  12. Volumetric Attacks - This category of attacks attempts to create congestion by consuming all available bandwidth between the target and the larger Internet. Large amounts of data are sent to a target by using a form of amplification or another means of creating massive traffic, such as requests from a botnet. DNS Amplification Attack A DNS Amplification attack is like if someone were to call a restaurant and say “I’ll have one of everything, please call me back and tell me my whole order,” where the callback phone number they give is the target’s number. With very little effort, a long response is generated. By making a request to an open DNS server with a spoofed IP address (the real IP address of the target), the target IP address then receives a response from the server. The attacker structures the request such that the DNS server responds to the target with a large amount of data. As a result, the target receives an amplification of the attacker’s initial query.
  13. Protocol attacks, also known as a state-exhaustion attacks, cause a service disruption by consuming all the available state table capacity of web application servers or intermediate resources like firewalls and load balancers. Protocol attacks utilize weaknesses in layer 3 and layer 4 of the protocol stack to render the target inaccessible. SYN Flood Attack A SYN Flood Attack is analogous to a worker in a supply room receiving requests from the front of the store. The worker receives a request, goes and gets the package, and waits for confirmation before bringing the package out front. The worker then gets many more package requests without confirmation until they can’t carry any more packages, become overwhelmed, and requests start going unanswered. This attack exploits the TCP handshake by sending a target a large number of TCP “Initial Connection Request” SYN packets with spoofed source IP addresses. The target machine responds to each connection request and then waits for the final step in the handshake, which never occurs, exhausting the target’s resources in the process.
  14. Application Layer Attacks - Sometimes referred to as a layer 7 DDoS attack (in reference to the 7th layer of the OSI model), the goal of these attacks is to exhaust the resources of the target. The attacks target the layer where web pages are generated on the server and delivered in response to HTTP requests. A single HTTP request is cheap to execute on the client side, and can be expensive for the target server to respond to as the server often must load multiple files and run database queries in order to create a web page. Layer 7 attacks are hard to defend against as the traffic can be difficult to flag as malicious. HTTP Flood Attack This attack is similar to pressing refresh in a web browser over and over on many different computers at once – large numbers of HTTP requests flood the server, resulting in denial-of-service. This type of attack ranges from simple to complex. Simpler implementations may access one URL with the same range of attacking IP addresses, referrers and user agents. Complex versions may use a large number of attacking IP addresses, and target random urls using random referrers and user agents.
  15. How are DDoS attacks mitigated? Mitigating a multi-vector DDoS attack requires a variety of strategies in order to counter different trajectories. Generally speaking, the more complex the attack, the more likely the traffic will be difficult to separate from normal traffic - the goal of the attacker is to blend in as much as possible, making mitigation as inefficient as possible. Mitigation attempts that involve dropping or limiting traffic indiscriminately may throw good traffic out with the bad, and the attack may also modify and adapt to circumvent countermeasures. In order to overcome a complex attempt at disruption, a layered solution will give the greatest benefit.
  16. Black Hole Routing One solution available to virtually all network admins is to create a blackhole route and funnel traffic into that route. In its simplest form, when blackhole filtering is implemented without specific restriction criteria, both legitimate and malicious network traffic is routed to a null route or black hole and dropped from the network. If an Internet property is experiencing a DDoS attack, the property’s Internet service provider (ISP) may send all the site’s traffic into a blackhole as a defense.
  17. Rate Limiting Limiting the number of requests a server will accept over a certain time window is also a way of mitigating denial-of-service attacks. While rate limiting is useful in slowing web scrapers from stealing content and for mitigating brute force login attempts, it alone will likely be insufficient to handle a complex DDoS attack effectively. Nevertheless, rate limiting is a useful component in an effective DDoS mitigation strategy.
  18. Web Application Firewall A Web Application Firewall (WAF) is a tool that can assist in mitigating a layer 7 DDoS attack. By putting a WAF between the Internet and a origin server, the WAF may act as a reverse proxy, protecting the targeted server from certain types of malicious traffic. By filtering requests based on a series of rules used to identify DDoS tools, layer 7 attacks can be impeded. One key value of an effective WAF is the ability to quickly implement custom rules in response to an attack.
  19. Anycast Network Diffusion This mitigation approach uses an Anycast network to scatter the attack traffic across a network of distributed servers to the point where the traffic is absorbed by the network. Like channeling a rushing river down separate smaller channels, this approach spreads the impact of the distributed attack traffic to the point where it becomes manageable, diffusing any disruptive capability. The reliability of an Anycast network to mitigate a DDoS attack is dependent on the size of the attack and the size and efficiency of the network. An important part of the DDoS mitigation implemented by Cloudflare is the use of an Anycast distributed network. Cloudflare has a 10+ Tbps network, which is an order of magnitude greater than the largest DDoS attack recorded.
  20. What is a UDP flood attack? A UDP flood is a type of denial-of-service attack in which a large number of User Datagram Protocol (UDP) packets are sent to a targeted server with the aim of overwhelming that device’s ability to process and respond. The firewall protecting the targeted server can also become exhausted as a result of UDP flooding, resulting in a denial-of-service to legitimate traffic.
  21. A UDP flood works primarily by exploiting the steps that a server takes when it responds to a UDP packet sent to one of it’s ports. Under normal conditions, when a server receives a UDP packet at a particular port, it goes through two steps in response: 1. The server first checks to see if any programs are running which are presently listening for requests at the specified port. 2. If no programs are receiving packets at that port, the server responds with a ICMP (ping) packet to inform the sender that the destination was unreachable. A UDP flood can be thought of in the context of a hotel receptionist routing calls. First, the receptionist receives a phone call where the caller asks to be connected to a specific room. The receptionist then needs to look through the list of all rooms to make sure that the guest is available in the room and willing to take the call. Once the receptionist realizes that the guest is not taking any calls, they have to pick the phone back up and tell the caller that the guest will not be taking the call. If suddenly all the phone lines light up simultaneously with similar requests then they will quickly become overwhelmed.
  22. As each new UDP packet is received by the server, it goes through steps in order to process the request, utilizing server resources in the process. When UDP packets are transmitted, each packet will include the IP address of the source device. During this type of DDoS attack, an attacker will generally not use their own real IP address, but will instead spoof the source IP address of the UDP packets, impeding the attacker’s true location from being exposed and potentially saturated with the response packets from the targeted server. As a result of the targeted server utilizing resources to check and then respond to each received UDP packet, the target’s resources can become quickly exhausted when a large flood of UDP packets are received, resulting in denial-of-service to normal traffic. How is a UDP flood attack mitigated? Most operating systems limit the response rate of ICMP packets in part to disrupt DDoS attacks that require ICMP response. One drawback of this type of mitigation is that during an attack legitimate packets may also be filtered in the process. If the UDP flood has a volume high enough to saturate the state table of the targeted server’s firewall, any mitigation that occurs at the server level will be insufficient as the bottleneck will occur upstream from the targeted device. How does Cloudflare mitigate UDP Flood attacks? In order to mitigate UDP attack traffic before it reaches its target, Cloudflare drops all UDP traffic not related to DNS at the network edge. Because Cloudflare’s Anycast network scatters web traffic across many Data Centers, we have sufficient capacity to handle UDP flood attacks of any size.
  23. What is a SYN flood attack? A SYN flood (half open attack) is a type of denial-of-service (DDoS) attack which aims to make a server unavailable to legitimate traffic by consuming all available server resources. By repeatedly sending initial connection request (SYN) packets, the attacker is able to overwhelm all available ports on a targeted server machine, causing the targeted device to respond to legitimate traffic sluggishly or not at all.
  24. SYN flood attacks work by exploiting the handshake process of a TCP connection. Under normal conditions, TCP connection exhibits three distinct processes in order to make a connection. 1. First, the client sends a SYN packet to the server in order to initiate the connection. 2. The server than responds to that initial packet with a SYN/ACK packet, in order to acknowledge the communication. 3. Finally, the client returns an ACK packet to acknowledge the receipt of the packet from the server. After completing this sequence of packet sending and receiving, the TCP connection is open and able to send and receive data.
  25. To create denial-of-service, an attacker exploits the fact that after an initial SYN packet has been received, the server will respond back with one or more SYN/ACK packets and wait for the final step in the handshake. Here’s how it works: 1. The attacker sends a high volume of SYN packets to the targeted server, often with spoofed IP addresses. 2. The server then responds to each one of the connection requests and leaves an open port ready to receive the response. 3. While the server waits for the final ACK packet, which never arrives, the attacker continues to send more SYN packets. The arrival of each new SYN packet causes the server to temporarily maintain a new open port connection for a certain length of time, and once all the available ports have been utilized the server is unable to function normally. In networking, when a server is leaving a connection open but the machine on the other side of the connection is not, the connection is considered half open. In this type of DDoS attack, the targeted server is continuously leaving open connections and waiting for each connection to timeout before the ports become available again. The result is that this type of attack can be considered a “half-open attack”. A SYN flood can occur in three different ways: Direct attack: A SYN flood where the IP address is not spoofed is known as a direct attack. In this attack, the attacker does not mask their IP address at all. As a result of the attacker using a single source device with a real IP address to create the attack, the attacker is highly vulnerable to discovery and mitigation. In order to create the half-open state on the targeted machine, the hacker prevents their machine from responding to the server’s SYN-ACK packets. This is often achieved by firewall rules that stop outgoing packets other than SYN packets or by filtering out any incoming SYN-ACK packets before they reach the malicious users machine. In practice this method is used rarely (if ever), as mitigation is fairly straightforward – just block the IP address of each malicious system. Spoofed Attack: A malicious user can also spoof the IP address on each SYN packet they send in order to inhibit mitigation efforts and make their identity more difficult to discover. While the packets may be spoofed, those packets can potentially be traced back to their source. It’s difficult to do this sort of detective work but it’s not impossible, especially if Internet service providers (ISPs) are willing to help. Distributed attack (DDoS): If an attack is created using a botnet the likelihood of tracking the attack back to its source is low. For an added level of obfuscation, an attacker may have each distributed device also spoof the IP addresses from which it sends packets. If the attacker is using a botnet such as the Mirai botnet, they generally won’t care about masking the IP of the infected device. By using a SYN flood attack, a bad actor can attempt to create denial-of-service in a target device or service with substantially less traffic than other DDoS attacks. Instead of volumetric attacks, which aim to saturate the network infrastructure surrounding the target, SYN attacks only need to be larger than the available backlog in the target’s operating system. If the attacker is able to determine the size of the backlog and how long each connection will be left open before timing out, the attacker can target the exact parameters needed to disable the system, thereby reducing the total traffic to the minimum necessary amount to create denial-of-service.
  26. How is a SYN flood attack mitigated? SYN flood vulnerability has been known for a long time and a number of mitigation pathways have been utilized. A few approaches include: Increasing Backlog queue Each operating system on a targeted device has a certain number of half-open connections that it will allow. One response to high volumes of SYN packets is to increase the maximum number of possible half-open connections the operating system will allow. In order to successfully increase the maximum backlog, the system must reserve additional memory resources to deal with all the new requests. If the system does not have enough memory to be able to handle the increased backlog queue size, system performance will be negatively impacted, but that still may be better than denial-of-service. Recycling the Oldest Half-Open TCP connection Another mitigation strategy involves overwriting the oldest half-open connection once the backlog has been filled. This strategy requires that the legitimate connections can be fully established in less time than the backlog can be filled with malicious SYN packets. This particular defense fails when the attack volume is increased, or if the backlog size is too small to be practical. SYN cookies This strategy involves the creation of a cookie by the server. In order to avoid the risk of dropping connections when the backlog has been filled, the server responds to each connection request with a SYN-ACK packet but then drops the SYN request from the backlog, removing the request from memory and leaving the port open and ready to make a new connection. If the connection is a legitimate request, and a final ACK packet is sent from the client machine back to the server, the server will then reconstruct (with some limitations) the SYN backlog queue entry. While this mitigation effort does lose some information about the TCP connection, it is better than allowing denial-of-service to occur to legitimate users as a result of an attack. How does Cloudflare mitigate SYN Flood attacks? Cloudflare mitigates this type of attack in part by standing between the targeted server and the SYN flood. When the initial SYN request is made, Cloudflare handles the handshake process in the cloud, withholding the connection with the targeted server until the TCP handshake is complete. This strategy takes the resource cost of maintaining the connections with the bogus SYN packets off the targeted server and places it on Cloudflare’s Anycast network.
  27. What is a DNS Flood? Domain Name System (DNS) servers are the “phonebooks” of the Internet; they are the path through which Internet devices are able to lookup specific web servers in order to access Internet content. A DNS flood is a type of distributed denial-of-service attack (DDoS) where an attacker floods a particular domain’s DNS servers in an attempt to disrupt DNS resolution for that domain. If a user is unable to find the phonebook, it cannot lookup the address in order to make the call for a particular resource. By disrupting DNS resolution, a DNS flood attack will compromise a website, API, or web application's ability respond to legitimate traffic. DNS flood attacks can be difficult to distinguish from normal heavy traffic because the large volume of traffic often comes from a multitude of unique locations, querying for real records on the domain, mimicking legitimate traffic.
  28. How does a DNS flood attack work? The function of the Domain Name System is to translate between easy to remember names (e.g. example.com) and hard to remember addresses of website servers (e.g. 192.168.0.1), so successfully attacking DNS infrastructure makes the Internet unusable for most people. DNS flood attacks constitute a relatively new type of DNS-based attack that has proliferated with the rise of high bandwidth Internet of Things (IoT) botnets like Mirai. DNS flood attacks use the high bandwidth connections of IP cameras, DVR boxes and other IoT devices to directly overwhelm the DNS servers of major providers. The volume of requests from IoT devices overwhelms the DNS provider’s services and prevents legitimate users from accessing the provider's DNS servers. How can a DNS Flood attack be mitigated? DNS floods represent a change from traditional amplification based attack methods. With easily accessible high bandwidth botnets, attackers can now target large organizations. Until compromised IoT devices can be updated or replaced, the only way to withstand these types of attacks is to use a very large and highly distributed DNS system that can monitor, absorb, and block the attack traffic in realtime.
  29. Cloudflare’s Global Network 10MM Requests/second 10% Internet requests everyday 38% of all DNS queries 115+ Data centers globally 10+ Tbps Network capacity 2.5B Monthly unique visitors 6M+ websites, apps & APIs in 150 countries