SlideShare una empresa de Scribd logo
1 de 19
Unless otherwise noted, the content of this course material is
licensed under a Creative Commons Attribution 3.0 License.
http://creativecommons.org/licenses/by/3.0/
© 2009, Peter Von Buelow
You assume all responsibility for use and potential liability associated with any use of the material. Material contains copyrighted content, used in
accordance with U.S. law. Copyright holders of content included in this material should contact open.michigan@umich.edu with any questions,
corrections, or clarifications regarding the use of content. The Regents of the University of Michigan do not license the use of third party content
posted to this site unless such a license is specifically granted in connection with particular content. Users of content are responsible for their
compliance with applicable law. Mention of specific products in this material solely represents the opinion of the speaker and does not represent an
endorsement by the University of Michigan. For more information about how to cite these materials visit
https://open.umich.edu/education/about/terms-of-use.
Any medical information in this material is intended to inform and educate and is not a tool for self-diagnosis or a replacement for medical
evaluation, advice, diagnosis or treatment by a healthcare professional. You should speak to your physician or make an appointment to be seen if
you have questions or concerns about this information or your medical condition. Viewer discretion is advised: Material may contain medical images
that may be disturbing to some viewers.
Architecture 324
Structures II

Column Analysis and Design

•
•
•
•
•
•

Failure Modes
End Conditions and Lateral Bracing
Analysis of Wood Columns
Design of Wood Columns
Analysis of Steel Columns
Design of Steel Columns

University of Michigan, TCAUP

Structures II

Slide 2/19
Leonhard Euler (1707 – 1783)
Euler Buckling (elastic buckling)

Pcr =

–
–
–
–
–

π 2 AE
 KL 


 r 

2

r=

I
A

A = Cross sectional area (in2)
E = Modulus of elasticity of the material (lb/in2)
K = Stiffness (curvature mode) factor
L = Column length between pinned ends (in.)
r = radius of gyration (in.)

f cr =

π 2E
 KL 


 r 

University of Michigan, TCAUP

2

Source: Emanuel Handmann (wikimedia commons)

≤ Fcr

Structures II

Slide 3/19
Failure Modes
•

Short Columns – fail by crushing
(“compression blocks or piers” Engel)

fc =
–
–
–
–

•

P
≤ Fc
A

fc = Actual compressive stress
A = Cross-sectional area of column (in2)
P = Load on the column
Fc = Allowable compressive stress per codes

Intermediate Columns – crush and buckle
(“columns” Engel)

•

Long Columns – fail by buckling
(“long columns” Engel)

f cr =

–
–
–
–

π 2E
 KL 


 r 

2

≤ Fcr

E = Modulus of elasticity of the column material
K = Stiffness (curvature mode) factor
L = Column length between pinned ends (in.)
r = radius of gyration = (I/A)1/2

University of Michigan, TCAUP

Structures II

Slide 4/19
Slenderness Ratio
•

Radius of Gyration: a geometric
property of a cross section

r=
–
–
–

•

I
A

I = Ar 2

r = Radius of Gyration
I = Moment of Inertia
A = Cross-sectional Area

rx = 0.999

Slenderness Ratios:

Lx
rx

Ly
ry

The larger ratio will govern.
Try to balance for efficiency
University of Michigan, TCAUP

ry = 0.433

Structures II

Slide 5/19
End Support Conditions
K= 1.0
K is a constant based on the end conditions
l is the actual length
Both ends pinned.
l e is the effective length
l e = Kl

K= 0.7
One end free, one end fixed.
K= 2.0

K= 0.5
Both ends fixed.
One end pinned, one end fixed.
University of Michigan, TCAUP

Structures II

Slide 6/19
Analysis of Wood Columns
Data:
•
•
•

Column – size, length
Support conditions
Material properties – Fc , E

Required:
•

Pcrit for buckling and crushing

•

Calculate slenderness ratio; largest ratio
governs.
Check slenderness against upper limit.
Calculate Pcrit for buckling using Euler’s
equation:
Calculate Pmax for crushing:
Pmax = Fc A
Smaller of Pcrit or Pmax will fail first.

•
•
•
•

University of Michigan, TCAUP

Structures II

Slide 7/19
Example Problem :
Analysis
Data: section 3”x7” Full Dimension
Fc = 1000 psi
E = 1,400,000 psi
Find: Pcritical for buckling and crushing.
Determine the mode of failure
for the wood column.

University of Michigan, TCAUP

Structures II

Slide 8/19
Example Problem : Analysis (cont.)
1.

Calculate slenderness ratios
for each axis.

The larger (more slender) controls.

2.

Upper limits are usually given by codes.

University of Michigan, TCAUP

Structures II

Slide 9/19
Example Problem : Analysis (cont.)
3.

Calculate critical Euler buckling load.

4.

Calculate crushing load.

5.

Smaller of the two will fail first and control.

University of Michigan, TCAUP

Structures II

Slide 10/19
Analysis of Steel Columns
by Engel
Data:
•
•
•
•

Column – size, length
Support conditions
Material properties – Fy
Applied load - Pactual

Required:
•

Pactual < Pallowable

•

Calculate slenderness ratios.
The largest ratio governs.

•

Check slenderness ratio against upper limit of 200

•

Use the controlling slenderness ratio to find the
critical Euler buckling stress, fcr.

•

Apply some Factor of Safety (like 3) to fcr.

•

Determine yield stress limit, Fy.

•

Fallowable is the lesser stress: (fcr / F.S.) or Fy

•

Compute allowable capacity: Pallowable = Fallow A.

•

Check column adequacy:
Pactual < Pallowable
University of Michigan, TCAUP

Structures II

π 2E
f cr =
2
 KL 


 r 

Slide 11/19
Design of Steel Columns
by Engel
Data:
•
•
•
•

Column – length
Support conditions
Material properties – Fy
Applied load - Pactual

Required:
•

Column – section

•

Use the Euler equation to solve for Ar2 which is
equal to I for both x and y axis.

•

Enter the section tables and find the least weight
section that satisfies BOTH Ix and Iy.

•

Check the slenderness ratios are both < 200.

•

Calculate the actual Euler stress fcr for the final
section.

•

Fallowable is the lesser stress: fcr / F.S. or Fy

•

Compute allowable capacity: Pallowable = Fallow A.
University of Michigan, TCAUP

Structures II

P( K xl x ) 2
Ix =
× F .S .
2
π E
Iy =

P( K y l y ) 2

π E
2

× F .S .

Slide 12/19
Example Problem : Design
Select a steel section that can carry the given load.

University of Michigan, TCAUP

Structures II

Slide 13/19
Example Problem : Design (cont.)

University of Michigan, TCAUP

Structures II

Slide 14/19
Example Problem : Design (cont.)
• Determine the controlling
slenderness (larger controls)
• Find the actual buckling stress,
fcr
• Compare to allowable stress,
Fallowable is lesser of :
fcr/F.S. or Fy
• Determine safe allowable load,
Pallowable = Fallowable A

University of Michigan, TCAUP

Structures II

Slide 15/19
Determining K factors
by AISC
Sidesway Inhibited:
Braced frame
1.0 > K > 0.5
Sidesway Uninhibited:
Un-braced frame
unstable > K > 1.0
If Ic/Lc is large
and Ig/Lg is small
The connection is more pinned
If Ic/Lc is small
and Ig/Lg is large
The connection is more fixed

Source: American Institute of Steel Construction, Manual of Steel Construction, AISC 1980

University of Michigan, TCAUP

Structures II

Slide 16/19
Steel Frame Construction

University of Michigan, TCAUP

Structures II

Slide 17/19
Analysis of Steel Columns
by AISC-ASD
Data:
•
•
•
•

Column – size, length
Support conditions
Material properties – Fy
Applied load - Pactual

Required:
•

Pactual < Pallowable

•

Calculate slenderness ratios.
largest ratio governs.
In AISC Table look up Fa for given
slenderness ratio.
Compute: Pallowable = Fa A.
Check column adequacy:
Pactual < Pallowable

•
•
•

Source: American Institute of Steel Construction, Manual of
Steel Construction, AISC 1980
University of Michigan, TCAUP

Structures II

Slide 18/19
Design of Steel Columns
with AISC-ASD Tables
Data:
•
•
•
•

Column – length
Support conditions
Material properties – Fy
Applied load - Pactual

Required:
•

Column Size

1.
2.

Enter table with height.
Read allowable load for each section to
find the smallest adequate size.
Tables assume weak axis buckling. If
the strong axis controls the length must
be divide by the ratio rx/ry
Values stop in table (black line) at
slenderness limit, KL/r = 200

3.
4.

University of Michigan, TCAUP

Source: American Institute of Steel Construction, Manual of Steel
Construction, AISC 1980
Structures II
Slide 19/19

Más contenido relacionado

La actualidad más candente

Comparision of Design Codes ACI 318-11, IS 456 2000 and Eurocode II
Comparision of Design Codes ACI 318-11, IS 456 2000 and Eurocode IIComparision of Design Codes ACI 318-11, IS 456 2000 and Eurocode II
Comparision of Design Codes ACI 318-11, IS 456 2000 and Eurocode II
ijtsrd
 

La actualidad más candente (20)

Plastic analysis
Plastic analysisPlastic analysis
Plastic analysis
 
Design and Detailing of RC Deep beams as per IS 456-2000
Design and Detailing of RC Deep beams as per IS 456-2000Design and Detailing of RC Deep beams as per IS 456-2000
Design and Detailing of RC Deep beams as per IS 456-2000
 
Gantry Girder Design.pptx
Gantry Girder Design.pptxGantry Girder Design.pptx
Gantry Girder Design.pptx
 
Design of beams
Design of beamsDesign of beams
Design of beams
 
CE 72.52 - Lecture 7 - Strut and Tie Models
CE 72.52 - Lecture 7 - Strut and Tie ModelsCE 72.52 - Lecture 7 - Strut and Tie Models
CE 72.52 - Lecture 7 - Strut and Tie Models
 
Moment Distribution Method SA-2
Moment Distribution Method SA-2Moment Distribution Method SA-2
Moment Distribution Method SA-2
 
Prestressed composite beams
Prestressed composite beamsPrestressed composite beams
Prestressed composite beams
 
L- beams or flanged beams
L- beams or flanged beamsL- beams or flanged beams
L- beams or flanged beams
 
Comparision of Design Codes ACI 318-11, IS 456 2000 and Eurocode II
Comparision of Design Codes ACI 318-11, IS 456 2000 and Eurocode IIComparision of Design Codes ACI 318-11, IS 456 2000 and Eurocode II
Comparision of Design Codes ACI 318-11, IS 456 2000 and Eurocode II
 
Counterfort Retaining Wall
Counterfort Retaining WallCounterfort Retaining Wall
Counterfort Retaining Wall
 
Design of steel structure as per is 800(2007)
Design of steel structure as per is 800(2007)Design of steel structure as per is 800(2007)
Design of steel structure as per is 800(2007)
 
Eccentric connections in steel structure
Eccentric connections in steel structureEccentric connections in steel structure
Eccentric connections in steel structure
 
Moment Distribution Method
Moment Distribution MethodMoment Distribution Method
Moment Distribution Method
 
Beams
Beams Beams
Beams
 
Design of R.C.C Beam
Design of R.C.C BeamDesign of R.C.C Beam
Design of R.C.C Beam
 
Koppolu abishek prying action
Koppolu abishek   prying actionKoppolu abishek   prying action
Koppolu abishek prying action
 
Steel building design worked example
Steel building design worked exampleSteel building design worked example
Steel building design worked example
 
Rcc member design steps
Rcc member design stepsRcc member design steps
Rcc member design steps
 
Design of columns axial load as per IS 456-2000
Design of columns  axial load as per IS 456-2000Design of columns  axial load as per IS 456-2000
Design of columns axial load as per IS 456-2000
 
Static Indeterminacy and Kinematic Indeterminacy
Static Indeterminacy and Kinematic IndeterminacyStatic Indeterminacy and Kinematic Indeterminacy
Static Indeterminacy and Kinematic Indeterminacy
 

Destacado

Columns lecture#4
Columns lecture#4Columns lecture#4
Columns lecture#4
Irfan Malik
 
structural analysis of a bungalow
structural analysis of a bungalowstructural analysis of a bungalow
structural analysis of a bungalow
WC Yan
 
Moment distribution method
Moment distribution methodMoment distribution method
Moment distribution method
Saad Ullah
 
Columns lecture#1
Columns lecture#1Columns lecture#1
Columns lecture#1
Irfan Malik
 
Princípios de liderança biblica em elias 2
Princípios de liderança biblica em elias 2Princípios de liderança biblica em elias 2
Princípios de liderança biblica em elias 2
Vilmar Nascimento
 

Destacado (20)

Columns
ColumnsColumns
Columns
 
Columns lecture#4
Columns lecture#4Columns lecture#4
Columns lecture#4
 
Evolution of the columns
Evolution of the columnsEvolution of the columns
Evolution of the columns
 
Building Structures: Column & Beam analysis
Building Structures: Column & Beam analysisBuilding Structures: Column & Beam analysis
Building Structures: Column & Beam analysis
 
Civil Engineering (Beams,Columns)
Civil Engineering (Beams,Columns)Civil Engineering (Beams,Columns)
Civil Engineering (Beams,Columns)
 
structural analysis of a bungalow
structural analysis of a bungalowstructural analysis of a bungalow
structural analysis of a bungalow
 
BUILDING STRUCTURES 1 COLUMN AND BEAM ANALYSIS
BUILDING STRUCTURES 1 COLUMN AND BEAM ANALYSISBUILDING STRUCTURES 1 COLUMN AND BEAM ANALYSIS
BUILDING STRUCTURES 1 COLUMN AND BEAM ANALYSIS
 
Building Structure - Structural Analysis of a bungalow
Building Structure - Structural Analysis of a bungalowBuilding Structure - Structural Analysis of a bungalow
Building Structure - Structural Analysis of a bungalow
 
Structural Analysis of a Bungalow Report
Structural Analysis of a Bungalow ReportStructural Analysis of a Bungalow Report
Structural Analysis of a Bungalow Report
 
Theories of columns
Theories of columnsTheories of columns
Theories of columns
 
Placing column layout
Placing  column layoutPlacing  column layout
Placing column layout
 
BUCKLING ANALYSIS
BUCKLING ANALYSISBUCKLING ANALYSIS
BUCKLING ANALYSIS
 
Moment distribution method
Moment distribution methodMoment distribution method
Moment distribution method
 
Columns lecture#1
Columns lecture#1Columns lecture#1
Columns lecture#1
 
Beam design
Beam designBeam design
Beam design
 
Princípios de liderança biblica em elias 2
Princípios de liderança biblica em elias 2Princípios de liderança biblica em elias 2
Princípios de liderança biblica em elias 2
 
Univ 100 research presentation
Univ 100 research presentationUniv 100 research presentation
Univ 100 research presentation
 
Modelagem e Análise de Dados em PPC - Search Masters Brasil 2013
Modelagem e Análise de Dados em PPC - Search Masters Brasil 2013Modelagem e Análise de Dados em PPC - Search Masters Brasil 2013
Modelagem e Análise de Dados em PPC - Search Masters Brasil 2013
 
Sesiónes 3ra unidad dcl
Sesiónes 3ra unidad dclSesiónes 3ra unidad dcl
Sesiónes 3ra unidad dcl
 
Machine response
Machine responseMachine response
Machine response
 

Similar a Column Analysis and Design

New workA)Transfer It  Please respond to the following· U.docx
New workA)Transfer It  Please respond to the following· U.docxNew workA)Transfer It  Please respond to the following· U.docx
New workA)Transfer It  Please respond to the following· U.docx
curwenmichaela
 
ABSTRACTThe report describe the results obtained from a tens.docx
ABSTRACTThe report describe the results obtained from a tens.docxABSTRACTThe report describe the results obtained from a tens.docx
ABSTRACTThe report describe the results obtained from a tens.docx
ransayo
 
INTERFACIAL STRESS ANALYSIS OF EXTERNALLY PLATED RC BEAMS
INTERFACIAL STRESS ANALYSIS OF EXTERNALLY PLATED RC BEAMSINTERFACIAL STRESS ANALYSIS OF EXTERNALLY PLATED RC BEAMS
INTERFACIAL STRESS ANALYSIS OF EXTERNALLY PLATED RC BEAMS
Ijripublishers Ijri
 
INTERFACIAL STRESS ANALYSIS OF EXTERNALLY PLATED RC BEAMS
INTERFACIAL STRESS ANALYSIS OF EXTERNALLY PLATED RC BEAMSINTERFACIAL STRESS ANALYSIS OF EXTERNALLY PLATED RC BEAMS
INTERFACIAL STRESS ANALYSIS OF EXTERNALLY PLATED RC BEAMS
Ijripublishers Ijri
 

Similar a Column Analysis and Design (20)

Column analysis and design
Column analysis and designColumn analysis and design
Column analysis and design
 
Structures and Materials- Section 7 Stress Concentration
Structures and Materials- Section 7 Stress ConcentrationStructures and Materials- Section 7 Stress Concentration
Structures and Materials- Section 7 Stress Concentration
 
Design of rectangular beam by USD
Design of rectangular beam by USDDesign of rectangular beam by USD
Design of rectangular beam by USD
 
Structural Integrity Analysis: Chapter 2 Fracture Mechanics
Structural Integrity Analysis: Chapter  2 Fracture MechanicsStructural Integrity Analysis: Chapter  2 Fracture Mechanics
Structural Integrity Analysis: Chapter 2 Fracture Mechanics
 
4_calculo_plastico-include gable frame.pdf
4_calculo_plastico-include gable frame.pdf4_calculo_plastico-include gable frame.pdf
4_calculo_plastico-include gable frame.pdf
 
New workA)Transfer It  Please respond to the following· U.docx
New workA)Transfer It  Please respond to the following· U.docxNew workA)Transfer It  Please respond to the following· U.docx
New workA)Transfer It  Please respond to the following· U.docx
 
Selecting Columns And Beams
Selecting Columns And BeamsSelecting Columns And Beams
Selecting Columns And Beams
 
Mechanical properties of materials 1 ppt
Mechanical properties of materials 1 pptMechanical properties of materials 1 ppt
Mechanical properties of materials 1 ppt
 
ABSTRACTThe report describe the results obtained from a tens.docx
ABSTRACTThe report describe the results obtained from a tens.docxABSTRACTThe report describe the results obtained from a tens.docx
ABSTRACTThe report describe the results obtained from a tens.docx
 
Structures and Materials- Section 4 Behaviour of Materials
Structures and Materials- Section 4 Behaviour of MaterialsStructures and Materials- Section 4 Behaviour of Materials
Structures and Materials- Section 4 Behaviour of Materials
 
Structural Integrity Analysis: Chapter 3 Mechanical Properties of Materials
Structural Integrity Analysis: Chapter 3 Mechanical Properties of MaterialsStructural Integrity Analysis: Chapter 3 Mechanical Properties of Materials
Structural Integrity Analysis: Chapter 3 Mechanical Properties of Materials
 
Structures and Materials- Section 3 Stress-Strain Relationships
Structures and Materials- Section 3 Stress-Strain RelationshipsStructures and Materials- Section 3 Stress-Strain Relationships
Structures and Materials- Section 3 Stress-Strain Relationships
 
“Comparison of Maximum Stress distribution of Long & Short Side Column due to...
“Comparison of Maximum Stress distribution of Long & Short Side Column due to...“Comparison of Maximum Stress distribution of Long & Short Side Column due to...
“Comparison of Maximum Stress distribution of Long & Short Side Column due to...
 
Paper no. 1
Paper no. 1Paper no. 1
Paper no. 1
 
International Journal of Engineering and Science Invention (IJESI)
International Journal of Engineering and Science Invention (IJESI)International Journal of Engineering and Science Invention (IJESI)
International Journal of Engineering and Science Invention (IJESI)
 
Lecture on Basic Material Classification
Lecture on Basic Material ClassificationLecture on Basic Material Classification
Lecture on Basic Material Classification
 
Paper no. 3
Paper no. 3Paper no. 3
Paper no. 3
 
4 tension test
4 tension test4 tension test
4 tension test
 
INTERFACIAL STRESS ANALYSIS OF EXTERNALLY PLATED RC BEAMS
INTERFACIAL STRESS ANALYSIS OF EXTERNALLY PLATED RC BEAMSINTERFACIAL STRESS ANALYSIS OF EXTERNALLY PLATED RC BEAMS
INTERFACIAL STRESS ANALYSIS OF EXTERNALLY PLATED RC BEAMS
 
INTERFACIAL STRESS ANALYSIS OF EXTERNALLY PLATED RC BEAMS
INTERFACIAL STRESS ANALYSIS OF EXTERNALLY PLATED RC BEAMSINTERFACIAL STRESS ANALYSIS OF EXTERNALLY PLATED RC BEAMS
INTERFACIAL STRESS ANALYSIS OF EXTERNALLY PLATED RC BEAMS
 

Último

The basics of sentences session 4pptx.pptx
The basics of sentences session 4pptx.pptxThe basics of sentences session 4pptx.pptx
The basics of sentences session 4pptx.pptx
heathfieldcps1
 
會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文
會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文
會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文
中 央社
 

Último (20)

ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH FORM 50 CÂU TRẮC NGHI...
ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH FORM 50 CÂU TRẮC NGHI...ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH FORM 50 CÂU TRẮC NGHI...
ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH FORM 50 CÂU TRẮC NGHI...
 
REPRODUCTIVE TOXICITY STUDIE OF MALE AND FEMALEpptx
REPRODUCTIVE TOXICITY  STUDIE OF MALE AND FEMALEpptxREPRODUCTIVE TOXICITY  STUDIE OF MALE AND FEMALEpptx
REPRODUCTIVE TOXICITY STUDIE OF MALE AND FEMALEpptx
 
Operations Management - Book1.p - Dr. Abdulfatah A. Salem
Operations Management - Book1.p  - Dr. Abdulfatah A. SalemOperations Management - Book1.p  - Dr. Abdulfatah A. Salem
Operations Management - Book1.p - Dr. Abdulfatah A. Salem
 
Spring gala 2024 photo slideshow - Celebrating School-Community Partnerships
Spring gala 2024 photo slideshow - Celebrating School-Community PartnershipsSpring gala 2024 photo slideshow - Celebrating School-Community Partnerships
Spring gala 2024 photo slideshow - Celebrating School-Community Partnerships
 
Dementia (Alzheimer & vasular dementia).
Dementia (Alzheimer & vasular dementia).Dementia (Alzheimer & vasular dementia).
Dementia (Alzheimer & vasular dementia).
 
The Ball Poem- John Berryman_20240518_001617_0000.pptx
The Ball Poem- John Berryman_20240518_001617_0000.pptxThe Ball Poem- John Berryman_20240518_001617_0000.pptx
The Ball Poem- John Berryman_20240518_001617_0000.pptx
 
IPL Online Quiz by Pragya; Question Set.
IPL Online Quiz by Pragya; Question Set.IPL Online Quiz by Pragya; Question Set.
IPL Online Quiz by Pragya; Question Set.
 
An Overview of the Odoo 17 Knowledge App
An Overview of the Odoo 17 Knowledge AppAn Overview of the Odoo 17 Knowledge App
An Overview of the Odoo 17 Knowledge App
 
Exploring Gemini AI and Integration with MuleSoft | MuleSoft Mysore Meetup #45
Exploring Gemini AI and Integration with MuleSoft | MuleSoft Mysore Meetup #45Exploring Gemini AI and Integration with MuleSoft | MuleSoft Mysore Meetup #45
Exploring Gemini AI and Integration with MuleSoft | MuleSoft Mysore Meetup #45
 
HVAC System | Audit of HVAC System | Audit and regulatory Comploance.pptx
HVAC System | Audit of HVAC System | Audit and regulatory Comploance.pptxHVAC System | Audit of HVAC System | Audit and regulatory Comploance.pptx
HVAC System | Audit of HVAC System | Audit and regulatory Comploance.pptx
 
Removal Strategy _ FEFO _ Working with Perishable Products in Odoo 17
Removal Strategy _ FEFO _ Working with Perishable Products in Odoo 17Removal Strategy _ FEFO _ Working with Perishable Products in Odoo 17
Removal Strategy _ FEFO _ Working with Perishable Products in Odoo 17
 
ANTI PARKISON DRUGS.pptx
ANTI         PARKISON          DRUGS.pptxANTI         PARKISON          DRUGS.pptx
ANTI PARKISON DRUGS.pptx
 
UChicago CMSC 23320 - The Best Commit Messages of 2024
UChicago CMSC 23320 - The Best Commit Messages of 2024UChicago CMSC 23320 - The Best Commit Messages of 2024
UChicago CMSC 23320 - The Best Commit Messages of 2024
 
The basics of sentences session 4pptx.pptx
The basics of sentences session 4pptx.pptxThe basics of sentences session 4pptx.pptx
The basics of sentences session 4pptx.pptx
 
MichaelStarkes_UncutGemsProjectSummary.pdf
MichaelStarkes_UncutGemsProjectSummary.pdfMichaelStarkes_UncutGemsProjectSummary.pdf
MichaelStarkes_UncutGemsProjectSummary.pdf
 
An overview of the various scriptures in Hinduism
An overview of the various scriptures in HinduismAn overview of the various scriptures in Hinduism
An overview of the various scriptures in Hinduism
 
The Last Leaf, a short story by O. Henry
The Last Leaf, a short story by O. HenryThe Last Leaf, a short story by O. Henry
The Last Leaf, a short story by O. Henry
 
會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文
會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文
會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文
 
size separation d pharm 1st year pharmaceutics
size separation d pharm 1st year pharmaceuticssize separation d pharm 1st year pharmaceutics
size separation d pharm 1st year pharmaceutics
 
Features of Video Calls in the Discuss Module in Odoo 17
Features of Video Calls in the Discuss Module in Odoo 17Features of Video Calls in the Discuss Module in Odoo 17
Features of Video Calls in the Discuss Module in Odoo 17
 

Column Analysis and Design

  • 1. Unless otherwise noted, the content of this course material is licensed under a Creative Commons Attribution 3.0 License. http://creativecommons.org/licenses/by/3.0/ © 2009, Peter Von Buelow You assume all responsibility for use and potential liability associated with any use of the material. Material contains copyrighted content, used in accordance with U.S. law. Copyright holders of content included in this material should contact open.michigan@umich.edu with any questions, corrections, or clarifications regarding the use of content. The Regents of the University of Michigan do not license the use of third party content posted to this site unless such a license is specifically granted in connection with particular content. Users of content are responsible for their compliance with applicable law. Mention of specific products in this material solely represents the opinion of the speaker and does not represent an endorsement by the University of Michigan. For more information about how to cite these materials visit https://open.umich.edu/education/about/terms-of-use. Any medical information in this material is intended to inform and educate and is not a tool for self-diagnosis or a replacement for medical evaluation, advice, diagnosis or treatment by a healthcare professional. You should speak to your physician or make an appointment to be seen if you have questions or concerns about this information or your medical condition. Viewer discretion is advised: Material may contain medical images that may be disturbing to some viewers.
  • 2. Architecture 324 Structures II Column Analysis and Design • • • • • • Failure Modes End Conditions and Lateral Bracing Analysis of Wood Columns Design of Wood Columns Analysis of Steel Columns Design of Steel Columns University of Michigan, TCAUP Structures II Slide 2/19
  • 3. Leonhard Euler (1707 – 1783) Euler Buckling (elastic buckling) Pcr = – – – – – π 2 AE  KL     r  2 r= I A A = Cross sectional area (in2) E = Modulus of elasticity of the material (lb/in2) K = Stiffness (curvature mode) factor L = Column length between pinned ends (in.) r = radius of gyration (in.) f cr = π 2E  KL     r  University of Michigan, TCAUP 2 Source: Emanuel Handmann (wikimedia commons) ≤ Fcr Structures II Slide 3/19
  • 4. Failure Modes • Short Columns – fail by crushing (“compression blocks or piers” Engel) fc = – – – – • P ≤ Fc A fc = Actual compressive stress A = Cross-sectional area of column (in2) P = Load on the column Fc = Allowable compressive stress per codes Intermediate Columns – crush and buckle (“columns” Engel) • Long Columns – fail by buckling (“long columns” Engel) f cr = – – – – π 2E  KL     r  2 ≤ Fcr E = Modulus of elasticity of the column material K = Stiffness (curvature mode) factor L = Column length between pinned ends (in.) r = radius of gyration = (I/A)1/2 University of Michigan, TCAUP Structures II Slide 4/19
  • 5. Slenderness Ratio • Radius of Gyration: a geometric property of a cross section r= – – – • I A I = Ar 2 r = Radius of Gyration I = Moment of Inertia A = Cross-sectional Area rx = 0.999 Slenderness Ratios: Lx rx Ly ry The larger ratio will govern. Try to balance for efficiency University of Michigan, TCAUP ry = 0.433 Structures II Slide 5/19
  • 6. End Support Conditions K= 1.0 K is a constant based on the end conditions l is the actual length Both ends pinned. l e is the effective length l e = Kl K= 0.7 One end free, one end fixed. K= 2.0 K= 0.5 Both ends fixed. One end pinned, one end fixed. University of Michigan, TCAUP Structures II Slide 6/19
  • 7. Analysis of Wood Columns Data: • • • Column – size, length Support conditions Material properties – Fc , E Required: • Pcrit for buckling and crushing • Calculate slenderness ratio; largest ratio governs. Check slenderness against upper limit. Calculate Pcrit for buckling using Euler’s equation: Calculate Pmax for crushing: Pmax = Fc A Smaller of Pcrit or Pmax will fail first. • • • • University of Michigan, TCAUP Structures II Slide 7/19
  • 8. Example Problem : Analysis Data: section 3”x7” Full Dimension Fc = 1000 psi E = 1,400,000 psi Find: Pcritical for buckling and crushing. Determine the mode of failure for the wood column. University of Michigan, TCAUP Structures II Slide 8/19
  • 9. Example Problem : Analysis (cont.) 1. Calculate slenderness ratios for each axis. The larger (more slender) controls. 2. Upper limits are usually given by codes. University of Michigan, TCAUP Structures II Slide 9/19
  • 10. Example Problem : Analysis (cont.) 3. Calculate critical Euler buckling load. 4. Calculate crushing load. 5. Smaller of the two will fail first and control. University of Michigan, TCAUP Structures II Slide 10/19
  • 11. Analysis of Steel Columns by Engel Data: • • • • Column – size, length Support conditions Material properties – Fy Applied load - Pactual Required: • Pactual < Pallowable • Calculate slenderness ratios. The largest ratio governs. • Check slenderness ratio against upper limit of 200 • Use the controlling slenderness ratio to find the critical Euler buckling stress, fcr. • Apply some Factor of Safety (like 3) to fcr. • Determine yield stress limit, Fy. • Fallowable is the lesser stress: (fcr / F.S.) or Fy • Compute allowable capacity: Pallowable = Fallow A. • Check column adequacy: Pactual < Pallowable University of Michigan, TCAUP Structures II π 2E f cr = 2  KL     r  Slide 11/19
  • 12. Design of Steel Columns by Engel Data: • • • • Column – length Support conditions Material properties – Fy Applied load - Pactual Required: • Column – section • Use the Euler equation to solve for Ar2 which is equal to I for both x and y axis. • Enter the section tables and find the least weight section that satisfies BOTH Ix and Iy. • Check the slenderness ratios are both < 200. • Calculate the actual Euler stress fcr for the final section. • Fallowable is the lesser stress: fcr / F.S. or Fy • Compute allowable capacity: Pallowable = Fallow A. University of Michigan, TCAUP Structures II P( K xl x ) 2 Ix = × F .S . 2 π E Iy = P( K y l y ) 2 π E 2 × F .S . Slide 12/19
  • 13. Example Problem : Design Select a steel section that can carry the given load. University of Michigan, TCAUP Structures II Slide 13/19
  • 14. Example Problem : Design (cont.) University of Michigan, TCAUP Structures II Slide 14/19
  • 15. Example Problem : Design (cont.) • Determine the controlling slenderness (larger controls) • Find the actual buckling stress, fcr • Compare to allowable stress, Fallowable is lesser of : fcr/F.S. or Fy • Determine safe allowable load, Pallowable = Fallowable A University of Michigan, TCAUP Structures II Slide 15/19
  • 16. Determining K factors by AISC Sidesway Inhibited: Braced frame 1.0 > K > 0.5 Sidesway Uninhibited: Un-braced frame unstable > K > 1.0 If Ic/Lc is large and Ig/Lg is small The connection is more pinned If Ic/Lc is small and Ig/Lg is large The connection is more fixed Source: American Institute of Steel Construction, Manual of Steel Construction, AISC 1980 University of Michigan, TCAUP Structures II Slide 16/19
  • 17. Steel Frame Construction University of Michigan, TCAUP Structures II Slide 17/19
  • 18. Analysis of Steel Columns by AISC-ASD Data: • • • • Column – size, length Support conditions Material properties – Fy Applied load - Pactual Required: • Pactual < Pallowable • Calculate slenderness ratios. largest ratio governs. In AISC Table look up Fa for given slenderness ratio. Compute: Pallowable = Fa A. Check column adequacy: Pactual < Pallowable • • • Source: American Institute of Steel Construction, Manual of Steel Construction, AISC 1980 University of Michigan, TCAUP Structures II Slide 18/19
  • 19. Design of Steel Columns with AISC-ASD Tables Data: • • • • Column – length Support conditions Material properties – Fy Applied load - Pactual Required: • Column Size 1. 2. Enter table with height. Read allowable load for each section to find the smallest adequate size. Tables assume weak axis buckling. If the strong axis controls the length must be divide by the ratio rx/ry Values stop in table (black line) at slenderness limit, KL/r = 200 3. 4. University of Michigan, TCAUP Source: American Institute of Steel Construction, Manual of Steel Construction, AISC 1980 Structures II Slide 19/19

Notas del editor

  1. PvB
  2. Leonhard Euler portrait by Emanuel Handmann, 1753 http://commons.wikimedia.org/wiki/File:Leonhard_Euler_by_Handmann_.png Public domain http://en.wikipedia.org/wiki/Emanuel_Handmann
  3. PvB
  4. PvB
  5. PvB
  6. PvB
  7. PvB
  8. PvB
  9. PvB
  10. PvB
  11. This is the steel code [2] Manual of steel construction. Author American Institute of Steel Construction. Edition 8th ed. Published Chicago, Ill. : American Institute of Steel Construction, c1980. p. 3-5
  12. PvB
  13. [2] p.3-16
  14. [2] p. 3-32