SlideShare una empresa de Scribd logo
1 de 32
Estrella 0 -Estrella 0 -
Fundamentos de laFundamentos de la
ProgramaciónProgramación
Programa MicrosoftPrograma Microsoft
Desarrollador CincoDesarrollador Cinco
EstrellasEstrellas
ObjetivoObjetivo
Mostrar los fundamentos de la programación aMostrar los fundamentos de la programación a
través de ejemplos y prácticas utilizadastravés de ejemplos y prácticas utilizadas
cotidianamente en el desarrollo decotidianamente en el desarrollo de
aplicacionesaplicaciones
PrerrequisitosPrerrequisitos
El presente curso asumirá conocimientosEl presente curso asumirá conocimientos
básicos debásicos de
 ComputadoraComputadora
 Dispositivos de Entrada/SalidaDispositivos de Entrada/Salida
 Organización Física de una computadora (CPU,Organización Física de una computadora (CPU,
Memoria)Memoria)
 Sistemas OperativosSistemas Operativos
Temas a Tratar (1/2)Temas a Tratar (1/2)
El SoftwareEl Software
Lenguajes de programaciónLenguajes de programación
Resolución de problemas con computadoraResolución de problemas con computadora
Entorno de programaciónEntorno de programación
Tipos de DatosTipos de Datos
Variables y ConstantesVariables y Constantes
SentenciasSentencias
Operadores y ExpresionesOperadores y Expresiones
Temas a Tratar (2/2)Temas a Tratar (2/2)
Estructuras Básicas de ControlEstructuras Básicas de Control
Procedimientos y FuncionesProcedimientos y Funciones
Visibilidad de variablesVisibilidad de variables
BibliotecasBibliotecas
ArraysArrays
El Estilo de ProgramaciónEl Estilo de Programación
El SoftwareEl Software
Las operaciones que debe realizar elLas operaciones que debe realizar el
hardware son especificadas con una listahardware son especificadas con una lista
de instrucciones, llamadas programas ode instrucciones, llamadas programas o
software.software.
Dos grandes grupos de softwareDos grandes grupos de software
 Software del SistemaSoftware del Sistema
 Indispensable para que la máquina funcioneIndispensable para que la máquina funcione
y poder escribir programas de aplicacióny poder escribir programas de aplicación
 Software de AplicaciónSoftware de Aplicación
 Realizan tareas concretas que tienenRealizan tareas concretas que tienen
utilidad para ciertos usuariosutilidad para ciertos usuarios
Lenguajes de Programación (1/2)Lenguajes de Programación (1/2)
Lenguajes utilizados para escribirLenguajes utilizados para escribir
programas de computadoras que puedanprogramas de computadoras que puedan
ser entendidos por ellasser entendidos por ellas
Se clasifican en tres grandes categoríasSe clasifican en tres grandes categorías
 lenguajes de máquinalenguajes de máquina
 instrucciones directamente entendibles por lainstrucciones directamente entendibles por la
computadora (lenguaje binario)computadora (lenguaje binario)
 lenguajes de bajo nivellenguajes de bajo nivel
 Proveen un juego de instrucciones másProveen un juego de instrucciones más
comprensibles por los humanoscomprensibles por los humanos
 lenguajes de alto nivellenguajes de alto nivel
Lenguajes de Programación (2/2)Lenguajes de Programación (2/2)
Lenguajes de alto nivelLenguajes de alto nivel
 Utilizan instrucciones escritas con palabras similares aUtilizan instrucciones escritas con palabras similares a
los lenguajes humanoslos lenguajes humanos
 Son independientes de la máquina en la que seSon independientes de la máquina en la que se
ejecutanejecutan
 Necesitan ser traducidos a instrucciones en lenguajeNecesitan ser traducidos a instrucciones en lenguaje
máquina (Compilación)máquina (Compilación)
Existen diversos tiposExisten diversos tipos
 EstructuradosEstructurados
 Orientados a ObjetosOrientados a Objetos
 DeclarativosDeclarativos
 FuncionalesFuncionales
Resolución de problemas conResolución de problemas con
computadoracomputadora
El proceso de diseñar un programa es,El proceso de diseñar un programa es,
esencialmente, un proceso creativo.esencialmente, un proceso creativo.
Sin embargo, hay una serie de pasosSin embargo, hay una serie de pasos
comunes a seguir:comunes a seguir:
 Análisis del problemaAnálisis del problema
 Diseño del algoritmo soluciónDiseño del algoritmo solución
 CodificaciónCodificación
 Compilación y EjecuciónCompilación y Ejecución
 VerificaciónVerificación
 DepuraciónDepuración
 DocumentaciónDocumentación
Entorno de ProgramaciónEntorno de Programación
También conocidos como IDEsTambién conocidos como IDEs
Herramienta esencial a la hora deHerramienta esencial a la hora de
desarrollar softwaredesarrollar software
IncluyeIncluye
 EditorEditor
 Intérprete o CompiladorIntérprete o Compilador
 DepuradorDepurador
 Ayuda en líneaAyuda en línea
Tipos de DatosTipos de Datos
Datos: piezas de información con las queDatos: piezas de información con las que
un programa trabajaun programa trabaja
Cada dato tiene asociado un únicoCada dato tiene asociado un único TipoTipo
El Tipo de Dato determina la naturaleza delEl Tipo de Dato determina la naturaleza del
conjunto de valores que un dato puedeconjunto de valores que un dato puede
tomartomar
Ejemplos:Ejemplos:
 Número EnteroNúmero Entero
 Número RealNúmero Real
 Cadena de CaracteresCadena de Caracteres
 Valor Lógico (Verdadero o Falso)Valor Lógico (Verdadero o Falso)
Variables y ConstantesVariables y Constantes
Existen dos grupos principales de datosExisten dos grupos principales de datos
 Constantes: su valor no puede cambiarConstantes: su valor no puede cambiar
durante la ejecución de un programadurante la ejecución de un programa
 Variables: su valor puede cambiar durante laVariables: su valor puede cambiar durante la
ejecución de un programaejecución de un programa
Ambas tienen un nombre y un valorAmbas tienen un nombre y un valor
Ambas permiten representar mediante unAmbas permiten representar mediante un
nombre a una posición de memoria quenombre a una posición de memoria que
contiene el valorcontiene el valor
SentenciasSentencias
Describen acciones algorítmicas queDescriben acciones algorítmicas que
pueden ser ejecutadaspueden ser ejecutadas
Se clasifican enSe clasifican en
 Ejecutables / No ejecutablesEjecutables / No ejecutables
 Simples / EstructuradasSimples / Estructuradas
Operadores y Expresiones (1/2)Operadores y Expresiones (1/2)
Sirven para procesar variables y constantesSirven para procesar variables y constantes
Una expresión es un conjunto de datosUna expresión es un conjunto de datos
unidos por operadores que tiene un únicounidos por operadores que tiene un único
resultadoresultado
 Expresiones aritméticasExpresiones aritméticas
 El resultado es un númeroEl resultado es un número
 a = ((2+6) / 8) * 3a = ((2+6) / 8) * 3
 Expresiones lógicasExpresiones lógicas
 El resultado es un valor verdadero o falsoEl resultado es un valor verdadero o falso
 (a < 10) y (b > 50)(a < 10) y (b > 50)
Operadores y Expresiones (2/2)Operadores y Expresiones (2/2)
Existen diversos tiposExisten diversos tipos
 Aritméticos: suma, resta, multiplicación, etc.Aritméticos: suma, resta, multiplicación, etc.
 De relación: igual, mayor, menor, distinto, etc.De relación: igual, mayor, menor, distinto, etc.
 Lógicos: and, or, not, etc.Lógicos: and, or, not, etc.
Estructuras de ControlEstructuras de Control
El orden de ejecución de las sentencias deEl orden de ejecución de las sentencias de
un programa determina su flujo de controlun programa determina su flujo de control
Las estructuras de control permiten alterarLas estructuras de control permiten alterar
el orden del flujo de controlel orden del flujo de control
Existen dos tipos básicosExisten dos tipos básicos
 De SelecciónDe Selección
 De Repetición o IteraciónDe Repetición o Iteración
Estructuras de Control SelectivasEstructuras de Control Selectivas
(1/2)(1/2)
Dirigen el flujo de ejecución según elDirigen el flujo de ejecución según el
resultado de evaluación de expresionesresultado de evaluación de expresiones
IFIF
 sisi expresion_logicaexpresion_logica
entoncesentonces hacer acción Ahacer acción A
sinosino hacer acción Bhacer acción B
fin_sifin_si
Estructuras de Control SelectivasEstructuras de Control Selectivas
(2/2)(2/2)
CASECASE
 según_seasegún_sea selectorselector hacerhacer
C11,C12,…:C11,C12,…: sentencia 1sentencia 1
C21,C22,…:C21,C22,…: sentencia 2sentencia 2
……....
[[sinosino sentencia x]sentencia x]
fin_segúnfin_según
Estructuras de Control RepetitivasEstructuras de Control Repetitivas
(1/3)(1/3)
Permiten ejecutar un conjunto dePermiten ejecutar un conjunto de
sentencias repetidamente una ciertasentencias repetidamente una cierta
cantidad de veces o hasta que se cumplacantidad de veces o hasta que se cumpla
una determinada condiciónuna determinada condición
El conjunto de sentencias se denominaEl conjunto de sentencias se denomina
buclebucle
Cada repetición del cuerpo del bucle seCada repetición del cuerpo del bucle se
denomina iteracióndenomina iteración
Estructuras de Control RepetitivasEstructuras de Control Repetitivas
(2/3)(2/3)
WHILEWHILE
 mientrasmientras condicióncondición hacerhacer
sentencia/ssentencia/s
……....
fin_mientrasfin_mientras
Estructuras de Control RepetitivasEstructuras de Control Repetitivas
(3/3)(3/3)
FORFOR
 desdedesde variable  valor_inicial hastahasta
valor_final hacerhacer
sentencia/ssentencia/s
……....
fin_desdefin_desde
Procedimientos y Funciones (1/4)Procedimientos y Funciones (1/4)
Descomposición en subprogramas: estrategiaDescomposición en subprogramas: estrategia
para resolver problemas complejospara resolver problemas complejos
Los subprogramas se implementan a travésLos subprogramas se implementan a través
de procedimientos y funcionesde procedimientos y funciones
 Compuestos por un grupo de sentenciasCompuestos por un grupo de sentencias
 Se les asigna un nombreSe les asigna un nombre
 Pueden invocarse entre sí utilizando ese nombrePueden invocarse entre sí utilizando ese nombre
 Constituyen una unidad de programaConstituyen una unidad de programa
Procedimientos y Funciones (2/4)Procedimientos y Funciones (2/4)
Los procedimientos y funciones se comunicanLos procedimientos y funciones se comunican
con su invocador a través de parámetros.con su invocador a través de parámetros.
Los parámetros son un medio para pasarLos parámetros son un medio para pasar
información, implementados a través deinformación, implementados a través de
variables con valor.variables con valor.
Tipos de parámetroTipos de parámetro
 De Entrada: su valor es proporcionado por elDe Entrada: su valor es proporcionado por el
invocador antes de llamar al subprogramainvocador antes de llamar al subprograma
 De Salida: su valor es calculado dentro de unDe Salida: su valor es calculado dentro de un
subprograma y devuelto a su invocadorsubprograma y devuelto a su invocador
Procedimientos y Funciones (3/4)Procedimientos y Funciones (3/4)
Ejemplo:Ejemplo:
 DefiniciónDefinición
procedimiento CalcularSuma( parámetro1 entero,procedimiento CalcularSuma( parámetro1 entero,
parámetro2 entero) devuelve enteroparámetro2 entero) devuelve entero
devolver parámetro1 + parámetro2devolver parámetro1 + parámetro2
fin_procedimientofin_procedimiento
 InvocaciónInvocación desde el programa principal u otrodesde el programa principal u otro
subprogramasubprograma
número entero a = 2número entero a = 2
número entero b = 3número entero b = 3
número entero c = CalcularSuma(a,b)número entero c = CalcularSuma(a,b)
carácter d = CalcularSuma(a,b)carácter d = CalcularSuma(a,b)  ERRORERROR
Procedimientos y Funciones (4/4)Procedimientos y Funciones (4/4)
Ventajas de utilizar procedimientosVentajas de utilizar procedimientos
 Facilita el diseño descendiente y modularFacilita el diseño descendiente y modular
 Promueven la reutilización de códigoPromueven la reutilización de código
 Facilita la división de tareasFacilita la división de tareas
 Pueden comprobarse individualmentePueden comprobarse individualmente
 Pueden encapsularse en bibliotecasPueden encapsularse en bibliotecas
independientesindependientes
Visibilidad de VariablesVisibilidad de Variables
Variable Local:Variable Local:
 Declarada en un subprogramaDeclarada en un subprograma
 Sólo está disponible durante el funcionamientoSólo está disponible durante el funcionamiento
del subprogramadel subprograma
 Su valor se pierde una vez que el subprogramaSu valor se pierde una vez que el subprograma
terminatermina
Variable Global:Variable Global:
 Declarada en el programa principalDeclarada en el programa principal
 Está disponible en el programa principal y enEstá disponible en el programa principal y en
todos los subprogramastodos los subprogramas
 Su valor se pierde una vez que el programaSu valor se pierde una vez que el programa
principal terminaprincipal termina
BibliotecasBibliotecas
Archivo independiente que contiene unArchivo independiente que contiene un
conjunto de subprogramasconjunto de subprogramas
Pueden ser incluidas y referenciadas en elPueden ser incluidas y referenciadas en el
desarrollo de múltiples programasdesarrollo de múltiples programas
Facilitan la modularización de un programaFacilitan la modularización de un programa
DesarrolloDesarrollo  Programa FuentePrograma Fuente
CompilaciónCompilación  Programa ObjetoPrograma Objeto
Link-EdiciónLink-Edición  Programa EjecutablePrograma Ejecutable
Arrays (Arreglos) (1/3)Arrays (Arreglos) (1/3)
Son estructuras de datos en las que seSon estructuras de datos en las que se
almacenan un conjunto de datos finitos delalmacenan un conjunto de datos finitos del
mismo tipomismo tipo
 Almacenan sus elementos en posiciones deAlmacenan sus elementos en posiciones de
memoria contiguasmemoria contiguas
 Tienen un único nombre de variable queTienen un único nombre de variable que
representa a todos los elementosrepresenta a todos los elementos
 Permiten acceso directo o aleatorio a susPermiten acceso directo o aleatorio a sus
elementos individualeselementos individuales
Los arrays se clasifican en unidimensionales yLos arrays se clasifican en unidimensionales y
multidimensionales.multidimensionales.
Arrays (Arreglos) (2/3)Arrays (Arreglos) (2/3)
Arrays unidimensionales (Vectores)Arrays unidimensionales (Vectores)
 Número finito de elementosNúmero finito de elementos
 Tamaño FijoTamaño Fijo
 Elementos HomogéneosElementos Homogéneos
 Se accede a los elementos utilizando el nombreSe accede a los elementos utilizando el nombre
del array y el subíndice específicodel array y el subíndice específico
Ejemplo:Ejemplo:
 salarios(3) Realessalarios(3) Reales  Nombre del array, de 3Nombre del array, de 3
posiciones que contendrán número realesposiciones que contendrán número reales
 salarios[1] = 23,4salarios[1] = 23,4  Asignación de un valorAsignación de un valor
al primer elemento del arrayal primer elemento del array
Arrays (Arreglos) (3/3)Arrays (Arreglos) (3/3)
Arrays multidimensionalesArrays multidimensionales
 Arrays bidimensionales (Matrices o Tablas)Arrays bidimensionales (Matrices o Tablas)
 Tienen dos índices, uno para filas y otro paraTienen dos índices, uno para filas y otro para
columnascolumnas
 Ejemplo:Ejemplo:
tabla(3,3) enterostabla(3,3) enteros  Declaración de una matrizDeclaración de una matriz
de 3 por 3de 3 por 3
tabla [1][1] = 2tabla [1][1] = 2  Elemento de la primer fila yElemento de la primer fila y
primer columnaprimer columna
tabla [2][3] = 5tabla [2][3] = 5  Elemento de la segunda fila yElemento de la segunda fila y
la tercer columnala tercer columna
El estilo de ProgramaciónEl estilo de Programación
Una de las características más importantesUna de las características más importantes
de un buen programadorde un buen programador
Un buen estilo facilita la comprensión,Un buen estilo facilita la comprensión,
corrección y mantenimiento de un programacorrección y mantenimiento de un programa
Algunos puntos a tener en cuentaAlgunos puntos a tener en cuenta
 ComentariosComentarios
 Elección de nombres significativosElección de nombres significativos
 IdentaciónIdentación
 Espacios y Líneas en BlancoEspacios y Líneas en Blanco
 Validación usando datos de pruebaValidación usando datos de prueba
© 2005 Microsoft Corporation. All rights reserved.
This presentation is for informational purposes only. Microsoft makes no warranties, express or implied, in this summary.

Más contenido relacionado

La actualidad más candente

La actualidad más candente (17)

Programacion
ProgramacionProgramacion
Programacion
 
Programacion
ProgramacionProgramacion
Programacion
 
Algoritmos
AlgoritmosAlgoritmos
Algoritmos
 
Algoritmos
AlgoritmosAlgoritmos
Algoritmos
 
EJERCICIOS BUCLES REPETITIVOS LENGUAJE C
EJERCICIOS BUCLES REPETITIVOS LENGUAJE CEJERCICIOS BUCLES REPETITIVOS LENGUAJE C
EJERCICIOS BUCLES REPETITIVOS LENGUAJE C
 
Fundamentos de programacion
Fundamentos de programacionFundamentos de programacion
Fundamentos de programacion
 
La programación informática o programación algorítmica, acortada
La programación informática o programación algorítmica, acortadaLa programación informática o programación algorítmica, acortada
La programación informática o programación algorítmica, acortada
 
Fundamentos de programacion
Fundamentos de programacionFundamentos de programacion
Fundamentos de programacion
 
PROGRAMACIÓN WEB INTRODUCCIÓN
PROGRAMACIÓN WEB INTRODUCCIÓNPROGRAMACIÓN WEB INTRODUCCIÓN
PROGRAMACIÓN WEB INTRODUCCIÓN
 
Programacion
ProgramacionProgramacion
Programacion
 
Unidad 1
Unidad 1Unidad 1
Unidad 1
 
Programacion logica 1
Programacion logica 1Programacion logica 1
Programacion logica 1
 
2.3 instrucciones básicas de programación
2.3 instrucciones básicas de programación2.3 instrucciones básicas de programación
2.3 instrucciones básicas de programación
 
Algoritmos diagrama-de-flujo
Algoritmos diagrama-de-flujoAlgoritmos diagrama-de-flujo
Algoritmos diagrama-de-flujo
 
Tutorial conceptos programacion
Tutorial conceptos programacionTutorial conceptos programacion
Tutorial conceptos programacion
 
Lenguajes de programación parte i.4
Lenguajes de programación parte i.4Lenguajes de programación parte i.4
Lenguajes de programación parte i.4
 
Estructura secuencial
Estructura secuencialEstructura secuencial
Estructura secuencial
 

Similar a Fundamentos de programación

D5E-E0: Fundamentos de la programacion
D5E-E0: Fundamentos de la programacionD5E-E0: Fundamentos de la programacion
D5E-E0: Fundamentos de la programacionEllyster
 
Fundamentos deprogramacion
Fundamentos deprogramacionFundamentos deprogramacion
Fundamentos deprogramacionKevin Reaño
 
Dce0 Fundamentos De Programacion
Dce0 Fundamentos De ProgramacionDce0 Fundamentos De Programacion
Dce0 Fundamentos De Programacionyave
 
Dce0 Fundamentos De Programacion1
Dce0 Fundamentos De Programacion1Dce0 Fundamentos De Programacion1
Dce0 Fundamentos De Programacion1Hector Gomez
 
Dce0 Fundamentos De Programacion
Dce0 Fundamentos De ProgramacionDce0 Fundamentos De Programacion
Dce0 Fundamentos De ProgramacionFélix Prada Silva
 
C:\Documents And Settings\Alumnos\Escritorio\Programaion1
C:\Documents And Settings\Alumnos\Escritorio\Programaion1C:\Documents And Settings\Alumnos\Escritorio\Programaion1
C:\Documents And Settings\Alumnos\Escritorio\Programaion1kfacu
 
Algoritmos, programas, compiladores y lenguajes de programacion
Algoritmos, programas, compiladores y lenguajes de programacionAlgoritmos, programas, compiladores y lenguajes de programacion
Algoritmos, programas, compiladores y lenguajes de programacionBoris Salleg
 
Dce0 fundamentos deprogramacion
Dce0 fundamentos deprogramacionDce0 fundamentos deprogramacion
Dce0 fundamentos deprogramacionvictdiazm
 
Fundamentos de Programación
Fundamentos de ProgramaciónFundamentos de Programación
Fundamentos de ProgramaciónKudos S.A.S
 
Programacion
ProgramacionProgramacion
Programacionedison
 
Unidad 1-continacion
Unidad 1-continacionUnidad 1-continacion
Unidad 1-continacionCecilia Díaz
 
Unidad 1-continacion
Unidad 1-continacionUnidad 1-continacion
Unidad 1-continaciondetlefsen
 
Unidad 1-continacion
Unidad 1-continacionUnidad 1-continacion
Unidad 1-continaciondetlefsen
 
Términos relacionados a la programación
Términos relacionados a la programaciónTérminos relacionados a la programación
Términos relacionados a la programaciónromeprofe
 
Unidad 3
Unidad 3Unidad 3
Unidad 3tf94
 

Similar a Fundamentos de programación (20)

D5E-E0: Fundamentos de la programacion
D5E-E0: Fundamentos de la programacionD5E-E0: Fundamentos de la programacion
D5E-E0: Fundamentos de la programacion
 
Fundamentos deprogramacion
Fundamentos deprogramacionFundamentos deprogramacion
Fundamentos deprogramacion
 
Dce0 Fundamentos De Programacion
Dce0 Fundamentos De ProgramacionDce0 Fundamentos De Programacion
Dce0 Fundamentos De Programacion
 
Fundamentos de Programacion
Fundamentos de ProgramacionFundamentos de Programacion
Fundamentos de Programacion
 
Dce0 Fundamentos De Programacion1
Dce0 Fundamentos De Programacion1Dce0 Fundamentos De Programacion1
Dce0 Fundamentos De Programacion1
 
Dce0 Fundamentos De Programacion
Dce0 Fundamentos De ProgramacionDce0 Fundamentos De Programacion
Dce0 Fundamentos De Programacion
 
Dce0 Fundamentos De Programacion
Dce0 Fundamentos De ProgramacionDce0 Fundamentos De Programacion
Dce0 Fundamentos De Programacion
 
C:\Documents And Settings\Alumnos\Escritorio\Programaion1
C:\Documents And Settings\Alumnos\Escritorio\Programaion1C:\Documents And Settings\Alumnos\Escritorio\Programaion1
C:\Documents And Settings\Alumnos\Escritorio\Programaion1
 
Generacionlenguajes
GeneracionlenguajesGeneracionlenguajes
Generacionlenguajes
 
Algoritmos, programas, compiladores y lenguajes de programacion
Algoritmos, programas, compiladores y lenguajes de programacionAlgoritmos, programas, compiladores y lenguajes de programacion
Algoritmos, programas, compiladores y lenguajes de programacion
 
Dce0 fundamentos deprogramacion
Dce0 fundamentos deprogramacionDce0 fundamentos deprogramacion
Dce0 fundamentos deprogramacion
 
Programacion
 Programacion  Programacion
Programacion
 
INTRODUCCION
INTRODUCCIONINTRODUCCION
INTRODUCCION
 
Fundamentos de Programación
Fundamentos de ProgramaciónFundamentos de Programación
Fundamentos de Programación
 
Programacion
ProgramacionProgramacion
Programacion
 
Unidad 1-continacion
Unidad 1-continacionUnidad 1-continacion
Unidad 1-continacion
 
Unidad 1-continacion
Unidad 1-continacionUnidad 1-continacion
Unidad 1-continacion
 
Unidad 1-continacion
Unidad 1-continacionUnidad 1-continacion
Unidad 1-continacion
 
Términos relacionados a la programación
Términos relacionados a la programaciónTérminos relacionados a la programación
Términos relacionados a la programación
 
Unidad 3
Unidad 3Unidad 3
Unidad 3
 

Fundamentos de programación

  • 1. Estrella 0 -Estrella 0 - Fundamentos de laFundamentos de la ProgramaciónProgramación Programa MicrosoftPrograma Microsoft Desarrollador CincoDesarrollador Cinco EstrellasEstrellas
  • 2. ObjetivoObjetivo Mostrar los fundamentos de la programación aMostrar los fundamentos de la programación a través de ejemplos y prácticas utilizadastravés de ejemplos y prácticas utilizadas cotidianamente en el desarrollo decotidianamente en el desarrollo de aplicacionesaplicaciones
  • 3. PrerrequisitosPrerrequisitos El presente curso asumirá conocimientosEl presente curso asumirá conocimientos básicos debásicos de  ComputadoraComputadora  Dispositivos de Entrada/SalidaDispositivos de Entrada/Salida  Organización Física de una computadora (CPU,Organización Física de una computadora (CPU, Memoria)Memoria)  Sistemas OperativosSistemas Operativos
  • 4. Temas a Tratar (1/2)Temas a Tratar (1/2) El SoftwareEl Software Lenguajes de programaciónLenguajes de programación Resolución de problemas con computadoraResolución de problemas con computadora Entorno de programaciónEntorno de programación Tipos de DatosTipos de Datos Variables y ConstantesVariables y Constantes SentenciasSentencias Operadores y ExpresionesOperadores y Expresiones
  • 5. Temas a Tratar (2/2)Temas a Tratar (2/2) Estructuras Básicas de ControlEstructuras Básicas de Control Procedimientos y FuncionesProcedimientos y Funciones Visibilidad de variablesVisibilidad de variables BibliotecasBibliotecas ArraysArrays El Estilo de ProgramaciónEl Estilo de Programación
  • 6. El SoftwareEl Software Las operaciones que debe realizar elLas operaciones que debe realizar el hardware son especificadas con una listahardware son especificadas con una lista de instrucciones, llamadas programas ode instrucciones, llamadas programas o software.software. Dos grandes grupos de softwareDos grandes grupos de software  Software del SistemaSoftware del Sistema  Indispensable para que la máquina funcioneIndispensable para que la máquina funcione y poder escribir programas de aplicacióny poder escribir programas de aplicación  Software de AplicaciónSoftware de Aplicación  Realizan tareas concretas que tienenRealizan tareas concretas que tienen utilidad para ciertos usuariosutilidad para ciertos usuarios
  • 7. Lenguajes de Programación (1/2)Lenguajes de Programación (1/2) Lenguajes utilizados para escribirLenguajes utilizados para escribir programas de computadoras que puedanprogramas de computadoras que puedan ser entendidos por ellasser entendidos por ellas Se clasifican en tres grandes categoríasSe clasifican en tres grandes categorías  lenguajes de máquinalenguajes de máquina  instrucciones directamente entendibles por lainstrucciones directamente entendibles por la computadora (lenguaje binario)computadora (lenguaje binario)  lenguajes de bajo nivellenguajes de bajo nivel  Proveen un juego de instrucciones másProveen un juego de instrucciones más comprensibles por los humanoscomprensibles por los humanos  lenguajes de alto nivellenguajes de alto nivel
  • 8. Lenguajes de Programación (2/2)Lenguajes de Programación (2/2) Lenguajes de alto nivelLenguajes de alto nivel  Utilizan instrucciones escritas con palabras similares aUtilizan instrucciones escritas con palabras similares a los lenguajes humanoslos lenguajes humanos  Son independientes de la máquina en la que seSon independientes de la máquina en la que se ejecutanejecutan  Necesitan ser traducidos a instrucciones en lenguajeNecesitan ser traducidos a instrucciones en lenguaje máquina (Compilación)máquina (Compilación) Existen diversos tiposExisten diversos tipos  EstructuradosEstructurados  Orientados a ObjetosOrientados a Objetos  DeclarativosDeclarativos  FuncionalesFuncionales
  • 9. Resolución de problemas conResolución de problemas con computadoracomputadora El proceso de diseñar un programa es,El proceso de diseñar un programa es, esencialmente, un proceso creativo.esencialmente, un proceso creativo. Sin embargo, hay una serie de pasosSin embargo, hay una serie de pasos comunes a seguir:comunes a seguir:  Análisis del problemaAnálisis del problema  Diseño del algoritmo soluciónDiseño del algoritmo solución  CodificaciónCodificación  Compilación y EjecuciónCompilación y Ejecución  VerificaciónVerificación  DepuraciónDepuración  DocumentaciónDocumentación
  • 10. Entorno de ProgramaciónEntorno de Programación También conocidos como IDEsTambién conocidos como IDEs Herramienta esencial a la hora deHerramienta esencial a la hora de desarrollar softwaredesarrollar software IncluyeIncluye  EditorEditor  Intérprete o CompiladorIntérprete o Compilador  DepuradorDepurador  Ayuda en líneaAyuda en línea
  • 11. Tipos de DatosTipos de Datos Datos: piezas de información con las queDatos: piezas de información con las que un programa trabajaun programa trabaja Cada dato tiene asociado un únicoCada dato tiene asociado un único TipoTipo El Tipo de Dato determina la naturaleza delEl Tipo de Dato determina la naturaleza del conjunto de valores que un dato puedeconjunto de valores que un dato puede tomartomar Ejemplos:Ejemplos:  Número EnteroNúmero Entero  Número RealNúmero Real  Cadena de CaracteresCadena de Caracteres  Valor Lógico (Verdadero o Falso)Valor Lógico (Verdadero o Falso)
  • 12. Variables y ConstantesVariables y Constantes Existen dos grupos principales de datosExisten dos grupos principales de datos  Constantes: su valor no puede cambiarConstantes: su valor no puede cambiar durante la ejecución de un programadurante la ejecución de un programa  Variables: su valor puede cambiar durante laVariables: su valor puede cambiar durante la ejecución de un programaejecución de un programa Ambas tienen un nombre y un valorAmbas tienen un nombre y un valor Ambas permiten representar mediante unAmbas permiten representar mediante un nombre a una posición de memoria quenombre a una posición de memoria que contiene el valorcontiene el valor
  • 13. SentenciasSentencias Describen acciones algorítmicas queDescriben acciones algorítmicas que pueden ser ejecutadaspueden ser ejecutadas Se clasifican enSe clasifican en  Ejecutables / No ejecutablesEjecutables / No ejecutables  Simples / EstructuradasSimples / Estructuradas
  • 14. Operadores y Expresiones (1/2)Operadores y Expresiones (1/2) Sirven para procesar variables y constantesSirven para procesar variables y constantes Una expresión es un conjunto de datosUna expresión es un conjunto de datos unidos por operadores que tiene un únicounidos por operadores que tiene un único resultadoresultado  Expresiones aritméticasExpresiones aritméticas  El resultado es un númeroEl resultado es un número  a = ((2+6) / 8) * 3a = ((2+6) / 8) * 3  Expresiones lógicasExpresiones lógicas  El resultado es un valor verdadero o falsoEl resultado es un valor verdadero o falso  (a < 10) y (b > 50)(a < 10) y (b > 50)
  • 15. Operadores y Expresiones (2/2)Operadores y Expresiones (2/2) Existen diversos tiposExisten diversos tipos  Aritméticos: suma, resta, multiplicación, etc.Aritméticos: suma, resta, multiplicación, etc.  De relación: igual, mayor, menor, distinto, etc.De relación: igual, mayor, menor, distinto, etc.  Lógicos: and, or, not, etc.Lógicos: and, or, not, etc.
  • 16. Estructuras de ControlEstructuras de Control El orden de ejecución de las sentencias deEl orden de ejecución de las sentencias de un programa determina su flujo de controlun programa determina su flujo de control Las estructuras de control permiten alterarLas estructuras de control permiten alterar el orden del flujo de controlel orden del flujo de control Existen dos tipos básicosExisten dos tipos básicos  De SelecciónDe Selección  De Repetición o IteraciónDe Repetición o Iteración
  • 17. Estructuras de Control SelectivasEstructuras de Control Selectivas (1/2)(1/2) Dirigen el flujo de ejecución según elDirigen el flujo de ejecución según el resultado de evaluación de expresionesresultado de evaluación de expresiones IFIF  sisi expresion_logicaexpresion_logica entoncesentonces hacer acción Ahacer acción A sinosino hacer acción Bhacer acción B fin_sifin_si
  • 18. Estructuras de Control SelectivasEstructuras de Control Selectivas (2/2)(2/2) CASECASE  según_seasegún_sea selectorselector hacerhacer C11,C12,…:C11,C12,…: sentencia 1sentencia 1 C21,C22,…:C21,C22,…: sentencia 2sentencia 2 …….... [[sinosino sentencia x]sentencia x] fin_segúnfin_según
  • 19. Estructuras de Control RepetitivasEstructuras de Control Repetitivas (1/3)(1/3) Permiten ejecutar un conjunto dePermiten ejecutar un conjunto de sentencias repetidamente una ciertasentencias repetidamente una cierta cantidad de veces o hasta que se cumplacantidad de veces o hasta que se cumpla una determinada condiciónuna determinada condición El conjunto de sentencias se denominaEl conjunto de sentencias se denomina buclebucle Cada repetición del cuerpo del bucle seCada repetición del cuerpo del bucle se denomina iteracióndenomina iteración
  • 20. Estructuras de Control RepetitivasEstructuras de Control Repetitivas (2/3)(2/3) WHILEWHILE  mientrasmientras condicióncondición hacerhacer sentencia/ssentencia/s …….... fin_mientrasfin_mientras
  • 21. Estructuras de Control RepetitivasEstructuras de Control Repetitivas (3/3)(3/3) FORFOR  desdedesde variable  valor_inicial hastahasta valor_final hacerhacer sentencia/ssentencia/s …….... fin_desdefin_desde
  • 22. Procedimientos y Funciones (1/4)Procedimientos y Funciones (1/4) Descomposición en subprogramas: estrategiaDescomposición en subprogramas: estrategia para resolver problemas complejospara resolver problemas complejos Los subprogramas se implementan a travésLos subprogramas se implementan a través de procedimientos y funcionesde procedimientos y funciones  Compuestos por un grupo de sentenciasCompuestos por un grupo de sentencias  Se les asigna un nombreSe les asigna un nombre  Pueden invocarse entre sí utilizando ese nombrePueden invocarse entre sí utilizando ese nombre  Constituyen una unidad de programaConstituyen una unidad de programa
  • 23. Procedimientos y Funciones (2/4)Procedimientos y Funciones (2/4) Los procedimientos y funciones se comunicanLos procedimientos y funciones se comunican con su invocador a través de parámetros.con su invocador a través de parámetros. Los parámetros son un medio para pasarLos parámetros son un medio para pasar información, implementados a través deinformación, implementados a través de variables con valor.variables con valor. Tipos de parámetroTipos de parámetro  De Entrada: su valor es proporcionado por elDe Entrada: su valor es proporcionado por el invocador antes de llamar al subprogramainvocador antes de llamar al subprograma  De Salida: su valor es calculado dentro de unDe Salida: su valor es calculado dentro de un subprograma y devuelto a su invocadorsubprograma y devuelto a su invocador
  • 24. Procedimientos y Funciones (3/4)Procedimientos y Funciones (3/4) Ejemplo:Ejemplo:  DefiniciónDefinición procedimiento CalcularSuma( parámetro1 entero,procedimiento CalcularSuma( parámetro1 entero, parámetro2 entero) devuelve enteroparámetro2 entero) devuelve entero devolver parámetro1 + parámetro2devolver parámetro1 + parámetro2 fin_procedimientofin_procedimiento  InvocaciónInvocación desde el programa principal u otrodesde el programa principal u otro subprogramasubprograma número entero a = 2número entero a = 2 número entero b = 3número entero b = 3 número entero c = CalcularSuma(a,b)número entero c = CalcularSuma(a,b) carácter d = CalcularSuma(a,b)carácter d = CalcularSuma(a,b)  ERRORERROR
  • 25. Procedimientos y Funciones (4/4)Procedimientos y Funciones (4/4) Ventajas de utilizar procedimientosVentajas de utilizar procedimientos  Facilita el diseño descendiente y modularFacilita el diseño descendiente y modular  Promueven la reutilización de códigoPromueven la reutilización de código  Facilita la división de tareasFacilita la división de tareas  Pueden comprobarse individualmentePueden comprobarse individualmente  Pueden encapsularse en bibliotecasPueden encapsularse en bibliotecas independientesindependientes
  • 26. Visibilidad de VariablesVisibilidad de Variables Variable Local:Variable Local:  Declarada en un subprogramaDeclarada en un subprograma  Sólo está disponible durante el funcionamientoSólo está disponible durante el funcionamiento del subprogramadel subprograma  Su valor se pierde una vez que el subprogramaSu valor se pierde una vez que el subprograma terminatermina Variable Global:Variable Global:  Declarada en el programa principalDeclarada en el programa principal  Está disponible en el programa principal y enEstá disponible en el programa principal y en todos los subprogramastodos los subprogramas  Su valor se pierde una vez que el programaSu valor se pierde una vez que el programa principal terminaprincipal termina
  • 27. BibliotecasBibliotecas Archivo independiente que contiene unArchivo independiente que contiene un conjunto de subprogramasconjunto de subprogramas Pueden ser incluidas y referenciadas en elPueden ser incluidas y referenciadas en el desarrollo de múltiples programasdesarrollo de múltiples programas Facilitan la modularización de un programaFacilitan la modularización de un programa DesarrolloDesarrollo  Programa FuentePrograma Fuente CompilaciónCompilación  Programa ObjetoPrograma Objeto Link-EdiciónLink-Edición  Programa EjecutablePrograma Ejecutable
  • 28. Arrays (Arreglos) (1/3)Arrays (Arreglos) (1/3) Son estructuras de datos en las que seSon estructuras de datos en las que se almacenan un conjunto de datos finitos delalmacenan un conjunto de datos finitos del mismo tipomismo tipo  Almacenan sus elementos en posiciones deAlmacenan sus elementos en posiciones de memoria contiguasmemoria contiguas  Tienen un único nombre de variable queTienen un único nombre de variable que representa a todos los elementosrepresenta a todos los elementos  Permiten acceso directo o aleatorio a susPermiten acceso directo o aleatorio a sus elementos individualeselementos individuales Los arrays se clasifican en unidimensionales yLos arrays se clasifican en unidimensionales y multidimensionales.multidimensionales.
  • 29. Arrays (Arreglos) (2/3)Arrays (Arreglos) (2/3) Arrays unidimensionales (Vectores)Arrays unidimensionales (Vectores)  Número finito de elementosNúmero finito de elementos  Tamaño FijoTamaño Fijo  Elementos HomogéneosElementos Homogéneos  Se accede a los elementos utilizando el nombreSe accede a los elementos utilizando el nombre del array y el subíndice específicodel array y el subíndice específico Ejemplo:Ejemplo:  salarios(3) Realessalarios(3) Reales  Nombre del array, de 3Nombre del array, de 3 posiciones que contendrán número realesposiciones que contendrán número reales  salarios[1] = 23,4salarios[1] = 23,4  Asignación de un valorAsignación de un valor al primer elemento del arrayal primer elemento del array
  • 30. Arrays (Arreglos) (3/3)Arrays (Arreglos) (3/3) Arrays multidimensionalesArrays multidimensionales  Arrays bidimensionales (Matrices o Tablas)Arrays bidimensionales (Matrices o Tablas)  Tienen dos índices, uno para filas y otro paraTienen dos índices, uno para filas y otro para columnascolumnas  Ejemplo:Ejemplo: tabla(3,3) enterostabla(3,3) enteros  Declaración de una matrizDeclaración de una matriz de 3 por 3de 3 por 3 tabla [1][1] = 2tabla [1][1] = 2  Elemento de la primer fila yElemento de la primer fila y primer columnaprimer columna tabla [2][3] = 5tabla [2][3] = 5  Elemento de la segunda fila yElemento de la segunda fila y la tercer columnala tercer columna
  • 31. El estilo de ProgramaciónEl estilo de Programación Una de las características más importantesUna de las características más importantes de un buen programadorde un buen programador Un buen estilo facilita la comprensión,Un buen estilo facilita la comprensión, corrección y mantenimiento de un programacorrección y mantenimiento de un programa Algunos puntos a tener en cuentaAlgunos puntos a tener en cuenta  ComentariosComentarios  Elección de nombres significativosElección de nombres significativos  IdentaciónIdentación  Espacios y Líneas en BlancoEspacios y Líneas en Blanco  Validación usando datos de pruebaValidación usando datos de prueba
  • 32. © 2005 Microsoft Corporation. All rights reserved. This presentation is for informational purposes only. Microsoft makes no warranties, express or implied, in this summary.

Notas del editor

  1. &amp;lt;number&amp;gt; Las operaciones que debe realizar el hardware son especificadas con una lista de instrucciones, llamadas programas, o software. El software se divide en dos grandes grupos: Software del sistema, y Software de aplicaciones. El software del sistema es el conjunto de programas indispensables para que la máquina funcione. Estos programas son, básicamente, el Sistema Operativo, los editores de texto, los compiladores de lenguajes de programación y los utilitarios. El sistema operativo dirige las operaciones globales de la computadora, instruye a la computadora para ejecutar otros programas y controla el almacenamiento y recuperación de archivos de discos duros. Gracias al sistema operativo es posible que el programador pueda introducir y grabar nuevos programas, así como instruir a la computadora para que los ejecute. Ejemplos de sistemas operativos son: Microsoft Windows, MS-DOS, OS/2, Mac OS y UNIX. Los programas que realizan tareas concretas (por ejemplo facturación, contabilidad, análisis estadístico, gestión de negocios, etc.) se denominan programas de aplicación.
  2. &amp;lt;number&amp;gt; Los lenguajes utilizados para escribir programas de computadoras que puedan ser entendidos por ellas se denominan Lenguajes de Programación. Éstos se clasifican en tres grandes categorías: máquina, bajo nivel (ensamblador, o assembler) y alto nivel. Los lenguajes de máquina son aquellos cuyas instrucciones son directamente entendibles por la computadora, y no necesitan traducción posterior para que el CPU pueda comprender y ejecutar el programa. La programación en lenguaje de máquina es difícil, ya que implica escribir directamente en un sistema binario (ceros y unos), por eso se necesitan lenguajes que permitan simplificar ese proceso. Los lenguajes de bajo nivel fueron diseñados con ese fin. Éstos son dependientes de la arquitectura física de la computadora y de un conjunto específico de instrucciones para el CPU, y los programas escritos en ellos deben ser traducidos a lenguaje máquina para poder ser ejecutados. Un lenguaje típico de bajo nivel es el lenguaje ensamblador (Assembler).
  3. &amp;lt;number&amp;gt; Los lenguajes de programación de alto nivel son aquellos en los que las instrucciones o sentencias a la computadora son escritas con palabras similares a los lenguajes humanos – en general lenguaje inglés – lo que facilita la escritura y comprensión por parte del programador. Una propiedad de los lenguajes de alto nivel es que son independientes de la máquina, esto es, las sentencias del programa no dependen del diseño de hardware de una computadora específica. Los programas escritos en lenguajes de alto nivel, al igual que los escritos en lenguajes de bajo nivel, no son entendibles directamente por la máquina, sino que necesitan ser traducidos a instrucciones en lenguaje máquina que entiendan las computadoras. Los programas que realizan esta traducción se llaman Compiladores, y los programas escritos en un lenguaje de alto nivel se llaman Programas Fuente. El compilador traduce el Programa Fuente en un programa llamado Programa Objeto. El proceso de traducción de un programa fuente a un programa objeto se denomina Compilación. Ejemplos de lenguajes de programación de alto nivel son: Basic, C, Pascal, C++, Cobol, Fortran, C#, Java y Visual Basic.NET. Existen diversos tipos de lenguajes de programación de alto nivel, según su evolución temporal y el uso que se les quiera dar. Algunos ejemplos de tipos de lenguajes de alto nivel son: Estructurados (Basic, C, Pascal) Orientados a Objetos (C#,Visual Basic.NET, C++, Java) Declarativos (Lisp, Prolog) Funcionales (AML, CAML)
  4. &amp;lt;number&amp;gt; El proceso de resolución de un problema con una computadora conduce a la escritura de un programa, y a su ejecución en la misma. Aunque el proceso de diseñar programas es, esencialmente, un proceso creativo, se pueden considerar una serie de fases o pasos comunes que generalmente deben seguir todos los programadores. Las fases de resolución de un problema con computadoras son: Análisis del problema Diseño del algoritmo solución Codificación Compilación y Ejecución Verificación Depuración Documentación Las dos primeras fases conducen a un diseño detallado escrito en forma de algoritmo. Un algoritmo es un método para resolver un problema mediante una serie de pasos (instrucciones) precisos, definidos y finitos. Durante la tercer etapa (codificación) se implementa (poner en funcionamiento) el algoritmo en un código escrito en un lenguaje de programación, reflejando las ideas desarrolladas en la fase de análisis y diseño. La fase de compilación y ejecución traduce y ejecuta el programa. En las fases de verificación y depuración el programador busca errores de las etapas anteriores y los elimina. Cuanto más tiempo se invierta en la fase de análisis y diseño, menor será el tiempo necesario para depurar el programa. Por último, debe realizarse la documentación del mismo. Ejemplos de algoritmos son: instrucciones para andar en bicicleta, hacer una receta de cocina, obtener el máximo común divisor de dos números, etc. Los algoritmos se pueden expresar en fórmulas, diagramas de flujo y pseudocódigos.
  5. &amp;lt;number&amp;gt; Un entorno de programación es un programa que contiene, además del compilador, utilitarios y herramientas. Estos elementos están integrados, de modo que pueden llamarse fácilmente unos a otros durante el proceso de programación. Por este motivo, a los entornos de programación frecuentemente se los identifica con la sigla IDE (en inglés, Integrated Development Envirnonment, o Entorno de programación integrado). Un entorno de programación típico contiene: Un editor, que proporciona el medio para introducir el texto y los símbolos que constituyen el código fuente Un intérprete o un compilador, que convierte el código fuente en instrucciones que la computadora puede comprender y ejecutar. Un depurador (o debugger), que ayuda a analizar y corregir errores en tiempo de ejecución. Ayuda (manuales, tutoriales, ejemplos, etc.) integrada El proceso de diseño, codificación, depuración y ejecución de un programa es mucho más fácil y rápido cuando se utiliza un buen entorno de programación. Un ejemplo de entorno de programación es Microsoft Visual Studio 2005.
  6. &amp;lt;number&amp;gt; Las diferencias piezas de información con las que un programa trabaja se conocen colectivamente como “datos”. Todos los datos tienen un “tipo” asociado con ellos, que determina la naturaleza del conjunto de valores que aquel puede tomar. Por ejemplo, un dato puede ser un simple caracter, tal como ‘B’, un valor entero como 35, un número real como 1,4142 o una cadena de caracteres como “Hola Mundo”, entre otras cosas. Una operación de suma no tiene sentido con caracteres de texto, sólo con números. Por consiguiente, si el compilador detecta una operación de suma de dos caracteres normalmente producirá un error. Incluso entre tipos numéricos la operación de suma se almacena de modo distinto, ya que los números enteros y los reales se almacenan de formas distintas en memoria. A menos que el programa conozca los tipos de datos no puede ejecutar correctamente la operación de suma. La asignación de tipos a los datos tiene dos objetivos principales: 1- Detectar errores de operaciones en los programas durante la fase de codificación. 2- Determinar cómo se ejecutarán las operaciones entre datos. A los lenguajes que exigen que todos los datos utilizados deban tener sus tipos declarados explícitamente se los conoce como “fuertemente tipados”. El tipo de un dato puede ser convertido bajo ciertas condiciones a otro tipo. Este mecanismo explícito de conversión de tipos de datos se suele denominar “CAST”.
  7. &amp;lt;number&amp;gt; Todos los programas necesitan almacenar datos temporalmente para poder procesarlos y generar asi la salida esperada. Estos datos, a grandes rasgos, pueden clasificarse en dos grupos: 1 - A un dato cuyo valor no puede cambiar durante la ejecución de un programa se lo denomina Constante. Las constantes deben ser declaradas antes de su utilización y se deben tener un valor ya asignado al momento de la compilación del programa. 2 - Por su parte, los datos de un programa cuyo valor puede cambiar durante la ejecución del mismo se conocen como Variables. Una variable es, en realidad, una posición de memoria con nombre (Nombre de la Variable), y que contiene un valor (Valor de la Variable). Las variables se asemejan a cajas o buzones, donde cada una de las cuales tiene un número y contiene un valor. Existen tantos tipos de variables como tipos de datos diferentes.
  8. &amp;lt;number&amp;gt; Las sentencias describen acciones algorítmicas que pueden ser ejecutadas. En general, las sentencias se clasifican en ejecutables (especifican, por ejemplo, operaciones de cálculos aritméticos y entradas/salidas de datos) y no ejecutables (no realizan acciones concretas ni afectan a la ejecución del programa, sino que ayudan a su legibilidad). Cada sentencia ejecutable se traduce por el compilador en una o más instrucciones de lenguaje máquina, que se copian en el archivo objeto y posteriormente se ejecutan. Las declaraciones, por su parte, describen el propósito y el significado de cada identificador definido por el programador; no se traducen a instrucciones en lenguaje máquina y no aparecen en el archivo objeto. Las sentencias se clasifican, según su tipo y número, en: Sentencias Simples: son sentencias que no contiene ninguna otra sentencia. El ejemplo más típico de sentencia simple es la sentencia de asignación, la cual se utiliza para almacenar un valor en una variable. La operación de asignación se suele representar en pseudocódigo con el símbolo ‘’, para denotar que el valor situado a su derecha se almacena en la variable situada a la izquierda: Variable  Valor En la mayoría de los lenguajes, el operador  se sustituye por el “=”. Ej.: a = 2. (ATENCIÓN: la asignación sólo será válida si el valor es válido para el tipo de dato definido para la variable). Sentencias estructuradas: son sentencias compuestas de otras sentencias que se ejecutan en secuencia, condicionalmente o repetidamente.
  9. &amp;lt;number&amp;gt; Las variables y constantes se pueden procesar utilizando operaciones y funciones adecuadas para sus tipos. Se denomina expresión a un conjunto de variables y / o constantes unidas por operadores. Si en una expresión existe más de una operación debe tenerse en cuenta que existen una serie de reglas para definir la prioridad en la que éstas se realizarán. Por este motivo es que se suelen utilizar los paréntesis para establecer la prioridad de aplicación de los operandos.
  10. &amp;lt;number&amp;gt; Existen diversos tipos de operadores, por ejemplo: Aritméticos: son apropiados únicamente para tipos numéricos. Ejemplos de operadores aritméticos son “ + ”, “ - ”, “ * ” y “ / ”, los cuales permiten obtener el resultado de la suma, la resta, la multiplicación y la división de dos datos respectivamente. De relación: los operadores de relación ( o relacionales) se utilizan para expresar condiciones y describen una relación entre dos valores. Ejemplos de operadores relacionales son “ &amp;lt; ” (Menor que), “ &amp;gt;” (Mayor que), “ = ” (Igual a) y “ &amp;lt;&amp;gt; ” (Distinto a). Los operadores aritméticos y los relacionales se utilizan de la siguiente forma: variable o constante operador variable o constante. Por ejemplo: a + b, c/d, a&amp;lt;b, c&amp;lt;&amp;gt;d, etc. Lógicos: estos operadores se utilizan con constantes lógicas de forma similar al modo en que los operadores aritméticos se utilizan con las constantes numéricas. Estos operadores trabajan con operandos que son expresiones lógicas. La operación and (y) combina dos condiciones simples y produce un resultado verdadero sólo si los dos operandos son verdaderos. La operación or (o) es verdadera si uno de los dos operandos es verdadero. La operación not (no) actúa sobre una sola condición simple u operando y simplemente niega (o invierte) su valor. Existen otros operadores lógicos además de los mencionados.
  11. &amp;lt;number&amp;gt; El concepto de flujo de control a través de un programa se refiere al orden en que se ejecutan las acciones individuales de un programa. Aunque un flujo normal de un programa estructurado es lineal, existen métodos que permiten salir del flujo lineal a través del uso de las llamadas estructuras de control. Las estructuras de control de un lenguaje de programación son métodos para especificar el orden en que las instrucciones de un algoritmo se ejecutarán. Estas estructuras son, por consiguiente, fundamentales en los lenguajes de programación y en los diseños de los algoritmos. Existen dos tipos básicos de estructuras de control, que se explicarán a continuación: De Selección De Repetición o Iteración
  12. &amp;lt;number&amp;gt; Con frecuencia nos enfrentamos a situaciones en las que se deben proporcionar instrucciones alternativas que pueden o no ejecutarse dependiendo de los datos de entrada, reflejando el cumplimiento o no de una determinada condición. La realización de acciones alternativas o decisiones se especifican utilizando condiciones que son verdaderas o falsas. Estas condiciones se llaman expresiones lógicas, o booleanas. Dado que las expresiones lógicas toman el valor verdadero o falso, se necesita una sentencia de control que dirija a la computadora a ejecutar una sentencia si la expresión es verdadera, y otra sentencia en caso de que sea falsa. En la mayoría de los lenguajes de programación de alto nivel esta evaluación se realiza mediante el uso de la estructura de control “if ”. En la figura podemos ver el pseudocódigo de la estructura if, que funciona de la siguiente manera: 1 – Se evalúa la expresión lógica 2 – Si la expresión toma el valor true (verdadero), se ejecutará la sentencia A y el control pasará a la sentencia inmediatamente siguiente. 3- Si la expresión toma el valor false (falso), entonces sólo se ejecutará la sentencia B y el control pasa de nuevo inmediatamente a la siguiente sentencia del programa. La cláusula sino es optativa.
  13. &amp;lt;number&amp;gt; La sentencia Case se utiliza para elegir entre diferentes alternativas. Una sentencia case se compone de varias sentencias simples. Cuando case se ejecuta, una (y sólo una) de las sentencias simples se selecciona y ejecuta. Reglas: La expresión selector se evalúa y se compara con las listas de constantes; las listas de constantes son listas de uno o más posibles valores de selector separados por comas. Sólo se ejecuta una sentencia. La cláusula sino es opcional, como en la sentencia if. Si el valor del selector no está comprendido en ninguna lista de constantes y no existe la cláusula sino, nada sucede y el programa sigue su flujo normal. Si el valor del selector no coincide con alguna constante se ejecutan las sentencias a continuación de la cláusula else. El selector debe ser un tipo ordinal (número entero, caracter, o booleano). Los números reales no pueden ser utilizados ya que no son ordinales. Todas las constantes Case deben ser únicas y de un tipo ordinal compatible con el tipo de selector.
  14. &amp;lt;number&amp;gt; Las computadoras están especialmente preparadas para ejecutar tareas repetidamente. Los cálculos simples o la manipulación de pequeños conjuntos de datos se pueden realizar fácilmente a mano, pero las tareas grandes o repetitivas son realizadas con mayor eficiencia por una computadora. Las estructuras de control repetitivas son aquellas en las que una sentencia o grupos de sentencias se repiten muchas veces. Este conjunto de sentencias se denomina bucle, o loop. Las acciones que se repiten en un bucle constituyen el cuerpo del bucle, y cada repetición del cuerpo del bucle se denomina iteración.
  15. &amp;lt;number&amp;gt; La estructura repetitiva while (mientras) es aquella en la que el número de iteraciones no se conoce por anticipado y el cuerpo del bucle se repite mientras se cumple una determinada condición. Por esta razón, a estos bucles se los conoce como bucles condicionales. Cuando la sentencia while se ejecuta, la primera cosa que sucede es la evaluación de la expresión lógica. Si se evalúa como falsa, ninguna acción se realiza y el programa sigue en la siguiente sentencia después del bucle. Si la expresión lógica se evalúa como verdadera, entonces se ejecuta el cuerpo del bucle y se evalúa de nuevo la expresión. Este proceso se repite mientras que la expresión lógica permanezca verdadera. Después de cada iteración la expresión lógica se evalúe y se verifica de nuevo; si cambia de verdadera a falsa la sentencia while finaliza. Mientras que la condición sea verdadera el bucle se ejecutará. Esto significa que el bucle se ejecutará indefinidamente a menos que algo en el interior del mismo modifique la condición haciendo que su valor pase a falso. Si la expresión nunca cambia de valor, entonces el bucle no termina nunca y se denomina bucle o loop infinito (en general, esta situación no es deseable).
  16. &amp;lt;number&amp;gt; En numerosas ocasiones se puede necesitar un bucle que se ejecute un número determinado de veces, y cuyo número se conozca por anticipado. Para aplicaciones de este tipo se utiliza la sentencia for. Esta sentencia requiere que conozcamos por anticipado el número de veces que se ejecutarán las sentencias del interior del bucle. Si se desea que las sentencias controladas se ejecuten hasta que ocurra una determinada situación y no se conoce de antemano el número de repeticiones, entonces se deben utilizar sentencias del tipo while. Al ejecutarse la sentencia for la primera vez, el valor inicial se asigna a variable, denominada variable de control, y a continuación se ejecuta la sentencia del interior del bucle. Al llegar al final del bucle (fin_desde) se verifica si el valor final es mayor que el valor inicial; en caso negativo se incrementa el valor de la variable de control en una unidad y se vuelven a ejecutar todas las sentencias del interior del bucle hasta que la variable de control sea mayor que el valor final. Algunos lenguajes permite definir lo que se llama paso, que es la cantidad de unidades en las que se incrementará o decrementará la variable de control en cada iteración.
  17. &amp;lt;number&amp;gt; Una estrategia para la resolución de problemas complejos con computadoras es la división o descomposición del problema en otros problemas más pequeños y fáciles de resolver. Estos subproblemas se implementan mediante módulos o subprogramas. Los subprogramas son una herramienta importante para el desarrollo de algoritmos y programas, de modo que normalmente un proyecto de programación se compone de un programa principal y un conjunto de subprogramas, con las llamadas a los mismos dentro del programa principal. Un subprograma realiza una tarea concreta que se describe con una serie de instrucciones y que, idealmente, debería ser independiente de otros subprogramas. Los subprogramas de clasifican en procedimientos y funciones, que son unidades de programas diseñados para ejecutar una tarea específica. Las funciones normalmente devuelven un solo valor a la unidad de programa (programa principal u otro subprograma) que los referencia. Los procedimientos pueden devolver cero, uno o varios valores. Ambos están compuestos por un grupo de sentencias a las que se asigna un nombre (identificador) y constituyen una unidad de programa a la que se puede invocar desde el programa principal u otra función o procedimiento.
  18. &amp;lt;number&amp;gt; Una de las características importantes y diferenciadoras de los subprogramas es la posibilidad de comunicación entre el programa principal y los procedimientos (o entre dos procedimientos). Esta comunicación se realiza a través de una lista de parámetros. Un parámetro es un medio para pasar información – valores a variables – del programa principal a un subprograma y viceversa. No es obligatorio que un subprograma utilice parámetros, ya que éstos no siempre son necesarios. Un parámetro es, prácticamente, una variable cuyo valor debe ser o bien proporcionado por el programa principal al procedimiento o ser devuelto desde el procedimiento al programa principal. Por consiguiente, hay dos tipos de parámetros: parámetros de entrada y parámetros de salida. Los de entrada son aquellos cuyos valores deben ser proporcionados por el programa principal, mientras que los de salida son aquellos cuyos valores se calcularán en el procedimiento y se deben devolver al programa principal para su proceso posterior.
  19. &amp;lt;number&amp;gt; En este ejemplo vemos la definición (declaración) de un procedimiento en pseudocódigo para calcular la suma de dos números enteros, los cuales son pasados al subprograma como parámetros de entrada. El procedimiento calcula la suma y la devuelve como un parámetro de salida. Luego vemos como podemos utilizar el procedimiento invocándolo desde el programa principal u otro procedimiento. Nótese que los nombres de los parámetros en la definición (parámetro1 y parámetro2) no necesariamente tienen que ser los mismos que los utilizados en la invocación (a y b). Nótese también que el compilador chequeará previamente que el tipo de dato del parámetro de salida del procedimiento (en este caso un número entero) pueda ser asignado a la variable c según su tipo. Al nombre del procedimiento junto con la lista ordenada de sus parámetros de entrada se la conoce como firma del procedimiento. En general, no puede haber dentro del mismo programa dos procedimientos con la misma firma.
  20. &amp;lt;number&amp;gt; A primera vista, los procedimientos parecen dificultar la escritura de un programa. Sin embargo, no sólo no es así, sino que la organización de un programa en procedimientos lo hace más fácil de escribir y depurar. Las ventajas más sobresalientes de utilizar procedimientos son: El uso de procedimientos facilita el diseño descendente y modular, que permite descomponer un problema complejo en subproblemas hasta que éstos sean concretos y fáciles de resolver. Los procedimientos se pueden ejecutar más de una vez en un programa y en diferentes programas, ahorrando en consecuencia tiempo de programación. Un procedimiento, en esencia, se puede ver como una caja negra que ejecuta una tarea en particular en un programa, acepta entradas y produce ciertas salidas. Una vez que el procedimiento se ha escrito y comprobado, se puede utilizar en otros programas eliminando la duplicación innecesaria de código. El uso de procedimientos facilita la división de tareas de programación entre un equipo de programadores Los procedimientos pueden comprobarse individualmente y encapsularse en bibliotecas independientes.
  21. &amp;lt;number&amp;gt; Las variables que intervienen en un programa con procedimientos pueden ser de dos tipos: variables locales y variables globales. Una variable local es una variable que está declarada dentro de un subprograma, y se dice que es local al subprograma. Una variable local sólo está disponible durante el funcionamiento del mismo, y su valor se pierde una vez que el subprograma termina. Las variables declaradas en el programa principal se denominan variables globales. A diferencia de las variables locales, cuyos valores se pueden utilizar solo dentro del subprograma en el que están declaradas, las variables globales pueden ser utilizadas en el programa principal y en todos los subprogramas. Hay que tener especial precaución al trabajar con variables globales, ya que al ser recursos compartidos todos los subprogramas pueden tener acceso simultáneo a ellas y se pueden producir errores lógicos debidos a la concurrencia. Por lo general, es una buena práctica evitar el uso de variables globales desde subprogramas a menos que sea estrictamente necesario. Las variables también pueden ser declaradas dentro de un bloque o estructura de control, y se comportarán como variables locales únicamente dentro de dicho bloque o estructura.
  22. &amp;lt;number&amp;gt; En la mayoría de los lenguajes de programación de alto nivel es posible guardar un subprograma o un conjunto de subprogramas como un archivo independiente al cual se denomina genéricamente biblioteca (del inglés library). Las bibliotecas pueden luego ser referenciadas dentro de múltiples programas para que éstos puedan hacer uso de los subprogramas incluidos en aquella. La salida del proceso de compilación de un código fuente se denomina Programa Objeto, que es ni más ni menos que el código de máquina generado a partir del código fuente (SIN INCLUIR EL CODIGO DE LAS BIBLIOTECAS UTILIZADAS). El Programa Objeto es luego utilizado como entrada para que otro componente de software, llamado linker, lo asocie con los subprogramas que se encuentran en las bibliotecas referenciadas y produzca el llamado Programa Ejecutable. Este proceso se conoce comúnmente como Link-Edición.
  23. &amp;lt;number&amp;gt; Una estructura de datos es una colección de datos organizados de un modo particular. Las estructuras de datos pueden ser de dos tipos: Estructuras de datos estáticas: son aquellas en las que se asigna una cantidad fija de memoria cuando se declara la variable. Estructuras de datos dinámicas: son aquellas cuya ocupación de memoria puede aumentar o disminuir en tiempo de ejecución. Un array (o arreglo) es una estructura de datos en la que se almacena una colección de datos del mismo tipo (por ejemplo, los sueldos de los empleados de una empresa). Dicho de otra forma, un array es una lista de un número finito n de elementos del mismo tipo que se caracteriza por: Almacenar sus elementos en posiciones de memoria contiguas Tener un único nombre de variable (por ejemplo salarios) que representa a todos los elementos Permitir acceso directo o aleatorio a sus elementos individuales Los arrays se clasifican en unidimensionales y multidimensionales.
  24. &amp;lt;number&amp;gt; Un array de una dimensión (también conocido como vector) es un tipo de datos estructurado compuesto de un número de elementos finitos, tamaño fijo y elementos homogéneos. Finitos indica que hay un último elemento, tamaño fijo significa que el tamaño del array debe ser conocido en tiempo de compilación y homogéneo significa que todos sus elementos son del mismo tipo. Los elementos del array se almacenan en posiciones contiguas de memoria, a cada una de las cuales se puede acceder directamente mediante un número entero denominado índice del array, que identifica la posición del elemento dentro del conjunto. Ejemplo: Salarios  Nombre del Array Salarios[1]  primer elemento del array
  25. &amp;lt;number&amp;gt; Hasta ahora hemos visto como se puede manipular información con una sola columna o lista de entrada con los llamados vectores, o arrays de una dimensión. Sin embargo, en numerosas ocasiones es necesario trabajar con datos que tengan más de una dimensión (se representan por ejemplo como tablas de doble entradas, cubos, etc.). Un array bidimensional (matriz o tabla) es un array con dos índices. Para localizar o almacenar un valor en el array se deben especificar dos posiciones (dos subíndices), uno para la fila y otro para la columna.
  26. &amp;lt;number&amp;gt; El buen estilo de programación es, sin lugar a dudas, una de las características más importantes que debe tener un buen programador. Un programa con buen estilo es más fácil de leer, de corregir y de mantener. Aunque la experiencia proporciona el estilo, existen una serie de reglas que se recomiendan seguir desde el principio del aprendizaje de la programación. Comentarios: la legibilidad de los programas aumenta considerablemente utilizando comentarios. Un comentario es un texto explicativo más o menos largo, situado en el programa e ignorado por el compilador. Los comentarios son considerados parte del código fuente por más que sean ignorados en las etapas de compilación y ejecución, y tienen importancia primordial en las fases de análisis, puesta a punto y mantenimiento. Los comentarios son una parte fundamental de la documentación de un programa, ya que ayudan al programador y a otras personas a la comprensión del mismo. No es raro encontrar programas en los cuales los comentarios ocupan más lugar, incluso, que las propias instrucciones. Elección de nombres significativos para variables y procedimientos: las variables, constantes, nombres de subprogramas y nombres de programas deben ser significativos para orientar al usuario o a otros programadores sobre lo que representan: X, AS, JJ no son identificadores significativos. Identación: aunque no suele ser requerido por los compiladores de los lenguajes de alto nivel, es una práctica habitual realizar una identación (o tabulación) en cada uno de los bloques y unidades de programas fundamentales para mejorar la legibilidad del código fuente. Espacios y Líneas en Blanco: con el mismo fin de mejorar le legibilidad y comprensibilidad del programa es recomendado utilizar espacios en blanco antes y después de un operador, así como también dejar una línea en blanco entre partes importantes o que estén lógicamente separadas. Validación: los programas no pueden considerarse correctos hasta que han sido validados utilizando un rango amplio de datos de prueba para contemplar todas las posibles direcciones que el flujo de control puede tomar en tiempo de ejecución.