SlideShare una empresa de Scribd logo
1 de 64
Descargar para leer sin conexión
CHAPTER 7 Techniques of Integration 
7.1 Concepts Review 
1. elementary function 
2. ∫u5du 
3. ex 
4. 2 3 
∫ u du 
1 
Problem Set 7.1 
1. ( – 2)5 1 ( – 2)6 
∫ x dx = x +C 
6 
2. 3 1 3 3 2 (3 )3/ 2 
∫ x dx = ∫ x ⋅ dx = x +C 
3 9 
3. u = x2 +1, du = 2x dx 
When x = 0, u = 1 and when x = 2, u = 5 . 
∫ 2 x ( x 2 + 1) 5 dx = 1 ∫ 2 ( x 2 + 1) 5 
(2 x dx 
) 
0 0 
2 
5 5 
1 
1 
2 
= ∫ u du 
6 5 6 6 
⎡u ⎤ − 
= ⎢ ⎥ = 
⎢⎣ ⎥⎦ 
= = 
12 12 
1 
15624 1302 
12 
5 1 
4. u = 1– x2 , du = –2x dx 
When x = 0, u = 1 and when x = 1, u = 0 . 
∫ 1 x 1– x 2 dx = – 1 ∫ 1 1 − x 2 
( − 2 x dx 
) 
0 0 
2 
1 
2 
1 
2 
0 1/ 2 
1 
1 1/ 2 
0 
u du 
∫ 
∫ 
u du 
= − 
= 
1 
1 1 
3 3 
= ⎡⎢ u 3/ 2 
⎤⎥ = ⎣ ⎦ 
0 
dx = 1 tan 
⎛ x ⎞ ⎜ ⎟ 
+ C 
x 
5. –1 
∫ 
2 
+ ⎝ ⎠ 4 2 2 
6. u = 2 + ex , du = exdx 
∫ ∫ 
2 
+ = ln u +C 
ln 2 
ln(2 ) 
x 
x 
e dx = 
du 
e u 
x 
e C 
e C 
= + + 
= + x 
+ 
7. u = x2 + 4, du = 2x dx 
x dx du 
x u 
∫ 2 
∫ 
+ 1 ln 
2 
1 
= 
4 2 
= u + C 
1 ln 2 4 
2 
= x + +C 
1 ln( 2 4) 
2 
= x + + C 
8. 
2 2 
2 2 
t dt t dt 
t t 
2 2 + 1 − 
1 
2 1 2 1 
∫ = 
∫ 
+ + – 1 
= 
∫ dt ∫ 
dt 
2 t 
2 
+ 1 
u = 2t, du = 2dt 
t – 1 dt t – 1 
du 
∫ = 
∫ 
+ + – 1 tan–1( 2 ) 
2 2 
2 1 2 1 
t u 
= t t + C 
2 
9. u = 4 + z2 , du = 2z dz 
∫6z 4 + z2 dz = 3∫ u du 
= 2u3/ 2 +C 
= 2(4 + z2 )3/ 2 +C 
412 Section 7.1 Instructor’s Resource Manual 
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of 
this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
10. u = 2t +1, du = 2dt 
dt du 
5 5 
2 1 2 
∫ = 
∫ 
+ = 5 u +C 
= 5 2t +1 + C 
t u 
z dz z z dz 
z 
tan tan sec 
cos 
11. 2 
∫ = 2 
∫ 
u = tan z, du = sec2 z dz 
∫ tan z sec2 z dz = ∫u du 
1 2 
2 
= u +C 
1 tan2 
2 
= z +C 
12. u = cos z, du = –sin z dz 
∫ecos z sin z dz = –∫ecos z (– sin z dz) 
= −∫eudu = −eu +C 
= –ecos z +C 
13. , 1 
u t du dt 
= = 
2 
t 
sin t dt 2 sin u du 
∫ = ∫ 
t 
= –2 cos u + C 
= –2cos t +C 
14. u = x2 , du = 2x dx 
x dx du 
x u 
2 
1– 1– 
∫ = ∫ 
= sin–1 u +C 
= sin–1(x2 ) +C 
4 2 
15. u = sin x, du = cos x dx 
x dx du 
x u 
cos 
1 sin 1 
π 
/ 4 2 / 2 
0 2 0 2 
∫ = 
∫ 
+ + − u 
− 
1 2/2 
[tan ] 
tan 2 
0 
1 
= 
≈ 0.6155 
2 
= 
16. 1– , – 1 
u xdu dx 
2 1– 
x 
= = 
x dx u du 
x 
sin 1– –2 sin 
1– 
3/ 4 1/ 2 
0 1 
∫ = ∫ 
1 
1/ 2 
= 2∫ sin u du 
1 
= [ − 2cos u 
]1/ 2 
= − 2 ⎛ cos1 − cos 1 
⎞ ⎜ ⎟ 
2 
⎝ ⎠ 
≈ 0.6746 
17. 
3 2 2 1 (3 –1) 
x + 
xdx x dx dx 
x x 
∫ = ∫ + 
∫ 
+ + 3 2 – ln 1 
2 
1 1 
= x x + x + +C 
18. 
3 
x xdx x x dx dx 
x x 
7 ( 2 8) 8 1 
–1 –1 
+ 
∫ = ∫ + + + ∫ 
1 3 1 2 8 8ln –1 
3 2 
= x + x + x + x +C 
19. u ln 4x2 , du 2 dx 
= = 
x 
sin(ln 4 2 ) 1 sin 
x dx u du 
x 
∫ = ∫ 
2 
– 1 cos 
= u +C 
2 
– 1 cos(ln 4 2 ) 
2 
= x +C 
20. u = ln x, du 1 dx 
x 
= 
2 
sec (ln ) 1 sec2 
x dx u du 
x 
∫ = ∫ 
2 2 
1 tan 
2 
= u +C 
1 tan(ln ) 
2 
= x +C 
21. u = ex , du = exdx 
x 
x 
e dx du du 
e u 
6 = 
6 
∫ 
1 1 
2 2 
− − 
1 
1 
u C 
e C 
− 
− 
6sin 
6sin ( ) 
= + 
= x 
+ 
∫ 
Instructor’s Resource Manual Section 7.1 413 
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of 
this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
22. u = x2 , du = 2x dx 
x dx 1 
du 
x u 
∫ = 
∫ 
+ + 1 tan 1 
4 2 
4 2 
4 2 4 
= − u + C 
2 
⎛ ⎞ 
x C 
1 tan–1 
4 2 
= ⎜⎜ ⎟⎟ + 
⎝ ⎠ 
23. u = 1– e2x , du = –2e2xdx 
x 
x 
2 
2 
e dx du 
e u 
3 – 3 
1– 2 
∫ = ∫ 
= –3 u +C 
= –3 1– e2x +C 
24. 
3 3 
4 4 
x dx 1 4 
x dx 
x x 
∫ = 
∫ 
+ + 1 ln 4 4 
4 
4 4 4 
= x + +C 
1 ln( 4 4) 
4 
= x + + C 
25. 
3 1 2 3 
1 2 1 2 
0 0 
∫ t t dt = ∫ t t dt 
2 
2 1 
⎡ t ⎤ 
= ⎢ ⎥ = 
⎢ ⎥ 
⎣ ⎦ 
1 0.9102 
ln 3 
3 3 – 1 
2ln3 2ln3 2ln3 
0 
= ≈ 
26. / 6 cos / 6 cos 
2 x sin x dx – 2 x (– sin x dx) π π 
∫ = ∫ 
0 0 
cos / 6 
⎡ π =⎢ – 2 
x ⎤ 
⎥ 
⎢⎣ ln 2 
⎥⎦ 
0 
– 1 (2 3 / 2 – 2) 
= 
ln 2 
2 − 
2 3 / 2 
ln 2 
0.2559 
= 
≈ 
x x dx x dx 
27. sin cos 1 cos 
− ⎛ ⎞ = ⎜ − ⎟ 
∫ ∫ 
sin x ⎝ sin 
x 
⎠ u = sin x, du = cos x dx 
sin cos 
x − 
x dx x du 
∫ = − ∫ 
sin 
= x − ln u +C 
= x − ln sin x +C 
x u 
28. u = cos(4t – 1), du = –4 sin(4t – 1)dt 
t dt t dt 
t t 
sin(4 − 1) sin(4 − 
1) 
1 sin (4 1) cos (4 1) 
∫ = 
∫ 
− 2 − 2 
− 1 1 
4 
= − ∫ 
du 
u 
2 
1 1 1 sec(4 1) 
4 4 
= u− +C = t − +C 
29. u = ex , du = exdx 
∫ex sec exdx = ∫secu du 
= ln secu + tan u + C 
= ln sec ex + tan ex +C 
30. u = ex , du = exdx 
∫ex sec2 (ex )dx = ∫sec2 u du = tan u + C 
= tan(ex ) +C 
31. 
x 
3 sin 
sec (sec2 sin cos ) 
x + 
e dx x e x x dx 
x 
∫ = ∫ + 
sec 
= tan x + ∫esin x cos x dx 
u = sin x, du = cos x dx 
tan x + ∫esin x cos x dx = tan x + ∫eu du 
= tan x + eu +C = tan x + esin x +C 
32. u = 3t2 − t −1 , 
1 (3 2 1) 1/ 2 (6 1) 
2 
du = t − t − − t − dt 
2 
t t t dt u du 
(6 − 1)sin 3 − − 
1 2 sin 
∫ = 
∫ 
3 t 2 
− t 
− 
1 
= –2 cos u + C 
= −2cos 3t2 − t −1 + C 
414 Section 7.1 Instructor’s Resource Manual 
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of 
this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
33. u = t3 − 2 , du = 3t2dt 
2 3 
t t dt u du 
cos( − 
2) 1 cos 
sin ( 2) 3 sin 
∫ = 
∫ 
− v = sin u, dv = cos u du 
2 3 2 
t u 
u du v dv v C 
u 
1 cos 1 1 
3 sin 3 3 
2 1 
∫ = ∫ − = − − + 
2 
1 
3sin 
C 
= − + 
u 
1 
= − + 
3 
t 
3sin( 2) 
C 
− 
. 
x dx dx x dx 
x x x 
1 cos2 1 cos2 
sin 2 sin 2 sin 2 
+ 
∫ = ∫ + ∫ 
= ∫csc2 2x dx + ∫cot 2x csc 2x dx 
34. 2 2 2 
1 cot 2 1 csc 2 
2 2 
= − x − x +C 
35. u = t3 − 2 , du = 3t2dt 
2 2 3 2 
t t dt u du 
cos ( − 
2) 1 cos 
sin ( 2) 3 sin 
∫ = 
∫ 
− 1 cot2 
3 
2 3 2 
t u 
= ∫ u du 1 (csc2 –1) 
= ∫ u du 
3 
= − u − u +C 
1 
1[ cot ] 
3 
1[ cot( 3 2) ( 3 
2)] 
3 
= − t − − t − + C 
1[cot( 3 2) 3] 
1 
= − t − + t +C 
3 
36. u = 1 + cot 2t, du = −2csc2 2t 
csc2 2 1 1 
1 cot 2 2 
t dt du 
t u 
∫ = − 
∫ 
+ = − u + C 
= − 1+ cot 2t + C 
2 
1 4 
37. u = tan−1 2t , 2 
du dt 
t 
= 
+ 
tan − 
1 2 
e dt eudu 
∫ + 2 
∫ 
1 1 tan 1 2 
2 2 
1 
t 
= 
1 4 t 
2 
− 
eu C e t C 
= + = + 
38. u = −t2 − 2t − 5 , 
du = (–2t – 2)dt = –2(t + 1)dt 
2 2 5 1 ( 1) 
∫ t + e−t − t− = − ∫eudu 
2 
1 
2 
= − eu +C 
1 2 2 5 
2 
= − e−t − t− +C 
39. u = 3y2 , du = 6y dy 
y dy 1 1 
du 
y u 
∫ = 
∫ 
1 sin 1 
6 4 
16 9 6 4 
4 2 2 
− − 
= − ⎛ u ⎞ +C ⎜ ⎟ 
⎝ ⎠ 
2 
− ⎛ y ⎞ C 
1 sin 1 3 
6 4 
= ⎜⎜ ⎟⎟ + 
⎝ ⎠ 
40. u = 3x, du = 3dx 
x dx 
u du u C 
∫ 
∫ 
cosh 3 
1 (cosh ) 1 sinh 
3 3 
1 sinh 3 
3 
= = + 
x C 
= + 
41. u = x3 , du = 3x2dx 
2 sinh 3 1 sinh 
∫ x x dx = ∫ u du 
3 
1 cosh 
3 
= u +C 
1 cosh 3 
3 
= x +C 
42. u = 2x, du = 2 dx 
5 5 1 
9 4 2 3 
∫ ∫ 
5 sin 1 
2 3 
dx = 
du 
x 2 2 u 
2 
− − 
= − ⎛ u ⎞ +C ⎜ ⎟ 
⎝ ⎠ 
= − ⎛ x ⎞ +C ⎜ ⎟ 
5 sin 1 2 
2 3 
⎝ ⎠ 
43. u = e3t , du = 3e3tdt 
t 
t 
3 
6 2 2 
e dt 1 1 
du 
e u 
∫ = 
∫ 
1 sin 1 
3 2 
4 3 2 
− − 
= − ⎛ u ⎞ +C ⎜ ⎟ 
⎝ ⎠ 
3 
e t − C ⎛ ⎞ 
1 sin 1 
3 2 
= ⎜⎜ ⎟⎟ + 
⎝ ⎠ 
44. u = 2t, du = 2dt 
dt 1 1 
du 
t t u u 
∫ = 
∫ 
1 sec 1 
2 
2 4 2 − 1 2 2 
− 
1 
= ⎣⎡ − u ⎦⎤ +C 
= 1 sec − 1 2 
t +C 
2 
Instructor’s Resource Manual Section 7.1 415 
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of 
this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
45. u = cos x, du = –sin x dx 
x dx du 
x u 
sin 1 
/ 2 0 
0 2 1 2 
∫ = − 
∫ 
+ + 16 cos 16 
π 
1 
16 
1 
0 2 
du 
u 
= 
+ ∫ 
1 
⎡ = 1 tan 
− 1 
⎛ u ⎞⎤ ⎢ 4 ⎜ ⎣ ⎝ 4 
⎠⎦ 
⎟⎥ 0 
1 tan 1 1 1 tan 1 0 
4 4 4 
= ⎡ − ⎛ ⎞ − − ⎤ ⎢ ⎜ ⎟ ⎥ ⎣ ⎝ ⎠ ⎦ 
1 tan 1 1 0.0612 
4 4 
= − ⎛ ⎞ ≈ ⎜ ⎟ 
⎝ ⎠ 
46. 2 2 x x u e e− 
= + , du = (2e2x − 2e−2x )dx 
= 2(e2x − e−2x )dx 
1 2 x − 2 x e 2 + e 
− 
2 
0 2 x − 
2 x 
2 
e − 
e dx 1 1 
du 
e e 2 
u 
∫ = 
∫ 
+ 2 2 
2 
+ − = ⎡⎣ ⎤⎦ 
1 ln 
2 
e e u 
1 ln 2 2 1 ln 2 
2 2 
= e + e− − 
4 
2 
e 
e 
1 + 
ln 1 1 ln 2 
2 2 
= − 
1 ln( 4 1) 1 ln( 2 ) 1 ln 2 
2 2 2 
= e + − e − 
1 4 1 ln 2 0.6625 
2 2 
= ⎛⎜ ⎛⎜ e + ⎞⎟ − ⎞⎟ ≈ ⎜ ⎜ ⎟ ⎟ ⎝ ⎝ ⎠ ⎠ 
1 1 
2 5 2 1 4 
+ + + + + ∫ ∫ 
47. 2 2 
dx = 
dx 
x x x x 
1 ( 1) 
+ + ∫ 
1 tan–1 1 
2 2 
= + 
2 2 
x 
( 1) 2 
d x 
x C 
⎛ + ⎞ = ⎜ ⎟ + 
⎝ ⎠ 
1 1 
–4 9 –4 4 5 
+ + + ∫ ∫ 
48. 2 2 
dx = 
dx 
x x x x 
1 ( –2) 
+ ∫ 
1 tan–1 – 2 
5 5 
2 2 
x 
( –2) ( 5) 
d x 
= 
x C 
⎛ ⎞ 
= ⎜ ⎟ + 
⎝ ⎠ 
dx dx 
+ + + + + ∫ ∫ 
49. = 
9 x 2 18 x 10 9 x 2 18 x 
9 1 
dx 
x 
= 
∫ 
(3 + 3)2 + 12 
u = 3x + 3, du = 3 dx 
dx 1 
du 
x u 
∫ = 
∫ 
+ + + 1 tan–1(3 3) 
3 
2 2 2 2 
(3 3) 1 3 1 
= x + +C 
50. 
dx dx 
x x x x 
∫ = 
∫ 
16 + 6 – 2 –( 2 – 6 + 
9 – 25) 
dx 
x 
dx 
x 
∫ –( – 3)2 52 
52 – ( – 3)2 
= 
+ 
= ∫ 
= sin–1 ⎛ x – 3 
⎞ ⎜ ⎟ 
+C 5 
⎝ ⎠ 
x + 1 dx 1 18 x + 
18 
dx 
+ + + + ∫ ∫ 
51. = 
2 2 
9 x 18 x 10 18 9 x 18 x 
10 
1 ln 9 2 
18 10 
18 
1 ln 9 18 10 
18 
x x C 
= + + + 
( 2 
) 
x x C 
= + + + 
52. 
x dx x dx 
x x x x 
3– 1 6 – 2 
16 6 – 2 16 6 – 
∫ = 
∫ 
2 2 
+ + 
= 16 + 6x – x2 +C 
53. u = 2t, du = 2dt 
dt du 
∫ = ∫ 
2 2 – 9 2 – 32 
t t u u 
⎛ ⎞ 
t 
–1 1 2 sec 
3 3 
C 
= ⎜ ⎟ + 
⎜ ⎟ 
⎝ ⎠ 
54. 
x dx x x dx 
x x x 
tan cos tan 
sec – 4 cos sec – 4 
∫ = ∫ 
2 2 
x dx 
= ∫ 
2 
u = 2 cos x, du = –2 sin x dx 
sin 
1– 4cos 
x 
x dx 
1 1 
2 1 
∫ 2 
2 
sin 
1 4cos 
− x 
du 
u 
= − 
− 
∫ 
= − − u +C – 1 sin–1(2cos ) 
1 sin 1 
2 
= x +C 
2 
55. The length is given by 
2 
L dy dx 
= + ⎛ ⎞ ⎜ ⎟ 
1 b 
a 
∫ 
⎝ dx 
⎠ / 4 2 
1 1 ( sin ) 
0 
π = ∫ 
+ ⎡ ⎢ − ⎤ ⎣ cos 
⎥ ⎦ x dx 
x 
= ∫ + / 4 2 
/ 4 2 
0 
1 tan x dx π 
sec x dx π 
= ∫ 
0 
/ 4 
0 
sec x dx π 
= ∫ 0= ⎡ ⎣ ln sec x + tan x ⎤ π / 4 
⎦ 
= ln 2 +1 − ln 1 = ln 2 +1 ≈ 0.881 
416 Section 7.1 Instructor’s Resource Manual 
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of 
this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
x x 
1 + 
56. sec = = 
1 sin 
x x x 
cos cos (1 + 
sin ) 
sin sin2 cos2 sin (1 sin ) cos2 
x + x + x x + x + 
x 
= = 
x x x x 
cos (1 + sin ) cos (1 + 
sin ) 
x x 
x x 
sin cos 
cos 1 sin 
= + 
+ 
x x x dx 
sec sin cos 
∫ = ∫ 
⎛ ⎞ ⎜ + ⎝ cos x 1 + sin 
x 
⎟ ⎠ x dx x dx 
x x 
sin cos 
cos 1 sin 
= ∫ + 
∫ 
+ For the first integral use u = cos x, du = –sin x dx, 
and for the second integral use v = 1 + sin x, 
dv = cos x dx. 
sin cos – 
cos 1 sin 
x dx x dx du dv 
x x u v 
∫ + ∫ = ∫ + 
∫ 
+ = – ln u + ln v +C 
= – ln cos x + ln 1+ sin x +C 
1 + 
ln sin 
= + 
cos 
= ln sec x + tan x + C 
x C 
x 
57. u = x – π , du = dx 
x x u u 
sin ( + π ) sin( + π 
) 
2 
π π 
0 2 – 2 
+ + + π ∫ ∫ 
dx = 
du 
x π 
u 
1 cos 1 cos ( ) 
u u 
( )sin 
1 cos 
π 
π 
+ π 
+ ∫ 
– 2 
du 
u 
= 
u sin u sin 
u 
π π 
π π 
π 
+ + ∫ ∫ 
du du 
u u 
= + 
– 2 – 2 
1 cos 1 cos 
u sin 
u 
π 
π 
∫ 0 
by symmetry. 
– + 2 
1 cos 
du 
u 
= 
u u du du 
u u 
sin sin 2 
π π 
π π 
π 
∫ = 
∫ 
+ + v = cos u, dv = –sin u du 
– 2 0 2 
1 cos 1 cos 
π 
2 2 1 
–1 1 
1 2 –1 2 
+ + ∫ ∫ 
dv dv 
v v 
− = π 
1 1 
= 2 π [tan − 1 v 
] 1 
⎡π ⎛ π ⎞⎤ − 
1 = 2 
π ⎢ − ⎜− ⎣ 4 ⎝ 4 
⎟⎥ ⎠⎦ 
2 2 
⎛ π ⎞ = π⎜ ⎟ = π 
2 
⎝ ⎠ 
58. 
3 
4 
4 – 
π 
π 
⎛ π ⎞ = π ⎜ + ⎟ 
⎝ ⎠ ∫ 
– , 
4 
V 2 x sin x – cos 
x dx 
4 
π 
u = x du = 
dx 
π 
π 
⎛ π ⎞ ⎛ π ⎞ ⎛ π ⎞ = π ⎜ + ⎟ ⎜ + ⎟ ⎜ + ⎟ 
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ∫ 
V u u u du 
2 
2 – 
2 sin – cos 
2 4 4 
π 
π 
2 2 sin 2 cos – 2 cos 2 sin 
⎛ π ⎞ = π ⎜ + ⎟ + + 
⎝ ⎠ ∫ 
2 
2 – 
u u u u udu 
2 2 2 2 2 
π π π 
−π −π −π 
⎛ π ⎞ = π ⎜ + ⎟ = + 
2 2 sin 2 2 sin 2 2 sin 
⎝ ⎠ ∫ ∫ ∫ 
u u du π u u du π u du 
2 2 2 
2 2 
2 2 
π 
−π 
π∫ = by symmetry. Therefore, 
2 2 u sin u du 0 
2 
2 
π π 
2 2 2 2 2 
= π ∫ = π − = π 
V 2 2 sin u du 2 2 [ cosu] 2 2 
0 0 
Instructor’s Resource Manual Section 7.1 417 
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of 
this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
7.2 Concepts Review 
1. uv – ∫v du 
2. x; sin x dx 
3. 1 
4. reduction 
Problem Set 7.2 
1. u = x dv = exdx 
du = dx v = ex 
∫ xexdx = xex − ∫exdx = xex − ex +C 
2. u = x dv = e3xdx 
du = dx 1 3 
v = e x 
3 
3 1 3 1 3 
∫ xe xdx = xe x − ∫ e xdx 
3 3 
1 3 1 3 
3 9 
= xe x − e x +C 
3. u = t dv = e5t+πdt 
du = dt 1 5 
v = e t+π 
5 
5 1 5 – 1 5 
∫te t+πdt = te t+π ∫ e t+πdt 
5 5 
1 5 – 1 5 
5 25 
= te t+π e t+π +C 
4. u = t + 7 dv = e2t+3dt 
du = dt v = 1 e 2 t+ 
3 
2 
( 7) 2 3 1 ( 7) 2 3 – 1 2 3 
∫ t + e t+ dt = t + e t+ ∫ e t+ dt 
2 2 
1 ( 7) 2 3 – 1 2 3 
2 4 
= t + e t+ e t+ +C 
= t e t+ + e t+ + C 
2 3 13 2 3 
2 4 
5. u = x dv = cos x dx 
du = dx v = sin x 
∫ x cos x dx = x sin x – ∫sin x dx 
= x sin x + cos x + C 
6. u = x dv = sin 2x dx 
du = dx – 1 cos 2 
v = x 
2 
sin 2 – 1 cos 2 – – 1 cos 2 
∫ x x dx = x x ∫ x dx 
2 2 
– 1 cos 2 1 sin 2 
= x x + x +C 
2 4 
7. u = t – 3 dv = cos (t – 3)dt 
du = dt v = sin (t – 3) 
∫(t – 3) cos(t – 3)dt = (t – 3)sin(t – 3) – ∫sin(t – 3)dt 
= (t – 3) sin (t – 3) + cos (t – 3) + C 
8. u = x – π dv = sin(x)dx 
du = dx v = –cos x 
∫(x – π)sin(x)dx = –(x – π) cos x + ∫cos x dx 
= (π – x) cos x + sin x + C 
9. u = t dv = t +1 dt 
du = dt v = 2 ( t + 
1)3/ 2 
3 
1 2 ( 1)3/ 2 – 2 ( 1)3/ 2 
∫t t + dt = t t + ∫ t + dt 
3 3 
2 ( 1)3/ 2 – 4 ( 1)5/ 2 
3 15 
= t t + t + +C 
10. u = t dv = 3 2t + 7dt 
du = dt v = 3 (2 t + 
7)4 / 3 
8 
3 2 7 3 (2 7)4 / 3 – 3 (2 7)4 / 3 
∫t t + dt = t t + ∫ t + dt 
8 8 
3 (2 7)4 / 3 – 9 (2 7)7 / 3 
8 112 
= t t + t + +C 
11. u = ln 3x dv = dx 
du 1 dx 
= v = x 
x 
ln 3x dx x ln 3x x 1 dx 
∫ = −∫ = x ln 3x − x +C 
x 
12. u = ln(7x5 ) dv = dx 
du 5 dx 
= v = x 
x 
ln(7x5 )dx x ln(7x5 ) – x 5 dx 
x 
∫ = ∫ 
= x ln(7x5 ) – 5x +C 
418 Section 7.2 Instructor Solutions Manual 
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of 
this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
13. u = arctan x dv = dx 
du dx 
2 
1 
1 
x 
= 
+ 
v = x 
x x x x dx 
+ ∫ ∫ 
2 arctan arctan 
1 
x 
= − 
x x x dx 
2 
arctan 1 2 
+ ∫ 
2 1 
x 
= − 
arctan 1 ln(1 2 ) 
= x x − + x +C 
2 
14. u = arctan 5x dv = dx 
du dx 
2 
5 
1 25 
x 
= 
+ 
v = x 
x dx x x x dx 
2 
arctan 5 arctan 5 – 5 
+ ∫ ∫ 
1 25 
x 
= 
x x x dx 
2 
arctan 5 – 1 50 
+ ∫ 
10 1 25 
x 
= 
arctan 5 – 1 ln(1 25 2 ) 
= x x + x +C 
10 
dv dx 
15. u = ln x 2 
x 
= 
du 1 dx 
= v – 1 
x 
x 
= 
ln x dx – ln x – – 1 1 dx 
x x x x 
∫ 2 
∫ 
⎝ ⎠ – ln x – 1 C 
= ⎛ ⎞ ⎜ ⎟ 
= + 
x x 
16. u = ln 2x5 
dv 1 dx 
2 
x 
= 
du 5 dx 
= v 1 
x 
x 
= − 
3 5 3 3 5 
2 2 2 2 2 
ln 2x dx 1 ln 2x 5 1 dx 
x x x 
= ⎡− ⎤ + ⎢⎣ ⎥⎦ ∫ ∫ 
3 
1 ln 2 5 5 
1 ln(2 3 ) 5 1 ln(2 2 ) 5 
3 3 2 2 
1 ln 2 5 ln 3 5 3ln 2 5 
3 3 3 2 
= ⎡− ⎢⎣ x 
− ⎤ x x 
⎥⎦ 
2 
= ⎛ − ⋅ 5 − ⎞ ⎜ ⎟ − ⎛− ⎜ ⋅ 5 
− ⎞ ⎟ 
⎝ ⎠ ⎝ ⎠ 
= − − − + + 
8 ln 2 5 ln 3 5 0.8507 
3 3 6 
= − + ≈ 
17. u = ln t dv = t dt 
du 1dt 
= 2 3/ 2 
t 
v = t 
3 
e e ∫ t ln t dt = ⎡⎢ 2 t 3/ 2 ln t⎤⎥ – ∫ 
e 2 
t 1/ 2 
dt ⎣ 3 ⎦ 3 
1 1 1 
2 ln – 2 1ln1 4 
3 3 9 
= e 3/ 2 e ⋅ − ⎡⎢ t 3/ 2 
⎤⎥ ⎣ ⎦ 
2 3/ 2 0 4 3/ 2 4 2 3/ 2 4 1.4404 
3 9 9 9 9 
e 
1 
= e − − e + = e + ≈ 
18. u = ln x3 dv = 2xdx 
du 3 dx 
= 1 (2 )3/ 2 
x 
v = x 
3 
5 3 
1 
∫ 2x ln x dx 
5 5 3 2 3 3 2 
1 (2 ) ln 2 
3 
= ⎡⎢ x x ⎤⎥ − x dx ⎣ ⎦ ∫ 
1 1 
5/ 2 5 
= ⎡ 1 ⎢⎣ (2 x ) 3/ 2 ln x 3 − 2 
x 3/ 2 
⎤ 
3 3 
⎥⎦ 
1 
5 2 5 2 
⎛ ⎞ 
1 (10)3 2 ln 53 2 53/ 2 1 (2)3 2 ln13 2 
3 3 3 3 
= − − ⎜⎜ − ⎟⎟ 
⎝ ⎠ 
4 2 53 2 4 2 103 2 ln 5 31.699 
3 3 
= − + + ≈ 
19. u = ln z dv = z3dz 
du 1 dz 
= 1 4 
z 
v = z 
4 
3 ln 1 4 ln 1 4 1 
∫ = − ∫ ⋅ 
1 4 ln 1 3 
4 4 
z zdz z z z dz 
4 4 
z 
= z z − ∫ z dz 
1 4 ln 1 4 
4 16 
= z z − z +C 
20. u = arctan t dv = t dt 
du dt 
2 
1 
1 
t 
= 
+ 
1 2 
2 
v = t 
2 
t arctan t dt 1 t 2 
arctan t – 1 
t dt 
2 
+ ∫ ∫ 
2 21 
t 
= 
2 
t t t dt 
1 2 
1 1 + − 
arctan 1 
2 2 1 
t 
2 
= − 
+ ∫ 
1 2 
arctan 1 ∫ 1 ∫ 
1 
2 2 2 1 
+ t t dt dt 
2 
t 
= − + 
1 2 arctan 1 1 arctan 
2 2 2 
= t t − t + t +C 
Instructor's Resource Manual Section 7.2 419 
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of 
this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
21. u arctan 1 
= ⎛ ⎞ ⎜ ⎟ 
t 
⎝ ⎠ 
dv = dt 
du dt 
2 
– 1 
1 
t 
= 
+ 
v = t 
dt t t dt 
t t t 
2 
arctan 1 arctan 1 
∫ ⎛ ⎞ ⎛ ⎞ ⎜ ⎟ = ⎜ ⎟ 
+ ∫ 
⎝ ⎠ ⎝ ⎠ 1 
+ arctan 1 1 ln(1 2 ) 
= ⎛ ⎞ + + + ⎜ ⎟ 
t t C 
2 
t 
⎝ ⎠ 
22. u = ln(t7 ) dv = t5dt 
du 7 dt 
= 1 6 
t 
v = t 
6 
5 ln( 7 ) 1 6 ln( 7 ) – 7 5 
∫t t dt = t t ∫t dt 
6 6 
= 1 t 6 ln( t 7 ) – 7 t 6 
+C 
6 36 
23. u = x dv = csc2 x dx 
du = dx v = −cot x 
[ ] / 2 2 / 2 / 2 
/ 6 / 6 / 6 
x csc x dx x cot x cot x dx π π π 
π π π 
∫ = − + ∫ 2 
6 cot ln sin x x x π 
π = ⎡⎣− + ⎤⎦ 
0 ln1 3 ln 1 ln 2 1.60 
2 6 2 2 3 
π π π 
= − ⋅ + + − = + ≈ 
24. u = x dv = sec2 x dx 
du = dx v = tan x 
[ ] 4 2 4 4 
6 6 6 
x sec x dx x tan x tan x dx π π π 
π π π 
π ⎛ π ⎞ 
tan ln cos ln 2 ln 3 
∫ = − ∫ x x π 
4 
x = ⎡⎣ + ⎤⎦ = + − ⎜⎜ + ⎟⎟ 
6 
4 2 6 3 2 
π 
⎝ ⎠ 
1 ln 2 0.28 
π π 
= − + ≈ 
4 6 3 2 3 
25. u = x3 dv = x2 x3 + 4dx 
du = 3x2dx v = 2 ( x 3 + 
4)3/ 2 
9 
∫ x 5 x 3 + 4 dx = 2 x 3( x 3 + 4)3/ 2 – ∫ 2 x 2 ( x 3 + 4)3/ 2 
dx 2 3( 3 4)3/ 2 – 4 ( 3 4)5 / 2 
9 3 
= x x + x + +C 
9 45 
26. u = x7 dv = x6 x7 +1 dx 
du = 7x6dx v = 2 ( x 7 + 
1)3/ 2 
21 
∫ x 13 x 7 + 1 dx = 2 x 7 ( x 7 + 1)3/ 2 – ∫ 2 x 6 ( x 7 + 1)3/ 2 
dx 2 7 ( 7 1)3/ 2 – 4 ( 7 1)5/ 2 
21 3 
= x x + x + +C 
21 105 
27. u = t4 
3 
dv t dt 
(7 – 3 t 
4 )3/ 2 
= 
du = 4t3 dt 
4 1/2 
1 
t 
6(7 – 3 ) 
v 
= 
7 4 3 
4 3/ 2 4 1/ 2 4 1/ 2 
t dt t – 2 
t dt 
t t t 
∫ = ∫ 
(7 – 3 ) 6(7 – 3 ) 3 (7 – 3 ) 
4 
t 1 (7 – 3 t 4 ) 
1/2 
C 
t 
= + + 
4 1/2 
6(7 – 3 ) 9 
420 Section 7.2 Instructor Solutions Manual 
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of 
this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
28. u = x2 dv = x 4 – x2 dx 
du = 2x dx v = – 1 (4 – x 
2 )3/ 2 
3 
∫ x 3 4 – x 2 dx = – 1 x 2 (4 – x 2 )3/ 2 + 2 ∫ x (4 – x 2 )3/ 2 
dx – 1 2 (4 – 2 )3/ 2 – 2 (4 – 2 )5 / 2 
3 3 
= x x x +C 
3 15 
29. u = z4 
3 
dv z dz 
(4 – z 
4 )2 
= 
du = 4z3dz 
4 
1 
z 
4(4 – ) 
v 
= 
7 4 3 
z dz z z dz 
z z z 
∫ = − ∫ 
(4 – 4 )2 4(4 – 4 ) 4 – 4 
4 
z z 4 
C 
z 
= + + 
4 
1 ln 4 – 
4(4 – ) 4 
30. u = x dv = cosh x dx 
du = dx v = sinh x 
∫ x cosh x dx = x sinh x – ∫sinh x dx = x sinh x – cosh x + C 
31. u = x dv = sinh x dx 
du = dx v = cosh x 
∫ x sinh x dx = x cosh x – ∫cosh x dx = x cosh x – sinh x + C 
32. u = ln x dv = x–1/ 2dx 
du 1 dx 
= v = 2x1/ 2 
x 
ln x dx 2 x ln x – 2 1 dx 
x x 
∫ = ∫ = 2 x ln x – 4 x +C 
1/ 2 
33. u = x dv = (3x +10)49 dx 
du = dx v = 1 (3 x + 
10)50 
150 
∫ x (3 x + 10)49 dx = x (3 x + 10)50 – 1 ∫ (3 x + 10)50 
dx (3 10)50 – 1 (3 10)51 
150 150 
= x x + x + + C 
150 22,950 
34. u = t dv = (t −1)12 dt 
du = dt 1 ( 1)13 
v = t − 
13 
( ) ( ) 
1 1 1 12 13 13 
0 0 0 
t ( t 1) dt t t 1 1 t 1 
dt 
− = ⎡ − ⎤ − − ⎢⎣ ⎥⎦ 
∫ ∫ 
13 13 
t t t 
1 1 1 1 
= ⎡ 13 14 
⎤ ⎢⎣ ( − ) − ( − ) 
⎥⎦ 
= 1 
13 182 182 
0 
35. u = x dv = 2x dx 
du = dx 1 2 
v = x 
ln 2 
∫ x 2 x dx = x 2 x – 1 ∫ 2 
x dx 
ln 2 ln 2 
= x 2 x – 1 2 
x +C 
2 
ln 2 (ln 2) 
36. u = z dv = azdz 
du = dz 1 
v az 
ln 
a 
= 
zazdz z az – 1 
azdz 
∫ = ∫ 
a a 
ln ln 
z az az C 
a a 
= + 
2 
– 1 
ln (ln ) 
37. u = x2 dv = exdx 
du = 2x dx v = ex 
∫ x2exdx = x2ex − ∫ 2xexdx 
u = x dv = exdx 
du = dx v = ex 
∫ x2ex dx = x2ex − 2(xex − ∫ex dx) 
= x2ex − 2xex + 2ex +C 
Instructor's Resource Manual Section 7.2 421 
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of 
this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
38. u = x4 
x2 dv = xe dx 
du = 4x3dx 
1 2 
2 
v = ex 
5 2 1 4 2 3 2 – 2 
∫ x ex dx = x ex ∫ x ex dx 
2 
2 
u = x2 
dv = 2xex dx 
du = 2x dx 
x2 v = e 
5 2 1 4 2 2 2 2 – 2 
x ex dx = x ex ⎛ x ex − xex dx ⎞ ⎜ ⎟ 
∫ ∫ 
2 
⎝ ⎠ 1 4 2 2 2 – 
2 2 
= x ex x ex + ex +C 
39. u = ln2 z dv = dz 
du 2ln z dz 
= v = z 
z 
∫ln2 z dz = z ln2 z – 2∫ln z dz 
u = ln z dv = dz 
du 1 dz 
= v = z 
z 
∫ln2 z dz = z ln2 z – 2(z ln z – ∫ dz) 
= z ln2 z – 2z ln z + 2z +C 
40. u = ln2 x20 dv = dx 
40ln x20 du dx 
= v = x 
x 
∫ln2 x20dx = x ln2 x20 – 40∫ln x20dx 
u = ln x20 dv = dx 
du 20 dx 
= v = x 
x 
∫ln2 x20dx = x ln2 x20 – 40(x ln x20 – 20∫ dx) 
= x ln2 x20 – 40x ln x20 + 800x +C 
41. u = et dv = cos t dt 
du = etdt v = sin t 
∫et cos t dt = et sin t − ∫et sin t dt 
u = et dv = sin t dt 
du = etdt v = –cos t 
∫et cost dt = et sin t − ⎡⎣−et cost + ∫et cos t dt⎤⎦ 
∫et cos t dt = et sin t + et cos t − ∫et cos t dt 
2∫et cos t dt = et sin t + et cos t +C 
cos 1 (sin cos ) 
∫et t dt = et t + t +C 
2 
42. u = eat dv = sin t dt 
du = aeatdt v = –cos t 
∫eat sin t dt = –eat cos t + a∫eat cos t dt 
u = eat dv = cos t dt 
du = aeatdt v = sin t 
∫eat sin t dt = –eat cos t + a (eat sin t – a∫eat sin t dt ) 
∫eat sin t dt = –eat cos t + aeat sin t – a2 ∫eat sin t dt 
(1+ a2 )∫eat sin t dt = –eat cos t + aeat sin t + C 
at at 
eat sin t dt – e cos t ae sin 
t C 
+ + ∫ 
= + + 
2 2 
a a 
1 1 
43. u = x2 dv = cos x dx 
du = 2x dx v = sin x 
∫ x2 cos x dx = x2 sin x − ∫ 2x sin x dx 
u = 2x dv = sin x dx 
du = 2dx v = −cos x 
∫ x2 cos x dx = x2 sin x − (−2x cos x + ∫ 2cos x dx) 
= x2 sin x + 2x cos x − 2sin x +C 
44. u = r2 dv = sin r dr 
du = 2r dr v = –cos r 
∫ r2 sin r dr = –r2 cos r + 2∫ r cos r dr 
u = r dv = cos r dr 
du = dr v = sin r 
∫ r2 sin r dr = –r2 cos r + 2(r sin r – ∫sin r dr ) = –r2 cos r + 2r sin r + 2cos r +C 
422 Section 7.2 Instructor Solutions Manual 
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of 
this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
45. u = sin(ln x) dv = dx 
du cos(ln x) 1 dx 
= ⋅ v = x 
x 
∫sin(ln x)dx = x sin(ln x) − ∫cos(ln x) dx 
u = cos (ln x) dv = dx 
du sin(ln x) 1 dx 
= − ⋅ v = x 
x 
∫sin(ln x)dx = x sin(ln x) − ⎡⎣x cos(ln x) − ∫ −sin(ln x)dx⎤⎦ 
∫sin(ln x)dx = x sin(ln x) − x cos(ln x) − ∫sin(ln x)dx 
2∫sin(ln x)dx = x sin(ln x) − x cos(ln x) +C 
sin(ln ) [sin(ln ) cos(ln )] 
∫ x dx = x x − x +C 
2 
46. u = cos(ln x) dv = dx 
du – sin(ln x) 1 dx 
= v = x 
x 
∫cos(ln x)dx = x cos(ln x) + ∫sin(ln x)dx 
u = sin(ln x) dv = dx 
du cos(ln x) 1 dx 
= v = x 
x 
∫cos(ln x)dx = x cos(ln x) + ⎡⎣x sin(ln x) – ∫cos(ln x)dx⎤⎦ 
2∫cos(ln x)dx = x[cos(ln x) + sin(ln x)]+C 
cos(ln ) [cos(ln ) sin(ln )] 
∫ x dx = x x + x + C 
2 
47. u = (ln x)3 dv = dx 
3ln2 x du dx 
= v = x 
x 
∫(ln x)3dx = x(ln x)3 – 3∫ln2 x dx 
= x ln3 x – 3(x ln2 x – 2x ln x + 2x +C) 
= x ln3 x – 3x ln2 x + 6x ln x − 6x +C 
48. u = (ln x)4 dv = dx 
4ln3 x du dx 
= v = x 
x 
∫(ln x)4 dx = x(ln x)4 – 4∫ln3 x dx = x ln4 x – 4(x ln3 x – 3x ln2 x + 6x ln x − 6x +C) 
= x ln4 x – 4x ln3 x +12x ln2 x − 24x ln x + 24x +C 
49. u = sin x dv = sin(3x)dx 
du = cos x dx v = – 1 cos(3 x 
) 
3 
sin sin(3 ) – 1 sin cos(3 ) 1 cos cos(3 ) 
∫ x x dx = x x + ∫ x x dx 
3 3 
u = cos x dv = cos(3x)dx 
du = –sin x dx v = 1 sin(3 x 
) 
3 
Instructor's Resource Manual Section 7.2 423 
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of 
this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
sin sin(3 ) – 1 sin cos(3 ) 1 1 cos sin(3 ) 1 sin sin(3 ) 
∫ x x dx = x x + ⎡⎢ x x + ∫ 
x x dx⎤⎥ 3 33 ⎣ 3 
⎦ – 1 sin cos(3 ) 1 cos sin(3 ) 1 sin sin(3 ) 
= x x + x x + ∫ x x dx 
3 9 9 
8 sin sin(3 ) – 1 sin cos(3 ) 1 cos sin(3 ) 
9 3 9 
∫ x x dx = x x + x x + C 
sin sin(3 ) – 3 sin cos(3 ) 1 cos sin(3 ) 
∫ x x dx = x x + x x +C 
8 8 
50. u = cos (5x) dv = sin(7x)dx 
du = –5 sin(5x)dx v = – 1 cos(7 x 
) 
7 
cos(5 )sin(7 ) – 1 cos(5 ) cos(7 ) – 5 sin(5 ) cos(7 ) 
∫ x x dx = x x ∫ x x dx 
7 7 
u = sin(5x) dv = cos(7x)dx 
du = 5 cos(5x)dx v = 1 sin(7 x 
) 
7 
cos(5 )sin(7 ) – 1 cos(5 ) cos(7 ) – 5 1 sin(5 )sin(7 ) – 5 cos(5 )sin(7 ) 
∫ x x dx = x x ⎡⎢ x x ∫ 
x x dx⎤⎥ 7 77 ⎣ 7 
⎦ – 1 cos(5 ) cos(7 ) – 5 sin(5 )sin(7 ) 25 cos(5 )sin(7 ) 
= x x x x + ∫ x x dx 
7 49 49 
24 cos(5 )sin(7 ) – 1 cos(5 ) cos(7 ) – 5 sin(5 )sin(7 ) 
49 7 49 
∫ x x dx = x x x x +C 
cos(5 )sin(7 ) – 7 cos(5 ) cos(7 ) – 5 sin(5 )sin(7 ) 
∫ x x dx = x x x x + C 
24 24 
51. u = eα z dv = sin βz dz 
du =αeα zdz v – 1 cosβ z 
β 
= 
eα z sin z dz – 1 eα z cos z α eα z cos z dz 
∫ = + ∫ 
u = eα z dv = cos βz dz 
du =αeα zdz v 1 sinβ z 
β β β 
β β 
β 
= 
⎡ ⎤ 
eα z sin z dz 1 eα z cos z α 1 eα z sin z α eα z sin z dz 
⎣ ⎦ ∫ ∫ 
β β β β 
= − + ⎢ − ⎥ 
β β β β 
2 
– 1 eα z cos z α eα z sin z –α eα z sin z dz 
= + ∫ 
2 2 
β β β 
2 2 
β β β 
β α eα z sin z dz – 1 eα z cos z α eα z sin z C 
∫ = + + 
β β β 
+ 
2 2 
β β β 
e α z ( α sin β z – β cos β 
z) C 
eα z sin z dz –β eα z cos z α eα z sin z C 
∫ β = β + β 
+ 
2 + 2 2 + 2 
2 2 
α β α β 
= + 
α + 
β 
424 Section 7.2 Instructor Solutions Manual 
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of 
this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
52. u = eα z dv = cosβ z dz 
du =αeα zdz v 1 sinβ z 
β 
= 
eα z cos z dz 1 eα z sin z – α eα z sin z dz 
∫ = ∫ 
u = eα z dv = sin βz dz 
du =αeα zdz v – 1 cosβ z 
β β β 
β β 
β 
= 
⎡ ⎤ 
eα z cos z dz 1 eα z sin z α 1 eα z cos z α eα z cos z dz 
⎣ ⎦ ∫ ∫ 
β β β β 
= − ⎢− + ⎥ 
β β β β 
2 
1 eα z sin z α eα z cos z –α eα z cos z dz 
= + ∫ 
2 2 
β β β 
2 2 
β β β 
α β eα z cos z dz α eα z cos z 1 eα z sin z C 
∫ = + + 
β β β 
+ 
2 2 
β β β 
z 
α 
α z e ( α cos β z + 
β β 
e cos z dz sin z ) 
C 
+ ∫ 
= + 
2 2 
β 
α β 
53. u = ln x dv = xα dx 
du 1 dx 
x 
= 
1 
1 
α 
α 
v x 
+ 
= 
+ 
, α ≠ –1 
α 
+ 
1 ln ln – 
1 x x dx x x x dx 
α α 
1 1 
+ + 
x x x C 
α α 
+ + ∫ ∫ 
α α 
1 1 
= 
α 
2 ln – , –1 
1 ( 1) 
= + ≠ 
α α 
+ + 
54. u = (ln x)2 dv = xα dx 
du 2ln x dx 
x 
= 
1 
1 
α 
α 
v x 
+ 
= 
+ 
, α ≠ –1 
1 
α 
+ 
x (ln x )2 dx x (ln x )2 – 2 x ln 
x dx 
1 1 1 
+ ⎡ + + ⎤ 
x α α α 
x x x x C 
α α α α 
(ln ) 2 ln 
1 1 1 ( 1) 
α α 
+ + ∫ ∫ 
α α 
1 1 
= 
2 
= − ⎢ − ⎥ + 
2 
+ + ⎢⎣ + + ⎥⎦ 
1 1 1 
+ + + 
α α α 
x x 2 
x x x C 
α 
2 3 (ln ) – 2 ln 2 , –1 
1 ( 1) ( 1) 
= + + ≠ 
α + α + α 
+ 
Problem 53 was used for xα ln x dx. ∫ 
55. u = xα dv = eβ x dx 
du =α xα –1dx v 1 eβ x 
β 
= 
α β 
x α e β xdx x e α – x α –1 
e β 
xdx 
x 
∫ = ∫ 
β β 
56. u = xα dv = sin βx dx 
du =α xα –1dx v – 1 cosβ x 
β 
= 
α 
x sin x dx – x cos x x –1 cos x dx 
α β α α 
∫ = + ∫ 
β β 
β β 
Instructor's Resource Manual Section 7.2 425 
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of 
this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
57. u = xα dv = cos βx dx 
du =α xα –1dx v 1 sinβ x 
β 
= 
α 
x cos x dx x sin x – x –1 sin x dx 
α β α α 
∫ = ∫ 
β β 
β β 
58. u = (ln x)α dv = dx 
(ln x) –1 du dx 
α α 
= v = x 
x 
∫(ln x)α dx = x(ln x)α –α ∫(ln x)α –1dx 
59. u = (a2 – x2 )α dv = dx 
du = –2α x(a2 – x2 )α –1dx v = x 
∫(a2 – x2 )α dx = x(a2 – x2 )α + 2α ∫ x2 (a2 – x2 )α –1dx 
60. u = cosα –1 x dv = cos x dx 
du = –(α –1) cosα –2 x sin x dx v = sin x 
∫cosα x dx = cosα –1 x sin x + (α –1)∫cosα –2 x sin2 x dx 
= cosα −1 x sin x + (α −1)∫cosα −2 x(1− cos2 x) dx = cosα –1 x sin x + (α –1)∫cosα –2 x dx – (α –1)∫cosα x dx 
α ∫cosα x dx = cosα −1 x sin x + (α −1)∫cosα −2 x dx 
–1 
α 
cos x dx cos x sin x –1 cos –2 x dx 
α α α 
∫ = + ∫ 
α α 
61. u = cosα –1 β x dv = cos βx dx 
du = –β (α –1) cosα –2 β x sinβ x dx v 1 sinβ x 
β 
= 
–1 
α 
cos x dx cos x sin x ( –1) cos –2 x sin2 x dx 
α β β α 
β α β β 
∫ = + ∫ 
β 
1 
− 
α 
cos β x sin β x ( 1) cos α 
2 x(1 cos2 x) dx 
= + − ∫ − − 
α β β 
β 
–1 
α 
cos x sin x ( –1) cos –2 x dx – ( –1) cos x dx 
β β α α 
= + ∫ ∫ 
α β α β 
β 
1 
− 
α 
cos x cos x sin x ( 1) cos 2 x dx 
α β β α 
∫ = + − ∫ − 
α β α β 
β 
–1 
α 
cos x dx cos x sin x –1 cos –2 x dx 
α β β α α 
β β 
∫ = + ∫ 
αβ α 
62. 4 3 1 4 3 – 4 3 3 
∫ x e xdx = x e x ∫ x e xdx 1 4 3 – 4 1 3 3 – 2 3 
3 3 
= x e x ⎡ ⎢⎣ x e x ∫ 
x e xdx⎤ 3 33 
⎥⎦ = 1 x 4 e 3 x – 4 x 3 e 3 x + 4 ⎡ 1 x 2 e 3 x – 2 ∫ xe 3 
xdx⎤ 1 4 3 – 4 3 3 4 2 3 – 8 1 3 – 1 3 
3 9 33 ⎢⎣ 3 
⎥⎦ = x e x x e x + x e x ⎡ ⎢⎣ xe x ∫ 
e xdx⎤ 3 9 9 93 3 
⎥⎦ 1 4 3 – 4 3 3 4 2 3 – 8 3 8 3 
3 9 9 27 81 
= x e x x e x + x e x xe x + e x +C 
426 Section 7.2 Instructor Solutions Manual 
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of 
this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
63. 4 cos3 1 4 sin 3 – 4 3 sin 3 
∫ x x dx = x x ∫ x x dx 1 4 sin 3 – 4 – 1 3 cos3 2 cos3 
3 3 
= x x ⎡⎢ x x + ∫ 
x x dx⎤⎥ 3 3 ⎣ 3 
⎦ 1 4 sin 3 4 3 cos3 – 4 1 2 sin 3 2 sin 3 
3 9 3 3 3 
= x x + x x ⎡⎢ x x − x x dx⎤⎥ ⎣ ⎦ ∫ 
1 4 sin 3 4 3 cos3 – 4 2 sin 3 8 – 1 cos3 1 cos3 
3 9 9 9 3 3 
= x x + x x x x + ⎡⎢ x x + ∫ 
x dx⎤⎥ ⎣ ⎦ = 1 x 4 sin 3 x + 4 x 3 cos3 x – 4 x 2 sin 3 x – 8 x cos3 x + 8 sin 3 
x + C 
3 9 9 27 81 
64. cos6 3 1 cos5 3 sin 3 5 cos4 3 
∫ x dx = x x + ∫ x dx 1 cos5 3 sin 3 5 1 cos3 3 sin 3 3 cos2 3 
18 6 
= x x + ⎡⎢ x x + ∫ 
x dx⎤⎥ 18 6 ⎣ 12 4 
⎦ 1 cos5 3 sin 3 5 cos3 3 sin 3 5 1 cos3 sin 3 1 
18 72 8 6 2 
= x x + x x + ⎡⎢ x x + ∫ 
dx⎤⎥ ⎣ ⎦ = 1 cos5 3 x sin 3 x + 5 cos3 3 x sin 3 x + 5 cos3 x sin 3 x + 5 
x +C 
18 72 48 16 
65. First make a sketch. 
From the sketch, the area is given by 
∫ e ln x dx 
1 
u = ln x dv = dx 
du 1 dx 
= v = x 
x 
ln ln ∫e x dx = x x e − ∫e dx 1 [ ln ]e 
[ ]1 1 1 
= x x − x = (e – e) – (1 · 0 – 1) = 1 
(ln ) e V = ∫ π x dx 
u = (ln x)2 dv = dx 
du 2ln x dx 
66. 2 
1 
= v = x 
x 
π ∫ e 2 e (ln x ) dx = π⎛ 2 
e ⎞ 2 
1 ⎜ ⎡ ⎤ ⎝ ⎣ x (ln x ) ⎦ − 2 ∫ ln 
x dx 1 1 
⎟ ⎠ e 
⎡x x x x x ⎤ 
⎣ ⎦ = π − − 2 
1 
(ln ) 2( ln ) 
1 [ (ln ) 2 ln 2 ]e 
= π x x − x x + x 
= π[(e − 2e + 2e) − (0 − 0 + 2)] = π(e − 2) ≈ 2.26 
Instructor's Resource Manual Section 7.2 427 
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of 
this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
67. 
3 –9 – 1 
e x dx = e x ⎛ dx ⎞ ⎜ ⎟ 
9 – / 3 9 – / 3 
0 0 
–9[e x ] – 9 9 
∫ 0 
∫ – /3 ⎝ 3 
⎠ 9= = + ≈ 8.55 
3 
e 
68. 9 – / 3 2 9 –2 / 3 
V = ∫ π(3e x ) dx = 9π∫ e x dx 
0 0 
9 – 3 – 2 
= π⎛ ⎞ e x ⎛ dx ⎞ ⎜ ⎟ ⎜ ⎟ 
9 –2 / 3 
0 
– 27 π [ e x 
] – 27 π 27 π 
42.31 
2 2 2 
∫ –2 / 3 9 
⎝ 2 ⎠ ⎝ 3 
⎠ = = + ≈ 
0 6 
e 
69. / 4 / 4 / 4 
(x cos x – x sin x)dx x cos x dx – x sin x dx π π π 
∫ = ∫ ∫ 
0 0 0 
4 4 
0 0 xsin x sin x dx ⎛ π π ⎞ = ⎜ ⎡⎣ ⎤⎦ ⎟ ⎝ ⎠ 
− ∫ [ ] 4 4 
xπ 
−⎜ ⎛ − x cos x π ∫ 
π + cos x dx ⎞ ⎟ 
⎝ 0 0 
⎠ [ x sin x cos x x cos x – sin ] / 4 
0 = + + 2 –1 
= ≈ 0.11 
4 
π 
Use Problems 60 and 61 for ∫ x sin x dx and ∫ x cos x dx. 
V x x dx π ⎛ ⎞ = π ⎜ ⎟ 
70. 2 
⎝ ⎠ ∫ 
2 sin2 
0 
dv = x dx 
u = x sin 
2 
v = x 
du = dx –2cos 
2 
2 2 
0 0 
⎛ ⎡ ⎤ π π ⎞ = π⎜ ⎢ ⎥ + ⎟ ⎜ ⎣ ⎦ ⎟ ⎝ ⎠ 
V x x x dx 
∫ 
2 –2 cos 2cos 
2 2 
2 
2 
⎛ π ⎞ = 2 π⎜ 4 π + ⎡ 4sin x ⎤ ⎢ ⎥ ⎟ = 8 
π ⎜ ⎝ ⎣ 2 
⎦ ⎟ 0 
⎠ 
ln 2 ln e e ∫ x dx = ∫ x dx 
u = ln x dv = dx 
du 1 dx 
71. 2 
1 1 
= v = x 
x 
( ) 1 1 1 1 
2 ln 2 [ ln ] 2 [ ] 2 e x dx ⎛ x x e e dx⎞ e x e ⎜ − ⎟ 
∫ = ∫ = − = 
⎝ ⎠ 
∫ e x ln x 2 
dx = 2 ∫ e x ln x dx 
1 1 
u = ln x dv = x dx 
du = 1 dx 
1 2 
x 
v = x 
2 
e e e x xdx x x xdx 
⎛ ⎡ ⎤ ⎞ = ⎜ ⎢ ⎥ ⎟ ⎜ ⎣ ⎦ ⎟ ⎝ ⎠ 
2 ln 2 1 ln – 1 
e 
⎛ ⎡ ⎤ ⎞ = ⎜ ⎢ ⎥ ⎟ = + ⎜ ⎣ ⎦ ⎟ ⎝ ⎠ 
2 1 – 1 1 ( 1) 
2 4 2 
∫ 2 
∫ 2 2 2 
2 2 
1 1 1 
e x e 
1 
428 Section 7.2 Instructor Solutions Manual 
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of 
this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
∫e x 2 
dx 
u = (ln x)2 dv = dx 
du 2ln x dx 
1 (ln ) 
2 
1 
= v = x 
x 
1 (ln ) 1 [ (ln ) ] – 2 ln 
2 2 
∫ e x 2 dx = ⎛ ⎜ x x 2 
e e 1 ∫ x dx ⎞ ⎟ 
= 1( e 
–2) 
1 ⎝ 1 
⎠ 2 
1 2 2 
2( 1) 1 
e e x 
+ + 
= = 
2 4 
1 
( –2) 2– 2 
e e y = = 
2 4 
72. a. u = cot x dv = csc2 x dx 
du = – csc2 x dx v = –cot x 
2 2 2 
∫ ∫ 
∫ 
∫ 
x xdx x x xdx 
x xdx x C 
x xdx x C 
cot csc = − cot − 
cot csc 
2 cot csc 2 = − cot 
2 
+ 
cot csc 2 = − 1 cot 
2 
+ 
2 
b. u = csc x dv = cot x csc x dx 
du = –cot x csc x dx v = –csc x 
2 2 2 
∫ ∫ 
∫ 
∫ 
x xdx x x xdx 
x xdx x C 
x xdx x C 
cot csc = − csc − 
cot csc 
2 cot csc 2 = − csc 
2 
+ 
cot csc 2 = − 1 csc 
2 
+ 
2 
c. – 1 cot2 – 1 (csc2 –1) 
x = x – 1 csc2 1 
2 2 
= x + 
2 2 
73. a. p(x) = x3 − 2x 
g(x) = ex 
All antiderivatives of g(x) = ex 
∫(x3 − 2x)exdx = (x3 − 2x)ex − (3x2 − 2)ex + 6xex − 6ex + C 
b. p(x) = x2 − 3x +1 
g(x) = sin x 
G1(x) = −cos x 
G2 (x) = −sin x 
G3(x) = cos x 
∫(x2 − 3x +1)sin x dx = (x2 − 3x +1)(−cos x) − (2x − 3)(−sin x) + 2cos x + C 
Instructor's Resource Manual Section 7.2 429 
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of 
this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
74. a. We note that the nth arch extends from x = 2π (n −1) to x =π (2n −1) , so the area of the nth arch is 
( ) sin n 
(2 − 
1) 
2 ( − 
1) 
A n x xdx π 
= ∫ . Using integration by parts: 
n 
π 
u = x dv = 
sin 
xdx 
du = dx v =− 
cos 
x 
A n x xdx x x xdx x x x 
n n n n n 
n n n n n 
(2 − 1) (2 − 1) (2 − 1) (2 − 1) (2 − 
1) 
2 ( − 1) 2 ( − 1) 2 ( − 1) 2 ( − 1) 2 ( − 
1) 
π [ ] π π [ ] π [ ] 
π 
π π π π π 
( ) sin cos cos cos sin 
= ∫ = − − ∫ − = − + 
= − − − + − − +[ − − − ] 
[ ] 
n n n n n n 
)) 
(2 1) cos( (2 1)) 2 ( 1) cos(2 ( 1)) sin( (2 1)) sin(2 ( 1 
π π π π π π 
[ ] 
= −π (2n −1)(−1) + 2π (n −1)(1) + 0 − 0 =π (2n −1) + (2n − 2) . So A(n) = (4n − 3)π 
b. 3 2 
V 2 x sin x dx π 
= π∫ 
2 
π 
u = x2 dv = sin x dx 
du = 2x dx v = –cos x 
2 3 3 
π π 
π π 
⎛ ⎡ ⎤ ⎞ ⎜ ⎣ ⎦ ⎟ ⎝ ⎠ 
= π + ∫ 2 2 3 
V 2 –x cos x 2x cos x dx 
2 2 
2 2 9 4 2x cos x dx π 
⎛ ⎞ 
⎜ ⎝ π 
⎟ 
⎠ 
= π π + π + ∫ 
u = 2x dv = cos x dx 
du = 2 dx v = sin x 
2 3 3 
2 2 V 2 13 [2xsin x] – 2sin x π π 
⎛ ⎞ 
⎜ ⎟ 
⎝ ⎠ 
= π π + π ∫ 
π 
( 2 3 ) 2 
2 13 [2cos x]2 2 (13 – 4) π 
= π π + π = π π ≈ 781 
75. u = f(x) dv = sin nx dx 
du = f ′(x)dx v 1 cos nx 
n 
= − 
π π 
−π −π 
⎡ ⎡ ⎤ ′ ⎤ = ⎢ ⎢− ⎥ + ⎥ π ⎣ ⎣ ⎦ ⎦ ∫ 
1 1 cos( ) ( ) 1 cos( ) ( ) an nx f x nx f x dx 
n n 
	
 	
 
Term 1 Term 2 
Term 1 = 1 cos(n π )( f ( −π ) − f ( π )) =± 1 ( f ( −π ) − f ( π 
)) 
n n 
Since f ′(x) is continuous on [–∞ ,∞ ], it is bounded. Thus, 
cos(nx) f (x)dx π 
π 
∫ ′ is bounded so 
– 
a 1 ⎡± f π 
lim n 
= lim ⎢⎣ ( ( −π ) − f ( π )) + ∫ 
cos( nx ) f ′ ( x ) dx 
⎤ ⎥⎦ = 0. n n 
π n 
→∞ →∞ −π 
76. 
1 
G n n n n 
n n 
[( + 1)( + 2) ⋅⋅⋅ ( + 
)] 
n 1 
n 
[ ] 
n 
n 
= 
n n 
1/ 1 1 1 2 1 
= ⎡⎛ ⎢⎜ + ⎞⎛ ⎟⎜ + ⎟…⎜ ⎞ ⎛ + ⎞⎤ ⎣⎝ n ⎠⎝ n ⎠ ⎝ n 
⎟⎥ ⎠⎦ 
ln Gn 1 ln 1 1 1 2 1 n 
⎛ ⎞ ⎡⎛ ⎞⎛ ⎜ ⎟ = + + ⎞ ⎟…⎜ ⎛ + ⎞⎤ ⎝ n ⎠ n ⎢⎜ n ⎟⎜ ⎣⎝ ⎠⎝ n ⎠ ⎝ n 
⎠⎦ 
⎟⎥ 1 ln 1 1 ln 1 2 ln 1 n 
n n n n 
⎡ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎤ = ⎢ ⎜ + ⎟ + ⎜ + ⎟ + ⋅⋅⋅+ ⎜ + ⎟⎥ ⎣ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎦ 
G xdx 
⎛ ⎞ 2 
⎜ ⎟ 
= ∫ 
= ⎝ ⎠ 1 
lim ln n ln 2ln 2 –1 
n 
→∞ n 
G e e 
lim n 2ln 2–1 4 –1 4 
n 
⎛ ⎞ = = = ⎜ ⎟ 
⎝ ⎠ 
→∞ n e 
430 Section 7.2 Instructor Solutions Manual 
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of 
this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
77. The proof fails to consider the constants when integrating . 1t 
The symbol ( ) 1 t dt ∫ is a family of functions, all of who whom have derivative . 1t 
We know that any two of these 
functions will differ by a constant, so it is perfectly correct (notationally) to write ∫(1 t )dt = ∫(1 t )dt +1 
[ ( 1 cos 7 2 sin 7 ) 3] 5 ( 1 cos7 2 sin 7 ) (–7 1 sin 7 7 2 cos 7 ) d e x C x C x C e x C x C x e x C x C x 
dx 
78. 5 5 5 
+ + = + + + 
5 
[(5 1 7 2 ) cos 7 (5 2 – 7 1)sin 7 ] = e x C + C x + C C x 
Thus, 5C1 + 7C2 = 4 and 5C2 – 7C1 = 6. 
Solving, 1 2 
– 11 ; 29 
37 37 
C = C = 
79. u = f(x) dv = dx 
du = f ′(x)dx v = x 
( ) [ ( )] – ( ) b b b 
a a a 
∫ f x dx = xf x ∫ xf ′ x dx 
Starting with the same integral, 
u = f(x) dv = dx 
du = f ′(x)dx v = x – a 
( ) [( – ) ( )] – ( – ) ( ) b b b 
a a a 
∫ f x dx = x a f x ∫ x a f ′ x dx 
80. u = f ′(x) dv = dx 
du = f ′′(x)dx v = x – a 
( )– ( ) ( ) b 
f b f a = ∫ f ′ x dx [( – ) ( )] – ( – ) ( ) b b 
a 
= x a f ′ x ∫ x a f ′′ x dx ( )( – ) – ( – ) ( ) b 
a a 
= f ′ b b a ∫ x a f ′′ x dx 
a 
Starting with the same integral, 
u = f ′(x) dv = dx 
du = f ′′(x)dx v = x – b 
( ) ( ) ( ) [( – ) ( )] – ( – ) ( ) b b b 
f b − f a = ∫ f ′ x dx = x b f ′ x ∫ x b f ′′ x dx ( )( ) – ( – ) ( ) b 
a a a 
= f ′ a b − a ∫ x b f ′′ x dx 
a 
81. Use proof by induction. 
n = 1: ( ) ( )( – ) ( – ) ( ) ( ) ( )( – ) [ ( )( – )] ( ) t t t 
f a + f ′ a t a + ∫ t x f ′′ x dx = f a + f ′ a t a + f ′ x t x + ∫ f ′ x dx 
a a a 
( ) ( )( – ) – ( )( – ) [ ( )]t ( ) 
= f a + f ′ a t a f ′ a t a + f x a = f t 
Thus, the statement is true for n = 1. Note that integration by parts was used with u = (t – x), dv = f ′′(x)dx. 
Suppose the statement is true for n. 
n ( i ) 
n i t n 
f ( t ) f ( a ) f ( a ) ( t – a ) ( t – x ) f ( 1) 
( x ) 
dx 
= +Σ + ∫ 
1 
i n 
! a 
! 
i 
+ 
= 
t n n 
a 
t x f x dx 
n 
Integrate ( – ) ( 1) ( ) 
+ ∫ by parts. 
! 
t x n dv dx 
u = f (n+1) (x) ( – ) 
! 
n 
= 
du = f (n+2) (x) 
t x n v 
– 
( – ) + 
1 ( n 
1)! 
= 
+ 
1 1 
n n + t t t n + 
n n n 
a a 
+ ⎡ + ⎤ + 
t x f x dx t x f x t x f x dx 
n n n 
( – ) ( 1) ( ) – ( – ) ( 1) ( ) ( – ) ( 2) ( ) 
∫ ∫ 
= ⎢ ⎥ + 
⎢⎣ + ⎥⎦ + 
! ( 1)! ( 1)! 
a 
Instructor's Resource Manual Section 7.2 431 
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of 
this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
n + 1 t n + 
1 
n n 
t a f a t x f x dx 
n n 
( – ) ( 1) ( ) ( – ) ( 2) ( ) 
( 1)! ( 1)! 
= + + + 
∫ 
+ a 
+ Thus 
n ( i ) n + 1 t n + 
1 
i n n 
f ( t ) f ( a ) f ( a ) ( t – a ) ( t – a ) f ( a ) ( t – x ) f ( x ) 
dx 
+ + Σ ∫ 
( 1) ( 2) 
= + + + 
1 
+ + 
i n n 
! ( 1)! a 
( 1)! 
i 
= 
n + 1 ( i ) t n + 
1 
i n 
f ( a ) f ( a ) ( t – a ) ( t – x ) f ( 2) 
( x ) 
dx 
+ Σ ∫ 
= + + 
1 
i n 
! a 
( 1)! 
i 
+ 
= 
Thus, the statement is true for n + 1. 
82. a. 1 1 1 
B(α , β ) = ∫ xα − (1− x)β − dx where α ≥ 1,β ≥ 1 
0 
x = 1 – u, dx = –du 
1 1 1 0 1 1 
0 1 
∫ xα − (1− x)β − dx = ∫ (1− u)α − (u)β − (−du) 1 1 1 
= ∫ (1− u)α − uβ − du = B(β , α ) 
0 
Thus, B(α, β) = B(β, α). 
b. 1 1 1 
B(α , β ) = ∫ xα − (1− x)β − dx 
0 
u = xα −1 dv = (1− x)β −1dx 
du = (α −1) xα −2dx v = − 1 (1 − 
x)β 
β 
1 
⎡ − ⎤ − − − − 
= ⎢− − ⎥ + − = − 
⎣ ⎦ 
( , ) 1 (1 ) 1 (1 ) 1 (1 ) 
α β α α β α α β 
1 1 2 1 2 
∫ ∫ 
B x x x x dx x x dx 
β β 0 β 
0 
0 
1 B 
( 1, 1) 
α β 
− 
α 
= − + 
α β 
β 
(*) 
Similarly, 
1 1 1 
0 
B(α , β ) = ∫ xα − (1− x)β − dx 
u = (1− x)β −1 dv = xα −1dx 
du = −(β −1)(1− x)β −2 dx v 1 xα 
α 
= 
1 1 1 2 
0 0 
B( , ) 1 xα (1 x)β β 1 xα (1 x)β dx 
β − 1 α β − β − 
x(1 x)dx 1 B( 1, 1) 
= ⎡ − − ⎤ + − − − ⎢⎣ ⎥⎦ ∫ 1 2 
α β 
α α 
= ∫ − = + − 
α 0 
α 
α β 
c. Assume that n ≤ m. Using part (b) n times, 
( ) 
n n n B n m B n m B n m 
− 1 − 1 ( − 
2) ( , ) = ( − 1, + 1) = ( − 2, + 
2) 
m mm 
( 1) 
( n ) n ( n 
) 
+ 
1 ( 2) 3 2 1 
− − − …⋅ ⋅ 
= … = + − 
( ) 
B m n 
(1, 1). 
m m m m n 
( 1) 2 ( 2) 
+ + … + − 
1 2 11 
0 0 
(1, 1) (1 ) 1 [(1 ) ] 1 
B m n x m n dx x m n 
+ − = − + − = − − + − = 
∫ + − + − 
m n m n 
1 1 
Thus, 
( ) ( ) 
( ) ( ) ( 
1 ( 2) 3 2 1 1)!( 1)! ( 1)!( 1)! 
B n m 
( , ) 
n n n n m n m 
− − − …⋅ ⋅ − − − − 
= = = 
m m m m n m n m n n m 
( + 1) + 2 … ( + − 2) + − 1 ( + − 1)! ( + − 
1)! 
If n  m, then 
( 1)!( 1)! 
B n m B m n 
( , ) ( , ) 
n m 
− − 
n m 
( 1)! 
= = 
+ − 
by the above reasoning. 
432 Section 7.2 Instructor Solutions Manual 
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of 
this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
83. u = f(t) dv = f ′′(t)dt 
du = f ′(t)dt v = f ′(t) 
( ) ( ) [ ( ) ( )] – [ ( )]2 b b b 
a a a 
∫ f ′′ t f t dt = f t f ′ t ∫ f ′ t dt 
= f ( b ) f ′ ( b ) − f ( a ) f ′ ( a ) − ∫ b 
[ f ′ ( t )]2 dt b 
[ ( )]2 a 
= −∫ f ′ t dt 
a 
[ ( )]2 0, so [ ( )]2 0 b 
f ′ t ≥ − ∫ f ′ t ≤ . 
a 
84. 
∫ x ⎛ ⎜ ∫ 
t f ( z ) dz ⎞ ⎟ 
dt 
0 ⎝ 0 
⎠ u = ∫ t f ( z ) dz dv = dt 
0 
du = f(t)dt v = t 
∫ x ⎛⎜ x ∫ t f ( z ) dz ⎞⎟ dt = ⎡⎢t ∫ t f ( z ) dz⎤⎥ – ∫ x t f ( t ) 
dt ⎝ ⎠ ⎣ ⎦ 0 0 
0 0 0 0 0 
( ) – ( ) x x = ∫ x f z dz ∫ t f t dt 
By letting z = t, 
( ) ( ) , x x ∫ x f z dz = ∫ x f t dt so 
0 0 
∫ x ⎛⎜ ∫ t f ( z ) dz ⎞⎟ dt = ∫ x x f ( t ) dt – ∫ x t f ( t ) dt 
0 ⎝ 0 ⎠ 0 0 
0 
( – ) ( ) x = ∫ x t f t dt 
( ) ... x t tn 
I f tn dtn dt dt = ∫ ∫ ⋅⋅⋅∫ − be the iterated integral. Note that for i ≥ 2, the limits of integration of the 
85. Let 1 1 
0 0 0 2 1 
integral with respect to ti are 0 to ti−1 so that any change of variables in an outer integral affects the limits, and 
hence the variables in all interior integrals. We use induction on n, noting that the case n = 2 is solved in the 
previous problem. 
Assume we know the formula for n −1, and we want to show it for n. 
I x t 1 t 2 tn − 1 f ( tn ) dtn ... dt dt dt t 1 t 2 tn 
− 
2 
F ( tn ) dtn ... dt dt dt = ∫ ∫ ∫ ⋅⋅⋅∫ = ∫ ∫ ⋅⋅⋅∫ − − 
where ( ) 1 ( ) 
0 0 0 0 3 2 1 0 0 0 1 1 3 2 1 
tn 
− = ∫ . 
F tn f tn dn − 
1 0 
By induction, 
1 
2 ! 
I x F t x t n dt 
( ) ( )( ) 2 
− = − 
− ∫ 
( ) 1 ( ) 
1 0 
0 1 1 1 
n 
t 
dv x t n− = − 
u = F t = ∫ f tn dtn , ( ) 2 
1 
1 
1 
v x t n 
− = − − 
( ) du = f t1 dt1 , ( ) 1 
1 
n 
− 
t = 
x 
⎧⎪⎡ ⎤ ⎪⎫ = ⎨⎢− − ⎥ + − ⎬ − ⎩⎪⎣ − ⎦ − ⎪⎭ 
= − 
1 1 1 
2 ! 1 1 
1 ( )( ) 
( 1)! 
( ) ( ) ( ) ( )( ) 1 
n t x n 
− − 
1 1 
∫ 1 
∫ 
I x t f t dt f t x t dt 
n n 
1 0 0 1 1 1 
n n n 
t 
1 
0 
− 
1 
x n 
f t x t dt 
∫ 
0 1 1 1 
n 
= 
− 
. 
(note: that the quantity in square brackets equals 0 when evaluated at the given limits) 
Instructor’s Resource Manual Section 7.3 433 
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of 
this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
86. Proof by induction. 
n = 1: 
u = P1(x) dv = exdx 
du x) = dP1(dx 
v = ex 
dx 
exP (x)dx exP (x) – ex dP (x) dx 
exP (x) – dP (x) exdx 
∫ = ∫ 1 
1 
1 1 
dx 
exP (x) – ex dP (x) 
= ∫ 1 
1 
dx 
1 
dx 
= 
Note that dP1(x) 
dx 
is a constant. 
Suppose the formula is true for n. By using integration by parts with u = Pn+1(x) and dv = exdx, 
dP x 
1 
x ( ) x ( ) – x n 
n n 
+ 
∫ + = + ∫ 
Note that n 1( ) dP x 
e P x dx e P x e dx 
1 1 
( ) 
dx 
+ is a polynomial of degree n, so 
dx 
⎡ ⎛ ⎞⎤ = − ⎢ − ⎜ ⎟⎥ = − − ⎢⎣ ⎝ ⎠⎥⎦ 
n j n j 
+ 
1 
( ) ( ) ( ) e P x dx e P x e d dP ( x ) 
d P x e P x e 
x x x j n x x j n 
n n j n j 
∫ Σ Σ 
1 1 
+ + 
( ) ( ) ( 1) 1 
1 1 1 1 
+ + + + 
dx dx dx 
j j 
0 0 
= = 
n j 
1 
d P x 
+ 
= + Σ − 
x x j n 
n j 
1 
e P x e 
1 
( ) ( 1) 
1 
( ) 
j 
+ 
dx 
+ 
= 
n 1 
j 
x j n 
d P x 
1 
+ 
= Σ − 
0 
( ) 
( 1) 
+ 
j 
j 
e 
dx 
= 
87. 
j 
4 4 2 
x x e dx e d x x 
(3 2 ) (–1) (3 2 ) 
∫ 4 + 2 
x = x Σ 
j 
= 0 
dx 
= ex[3x4 + 2x2 –12x3 – 4x + 36x2 + 4 – 72x + 72] 
= ex (3x4 –12x3 + 38x2 – 76x + 76) 
+ 
j 
j 
7.3 Concepts Review 
1. 1 cos2 
2 
x dx 
+ ∫ 
2. ∫(1– sin2 x) cos x dx 
3. ∫sin2 x(1– sin2 x) cos x dx 
4. cos mx cos nx = 1 [cos( m+ n ) x + cos( m− n ) x 
] 
2 
Problem Set 7.3 
∫ x dx = ∫ x dx 
1 – 1 cos 2 
2 2 
1. sin2 1– cos 2 
2 
= ∫ dx ∫ x dx 
= 1 x – 1 sin 2 
x +C 
2 4 
2. u = 6x, du = 6 dx 
sin4 6 1 sin4 
∫ x dx = ∫ u du 
6 
1 1– cos 2 2 
6 2 
= ⎛ u ⎞ du ⎜ ⎟ 
⎝ ⎠ ∫ 
1 (1– 2cos 2 cos2 2 ) 
24 
= ∫ u + u du 
1 – 1 2cos 2 1 (1 cos 4 ) 
24 24 48 
= ∫ du ∫ u du + ∫ + u du 
3 – 1 2cos 2 1 4cos 4 
48 24 192 
= ∫ du ∫ u du + ∫ u du 
3 (6 ) – 1 sin12 1 sin 24 
48 24 192 
= x x + x +C 
= 3 x – 1 sin12 x + 1 sin 24 
x +C 
8 24 192 
434 Section 7.2 Instructor Solutions Manual 
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of 
this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
3. ∫sin3 x dx = ∫sin x(1− cos2 x)dx 
= ∫sin x dx − ∫sin x cos2 x dx 
cos 1 cos3 
= − x + x +C 
3 
4. ∫cos3 x dx = 
= ∫cos x(1− sin2 x)dx 
= ∫cos x dx − ∫cos x sin2 x dx 
= sin x − 1 sin3 
x + C 
3 
5. / 2 5 / 2 2 2 
π π 
∫ = ∫ 
cos θ dθ (1– sin θ ) cosθ dθ 
0 0 
/ 2 2 4 
0 
= ∫ + 
(1– 2sin θ sin θ ) cosθ dθ 
π 
/ 2 
⎡ π = sin – 2 sin 3 + 1 sin 
5 
⎤ ⎢⎣ ⎥⎦ 
1– 2 1 – 0 8 
θ θ θ 
0 
3 5 
= ⎛ + ⎞ = ⎜ ⎟ 
⎝ ⎠ 
3 5 15 
6. 
π / 2 π sin 6 
= / 2 ⎛ 1– cos 2 
θ 
⎞ 3 0 0 
⎜ ⎟ 
⎝ ⎠ ∫ ∫ 
d d 
θ θ θ 
2 
1 / 2 (1– 3cos 2 3cos 2 2 – cos 3 
2 ) 
8 
0 
= ∫ + 
θ θ θ dθ 
π 
1 π / 2 3 π / 2 3 π / 2 2 1 π 
– 2cos 2 cos 2 – / 2 cos 3 
2 
8 0 16 0 8 0 8 
0 
= ∫ ∫ + ∫ ∫ 
dθ θ dθ θ θ dθ 
1[ 3 3 1 cos 4 θ 
] – [sin 2 ] – 1 (1– sin 2 ) cos 2 
8 16 8 2 8 
π π π ⎛ + ⎞ π = + ⎜ ⎟ 
/ 2 / 2 / 2 / 2 2 
0 0 0 0 
⎝ ⎠ ∫ ∫ 
d d 
θ θ θ θ θ θ 
1 π 3 π / 2 3 π / 2 π 4cos 4 – 1 / 2 π 
2cos 2 1 / 2 sin 2 
2 2cos 2 
8 2 16 0 64 0 16 0 16 
0 
= ⋅ + ∫ + ∫ ∫ + ∫ ⋅ 
dθ θ dθ θ dθ θ θ dθ 
θ π θ π θ π π π 
= + + + 5 
3 3 [sin 4 ] – 1 [sin 2 ] 1 [sin 2 ] 
/ 2 / 2 3 / 2 
0 0 0 
16 32 64 16 48 
π 
32 
= 
7. ∫sin5 4x cos2 4x dx = ∫(1– cos2 4x)2 cos2 4x sin 4x dx = ∫(1– 2cos2 4x + cos4 4x) cos2 4x sin 4x dx 
= ∫ x x + x x dx – 1 cos3 4 1 cos5 4 – 1 cos7 4 
– 1 (cos2 4 – 2cos4 4 cos6 4 )(–4sin 4 ) 
4 
= x + x x +C 
12 10 28 
8. ∫(sin3 2t) cos 2tdt = ∫(1– cos2 2t)(cos 2t)1/ 2 sin 2t dt – 1 [(cos 2 )1/ 2 – (cos 2 )5/ 2 ](–2sin 2 ) 
= ∫ t t t dt 
2 
– 1 (cos 2 )3/ 2 1 (cos 2 )7 / 2 
3 7 
= t + t +C 
9. ∫cos3 3θ sin–2 3θ dθ = ∫(1– sin2 3θ )sin–2 3θ cos3θ dθ 1 (sin 2 3 1)3cos3 
= ∫ − θ − θ dθ 
3 
– 1 csc3 – 1 sin 3 
3 3 
= θ θ +C 
10. ∫sin1/ 2 2z cos3 2z dz = ∫(1– sin2 2z)sin1/ 2 2z cos 2z dz 
= ∫ z z z dz 1 sin3/ 2 2 – 1 sin7 / 2 2 
1 (sin1/ 2 2 – sin5/ 2 2 )2cos 2 
2 
= z z +C 
3 7 
Instructor’s Resource Manual Section 7.3 435 
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of 
this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
11. 
2 2 
t t dt t t dt 
∫ sin4 + 3 cos4 3 = ∫ ⎛ 1– cos 6 ⎞ ⎛ 1 cos 6 
⎞ 1 ⎜ ⎟ ⎜ ⎟ 
(1– 2cos2 6 cos4 6 ) 
⎝ 2 ⎠ ⎝ 2 
⎠ = ∫ t + t dt 
16 
= 1 ∫ ⎡⎢ 1– (1 + cos12 t ) + 1 (1 + cos12 t )2 
⎤⎥ dt – 1 cos12 1 (1 2cos12 cos2 12 ) 
16 ⎣ 4 
⎦ = ∫ t dt + ∫ + t + t dt 
16 64 
– 1 12cos12 1 1 12cos12 1 (1 cos 24 ) 
192 64 384 128 
= ∫ t dt + ∫ dt + ∫ t dt + ∫ + t dt 
– 1 sin12 1 1 sin12 1 1 sin 24 
= t + t + t + t + t +C 3 – 1 sin12 1 sin 24 
192 64 384 128 3072 
= t t + t +C 
128 384 3072 
12. 
3 
∫ cos6 sin2 d = ∫ ⎛ 1 + cos 2 θ ⎞ ⎛ 1– cos 2 
θ 
⎞ ⎜ ⎟ ⎜ ⎟ 
d 
1 (1 2cos 2 – 2cos3 2 – cos4 2 ) 
⎝ ⎠ ⎝ ⎠ = ∫ + θ θ θ dθ 
θ θ θ θ 
2 2 
16 
1 1 2cos 2 – 1 (1– sin2 2 ) cos 2 – 1 (1 cos 4 )2 
16 16 8 64 
= ∫ dθ + ∫ θ dθ ∫ θ θ dθ ∫ + θ dθ 
1 1 2cos 2 – 1 2cos 2 1 2sin2 2 cos 2 – 1 (1 2cos 4 cos2 4 ) 
16 16 16 16 64 
= ∫ dθ + ∫ θ dθ ∫ θ dθ + ∫ θ θ dθ ∫ + θ + θ dθ 
1 1 sin2 2 2cos 2 – 1 – 1 4cos 4 – 1 (1 cos8 ) 
16 16 64 128 128 
= ∫ dθ + ∫ θ ⋅ θ dθ ∫ dθ ∫ θ dθ ∫ + θ dθ 
= 1 1 sin3 2 1 1 sin 4 1 1 sin8 
16 48 64 128 128 1024 
θ + θ − θ − θ − θ − θ +C 
5 1 sin3 2 – 1 sin 4 – 1 sin8 
128 48 128 1024 
= θ + θ θ θ + C 
13. sin 4 cos5 1 [sin 9 sin( )] 1 (sin 9 sin ) 
∫ y y dy = ∫ y + −y dy = ∫ y − y dy 
2 2 
1 1 cos9 cos 1 cos 1 cos9 
2 9 2 18 
= ⎛⎜ − y + y ⎞⎟ +C = y − y +C 
⎝ ⎠ 
∫ y y dy = ∫ y + − y dy 1 sin 5 1 sin( 3 ) 
14. cos cos 4 1 [cos5 cos( 3 )] 
2 
= y − − y +C 1 sin 5 1 sin 3 
10 6 
= y + y +C 
10 6 
15. 
2 
w w dw w w dw 
∫ sin4 ⎛ ⎞ cos2 ⎛ ⎞ = ∫ ⎛ 1– cos ⎞ ⎛ 1 + cos 
⎞ 1 ⎜ (1– cos – cos2 cos3 ) 
⎝ 2 ⎟ ⎜ ⎠ ⎝ 2 ⎟ ⎜ ⎟ ⎜ ⎟ 
⎠ ⎝ 2 ⎠ ⎝ 2 
⎠ = ∫ w w+ w dw 
8 
= 1 ∫ ⎡⎢ 1– cos w – 1 (1 + cos 2 w ) + (1– sin2 w ) cos 
w⎤⎥ dw 1 1 – 1 cos 2 – sin2 cos 
8 ⎣ 2 
⎦ = ∫ 
⎡⎢ w w w⎤⎥dw 8 ⎣ 2 2 
⎦ 1 – 1 sin 2 – 1 sin3 
16 32 24 
= w w w+C 
sin 3 sin 1 cos 4 cos 2 
16. [ ] 
∫ ∫ 
t t dt = − t − 
t dt 
2 
( ) 
1 ∫ cos 4 ∫ 
cos 2 
2 
1 1 sin 4 1 sin 2 
2 4 2 
1 sin 4 1 sin 2 
8 4 
tdt tdt 
= − − 
= − ⎛ − ⎞ + ⎜ ⎟ 
t t C 
⎝ ⎠ 
t tC 
= − + + 
436 Section 7.3 Instructor's Resource Manual 
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of 
this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
17. 2 
∫ 
x cos x sin 
xdx 
u = x du = 
1 
dx 
dv = 
2 
x x dx 
v = − x − x dx = − 
x 
cos sin 
(cos ) ( sin ) 1 cos 
2 3 
cos 
t = 
x 3 
∫ 
Thus 
2 
∫ 
x x xdx 
x x xdx 
cos sin 
= 
( 1 cos 3 ) ∫ 
(1)( 1 cos 3 
) 
3 3 
1 cos ∫ 
cos 
3 
1 cos ∫ 
cos (1 sin ) 
3 
− − − = 
⎡− x 3 x + 3 
⎣ xdx 
⎤ ⎦ 
= ⎡− x 3 ⎣ x + x − 2 
xdx 
⎤ ⎦ 
= ⎡ ⎤ 
⎢− + − ⎥ = 
⎣ ⎦ 
⎡− + − ⎤ + ⎢⎣ ⎥⎦ 
1 cos 3 ∫ 
(cos cos sin 2 
) 
3 
1 cos sin 1 sin 
3 3 
x x x x xdx 
t sin 
x 
3 3 
= 
x x x x C 
18. 3 
∫ 
x sin x cos 
xdx 
u = x du = 
1 
dx 
dv = 
sin 3 
x cos 
x dx 
v = (sin x ) (cos xdx ) = 
1 sin 
x 
3 4 
sin 
t = 
x 4 
∫ 
Thus 
3 
∫ 
x x xdx 
x x xdx 
sin cos 
= 
(1 sin 4 ) ∫ 
(1)(1 sin 4 
) 
4 4 
1 sin ∫ 
(sin ) 
4 
1 sin 1 ∫ 
(1 cos 2 ) 
4 4 
− = 
4 2 2 
⎡ ⎣ x x − x dx 
⎤ ⎦ 
= ⎡ 4 2 
⎤ ⎢⎣ x x − − x dx 
⎥⎦ 
= 1 sin 1 (1 2cos 2 cos 2 ) 
4 4 
1 sin 1 1 sin 2 1 (1 cos 4 ) 
4 4 4 8 
1 sin 3 1 sin 2 1 sin 4 
4 8 4 32 
⎡ ⎢⎣ x 4 x − ∫ 
− x + 2 
xdx 
⎤ ⎥⎦ 
= ⎡ ⎢⎣ x 4 
x − x + x − ∫ 
+ xdx 
⎤ ⎥⎦ 
= ⎡ 4 
⎤ ⎢⎣ x x − x + x − x ⎥⎦ 
+ C 
19. 4 ( 2 )( 2 
) 
∫ ∫ 
x dx x x dx 
tan tan tan 
= 
= ∫ 
( 2 ) 
2 
− 
= ∫ 
( − 
) 
= ∫ − ∫ 
− 
= − + + 
x x dx 
x x xdx 
x x dx x dx 
x x x C 
tan (sec 1) 
tan 2 sec 2 tan 
2 
tan 2 sec 2 (sec 2 
1) 
1 tan 3 
tan 
3 
20. 4 ( 2 )( 2 
) 
∫ ∫ 
∫ 
( 2 2 2 ) 
x dx x x dx 
x x dx 
cot = 
cot cot 
cot (csc 1) 
( ) 
2 2 
= − 
∫ 
∫ ∫ 
x x xdx 
x x dx x dx 
x x x C 
cot csc cot 
cot csc (csc 1) 
1 cot cot 
3 
= − 
= 2 2 − 2 
− 
= − 3 
+ + + 
21. tan 3 x ( )( 2 
) 
x x dx 
x x dx 
x x C 
∫ 
∫ 
tan tan 
tan sec 1 
1 tan ln cos 
2 
= 
= − 
( )( 2 
) 
2 
= + + 
22. 3 ( )( 2 
) 
∫ ∫ 
∫ 
∫ ∫ 
t dt t t dt 
t t dt 
t tdt tdt 
cot 2 = 
cot 2 cot 2 
( cot 2 )( csc 2 
2 1 
) 
cot 2 csc 2 cot 2 
1 cot 2 1 ln sin 2 
4 2 
= − 
= 2 
− 
= − 2 
− + 
t t C 
Instructor’s Resource Manual Section 7.3 437 
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of 
this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
θ 
⎛ ⎞ θ 
⎜ ⎟ 
⎝ ⎠ ∫ 
23. tan5 
2 
d 
u du d 
⎛θ ⎞ θ = ⎜ 2 ⎟ ; 
= 
⎝ ⎠ 
2 
θ 
⎛ ⎞ = ⎜ ⎟ 
⎝ ⎠ 
5 5 
∫ ∫ 
d udu 
tan 2 tan 
( )( ) 
∫ 
∫ ∫ 
∫ ∫ 
∫ ∫ ∫ 
u u du 
u udu udu 
u u du u u du 
u udu u udu u 
2 tan sec 1 
2 tan sec 2 tan 
2 tan sec 2 tan sec 1 
2 tan sec 2 tan sec 2 tan du 
1 tan tan 2ln cos 
2 2 2 2 
= − 
= − 
= − ( − 
) 
= − + 
3 2 
3 2 3 
3 2 2 
3 2 2 
θ θ θ 
= 4 ⎛ ⎞ − 2 
⎛ ⎞ ⎜ ⎟ ⎜ ⎟ 
− + 2 
C 
θ 
⎝ ⎠ ⎝ ⎠ 
24. ∫cot5 2t dt 
u = 2t;du = 2dt 
cot 2 1 cot 
5 5 
∫ ∫ 
t dt u du 
2 
1 ∫ ( cot 3 u )( cot 2 udu ) 1 ∫ 
( cot 3 u )( csc 2 
1 
) 
du 
2 2 
1 ∫ ( cot )( csc ) 
1 ∫ 
cot 
2 2 
1 ∫ ( cot )( csc ) 1 ∫ 
( cot )( csc 1 
) 
2 2 
1 ∫ ( cot )( csc ) 1 ∫ ( cot )( csc ) 
1 ∫ 
cot 
2 2 2 
1 cot 1 cot 1 ln sin 
8 4 2 
1 cot 2 1 c 
8 4 
= = − 
3 2 3 
u udu udu 
= − 
3 2 2 
u u du u u du 
= − − 
3 2 2 
u u du u u du u 
= − + 
4 2 
= − + + + 
4 
u u u C 
t 
= 
= − + 
ot2 2 1 ln sin 2 
t + t +C 
2 
25. − 3 4 ( − 
3 )( 2 )( 2 
) 
∫ ∫ 
x xdx x x x dx 
tan sec tan sec sec 
= 
= + 
= + 
= − + + 
( 3 )( 2 )( 2 
) 
∫ 
∫ ∫ 
x x x dx 
x x x x dx 
x x C 
− 
tan 1 tan sec 
tan sec dx tan sec 
1 tan ln tan 
2 
3 2 1 2 
− − 
( ) 
2 
− 
26. − 3/ 2 4 ( − 
3/ 2 )( 2 )( 2 
) 
∫ ∫ 
x xdx x x x 
tan sec tan sec sec 
= 
= + 
= + 
= − + + 
( 3/ 2 )( 2 )( 2 
) 
∫ 
∫ ∫ 
x x x dx 
x x dx x x dx 
x x C 
− 
tan 1 tan sec 
tan sec tan sec 
2 tan 2 tan 
3/2 2 1/2 2 
1/ 2 3/ 2 
3 
− 
− 
438 Section 7.3 Instructor’s Resource Manual 
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of 
this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
27. ∫ tan3 x sec2 x dx 
Let u = tan x . Then du = sec2 x dx . 
tan3 sec2 3 1 4 1 tan4 
∫ x x dx = ∫ u du = u +C = x +C 
4 4 
28. 
3 − 1/2 2 − 
3/2 
∫ ∫ 
x xdx x x x xdx 
tan sec tan sec (sec tan ) 
= 
= − 
= − 
= + + 
( 2 )( − 
3/ 2 
)( ) 
∫ 
∫ ∫ 
x x x x dx 
x x x dx x x x dx 
x x C 
sec 1 sec sec tan 
sec 1/ 2 sec tan sec − 
3/ 2 
sec tan 
2 sec 2sec 
3 
( ) ( ) 
3/ 2 − 
1/ 2 
29. 
∫ cos cos = 1 ∫ (cos[( + ) ] + cos[( − ) ]) 
1 1 sin[( ) ] 1 sin[( ) ] 
mx nx dx m n x m n x dx π π 
π π 
2 
– – 
= ⎡ m + n x + m − n x 
⎤ 2 
⎢⎣ m + n m − n 
⎥⎦ 
π 
−π 
= 0 for m ≠ n, since sin kπ = 0 for all integers k. 
30. If we let u x 
π 
= then du dx 
L 
π 
= . Making the substitution and changing the limits as necessary, we get 
L 
m π x n π 
x dx L mu nu du 
L L 
L 
π 
cos cos cos cos 0 L 
π 
∫ = ∫ = (See Problem 29 
− π − 
(x sin x) dx π 
∫ π + 2 2 
31. 2 
0 
(x 2x sin x sin x) dx π 
x dx x x dx x dx π π π π 
= π∫ + + 2 
0 
= π∫ + π∫ + ∫ − 
2 sin (1 cos2) 
2 
0 0 0 
π π 
1 2 sin cos 1 sin 2 
3 2 2 
⎡ 3 ⎤ π π = π ⎡ ⎤ ⎢⎣ x ⎥⎦ + π [ x − x x ] 
+ x − x 
0 
⎢⎣ ⎥⎦ 
0 0 
= π + π + π − + π − − 1 4 5 2 57.1437 
1 4 π 
2 (0 0) ( 0 0) 
3 2 
= π + π ≈ 
3 2 
Use Formula 40 with u = x for ∫ x sin x dx 
32. / 2 2 2 
V 2 x sin (x )dx π 
= π∫ 
0 
u = x2 , du = 2x dx 
/ 2 / 2 / 2 2 2 
0 0 0 
π π ⎡ ⎤π π = π = π = π ⎢ ⎥ = ≈ ⎣ ⎦ ∫ ∫ 
V u du u du u u 
sin 1– cos 2 1 – 1 sin 2 2.4674 
2 2 4 4 
33. a. 1 f (x)sin(mx)dx π 
π −π ∫ 
N 
⎛ ⎞ 
1 sin( ) sin( ) 
a nx mxdx π 
−π 
∫ Σ 
= ⎜⎜ ⎟⎟ π ⎝ ⎠ 
1 
n 
n 
= 
N 
1 sin( )sin( ) 
= 
π Σ ∫ 
1 
a nx mxdx π 
n 
n 
−π 
= 
From Example 6, 
0 if 
∫ ⎧ ≠ 
sin( nx )sin( mx ) 
dx 
= ⎨so every term in the sum is 0 except for when n = m. 
⎩ π if 
= If m  N, there is no term where n = m, while if m ≤ N, then n = m occurs. When n = m 
an π 
sin(nx)sin(mx) dx am n m 
n m 
π 
−π 
∫ = π so when m ≤ N, 
−π 
1 π 
f ( x )sin( mx ) dx 1 am am ∫ = ⋅ ⋅π = 
. 
π −π 
π Instructor’s Resource Manual Section 7.3 439 
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of 
this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
b. 1 f 2 (x)dx π 
π −π ∫ 
N N 
⎛ ⎞⎛ ⎞ 
1 sin( ) sin( ) 
a nx a mx dx π 
−π 
∫ Σ Σ 
= π ⎜⎜ n ⎟⎟⎜⎜ m 
⎟⎟ ⎝ ⎠⎝ ⎠ 
n m 
1 1 
= = 
N N 
1 sin( )sin( ) 
a a nx mxdx π 
= 
Σ n Σ ∫ 
πm 
n m 
1 1 
−π 
= = 
From Example 6, the integral is 0 except when m = n. When m = n, we obtain 
Σ Σ 2 
. 
πN N 
1 ( ) 
a a π = 
a 
= = 
n n n 
n n 
1 1 
34. a. Proof by induction 
x = x 
n = 1: cos cos 
2 2 
Assume true for k ≤ n. 
n 
⎡ ⎤ 
x x x x x x x x + + 
cos cos cos cos cos 1 cos 3 cos 2 –1 1 cos 
⋅ = ⎢ + + + ⎥ 
  
n n n n n n n 
1 –1 1 
2 4 2 2 2 2 2 2 2 
⎢⎣ ⎥⎦ 
Note that 
k x x k x k x + + + 
cos cos 1 1 cos 2 1 cos 2 –1 , 
2n 2n 2 2n 2n 
⎛ ⎞⎛ ⎞ ⎡ + ⎤ 
⎜ ⎟⎜ = 1 ⎟ ⎢ + ⎥ 
⎝ ⎠⎝ ⎠ ⎣ 1 1 
⎦ 
so 
1 
n n 
+ 
⎡ ⎤ ⎛ ⎞ ⎡ ⎤ 
⎢ + + + ⎥ ⎜ ⎟ = ⎢ + + + ⎥ 
⎢⎣ ⎥⎦ ⎝ ⎠ ⎢⎣ ⎥⎦ 
cos 1 cos 3 cos 2 –1 cos 1 1 cos 1 cos 3 cos 2 –1 1 
x x x x x x x 
n n  n n n n n  
n n 1 –1 1 1 1 
+ + + + 
2 2 2 2 2 2 2 2 2 
n n 
⎡ ⎤ ⎡ ⎤ 
⎢ + + + ⎥ = ⎢ + + + ⎥ 
⎢⎣ ⎥⎦ ⎢⎣ ⎥⎦ 
x x x x x x x 
lim cos 1 cos 3 cos 2 –1 1 1 lim cos 1 cos 3 cos 2 –1 
b.   
–1 –1 
n n n n n n n n n n 
→∞ x →∞ 
2 2 2 2 2 2 2 2 
1 cos x t dt 
x 
= ∫ 
0 
1 ∫ x cos t dt = 1 [sin t ] x = 
sin x 
x x x 
c. 0 0 
x + x 
= we see that since 
35. Using the half-angle identity cos 1 cos , 
2 2 
π π 
= = 
cos cos 2 2 
4 2 2 
2 
π π + + 
= = = 
2 2 1 2 2 cos cos , 
8 4 2 2 
2 2 
π π + + + + 
= = = etc. 
2 2 1 2 2 2 cos cos , 
16 8 2 2 
Thus, 2 2 + 2 2 + 2 + 
2 
⎛ π ⎞ ⎛ π ⎞ ⎛ π ⎞ 
⋅ ⋅  cos 2 cos 2 cos 2 
2 2 2 
= ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ 
⎜ ⎝ 2 ⎟ ⎜ ⎟ ⎜ ⎟ 
⎠ ⎝ 4 ⎠ ⎝ 8 
⎠ 
 
( ) 2 2 2 2 
π π π π 
⎛ ⎞ ⎛ ⎞ ⎛ ⎞ 
sin 2 lim cos cos cos 
n 2 4 2n 
= ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ = = 
 
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ π ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ 
→∞ π 
2 
440 Section 7.3 Instructor’s Resource Manual 
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of 
this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
π π 
∫ π − = ∫ − + 
36. Since (k − sin x)2 = (sin x − k)2 , the volume of S is 2 2 2 
(k sin x) π (k 2k sin x sin x) dx 
0 0 
k dx k xdx xdx π π π π 
x k x 2 k cos x x 1 sin 2 
π 
= π π + π π + π ⎡ − ⎤ ⎢⎣ ⎥⎦ 
2 
= π ∫ − π∫ + ∫ − 2 [ ] [ ] 
2 
0 0 0 
2 sin (1 cos2) 
2 
0 0 
0 
2 2 
π π 
2 2 2 ( 1 1) ( 0) 2 2 4 
k k k k 
= π + π − − + π − = π − π + 
2 2 
Let 
2 
π 
= π − π + then f ′(k) = 2π2k − 4π and f ′(k) = 0 when k = 2 . 
( ) 2 2 4 , 
2 
f k k k 
π 
The critical points of f(k) on 0 ≤ k ≤ 1 are 0, 2 , 
π 
1. 
2 2 2 
(0) 4.93, 2 4 8 0.93, (1) 2 4 2.24 
π ⎛ ⎞ π π = ≈ ⎜ ⎟ = − + ≈ = π − π + ≈ ⎝ π ⎠ 
f f f 
2 2 2 
a. S has minimum volume when k = 2 . 
π 
b. S has maximum volume when k = 0. 
7.4 Concepts Review 
1. x – 3 
2. 2 sin t 
3. 2 tan t 
4. 2 sec t 
Problem Set 7.4 
1. u = x +1, u2 = x +1, 2u du = dx 
∫ x x +1dx = ∫(u2 –1)u(2u du) 
= ∫(2u4 – 2u2 )du 2 5 – 2 3 
= u u +C 
5 3 
2 ( 1)5 / 2 – 2 ( 1)3/ 2 
5 3 
= x + x + + C 
2. u = 3 x + π, u3 = x + π, 3u2du = dx 
∫ x3 x + πdx = ∫(u3 – π)u(3u2du) 
= ∫(3u6 – 3πu3)du 3 7 – 3 π 
4 
u u C 
= + 
7 4 
3 7 / 3 3 π 
( )– ( )4 / 3 
7 4 
x x C 
= +π +π + 
3. u = 3t + 4, u2 = 3t + 4, 2u du = 3 dt 
1 2 2 
3 3 2 ( 4) 2 ( –4) 
t dt u − 
u du u du 
t u 
∫ = ∫ = 
∫ 
3 + 4 9 
2 3 – 8 
27 9 
= u u +C 
2 (3 4)3/ 2 – 8 (3 4)1/ 2 
27 9 
= t + t + + C 
4. u = x + 4, u2 = x + 4, 2u du = dx 
2 2 2 2 3 ( – 4) 3( – 4)2 
x + x u + 
dx u u du 
x u 
∫ = 
∫ 
+ 4 
= 2∫(u4 – 5u2 + 4)du 2 5 – 10 3 8 
= u u + u + C 
5 3 
2 ( 4)5/ 2 – 10 ( 4)3/ 2 8( 4)1/ 2 
5 3 
= x + x + + x + +C 
5. u = t , u2 = t, 2u du = dt 
dt 2u du 2 u e e du 
t e u e u e 
2 2 2 
1 1 1 
+ − 
∫ = ∫ = 
∫ 
+ + + 2 –2 e 
du du 
2 2 
1 1 
+ ∫ ∫ 
u e 
= 
= 2[u] 2 1 – 2e ⎡⎣ln u + e ⎤⎦ 
2 
1 = 2( 2 –1) – 2e[ln( 2 + e) – ln(1+ e)] 
⎛ 2 
+ ⎞ 
2 2 – 2 – 2 ln e e 
= ⎜⎜ ⎝ 1 
+ e 
⎟⎟ ⎠ 
6. u = t , u2 = t, 2u du = dt 
t dt u u du 
t u 
1 1 
0 0 2 
(2 ) 
∫ = 
∫ 
+ + 1 1 
1 2 1 2 
0 2 0 2 
u du u du 
u u 
+ − 
2 2 1 1 
+ + ∫ ∫ 
1 1 
0 0 2 
= = 
1 1 
2 – 2 1 
∫ du ∫ du 
1 –1 1 
+ 1 
u 
= 
= 2[u]0 – 2[tan u]0 
π 
2 – 2 tan–11 2 – 0.4292 
= = ≈ 
2 
Instructor’s Resource Manual Section 7.4 441 
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of 
this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
7. u = (3t + 2)1/ 2 , u2 = 3t + 2, 2u du = 3dt 
(3 2)3/ 2 1 ( 2 – 2) 3 2 
t t + dt = u u ⎛⎜ u du ⎞⎟ 
∫ ∫ 
3 ⎝ 3 
⎠ 2 ( 6 – 2 4 ) 2 7 4 5 
9 63 45 
= ∫ u u du = u − u +C 
= 2 (3 t + 2)7 / 2 – 4 (3 t + 2)5 / 2 
+C 
63 45 
8. u = (1– x)1/ 3, u3 = 1– x, 3u2du = –dx 
∫ x(1– x)2 / 3dx = ∫(1– u3)u2 (–3u2 )du 
3 ( 7 – 4 ) 3 8 3 5 
= ∫ u u du = u − u +C 
8 5 
3 (1– )8/ 3 – 3 (1– )5 / 3 
8 5 
= x x +C 
9. x = 2 sin t, dx = 2 cos t dt 
4 – 2 2cos (2cos ) 
x dx t t dt 
x 2sin 
t 
∫ = ∫ 
1– sin2 2 
= ∫ = 2∫csct dt – 2∫sin t dt 
sin 
= 2ln csct − cot t + 2cos t + C 
t dt 
t 
2 
2ln 2 4 – x 4 – x2 C 
= + + 
x 
− 
10. x = 4sin t, dx = 4cos t dt 
2 2 
x dx t t dt 
∫ = ∫ 
16 – x 2 
cos 
t 
= 16∫sin2 t dt = 8∫(1– cos 2t)dt 
= 8t – 4sin 2t +C = 8t −8sin t cos t +C 
16 sin cos 
2 
= 8sin–1 ⎛ x ⎞ – x 16 – 
x ⎜ ⎟ 
+C 4 2 
⎝ ⎠ 
11. x = 2 tan t, dx = 2sec2 t dt 
2 
dx 2sec t dt 1 cos 
t dt 
∫ = = 
( x 2 + 4) 3/2 ∫ 2 ∫ 
(4sec t 
) 3/2 
4 
1 sin 
4 
= t + C 
x C 
x 
= + 
4 2 + 
4 
12. t = sec x, dt = sec x tan x dx 
x 
π 
Note that 0 . 
2 
≤  
t2 –1 = tan x = tan x 
3 sec–1(3) 
2 2 2 / 3 2 
dt sec x tan 
x dx 
∫ = ∫ 
t t –1 π 
sec x tan 
x sec–1(3) 
/ 3 
= ∫ 
cos x dx π 
sec–1(3) 1 
x − 
π 
[sin ] / 3 sin[sec (3)] sin 
π 
3 
= = − 
sin cos 1 1 3 2 2 – 3 0.0768 
⎡ = − ⎛ ⎞⎤ ⎢ ⎜ − = ≈ ⎣ ⎝ 3 ⎟⎥ ⎠⎦ 
2 3 2 
13. t = sec x, dt = sec x tan x dx 
π 
 ≤ π 
x 
Note that . 
2 
t2 –1 = tan x = – tan x 
–3 2 sec–1(–3) 
–2 3 2 / 3 3 
t –1 dt – tan x sec x tan 
x dx 
t π sec 
x 
∫ = ∫ 
sec–1(–3) sec–1(–3) 2 
2 /3 2 /3 
– sin 1 cos 2 – 1 
= = ⎛ ⎞ ⎜ ⎟ 
⎝ ⎠ ∫ ∫ 
x dx x dx π π 
2 2 
sec–1(–3) 
π 
2 /3 
1 sin 2 – 1 
4 2 
= ⎡ ⎤ ⎢⎣ x x 
⎥⎦ 
sec–1(–3) 
= ⎡ ⎢⎣ x x ⎤ ⎥⎦ 
2 /3 
– 2 – 1 sec–1(–3) π 
3 x0.151252 
1 sin cos – 1 
2 2 
π 
= + + ≈ 
9 2 8 3 
14. t = sin x, dt = cos x dx 
t dt x dx 
t 
∫ = ∫ = –cos x + C 
2 
sin 
1– 
= – 1– t2 +C 
15. z = sin t, dz = cos t dt 
z dz t dt 
z 
2 –3 (2sin – 3) 
1– 
∫ = ∫ 
2 
= –2 cos t – 3t + C 
= –2 1– z2 – 3sin–1 z +C 
442 Section 7.4 Instructor’s Resource Manual 
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of 
this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
16. x = π tan t, dx = πsec2 t dt 
π 
x –1 dx ( 2 
tan t –1)sect dt 
x 
∫ = ∫ 
π 
2 + π 
2 
= π2 ∫ tan t sect dt – ∫sect dt 
= π2 sect – ln sect + tan t +C 
= π x2 + π2 − ln 1 x2 + π2 + x + C 
π π 
x 1 dx 
x 
π π − 
∫ 
0 2 2 
+ π 
⎡ π x 2 + π 2 
⎤ = ⎢π x 2 + π 2 
– ln + x 
⎥ 
⎢ π π ⎥ 
⎣ ⎦ 
0 
= [ 2π2 – ln( 2 +1)] – [π2 − ln1] 
= ( 2 –1)π2 – ln( 2 +1) ≈ 3.207 
17. x2 + 2x + 5 = x2 + 2x +1+ 4 = (x +1)2 + 4 
u = x + 1, du = dx 
dx du 
∫ = 
∫ 
u = 2 tan t, du = 2sec2 t dt 
2 2 5 2 4 
x x u 
+ + + 
du sec t dt ln sec t tan 
t C 
u 
∫ ∫ 
= = + + 
2 1 
4 
+ 
2 
u u C 
1 
+ 
ln 4 
= + + 
2 2 
2 
x x x C 
1 
+ 2 + 5 + + 
ln 1 
= + 
2 
= ln x2 + 2x + 5 + x +1 +C 
18. x2 + 4x + 5 = x2 + 4x + 4 +1 = (x + 2)2 +1 
u = x + 2, du = dx 
dx du 
∫ = 
∫ 
u = tan t, du = sec2 t dt 
2 4 5 2 1 
x x u 
+ + + 
du t dt t t C 
u 
∫ ∫ 
2 
sec ln sec tan 
1 
= = + + 
+ 
dx u 2 
u C 
2 
ln 1 
x x 
4 5 
= + + + 
+ + 
∫ 
= ln x2 + 4x + 5 + x + 2 +C 
19. x2 + 2x + 5 = x2 + 2x +1+ 4 = (x +1)2 + 4 
u = x + 1, du = dx 
x dx u du 
3 3– 3 
2 5 4 
∫ = 
∫ 
2 2 
x x u 
+ + + 
u du du 
u u 
∫ ∫ 
3 –3 
2 2 
4 4 
= 
+ + 
(Use the result of Problem 17.) 
= 3 u2 + 4 – 3ln u2 + 4 + u +C 
= 3 x2 + 2x + 5 – 3ln x2 + 2x + 5 + x +1 +C 
20. x2 + 4x + 5 = x2 + 4x + 4 +1 = (x + 2)2 +1 
u = x + 2, du = dx 
2 x –1 2 u − 
dx 5 
du 
x 4 x 5 u 
1 
∫ = 
∫ 
2 2 
+ + + 
u du du 
u u 
2 – 5 
= 
∫ ∫ 
2 + 1 2 
+ 
1 
(Use the result of Problem 18.) 
= 2 u2 +1 – 5ln u2 +1 + u +C 
= 2 x2 + 4x + 5 – 5ln x2 + 4x + 5 + x + 2 +C 
21. 5 − 4x − x2 = 9 − (4 + 4x + x2 ) = 9 − (x + 2)2 
u = x + 2, du = dx 
∫ 5 – 4x – x2 dx =∫ 9 – u2 du 
u = 3 sin t, du = 3 cos t dt 
9 2 9 cos2 9 (1 cos 2 ) 
∫ − u du = ∫ t dt = ∫ + t dt 
2 
9 1sin 2 
2 2 
= ⎛⎜ t + t ⎞⎟ +C 
⎝ ⎠ 
9( sin cos ) 
2 
= t + t t +C 
= ⎛ u ⎞ + u u +C ⎜ ⎟ 
9 sin–1 1 9 – 2 
2 3 2 
⎝ ⎠ 
x x x x C 
9 sin–1 2 2 5 – 4 – 2 
2 3 2 
⎛ + ⎞ + = ⎜ ⎟ + + 
⎝ ⎠ 
22. 16 + 6x – x2 = 25 − (9 − 6x + x2 ) = 25 – (x – 3)2 
u = x – 3, du = dx 
dx du 
x x u 
∫ = 
∫ 
u = 5 sin t, du = 5 cos t 
16 + 
6 – 2 25 – 2 
du dt t C 
u 
= ⎛ u ⎞ +C ⎜ ⎟ 
∫ ∫ sin–1 
25 2 
= = + 
− 
5 
⎝ ⎠ 
= sin–1 ⎛ x – 3 
⎞ ⎜ ⎟ 
+C 5 
⎝ ⎠ 
Instructor’s Resource Manual Section 7.4 443 
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of 
this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
23. 4x – x2 = 4 − (4 − 4x + x2 ) = 4 – (x – 2)2 
u = x – 2, du = dx 
dx du 
x x u 
∫ = ∫ 
4 – 2 4 – 2 
u = 2 sin t, du = 2 cos t dt 
du dt t C 
u 
= ⎛ u ⎞ +C ⎜ ⎟ 
∫ ∫ sin–1 
4 2 
= = + 
− 
2 
⎝ ⎠ 
= sin–1 ⎛ x – 2 
⎞ ⎜ ⎟ 
+C 2 
⎝ ⎠ 
24. 4x – x2 = 4 − (4 − 4x + x2 ) = 4 – (x – 2)2 
u = x – 2, du = dx 
x u + 
dx 2 
du 
x x u 
∫ = ∫ 
2 2 
4 – 4– 
u du du 
u u 
– – 2 
= ∫ + ∫ 
4 – 2 4 – 
2 
(Use the result of Problem 23.) 
– 4 – 2 2sin–1 
= u + ⎛ u ⎞ +C ⎜ ⎟ 
2 
⎝ ⎠ 
= – 4 x – x 2 + 2sin–1 ⎛ x – 2 
⎞ ⎜ ⎟ 
+ C 2 
⎝ ⎠ 
25. x2 + 2x + 2 = x2 + 2x +1+1 = (x +1)2 +1 
u = x + 1, du = dx 
x dx u du 
2 + 
1 2 –1 
2 2 1 
∫ = 
2 ∫ 
+ + 2 
+ x x u 
u du du 
u u 
2 – 
1 1 
= 
∫ 2 ∫ 
+ 2 
+ = ln u2 +1 – tan–1 u +C 
= ln (x2 + 2x + 2)− tan−1(x +1) +C 
26. x2 – 6x +18 = x2 – 6x + 9 + 9 = (x – 3)2 + 9 
u = x – 3, du = dx 
x dx u du 
2 –1 2 5 
–6 18 9 
∫ = 
2 ∫ 
+ 2 
+ x x u 
+ 
2 u du 5 
du 
u u 
+ + ∫ ∫ 
ln ( 2 9) 5 tan 1 
= + 
2 2 
9 9 
= u + + − ⎛ u ⎞ +C ⎜ ⎟ 
3 3 
⎝ ⎠ 
ln ( 2 6 18) 5 tan 1 3 
= x − x + + − ⎛ x − ⎞ +C ⎜ ⎟ 
3 3 
⎝ ⎠ 
27. 
2 
⎛ ⎞ 
1 
0 2 
1 
2 5 
⎝ + + ⎠ ∫ 
V dx 
= π ⎜ ⎟ 
x x 
2 
⎡ ⎤ 
1 
1 
0 2 
∫ 
= π ⎢ ⎥ 
x 
( 1) 4 
dx 
⎢⎣ + + ⎥⎦ 
x + 1 = 2 tan t, dx = 2sec2 t dt 
1 2sec 
4sec 
π ⎛ ⎞ 
/ 4 2 
tan (1/ 2) 2 
⎝ ⎠ ∫ 
V tdt 
= π –1 
⎜ ⎟ 
2 
t 
1 
t dt π π 
π π 
= ∫ –1 
/ 4 
tan –1 
(1/ 2) 2 
8 sec 
dt 
t 
/ 4 cos 
2 
tan (1/ 2) 
= ∫ 
8 
t dt π π ⎛ ⎞ = ⎜ + ⎟ 
/ 4 
tan (1/ 2) 
∫ 
–1 
⎝ ⎠ 1 1cos 2 
8 2 2 
/ 4 
–1 
π ⎡ ⎤π = ⎢ + ⎥ ⎣ ⎦ 
tan (1/ 2) 
1 1sin 2 
8 2 4 
t t 
/ 4 
t t t π 
–1 
tan (1/ 2) 
1 1sin cos 
8 2 2 
π ⎡ ⎤ = ⎢ + ⎥ ⎣ ⎦ 
1 – 1 tan–1 1 1 
π π = ⎡⎛ + ⎞ ⎛ ⎢⎜ ⎟ ⎜ + ⎞⎤ 8 ⎣⎝ 8 4 ⎠ ⎝ 2 2 5 
⎠⎦ 
⎟⎥ 1 – tan–1 1 0.082811 
π ⎛ π ⎞ = ⎜ + ⎟ ≈ 
16 10 4 2 
⎝ ⎠ 
2 1 
28. 1 
+ + ∫ 
1 
0 2 
V xdx 
0 2 
x x 
2 5 
= π 
2 
x dx 
∫ 
( x 
+ 1) + 4 
1 1 
0 2 0 2 
= π 
x dx dx 
x x 
+ 
2 1 – 2 1 
+ + + + ∫ ∫ 
= π π 
( 1) 4 ( 1) 4 
1 1 
x x 
2 1 ln[( 1) 4] – 2 1 tan 1 
⎡ ⎡ = π + 2 + ⎤ π –1 
⎛ + ⎞⎤ ⎜ ⎣ ⎢ 2 ⎥ ⎦ ⎢ ⎣ 2 ⎝ 2 
⎠⎦ 
⎟⎥ [ln8 – ln 5] – tan–11– tan–1 1 
0 0 
= π π ⎡ ⎤ ⎢⎣ 2 
⎥⎦ 
ln 8 – tan–1 1 0.465751 
5 4 2 
⎛ π ⎞ = π⎜ + ⎟ ≈ 
⎝ ⎠ 
29. a. u = x2 + 9, du = 2x dx 
xdx du u C 
x u 
∫ 2 
∫ 
+ 1 ln 2 9 1 ln ( 2 9) 
2 2 
1 1ln 
= = + 
9 2 2 
= x + +C = x + +C 
b. x = 3 tan t, dx = 3sec2 t dt 
xdx t dt 
x 
∫ ∫ tan 
= – ln cost +C 
2 + 9 
= 
⎛ ⎞ 
ln 3 ln 3 
= − + = − ⎜ ⎟ + 
C C 
2 1 2 1 
+ ⎜ + ⎟ ⎝ ⎠ 
x x 
9 9 
= ln ⎛⎜ x 2 
+ 9 ⎞⎟ − ln 3 + 
C1 ⎝ ⎠ 
= ln ((x2 + 9)1/ 2 )+C 1 ln ( 2 9) 
= x + +C 
2 
444 Section 7.4 Instructor’s Resource Manual 
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of 
this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
30. u = 9 + x2 , u2 = 9 + x2 , 2u du = 2x dx 
3 3 3 2 3 2 2 
0 2 0 2 3 
x dx x u − 
x dx 9 
udu 
∫ = ∫ = 
∫ 
x x u 
9 9 
+ + 
3 2 ⎡ 3 2 
⎤ 
3 2 u du u u 
3 
∫ 
≈ 5.272 
( 9) – 9 18 – 9 2 
= − = ⎢ ⎥ = 
3 
3 
⎢⎣ ⎥⎦ 
31. a. u = 4 – x2 , u2 = 4 – x2 , 2u du = –2x dx 
2 2 2 
x dx x x dx u du 
x x u 
4 – 4 − 
– 
∫ = ∫ = ∫ 
2 2 
4 – 
2 
2 2 
u du du du 
u u 
4 4 4 1 
4 4 
− + − 
− − ∫ ∫ ∫ 
4 1 ln 2 
= =− + 
u + 
u C 
u 
= − ⋅ + + 
4 2 
− 
2 
x x 2 
C 
x 
− + 
ln 4 2 4 
= − + − + 
2 
4 − − 
2 
b. x = 2 sin t, dx = 2 cos t dt 
4 – 2 cos2 2 
x dx t dt 
x sin 
t 
∫ = ∫ 
(1– sin2 ) 2 
= ∫ 
sin 
= 2∫csct dt – 2∫sin t dt 
= 2ln csct − cot t + 2cos t + C 
t dt 
t 
2 
− 
2ln 2 4 x 4 x2 C 
= − + − + 
x x 
2 
− − 
2ln 2 4 x 4 x2 C 
= + − + 
x 
To reconcile the answers, note that 
2 2 
2 2 
x x 
x x 
− + − − 
ln 4 2 ln 4 2 
− = 
4 − − 2 4 − + 
2 
2 2 
x 
− − 
ln ( 4 2) 
( 4 x 2 2)( 4 x 
2 
2) 
= 
− + − − 
2 2 2 2 
x x 
(2 − 4 − ln ) ln (2 − 4 − 
) 
= = 
2 2 
x x 
4 4 
− − − 
2 
⎛ − − ⎞ − − = ⎜ ⎟ = 
2 4 2 2 4 2 ln x 2ln x 
x x 
⎜ ⎟ 
⎝ ⎠ 
32. The equation of the circle with center (–a, 0) is 
(x + a)2 + y2 = b2 , so y = ± b2 – (x + a)2 . By 
symmetry, the area of the overlap is four times 
the area of the region bounded by x = 0, y = 0, 
and y = b2 – (x + a)2 dx . 
A = 4 ∫ b – a b 2 –( x + a ) 2 
dx 
0 
x + a = b sin t, dx = b cos t dt 
/ 2 2 2 
sin ( / ) 
A b tdt π 
= ∫ 
4 cos 
–1 
a b 
b tdt π 
2 / 2 
sin ( / ) 
= ∫ + 
2 (1 cos 2 ) 
–1 
a b 
b t t π 
/ 2 
= ⎡ + ⎤ ⎢⎣ ⎥⎦ 
2 –1 
a b 
2 2 
1 sin 2 
sin ( / ) 
b t t tπ 
2 /2 
–1 
2 [ sin cos ] 
a b 
sin ( / ) 
= + 
⎡π ⎛ ⎛ a ⎞ a b 2 – 
a 
2 
⎞⎤ = 2 b 2 ⎢ – ⎜ sin–1 ⎢ 2 
⎜ ⎜ ⎟ + ⎟⎥ ⎝ ⎝ b ⎠ b b 
⎟⎥ ⎣ ⎠⎦ 
b2 – 2b2 sin–1 a – 2a b2 – a2 
= π ⎛ ⎞ ⎜ ⎟ 
b 
⎝ ⎠ 
33. a. The coordinate of C is (0, –a). The lower arc 
of the lune lies on the circle given by the 
equation x2 + ( y + a)2 = 2a2 or 
y = ± 2a2 – x2 – a. The upper arc of the 
lune lies on the circle given by the equation 
x2 + y2 = a2 or y = ± a2 – x2 . 
– – 2 – – a a 
a a 
A = a 2 x 2 dx ⎛⎜ a 2 x 2 
a ⎞⎟ dx 
∫ ∫ 
– – 
⎝ ⎠ – – 2 – 2 a a 
a a 
2 2 2 2 2 
= ∫ a x dx ∫ a x dx + a 
– – 
Note that 2 2 
– a 
a 
∫ a x dx is the area of a 
– 
semicircle with radius a, so 
2 
a 2 x 2 
dx a 
a 
a 
∫ = 
– 
For 2 2 
π 
– . 
2 
2 – , a 
a 
∫ a x dx let 
– 
x = 2a sin t, dx = 2a cos t dt 
2 – 2 cos a 
a 
a 2 x 2 dx π 
/ 4 a 2 2 
tdt π 
∫ = ∫ 
– –/ 4 
2 π / 4 1 π 
/ 4 (1 cos 2 ) 2 
sin 2 
– π /4 – π 
/ 4 
= a ∫ 
+ tdt = a ⎡ ⎢⎣ t + t 
⎤ 2 
⎥⎦ 2 
2 
a a 
π 
= + 
2 
2 2 
– 2 2 2 2 
2 2 
π ⎛ π ⎞ 
= ⎜⎜ + ⎟⎟ + = 
A a a a a a 
⎝ ⎠ 
Thus, the area of the lune is equal to the area 
of the square. 
Instructor’s Resource Manual Section 7.4 445 
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of 
this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
b. Without using calculus, consider the 
following labels on the figure. 
Area of the lune = Area of the semicircle of 
radius a at O + Area (ΔABC) – Area of the 
sector ABC. 
1 2 2 – 1 ( 2 )2 
2 2 2 
⎛ π ⎞ = π + ⎜ ⎟ 
A a a a 
⎝ ⎠ 
1 2 2 – 1 2 2 
2 2 
= πa + a πa = a 
Note that since BC has length 2a, the 
π 
measure of angle OCB is , 
4 
so the measure 
π 
of angle ACB is . 
2 
34. Using reasoning similar to Problem 33 b, the area is 
a a b a a b 
1 1 (2 ) – – 1 2sin 
2 2 2 
1 – – sin . 
2 
π + ⎛ ⎞ ⎜ ⎟ 
2 2 2 –1 2 
⎝ ⎠ 
a 2 a b 2 a 2 b 2 –1 
a 
b 
b 
= π + 
35. 
2 – 2 dy – a x 
dx x 
= ; 
2 – 2 y – a x dx 
x 
= ∫ 
x = a sin t, dx = a cos t dt 
cos cos2 – cos – 
y a t a t dt a t dt 
= ∫ = ∫ 
a sin t sin 
t 
1– sin2 – (sin – csc ) 
a t dt a t t dt 
= ∫ = sin 
t 
∫ 
= a (– cos t − ln csct − cot t ) +C 
2 cos t = a – x 2 2 2 , csct = a , cot t = 
a – x 
a x x 
⎛ − ⎞ = ⎜ − − ⎟ + 
2 – 2 2 2 y a – a x ln a a x C 
⎜ a x x 
⎟ 
⎝ ⎠ 
2 2 
a2 x2 a − a ln a − 
x C 
= − − − + 
x 
Since y = 0 when x = a, 
0 = 0 – a ln 1 + C, so C = 0. 
2 2 
y – a2 x2 a ln a a – x 
x 
− 
= − − 
7.5 Concepts Review 
1. proper 
2. –1 5 
1 
x 
x 
+ 
+ 
3. a = 2; b = 3; c = –1 
A B Cx + 
D 
x x x 
4. + + 
–1 ( –1)2 2 + 
1 
Problem Set 7.5 
1. 1 
A B 
= + 
xx x x 
( + 1) + 
1 
1 = A(x + 1) + Bx 
A = 1, B = –1 
1 1 – 1 
( 1) 1 
+ + ∫ ∫ ∫ 
= ln x – ln x +1 + C 
dx = 
dx dx 
x x x x 
2. 2 
A B 
2 = 2 
= + 
3 ( 3) 3 
x x x x x x 
+ + + 
2 = A(x + 3) + Bx 
2 , – 2 
3 3 
A = B = 
∫ 2 
∫ ∫ 
+ + 2 ln – 2 ln 3 
3 3 
dx dx B dx 
2 = 
2 1 – 2 
3 3 3 3 
x x x x 
= x x + + C 
A B 
3 3 
–1 ( 1)( –1) 1 –1 
3. 2 
= = + 
x x + x x + 
x 
3 = A(x – 1) + B(x + 1) 
– 3 , 3 
2 2 
A = B = 
3 – 3 1 3 1 
–1 2 1 2 –1 
∫ 2 
∫ ∫ 
+ – 3 ln 1 3 ln –1 
dx = dx + 
dx 
x x x 
= x + + x + C 
2 2 
446 Section 7.5 Instructor’s Resource Manual 
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of 
this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
x x 
5 5 5 
4. 3 2 2 
= = 
x x x x x x 
2 + 6 2 ( + 3) 2 ( + 
3) 
3 
A B 
x x 
= + 
+ 
5 ( 3) 
2 
= A x + + Bx 
5 , – 5 
6 6 
A = B = 
x dx dx 
5 5 1 – 5 1 
∫ = 
x 3 + x 2 
∫ x ∫ 
x 
+ 5 ln – 5 ln 3 
6 6 
2 6 6 6 3 
= x x + +C 
x x A B 
x x x x x x 
5. 2 
11 11 
3 4 ( 4)( 1) 4 1 
− − 
= = + 
+ − + − + − 
x – 11 = A(x – 1) + B(x + 4) 
A =3, B = –2 
x dx dx dx 
x x x x 
∫ 2 
∫ ∫ 
+ − + − = 3ln x + 4 − 2ln x −1 + C 
11 3 1 2 1 
3 4 4 1 
− 
= − 
x x A B 
x x x x x x 
6. 2 
– 7 = – 7 
= + 
– –12 ( – 4)( + 3) – 4 + 
3 
x – 7 = A(x + 3) + B(x – 4) 
– 3 , 10 
7 7 
A = B = 
x dx dx dx 
x x x x 
∫ 2 
∫ ∫ 
+ – 3 ln – 4 10 ln 3 
– 7 = – 3 1 + 
10 1 
– –12 7 – 4 7 3 
= x + x + +C 
7 7 
7. 2 
x x A B 
3 − 13 3 − 
= 13 
= + 
3 10 ( 5)( 2) 5 2 
x x x x x x 
+ − + − + − 
3x −13 = A(x − 2) + B(x + 5) 
A = 4, B = –1 
∫ x − 
dx 
4 1 1 
2 
+ − 3 13 
3 10 
x x 
+ − ∫ ∫ 
dx dx 
= − 
x x 
5 2 
= 4ln x + 5 − ln x − 2 +C 
x x 
+ π + π 
8. = 
2 – 3 2 2 ( – 2 )( – ) 
x x x x 
A B 
x x 
= + 
π + π π π – 2 – 
π π 
x +π = A(x −π ) + B(x − 2π ) 
A = 3, B = –2 
x + π 
dx dx dx 
∫ 2 π + π 2 
∫ ∫ 
π π = 3ln x – 2π – 2ln x – π + C 
3 – 2 
= 
x x x x 
– 3 2 – 2 – 
x x 
x x x x 
2 21 2 21 
2 9 – 5 (2 –1)( 5) 
9. 2 
+ + 
= 
A B 
x x 
= + 
+ + 2 –1 + 
5 
2x + 21 = A(x + 5) + B(2x – 1) 
A = 4, B = –1 
x dx dx dx 
x x x x 
2 21 4 – 1 
2 9 – 5 2 –1 5 
∫ 2 
∫ ∫ 
+ + = 2ln 2x –1 – ln x + 5 +C 
+ 
= 
10. 
2 2 
2 2 
x x x x x 
x x x x 
2 − − 20 2( + − 6)− 3 − 
8 
= 
6 6 
+ − + − 
x 
x x 
2 3 8 
2 
6 
+ 
= − 
+ − 
x x 
x x x x 
3 8 3 8 
2 
+ + 
= 
A B 
x x 
= + 
+ − + − 3 2 
6 ( 3)( 2) 
+ − 
3x + 8 = A(x – 2) + B(x + 3) 
1 , 14 
5 5 
A = B = 
2 
2 
x x dx 
x x 
2 20 
6 
− − 
+ − ∫ 
2 1 1 14 1 
+ − ∫ ∫ ∫ 
2 1 ln 3 14 ln 2 
dx dx dx 
= − − 
x x 
5 3 5 2 
= x − x + − x − +C 
5 5 
x x 
x x x x 
17 – 3 17 – 3 
3 – 2 (3 – 2)( 1) 
11. 2 
= 
A B 
x x 
= + 
+ + 3 – 2 + 
1 
17x – 3 = A(x + 1) + B(3x – 2) 
A = 5, B = 4 
x dx dx dx 
x x x x 
+ + ∫ ∫ ∫ 5 ln 3 – 2 4ln 1 
17 – 3 = 5 + 
4 
3 2 
– 2 3 – 2 1 
= x + x + +C 
3 
Instructor’s Resource Manual Section 7.5 447 
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of 
this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
12. 2 
x x 
5 – 5 – 
= 
x x x x 
– ( 4) 4 ( – )( – 4) 
A B 
x x 
= + 
π + + π π – π 
– 4 
5 – x = A(x – 4) + B(x – π ) 
5 – π 
, 1 
–4 4– 
A B 
= = 
π π 
∫ 2 
∫ ∫ 5 – ln – 1 ln – 4 
− π + + π π π π x dx dx dx 
5 – 5 – π 
= 1 + 
1 1 
( 4) 4 – 4 – 4 – – 4 
x x x x 
x x C 
π 
= π + + 
π π 
– 4 4 – 
13. 
2 2 
3 2 
x x x x 
x x x x x x 
2 + − 4 2 + − 
4 
= 
A B C 
x x x 
= + + 
− − + − 1 2 
2 ( 1)( 2) 
+ − 
2x2 + x − 4 = A(x +1)(x − 2) + Bx(x − 2) + Cx(x +1) 
A = 2, B = –1, C = 1 
2 
3 2 
2 x + x − 
4 dx 2 dx 1 dx 1 
dx 
x x x x x x 
∫ = ∫ − ∫ + 
∫ = 2ln x − ln x +1 + ln x − 2 + C 
− − + − 2 1 2 
14. 
7 2 2 – 3 
x + 
x A B C 
= + + 
x x x x x x 
(2 –1)(3 + 2)( – 3) 2 –1 3 + 
2 – 3 
7x2 + 2x – 3 = A(3x + 2)(x – 3) + B(2x –1)(x – 3) +C(2x –1)(3x + 2) 
1 , – 1 , 6 
35 7 5 
A = B = C = 
7 2 2 – 3 1 1 1 1 6 1 – 
x + 
x dx dx dx dx 
∫ = ∫ ∫ + 
∫ 
+ + 1 ln 2 –1 – 1 ln 3 2 6 ln – 3 
70 21 5 
x x x x x x 
(2 –1)(3 2)( – 3) 35 2 –1 7 3 2 5 – 3 
= x x + + x +C 
15. 
2 2 
x x x x 
x x x x x x 
6 + 22 − 23 + − 
= 
6 22 23 
(2 1)( 2 
6) (2 1)( 3)( 2) 
A B C 
x x x 
= + + 
− + − − + − 2 − 1 + 3 − 
2 
6x2 + 22x − 23 = A(x + 3)(x − 2) + B(2x −1)(x − 2) + C(2x −1)(x + 3) 
A = 2, B = –1, C = 3 
2 
x x dx dx dx dx 
x x x x x x 
6 + 22 − 
23 2 1 3 
(2 1)( 6) 2 1 3 2 
∫ = ∫ − ∫ + 
∫ = ln 2x −1 − ln x + 3 + 3ln x − 2 + C 
− 2 
+ − − + − 16. 
3 2 
3 2 
x x x 
x x x 
6 11 6 
− + − 
− + − 
4 28 56 32 
3 2 
3 2 
⎛ − + − ⎞ 
x x x 
x x x 
1 6 11 6 
4 7 14 8 
= ⎜⎜ ⎟⎟ ⎝ − + − ⎠ 
2 
⎛ − + ⎞ 
x x 
1 1 3 2 
4 7 14 8 
= ⎜⎜ + ⎝ x 3 ⎟⎟ − x 2 
+ x 
− ⎠ 
⎛ − − ⎞ 
x x 
x x x 
1 1 ( 1)( 2) 
4 ( 1)( 2)( 4) 
= ⎜ + ⎟ ⎝ − − − ⎠ 
1 1 1 
4 x 4 
= ⎛ + ⎞ ⎜ − ⎟ ⎝ ⎠ 
3 2 
3 2 
x x x dx 
x x x 
∫ – 6 + 
11 – 6 
1 1 1 
+ 4 –28 56 –32 
= ∫ dx + ∫ dx 
1 1ln – 4 
x 
4 4 –4 
= x + x +C 
4 4 
448 Section 7.5 Instructor’s Resource Manual 
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of 
this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
17. 
3 
x x x 
–1 3 – 2 
= + 
2 2 
x x x x 
–2 –2 
+ + 
3 x –2 = 3 x –2 
= A + 
B 
x 2 
x x x x x 
– 2 ( 2)( –1) 2 –1 
+ + + 
3x – 2 = A(x – 1) + B(x + 2) 
8 , 1 
3 3 
A = B = 
3 
x dx 
∫ ( 1) 8 1 1 1 
x 2 + x – 2 
∫ x dx ∫ dx ∫ dx 
1 2 – 8 ln 2 1 ln –1 
+ − = − + + 
x x 
3 2 3 1 
= x x + x + + x +C 
2 3 3 
18. 
3 2 
2 
x x x x 
x x x x 
– 4 14 24 
+ + 
= + 
5 6 ( 3)( 2) 
+ + + + 
14 x + 
24 
= A + 
B 
( x 3)( x 2) x 3 x 
2 
+ + + + 
14x + 24 = A(x + 2) + B(x + 3) 
A = 18, B = –4 
3 2 
2 5 6 
x x dx 
x x 
+ 
+ + ∫ ( 4) 18 – 4 
∫ x dx ∫ dx ∫ dx 
1 2 4 18ln 3 – 4ln 2 
+ + x x 
3 2 
= − + 
= x − x + x + x + +C 
2 
19. 
4 2 2 
3 
x x x x 
x x x x x 
8 8 12 8 
4 ( 2)( – 2) 
+ + + 
= + 
− + 
12 x 2 + 
8 
= A + B + 
C 
( 2)( – 2) 2 – 2 
x x + x x x + 
x 
12x2 + 8 = A(x + 2)(x – 2) + Bx(x – 2) + Cx(x + 2) 
A = –2, B = 7, C = 7 
4 2 
3 
x x dx x dx dx dx dx 
x x x x x 
+ ∫ ∫ ∫ ∫ ∫ 1 2 – 2ln 7ln 2 7 ln – 2 
8 8 – 2 1 7 1 7 1 
– 4 2 – 2 
+ + 
= + + 
= x x + x + + x +C 
2 
20. 
6 3 2 
x x x x x x 
x x x x 
4 4 4 16 68 272 4 
– 4 – 4 
+ + + 
3 2 
= + + + + 
3 2 3 2 
2 
x A B C 
272 + 
4 
= + + 
x 2 ( x – 4) x x 2 
x 
– 4 
272x2 + 4 = Ax(x – 4) + B(x – 4) +Cx2 
– 1 , –1, 1089 
4 4 
A = B = C = 
6 3 
3 2 
x 4 x 4 
dx 
x – 4 
x 
( 4 16 68) – 1 1 – 1 1089 1 
+ + ∫ 3 2 
− ∫ ∫ ∫ ∫ 
x x x dx dx dx dx 
= + + + + 
2 
x x x 
4 4 4 
1 4 4 3 8 2 68 – 1 ln 1 1089 ln – 4 
4 3 4 4 
x x x x x x C 
= + + + + + + 
x 
x + 
1 
A B 
x x x 
21. = + 
2 2 
( 3) 3 ( 3) 
− − − 
x + 1 = A(x – 3) + B 
A = 1, B = 4 
x dx dx dx 
x x x 
∫ + 
1 = ∫ 1 + 
∫ 4 
ln 3 4 
− 2 − − 2 
( 3) 3 ( 3) 
x C 
= − − + 
3 
x 
− 
Instructor’s Resource Manual Section 7.5 449 
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of 
this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
x x A B 
5 + 7 5 + 
7 
4 4 ( 2) 2 ( 2) 
22. = = + 
2 2 2 
x x x x x 
+ + + + + 
5x + 7 = A(x + 2) + B 
A = 5, B = –3 
x dx dx dx 
+ + + + ∫ ∫ ∫ 5ln 2 3 
5 + 
7 = 5 − 
3 
4 4 2 ( 2) 
2 2 
x x x x 
x C 
= + + + 
2 
x 
+ 
x x 
3 + 2 3 + 
2 
3 3 1 ( 1) 
23. = 
3 2 3 
A B C 
x x x 
= + + 
+ + + + 1 ( 1)2 ( 1)3 
x x x x 
+ + + 
3x + 2 = A(x +1)2 + B(x +1) +C 
A = 0, B = 3, C = –1 
x dx dx dx C 
3 + 
2 3 1 3 1 
3 3 1 ( 1) ( 1) 1 2( 1) 
+ + + + + + + ∫ ∫ ∫ 
= − = − + + 
3 2 2 3 2 
x x x x x x x 
24. 
6 
x A B C D E F G 
= + + + + + + 
( x – 2)2 (1– x )5 x – 2 ( x – 2)2 1– x (1– x )2 (1– x )3 (1– x )4 (1– x 
)5 
A = 128, B = –64, C = 129, D = –72, E = 30, F = –8, G = 1 
6 
2 5 2 2 3 4 5 
⎡ ⎤ 
x dx 128 – 64 129 – 72 30 8 1 
dx 
∫ ∫ 
= ⎢ + + − + ⎥ 
x x x x x x x x x 
( – 2) (1– ) – 2 ( – 2) 1– (1– ) (1– ) (1– ) (1– ) 
⎢⎣ ⎥⎦ 
128ln – 2 64 –129ln 1– 72 15 8 1 
x x C 
= + + − + − + 
2 3 4 
x x x x x 
– 2 1– (1– ) 3(1– ) 4(1– ) 
25. 
2 2 
3 2 2 2 
x x x x A B C 
x x x x x x x x 
3 − 21 + 32 3 − 21 + 
32 
= = + + 
8 16 ( 4) 4 ( 4) 
− + − − − 
3x2 − 21x + 32 = A(x − 4)2 + Bx(x − 4) + Cx 
A = 2, B = 1, C = –1 
2 
3 2 2 
x x dx dx dx dx 
x x x x x 
∫ 3 − 21 + 
32 = ∫ 2 + ∫ 1 − 
∫ 1 
2ln ln 4 1 
− + − − 8 16 4 ( 4) 
x x C 
= + − + + 
4 
x 
− 
26. 
2 2 
x x x x 
x x x x 
+ 19 + 10 + 19 + 
= 
10 
2 4 5 3 3 
(2 5) 
A B C D 
x x x x 
= + + + 
+ + 2 3 2 + 
5 
A = –1, B = 3, C = 2, D = 2 
2 
x + 19 x + 10 ⎛ 1 3 2 2 
⎞ 
dx – dx 
2 x 5 x x x x 2 x 
5 
– ln x – 3 – 1 ln 2x 5 C 
∫ = 4 3 ∫ ⎜ + + + + ⎝ 2 3 
+ ⎟ ⎠ 2 
= + + + 
x x 
27. 
2 2 
3 2 2 
x x x x A BxC 
x x x x x x 
2 –8 2 –8 
+ + + 
= = + 
4 ( 4) 4 
+ + + 
A = –2, B = 4, C = 1 
2 
3 2 
x x dx dx x dx 
x x x x 
2 + – 8 –2 1 4 + 
1 
dx x dx dx 
x x x 
2 1 2 2 1 
+ + ∫ ∫ ∫ 
∫ = ∫ + 
∫ + + 2 2 
4 4 
= − + + 
4 4 
= –2ln x + 2ln x 2 + 4 + 1 tan–1 
⎛ x ⎞ ⎜ ⎟ 
+C 2 2 
⎝ ⎠ 
450 Section 7.5 Instructor’s Resource Manual 
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of 
this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
x x 
3 + 2 3 + 
2 
( 2) 16 ( 4 20) 
28. = 
2 2 
A Bx + 
C 
x x x 
= + 
+ + + + 2 4 20 
x x x x x x 
+ + 
1 , – 1 , 13 
10 10 5 
A = B = C = 
x dx 
3 + 
2 
( 2) 16 
∫ 
+ 2 
+ xx x 
1 x 
13 
10 5 
2 
1 1 – 
+ 
10 4 20 
1 1 14 1 
10 5 ( 2) 16 
+ + ∫ ∫ 2 
dx dx 
x x x 
= + 
x dx 
1 2 4 
20 4 20 
+ + ∫ ∫ 2 
dx dx 
x x 
= + 
+ 
+ + ∫ 
x x 
− 
x x 
1 ln 7 tan–1 2 
10 10 4 
⎛ + ⎞ = + ⎜ ⎟ 
⎝ ⎠ 
– 1 ln 2 4 20 
20 
x + x + +C 
29. 
2 
x x A Bx C 
x x x x 
2 –3 –36 
+ 
= + 
(2 − 1)( 2 + 9) 2 –1 2 
+ 
9 
A = –4, B = 3, C = 0 
2 
x x dx dx x dx 
x x x x 
2 – 3 – 36 –4 1 3 
(2 –1)( 9) 2 –1 9 
∫ = ∫ + 
∫ –2ln 2 –1 3 ln 2 9 
2 + 2 
+ = x + x + +C 
2 
1 1 
x –16 (x 2)(x 2)(x 4) 
30. = 
4 2 
− + + 
A B Cx + 
D 
x x x 
= + + 
– 2 + 2 2 + 
4 
1 , – 1 , 0, – 1 
32 32 8 
A = B = C = D = 
= x x + ⎛ x ⎞ +C ⎜ ⎟ 
+ + ∫ ∫ ∫ ∫ 1 ln – 2 – 1 ln 2 – 1 tan–1 
1 1 1 – 1 1 1 1 
–16 32 – 2 32 2 8 4 
dx = dx dx − 
dx 
4 2 
x x x x 
32 32 16 2 
⎝ ⎠ 
1 
A B C D 
31. = + + + 
2 2 2 2 
x x x x x x 
( –1) ( + 4) –1 ( –1) + 4 ( + 
4) 
– 2 , 1 , 2 , 1 
125 25 125 25 
A = B = C = D = 
1 – 2 1 1 1 2 1 1 1 
+ + + ∫ ∫ ∫ ∫ ∫ 
– 2 ln –1 – 1 2 ln 4 – 1 
dx = dx + dx + dx + 
dx 
2 2 2 2 
x x x x x x 
( –1) ( 4) 125 –1 25 ( –1) 125 4 25 ( 4) 
x x C 
= + + + 
x x 
125 25( –1) 125 25( + 
4) 
32. 
3 2 2 
x x x x 
x x x x x x 
– 8 –1 + 
= 1 + 
–7 7 –16 
2 2 
( + 3)( –4 + 5) ( + 3)( − 4 + 
5) 
2 
2 2 
x x A Bx C 
–7 + 7 –16 
+ 
= + 
( x 3)( x – 4 x 5) x 3 x – 4 x 
5 
+ + + + 
– 50 , – 41, 14 
A = B = C = 
13 13 13 
3 2 41 14 
⎡ ⎛ ⎞ + ⎤ = ⎢ ⎜ ⎟ + ⎥ + + ⎢⎣ ⎝ + ⎠ + ⎥⎦ 
x – 8 x –1 – x dx 1– 
50 1 13 13 
dx 
x x x x x x 
∫ ∫ 
2 2 
( 3)( – 4 5) 13 3 – 4 5 
dx dx dx x dx 
50 1 68 1 41 2 4 
13 3 13 ( 2) 1 26 4 5 
+ − + − + ∫ ∫ ∫ ∫ 
– 50 ln 3 – 68 tan–1( – 2) – 41 ln 2 – 4 5 
= − − − 
2 2 
− 
x x x x 
= x x + x x x + +C 
13 13 26 
Instructor’s Resource Manual Section 7.5 451 
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of 
this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
33. x = sin t, dx = cos t dt 
3 2 3 2 
t t t dt x x dx 
t t t x x x 
(sin − 8sin − 1) cos − 8 − 
1 
(sin 3)(sin 4sin 5) ( 3)( 4 5) 
∫ = 
2 ∫ 
+ − + + 2 
− + 50 ln 3 68 tan 1( 2) 41 ln 2 4 5 
13 13 26 
= x − x + − − x − − x − x + + C 
which is the result of Problem 32. 
3 2 
t t t dt t t t t t C 
t t t 
(sin – 8sin –1) cos sin – 50 ln sin 3 – 68 tan –1 (sin – 2) – 41 ln sin 2 
– 4sin 5 
(sin 3)(sin – 4sin 5) 13 13 26 
∫ 
+ 2 
+ = + + + 
34. x = sin t, dx = cos t dt 
t dt dx x x x C 
t x 
cos 1 1 ln 2 1 ln 2 1 tan 
sin 16 16 32 32 16 2 
= = − − + − − 1 
⎛ ⎞ ⎜ ⎟ 
+ ∫ 4 ∫ 
− 4 
− ⎝ ⎠ which is the result of Problem 30. 
t dt t t t C 
t 
cos 1 ln sin – 2 – 1 ln sin 2 – 1 tan sin 
sin –16 32 32 16 2 
= + –1 
⎛ ⎞ ⎜ ⎟ 
+ ∫ 
4 
⎝ ⎠ 35. 
3 
2 2 2 2 2 
x – 4 
x + + 
= Ax B + 
Cx D 
x x x 
( + 1) + 1 ( + 
1) 
A = 1, B = 0, C = –5, D = 0 
3 
2 2 2 2 2 
x – 4 x dx x dx 5 
x dx 
x x x 
1 ln 1 5 
2 2( 1) 
∫ = ∫ − 
∫ 2 
+ + + ( 1) 1 ( 1) 
x C 
= + + + 
2 
x 
+ 
36. x = cos t, dx = –sin t dt 
2 2 
2 4 2 4 
t t dt x dx 
(sin )(4cos –1) – 4 –1 
∫ = 
∫ 
+ + + + t t t x x x 
(cos )(1 2cos cos ) (1 2 ) 
2 2 
2 4 2 2 2 2 2 
x x A BxC DxE 
4 − 1 4 − 1 
+ + 
= = + + 
(1 2 ) ( 1) 1 ( 1) 
x x x x x x x x 
+ + + + + 
A = –1, B = 1, C = 0, D = 5, E = 0 
⎡ ⎤ 
− ⎢− + + ⎥ = − + + + 
⎢⎣ + + ⎥⎦ + 
x x dx x x C 
1 5 ln 1 ln 1 5 
ln cos 1 ln cos 1 5 
∫ 2 
2 
2 2 2 2 
x x x x 
1 ( 1) 2 2( 1) 
t t C 
= − + + + 
2 
2 2(cos t 
+ 
1) 
37. 
3 2 2 
5 3 4 2 
x x x x x x 
x x x xx x 
2 + 5 + 16 (2 + 5 + 
16) 
= 
8 16 ( 8 16) 
+ + + + 
2 
2 2 2 2 2 
x x Ax B Cx D 
x x x 
2 + 5 + 16 
+ + 
( 4) 4 ( 4) 
= = + 
+ + + 
A = 0, B = 2, C = 5, D = 8 
3 2 
5 3 2 2 2 
x x x dx dx x dx 
x x x x x 
2 + 5 + 16 2 5 + 
8 
dx x dx dx 
2 5 8 
4 ( 4) ( 4) 
∫ = ∫ + 
∫ + + + + 2 2 2 2 2 
8 16 4 ( 4) 
+ + + ∫ ∫ ∫ 
= + + 
x x x 
8 , 
x + ∫ let x = 2 tan θ, dx = 2sec2θ dθ . 
To integrate 2 2 
( 4) 
dx 
2 
8 16sec 
θ 
∫ dx = 
∫ d 
cos2 1 1 cos 2 
2 + 2 4 
x 
( 4) 16sec 
θ 
θ 
= θ dθ = ⎛⎜ + θ ⎞⎟ dθ 
∫ ∫ 
⎝ 2 2 
⎠ 1 1 sin 2 1 1 sin cos 
2 4 2 2 
x x C 
1 tan 
2 2 4 
= θ + θ +C = θ + θ θ +C –1 
= + + 
2 
x 
+ 
3 2 
x x x dx x x x C 
x x x x x 
2 5 16 tan – 5 1 tan 
x x C 
3 tan 2 – 5 
2 2 2( 4) 
∫ –1 –1 
–1 
+ + + + + + 
= + + + 
5 3 2 2 
8 16 2 2( 4) 2 2 4 
= + + 
2 
x 
+ 
452 Section 7.5 Instructor’s Resource Manual 
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of 
this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
x x A B 
x x x x x x 
38. 2 
–17 = –17 
= + 
–12 ( 4)( – 3) 4 – 3 
+ + + 
A = 3, B = –2 
6 6 
4 2 4 
x dx dx 
x x x x 
–17 3 – 2 
–12 4 – 3 
= ⎛ ⎞ ⎜ + ⎟ + ⎝ ⎠ ∫ ∫ 6 
4 = ⎡⎣3ln x + 4 – 2ln x – 3 ⎤⎦ = (3ln10 – 2ln 3) – (3ln8 – 2ln1) 
= 3ln10 – 2ln 3 – 3ln8 ≈ –1.53 
39. u = sin θ, du = cos θ dθ 
cos θ 
1 
∫ / 4 d ∫ 1/ 2 
du 
1/ 2 
0 2 2 + 2 0 2 2 + 2 
u u 
θ 
= 
(1– sin θ )(sin θ 
1) (1– )( 1) 
π 
1 
+ + ∫ 
0 2 2 
u u u 
(1 – )(1 )( 1) 
du 
= 
1 
A B Cu + D Eu + 
F 
= + + + 
2 2 2 2 2 2 
u u u u u u 
(1– )( + 1) 1– 1 + + 1 ( + 
1) 
1 , 1 , 0, 1 , 0, 1 
8 8 4 2 
A = B = C = D = E = F = 
1/ 2 1 1 1/ 2 1 1 1/ 2 1 1 1/ 2 1 1 1/ 2 
1 
0 2 2 2 0 0 0 2 0 2 2 
− + − + + + ∫ ∫ ∫ ∫ ∫ 
du = du + du + du + 
du 
u u u u u u 
(1 )( 1) 8 1 8 1 4 1 2 ( 1) 
1/ 2 
⎡ ⎛ ⎞⎤ 
= ⎢ – 1 ln 1– u + 1 ln 1 + u + 1 tan –1 u + 1 ⎜ tan 
–1 
u + u 
⎣ 8 8 4 4 ⎝ 2 
⎟⎥ 
+ 1 
⎠⎦ 
0 
u 
1/ 2 
⎡ + = 1 ln 1 u 1 ⎢ + tan 
–1 
u + u 
⎤ 
⎥ 
⎢⎣ 8 1 − u 2 4( u 
2 
+ 1) 
⎥⎦ 
0 
1 2 + 
ln 1 1 tan–1 1 1 0.65 
8 2 1 2 2 6 2 
= + + ≈ 
− 
1 , 
u + ∫ let u = tan t.) 
(To integrate 2 2 
( 1) 
du 
x x 
x x x x 
3 13 3 13 
4 3 ( 3)( 1) 
40. 2 
+ + 
= 
A B 
x x 
= + 
+ + + + + 3 + 
1 
A = –2, B = 5 
5 5 
1 2 1 
x dx x x 
x x 
3 + 
13 –2ln 3 5ln 1 
4 3 
∫ = ⎡⎣ + + + ⎤⎦ 
= –2 ln 8 + 5 ln 6 + 2 ln 4 – 5 ln 2 = 5ln 3− 2ln 2 ≈ 4.11 
+ + 41. dy y(1 y) 
dt 
= − so that 
∫ dy ∫ 
dt t C 
− a. Using partial fractions: 
1 
1 1 
(1 ) 
y y 
= = + 
A B A y By 
1 (1 − ) 
+ 
(1 ) 1 (1 ) 
= + = ⇒ 
y y y y y y 
− − − 
( ) 1 0 1, 0 1, 1 1 1 1 
+ − = + ⇒ = − = ⇒ = = ⇒ = + 
y (1 y ) y 1 
y 
A B Ay y A B A A B 
− − 
⎛ ⎞ 
⎛ ⎞ 
y y y 
+ = ⎜ + ⎟ = ⎝ − ⎠ ∫ ln ln(1 ) ln 
t C dy 
Thus: 1 
1 1 
y 1 
y 
− − = ⎜ ⎟ ⎝ 1 
− y 
⎠ 
so that 
y e Ce 
y 
t C t 
= 1 
= 
+ 
1 ( C1 ) 
C = 
e 
− 
y t e 
or 1 ( ) 
C 
t 
t 
e 
= 
+ 
(0) 0.5, 0.5 1 or 1 
y = = C = 
Since 1 
1 
C 
+ 
y t e 
; thus ( ) 
= 
+ 
1 
t 
t 
e 
b. 
3 
3 (3) 0.953 
y e 
= ≈ 
1 
e 
+ 
Instructor’s Resource Manual Section 7.5 453 
© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of 
this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
51548 0131469657 ism-7
51548 0131469657 ism-7
51548 0131469657 ism-7
51548 0131469657 ism-7
51548 0131469657 ism-7
51548 0131469657 ism-7
51548 0131469657 ism-7
51548 0131469657 ism-7
51548 0131469657 ism-7
51548 0131469657 ism-7
51548 0131469657 ism-7
51548 0131469657 ism-7
51548 0131469657 ism-7
51548 0131469657 ism-7
51548 0131469657 ism-7
51548 0131469657 ism-7
51548 0131469657 ism-7
51548 0131469657 ism-7
51548 0131469657 ism-7
51548 0131469657 ism-7
51548 0131469657 ism-7
51548 0131469657 ism-7

Más contenido relacionado

La actualidad más candente

Integrales resueltas 370 371 conamat
Integrales resueltas 370 371 conamatIntegrales resueltas 370 371 conamat
Integrales resueltas 370 371 conamat
inesperezz
 
Ejercicios de Calculo Multivariable
Ejercicios de Calculo MultivariableEjercicios de Calculo Multivariable
Ejercicios de Calculo Multivariable
Jair Ospino Ardila
 
La Integral definida
La Integral definidaLa Integral definida
La Integral definida
Kike Prieto
 
T student ejemplos
T student ejemplosT student ejemplos
T student ejemplos
karemlucero
 

La actualidad más candente (20)

Ecuaciones Lineales Homogéneas con coeficientes constantes
Ecuaciones Lineales Homogéneas con coeficientes constantesEcuaciones Lineales Homogéneas con coeficientes constantes
Ecuaciones Lineales Homogéneas con coeficientes constantes
 
Cuadratura de gauss
Cuadratura de gaussCuadratura de gauss
Cuadratura de gauss
 
solucionario de purcell 3
solucionario de purcell 3solucionario de purcell 3
solucionario de purcell 3
 
Capitulo 2 Soluciones Purcell 9na Edicion
Capitulo 2 Soluciones Purcell 9na EdicionCapitulo 2 Soluciones Purcell 9na Edicion
Capitulo 2 Soluciones Purcell 9na Edicion
 
Taller #3 integrales seguimiento 3
Taller #3 integrales seguimiento 3Taller #3 integrales seguimiento 3
Taller #3 integrales seguimiento 3
 
22 the fundamental theorem of algebra x
22 the fundamental theorem of algebra x22 the fundamental theorem of algebra x
22 the fundamental theorem of algebra x
 
solucionario de purcell 1
solucionario de purcell 1solucionario de purcell 1
solucionario de purcell 1
 
Integrales resueltas 370 371 conamat
Integrales resueltas 370 371 conamatIntegrales resueltas 370 371 conamat
Integrales resueltas 370 371 conamat
 
Propiedades de la sumatoria.
Propiedades de la sumatoria.Propiedades de la sumatoria.
Propiedades de la sumatoria.
 
Ejercicios de Calculo Multivariable
Ejercicios de Calculo MultivariableEjercicios de Calculo Multivariable
Ejercicios de Calculo Multivariable
 
Integral table
Integral tableIntegral table
Integral table
 
D17_INTEGRALES DOBLES SOBRE REGIONES GENERALES.pdf
D17_INTEGRALES DOBLES SOBRE REGIONES GENERALES.pdfD17_INTEGRALES DOBLES SOBRE REGIONES GENERALES.pdf
D17_INTEGRALES DOBLES SOBRE REGIONES GENERALES.pdf
 
Pre-Calculus - Vectors
Pre-Calculus - VectorsPre-Calculus - Vectors
Pre-Calculus - Vectors
 
Integration formulas
Integration formulasIntegration formulas
Integration formulas
 
Sustitucion trigonometrica
Sustitucion trigonometricaSustitucion trigonometrica
Sustitucion trigonometrica
 
3 dot product angles-projection
3 dot product angles-projection3 dot product angles-projection
3 dot product angles-projection
 
Semana 3. integral de una función vectorial
Semana 3.  integral de una función vectorialSemana 3.  integral de una función vectorial
Semana 3. integral de una función vectorial
 
La Integral definida
La Integral definidaLa Integral definida
La Integral definida
 
T student ejemplos
T student ejemplosT student ejemplos
T student ejemplos
 
Ejercicios propuestos I
Ejercicios propuestos IEjercicios propuestos I
Ejercicios propuestos I
 

Destacado

Vt video-cloud computing - iaa s - 2013 04 04
Vt video-cloud computing - iaa s - 2013 04 04Vt video-cloud computing - iaa s - 2013 04 04
Vt video-cloud computing - iaa s - 2013 04 04
hcuiller
 
Ansanm Ansanm
Ansanm AnsanmAnsanm Ansanm
Ansanm Ansanm
Jo Anis
 
Doc compex wireless pro
Doc compex wireless proDoc compex wireless pro
Doc compex wireless pro
casimir91
 

Destacado (20)

Lesson 16: Inverse Trigonometric Functions (slides)
Lesson 16: Inverse Trigonometric Functions (slides)Lesson 16: Inverse Trigonometric Functions (slides)
Lesson 16: Inverse Trigonometric Functions (slides)
 
Rapport auto évaluation - ponteix - saskatchewan - 05-11-2013 - final
Rapport auto évaluation - ponteix - saskatchewan - 05-11-2013 - finalRapport auto évaluation - ponteix - saskatchewan - 05-11-2013 - final
Rapport auto évaluation - ponteix - saskatchewan - 05-11-2013 - final
 
Upsc ias-2014-gs-paper-1
Upsc ias-2014-gs-paper-1Upsc ias-2014-gs-paper-1
Upsc ias-2014-gs-paper-1
 
Vt video-cloud computing - iaa s - 2013 04 04
Vt video-cloud computing - iaa s - 2013 04 04Vt video-cloud computing - iaa s - 2013 04 04
Vt video-cloud computing - iaa s - 2013 04 04
 
Programme de 11 jours
Programme de 11 joursProgramme de 11 jours
Programme de 11 jours
 
Ansanm Ansanm
Ansanm AnsanmAnsanm Ansanm
Ansanm Ansanm
 
Comment trouver des jeux pour entraînement clavier
Comment trouver des jeux pour entraînement clavierComment trouver des jeux pour entraînement clavier
Comment trouver des jeux pour entraînement clavier
 
Nousty 07 web
Nousty 07 webNousty 07 web
Nousty 07 web
 
Doc compex wireless pro
Doc compex wireless proDoc compex wireless pro
Doc compex wireless pro
 
Le code de l'abstinence
Le code de l'abstinenceLe code de l'abstinence
Le code de l'abstinence
 
Pladn réalisations
Pladn réalisationsPladn réalisations
Pladn réalisations
 
Programme 2000 Infocom
Programme 2000 InfocomProgramme 2000 Infocom
Programme 2000 Infocom
 
Le marché secondaire des logiciels
Le marché secondaire des logicielsLe marché secondaire des logiciels
Le marché secondaire des logiciels
 
le sommeil
le sommeille sommeil
le sommeil
 
Picsay 6°c
Picsay 6°cPicsay 6°c
Picsay 6°c
 
(Règlement offline uk_fin2)
(Règlement offline uk_fin2)(Règlement offline uk_fin2)
(Règlement offline uk_fin2)
 
Programme de 4 jours
Programme de 4 joursProgramme de 4 jours
Programme de 4 jours
 
SeminaireAA3-PrstationAPaouri
SeminaireAA3-PrstationAPaouriSeminaireAA3-PrstationAPaouri
SeminaireAA3-PrstationAPaouri
 
Information metier hotellerie restauration personnel d'étage www.hotellerie r...
Information metier hotellerie restauration personnel d'étage www.hotellerie r...Information metier hotellerie restauration personnel d'étage www.hotellerie r...
Information metier hotellerie restauration personnel d'étage www.hotellerie r...
 
Programme de 16 jours
Programme de 16 joursProgramme de 16 jours
Programme de 16 jours
 

Similar a 51548 0131469657 ism-7

51548 0131469657 ism-7
51548 0131469657 ism-751548 0131469657 ism-7
51548 0131469657 ism-7
Carlos Fuentes
 
Cuaderno+de+integrales
Cuaderno+de+integralesCuaderno+de+integrales
Cuaderno+de+integrales
joseluisroyo
 
Common derivatives integrals
Common derivatives integralsCommon derivatives integrals
Common derivatives integrals
Kavin Ruk
 
Common derivatives integrals
Common derivatives integralsCommon derivatives integrals
Common derivatives integrals
olziich
 
51554 0131469657 ism-13
51554 0131469657 ism-1351554 0131469657 ism-13
51554 0131469657 ism-13
Carlos Fuentes
 
51556 0131469657 ism-15
51556 0131469657 ism-1551556 0131469657 ism-15
51556 0131469657 ism-15
Carlos Fuentes
 
Ejerciciosderivadasresueltos
EjerciciosderivadasresueltosEjerciciosderivadasresueltos
Ejerciciosderivadasresueltos
bellidomates
 

Similar a 51548 0131469657 ism-7 (20)

51548 0131469657 ism-7
51548 0131469657 ism-751548 0131469657 ism-7
51548 0131469657 ism-7
 
Calculo i
Calculo iCalculo i
Calculo i
 
Calculo i
Calculo iCalculo i
Calculo i
 
Cuaderno+de+integrales
Cuaderno+de+integralesCuaderno+de+integrales
Cuaderno+de+integrales
 
Common derivatives integrals
Common derivatives integralsCommon derivatives integrals
Common derivatives integrals
 
Deber10
Deber10Deber10
Deber10
 
Common derivatives integrals
Common derivatives integralsCommon derivatives integrals
Common derivatives integrals
 
deveratives integrals
deveratives integralsdeveratives integrals
deveratives integrals
 
Techniques of integration
Techniques of integrationTechniques of integration
Techniques of integration
 
Solution Manual : Chapter - 05 Integration
Solution Manual : Chapter - 05 IntegrationSolution Manual : Chapter - 05 Integration
Solution Manual : Chapter - 05 Integration
 
resposta do capitulo 15
resposta do capitulo 15resposta do capitulo 15
resposta do capitulo 15
 
51554 0131469657 ism-13
51554 0131469657 ism-1351554 0131469657 ism-13
51554 0131469657 ism-13
 
2014 st josephs geelong spec maths
2014 st josephs geelong spec maths2014 st josephs geelong spec maths
2014 st josephs geelong spec maths
 
Trigonometry 10th edition larson solutions manual
Trigonometry 10th edition larson solutions manualTrigonometry 10th edition larson solutions manual
Trigonometry 10th edition larson solutions manual
 
Formulario calculo
Formulario calculoFormulario calculo
Formulario calculo
 
Formulario cálculo
Formulario cálculoFormulario cálculo
Formulario cálculo
 
51556 0131469657 ism-15
51556 0131469657 ism-1551556 0131469657 ism-15
51556 0131469657 ism-15
 
Integration formulas
Integration formulasIntegration formulas
Integration formulas
 
Formulario oficial-calculo
Formulario oficial-calculoFormulario oficial-calculo
Formulario oficial-calculo
 
Ejerciciosderivadasresueltos
EjerciciosderivadasresueltosEjerciciosderivadasresueltos
Ejerciciosderivadasresueltos
 

Último

1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
QucHHunhnh
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
heathfieldcps1
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
kauryashika82
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
heathfieldcps1
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
ciinovamais
 

Último (20)

1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
psychiatric nursing HISTORY COLLECTION .docx
psychiatric  nursing HISTORY  COLLECTION  .docxpsychiatric  nursing HISTORY  COLLECTION  .docx
psychiatric nursing HISTORY COLLECTION .docx
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptx
 
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibit
 
PROCESS RECORDING FORMAT.docx
PROCESS      RECORDING        FORMAT.docxPROCESS      RECORDING        FORMAT.docx
PROCESS RECORDING FORMAT.docx
 
Asian American Pacific Islander Month DDSD 2024.pptx
Asian American Pacific Islander Month DDSD 2024.pptxAsian American Pacific Islander Month DDSD 2024.pptx
Asian American Pacific Islander Month DDSD 2024.pptx
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 

51548 0131469657 ism-7

  • 1. CHAPTER 7 Techniques of Integration 7.1 Concepts Review 1. elementary function 2. ∫u5du 3. ex 4. 2 3 ∫ u du 1 Problem Set 7.1 1. ( – 2)5 1 ( – 2)6 ∫ x dx = x +C 6 2. 3 1 3 3 2 (3 )3/ 2 ∫ x dx = ∫ x ⋅ dx = x +C 3 9 3. u = x2 +1, du = 2x dx When x = 0, u = 1 and when x = 2, u = 5 . ∫ 2 x ( x 2 + 1) 5 dx = 1 ∫ 2 ( x 2 + 1) 5 (2 x dx ) 0 0 2 5 5 1 1 2 = ∫ u du 6 5 6 6 ⎡u ⎤ − = ⎢ ⎥ = ⎢⎣ ⎥⎦ = = 12 12 1 15624 1302 12 5 1 4. u = 1– x2 , du = –2x dx When x = 0, u = 1 and when x = 1, u = 0 . ∫ 1 x 1– x 2 dx = – 1 ∫ 1 1 − x 2 ( − 2 x dx ) 0 0 2 1 2 1 2 0 1/ 2 1 1 1/ 2 0 u du ∫ ∫ u du = − = 1 1 1 3 3 = ⎡⎢ u 3/ 2 ⎤⎥ = ⎣ ⎦ 0 dx = 1 tan ⎛ x ⎞ ⎜ ⎟ + C x 5. –1 ∫ 2 + ⎝ ⎠ 4 2 2 6. u = 2 + ex , du = exdx ∫ ∫ 2 + = ln u +C ln 2 ln(2 ) x x e dx = du e u x e C e C = + + = + x + 7. u = x2 + 4, du = 2x dx x dx du x u ∫ 2 ∫ + 1 ln 2 1 = 4 2 = u + C 1 ln 2 4 2 = x + +C 1 ln( 2 4) 2 = x + + C 8. 2 2 2 2 t dt t dt t t 2 2 + 1 − 1 2 1 2 1 ∫ = ∫ + + – 1 = ∫ dt ∫ dt 2 t 2 + 1 u = 2t, du = 2dt t – 1 dt t – 1 du ∫ = ∫ + + – 1 tan–1( 2 ) 2 2 2 1 2 1 t u = t t + C 2 9. u = 4 + z2 , du = 2z dz ∫6z 4 + z2 dz = 3∫ u du = 2u3/ 2 +C = 2(4 + z2 )3/ 2 +C 412 Section 7.1 Instructor’s Resource Manual © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
  • 2. 10. u = 2t +1, du = 2dt dt du 5 5 2 1 2 ∫ = ∫ + = 5 u +C = 5 2t +1 + C t u z dz z z dz z tan tan sec cos 11. 2 ∫ = 2 ∫ u = tan z, du = sec2 z dz ∫ tan z sec2 z dz = ∫u du 1 2 2 = u +C 1 tan2 2 = z +C 12. u = cos z, du = –sin z dz ∫ecos z sin z dz = –∫ecos z (– sin z dz) = −∫eudu = −eu +C = –ecos z +C 13. , 1 u t du dt = = 2 t sin t dt 2 sin u du ∫ = ∫ t = –2 cos u + C = –2cos t +C 14. u = x2 , du = 2x dx x dx du x u 2 1– 1– ∫ = ∫ = sin–1 u +C = sin–1(x2 ) +C 4 2 15. u = sin x, du = cos x dx x dx du x u cos 1 sin 1 π / 4 2 / 2 0 2 0 2 ∫ = ∫ + + − u − 1 2/2 [tan ] tan 2 0 1 = ≈ 0.6155 2 = 16. 1– , – 1 u xdu dx 2 1– x = = x dx u du x sin 1– –2 sin 1– 3/ 4 1/ 2 0 1 ∫ = ∫ 1 1/ 2 = 2∫ sin u du 1 = [ − 2cos u ]1/ 2 = − 2 ⎛ cos1 − cos 1 ⎞ ⎜ ⎟ 2 ⎝ ⎠ ≈ 0.6746 17. 3 2 2 1 (3 –1) x + xdx x dx dx x x ∫ = ∫ + ∫ + + 3 2 – ln 1 2 1 1 = x x + x + +C 18. 3 x xdx x x dx dx x x 7 ( 2 8) 8 1 –1 –1 + ∫ = ∫ + + + ∫ 1 3 1 2 8 8ln –1 3 2 = x + x + x + x +C 19. u ln 4x2 , du 2 dx = = x sin(ln 4 2 ) 1 sin x dx u du x ∫ = ∫ 2 – 1 cos = u +C 2 – 1 cos(ln 4 2 ) 2 = x +C 20. u = ln x, du 1 dx x = 2 sec (ln ) 1 sec2 x dx u du x ∫ = ∫ 2 2 1 tan 2 = u +C 1 tan(ln ) 2 = x +C 21. u = ex , du = exdx x x e dx du du e u 6 = 6 ∫ 1 1 2 2 − − 1 1 u C e C − − 6sin 6sin ( ) = + = x + ∫ Instructor’s Resource Manual Section 7.1 413 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
  • 3. 22. u = x2 , du = 2x dx x dx 1 du x u ∫ = ∫ + + 1 tan 1 4 2 4 2 4 2 4 = − u + C 2 ⎛ ⎞ x C 1 tan–1 4 2 = ⎜⎜ ⎟⎟ + ⎝ ⎠ 23. u = 1– e2x , du = –2e2xdx x x 2 2 e dx du e u 3 – 3 1– 2 ∫ = ∫ = –3 u +C = –3 1– e2x +C 24. 3 3 4 4 x dx 1 4 x dx x x ∫ = ∫ + + 1 ln 4 4 4 4 4 4 = x + +C 1 ln( 4 4) 4 = x + + C 25. 3 1 2 3 1 2 1 2 0 0 ∫ t t dt = ∫ t t dt 2 2 1 ⎡ t ⎤ = ⎢ ⎥ = ⎢ ⎥ ⎣ ⎦ 1 0.9102 ln 3 3 3 – 1 2ln3 2ln3 2ln3 0 = ≈ 26. / 6 cos / 6 cos 2 x sin x dx – 2 x (– sin x dx) π π ∫ = ∫ 0 0 cos / 6 ⎡ π =⎢ – 2 x ⎤ ⎥ ⎢⎣ ln 2 ⎥⎦ 0 – 1 (2 3 / 2 – 2) = ln 2 2 − 2 3 / 2 ln 2 0.2559 = ≈ x x dx x dx 27. sin cos 1 cos − ⎛ ⎞ = ⎜ − ⎟ ∫ ∫ sin x ⎝ sin x ⎠ u = sin x, du = cos x dx sin cos x − x dx x du ∫ = − ∫ sin = x − ln u +C = x − ln sin x +C x u 28. u = cos(4t – 1), du = –4 sin(4t – 1)dt t dt t dt t t sin(4 − 1) sin(4 − 1) 1 sin (4 1) cos (4 1) ∫ = ∫ − 2 − 2 − 1 1 4 = − ∫ du u 2 1 1 1 sec(4 1) 4 4 = u− +C = t − +C 29. u = ex , du = exdx ∫ex sec exdx = ∫secu du = ln secu + tan u + C = ln sec ex + tan ex +C 30. u = ex , du = exdx ∫ex sec2 (ex )dx = ∫sec2 u du = tan u + C = tan(ex ) +C 31. x 3 sin sec (sec2 sin cos ) x + e dx x e x x dx x ∫ = ∫ + sec = tan x + ∫esin x cos x dx u = sin x, du = cos x dx tan x + ∫esin x cos x dx = tan x + ∫eu du = tan x + eu +C = tan x + esin x +C 32. u = 3t2 − t −1 , 1 (3 2 1) 1/ 2 (6 1) 2 du = t − t − − t − dt 2 t t t dt u du (6 − 1)sin 3 − − 1 2 sin ∫ = ∫ 3 t 2 − t − 1 = –2 cos u + C = −2cos 3t2 − t −1 + C 414 Section 7.1 Instructor’s Resource Manual © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
  • 4. 33. u = t3 − 2 , du = 3t2dt 2 3 t t dt u du cos( − 2) 1 cos sin ( 2) 3 sin ∫ = ∫ − v = sin u, dv = cos u du 2 3 2 t u u du v dv v C u 1 cos 1 1 3 sin 3 3 2 1 ∫ = ∫ − = − − + 2 1 3sin C = − + u 1 = − + 3 t 3sin( 2) C − . x dx dx x dx x x x 1 cos2 1 cos2 sin 2 sin 2 sin 2 + ∫ = ∫ + ∫ = ∫csc2 2x dx + ∫cot 2x csc 2x dx 34. 2 2 2 1 cot 2 1 csc 2 2 2 = − x − x +C 35. u = t3 − 2 , du = 3t2dt 2 2 3 2 t t dt u du cos ( − 2) 1 cos sin ( 2) 3 sin ∫ = ∫ − 1 cot2 3 2 3 2 t u = ∫ u du 1 (csc2 –1) = ∫ u du 3 = − u − u +C 1 1[ cot ] 3 1[ cot( 3 2) ( 3 2)] 3 = − t − − t − + C 1[cot( 3 2) 3] 1 = − t − + t +C 3 36. u = 1 + cot 2t, du = −2csc2 2t csc2 2 1 1 1 cot 2 2 t dt du t u ∫ = − ∫ + = − u + C = − 1+ cot 2t + C 2 1 4 37. u = tan−1 2t , 2 du dt t = + tan − 1 2 e dt eudu ∫ + 2 ∫ 1 1 tan 1 2 2 2 1 t = 1 4 t 2 − eu C e t C = + = + 38. u = −t2 − 2t − 5 , du = (–2t – 2)dt = –2(t + 1)dt 2 2 5 1 ( 1) ∫ t + e−t − t− = − ∫eudu 2 1 2 = − eu +C 1 2 2 5 2 = − e−t − t− +C 39. u = 3y2 , du = 6y dy y dy 1 1 du y u ∫ = ∫ 1 sin 1 6 4 16 9 6 4 4 2 2 − − = − ⎛ u ⎞ +C ⎜ ⎟ ⎝ ⎠ 2 − ⎛ y ⎞ C 1 sin 1 3 6 4 = ⎜⎜ ⎟⎟ + ⎝ ⎠ 40. u = 3x, du = 3dx x dx u du u C ∫ ∫ cosh 3 1 (cosh ) 1 sinh 3 3 1 sinh 3 3 = = + x C = + 41. u = x3 , du = 3x2dx 2 sinh 3 1 sinh ∫ x x dx = ∫ u du 3 1 cosh 3 = u +C 1 cosh 3 3 = x +C 42. u = 2x, du = 2 dx 5 5 1 9 4 2 3 ∫ ∫ 5 sin 1 2 3 dx = du x 2 2 u 2 − − = − ⎛ u ⎞ +C ⎜ ⎟ ⎝ ⎠ = − ⎛ x ⎞ +C ⎜ ⎟ 5 sin 1 2 2 3 ⎝ ⎠ 43. u = e3t , du = 3e3tdt t t 3 6 2 2 e dt 1 1 du e u ∫ = ∫ 1 sin 1 3 2 4 3 2 − − = − ⎛ u ⎞ +C ⎜ ⎟ ⎝ ⎠ 3 e t − C ⎛ ⎞ 1 sin 1 3 2 = ⎜⎜ ⎟⎟ + ⎝ ⎠ 44. u = 2t, du = 2dt dt 1 1 du t t u u ∫ = ∫ 1 sec 1 2 2 4 2 − 1 2 2 − 1 = ⎣⎡ − u ⎦⎤ +C = 1 sec − 1 2 t +C 2 Instructor’s Resource Manual Section 7.1 415 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
  • 5. 45. u = cos x, du = –sin x dx x dx du x u sin 1 / 2 0 0 2 1 2 ∫ = − ∫ + + 16 cos 16 π 1 16 1 0 2 du u = + ∫ 1 ⎡ = 1 tan − 1 ⎛ u ⎞⎤ ⎢ 4 ⎜ ⎣ ⎝ 4 ⎠⎦ ⎟⎥ 0 1 tan 1 1 1 tan 1 0 4 4 4 = ⎡ − ⎛ ⎞ − − ⎤ ⎢ ⎜ ⎟ ⎥ ⎣ ⎝ ⎠ ⎦ 1 tan 1 1 0.0612 4 4 = − ⎛ ⎞ ≈ ⎜ ⎟ ⎝ ⎠ 46. 2 2 x x u e e− = + , du = (2e2x − 2e−2x )dx = 2(e2x − e−2x )dx 1 2 x − 2 x e 2 + e − 2 0 2 x − 2 x 2 e − e dx 1 1 du e e 2 u ∫ = ∫ + 2 2 2 + − = ⎡⎣ ⎤⎦ 1 ln 2 e e u 1 ln 2 2 1 ln 2 2 2 = e + e− − 4 2 e e 1 + ln 1 1 ln 2 2 2 = − 1 ln( 4 1) 1 ln( 2 ) 1 ln 2 2 2 2 = e + − e − 1 4 1 ln 2 0.6625 2 2 = ⎛⎜ ⎛⎜ e + ⎞⎟ − ⎞⎟ ≈ ⎜ ⎜ ⎟ ⎟ ⎝ ⎝ ⎠ ⎠ 1 1 2 5 2 1 4 + + + + + ∫ ∫ 47. 2 2 dx = dx x x x x 1 ( 1) + + ∫ 1 tan–1 1 2 2 = + 2 2 x ( 1) 2 d x x C ⎛ + ⎞ = ⎜ ⎟ + ⎝ ⎠ 1 1 –4 9 –4 4 5 + + + ∫ ∫ 48. 2 2 dx = dx x x x x 1 ( –2) + ∫ 1 tan–1 – 2 5 5 2 2 x ( –2) ( 5) d x = x C ⎛ ⎞ = ⎜ ⎟ + ⎝ ⎠ dx dx + + + + + ∫ ∫ 49. = 9 x 2 18 x 10 9 x 2 18 x 9 1 dx x = ∫ (3 + 3)2 + 12 u = 3x + 3, du = 3 dx dx 1 du x u ∫ = ∫ + + + 1 tan–1(3 3) 3 2 2 2 2 (3 3) 1 3 1 = x + +C 50. dx dx x x x x ∫ = ∫ 16 + 6 – 2 –( 2 – 6 + 9 – 25) dx x dx x ∫ –( – 3)2 52 52 – ( – 3)2 = + = ∫ = sin–1 ⎛ x – 3 ⎞ ⎜ ⎟ +C 5 ⎝ ⎠ x + 1 dx 1 18 x + 18 dx + + + + ∫ ∫ 51. = 2 2 9 x 18 x 10 18 9 x 18 x 10 1 ln 9 2 18 10 18 1 ln 9 18 10 18 x x C = + + + ( 2 ) x x C = + + + 52. x dx x dx x x x x 3– 1 6 – 2 16 6 – 2 16 6 – ∫ = ∫ 2 2 + + = 16 + 6x – x2 +C 53. u = 2t, du = 2dt dt du ∫ = ∫ 2 2 – 9 2 – 32 t t u u ⎛ ⎞ t –1 1 2 sec 3 3 C = ⎜ ⎟ + ⎜ ⎟ ⎝ ⎠ 54. x dx x x dx x x x tan cos tan sec – 4 cos sec – 4 ∫ = ∫ 2 2 x dx = ∫ 2 u = 2 cos x, du = –2 sin x dx sin 1– 4cos x x dx 1 1 2 1 ∫ 2 2 sin 1 4cos − x du u = − − ∫ = − − u +C – 1 sin–1(2cos ) 1 sin 1 2 = x +C 2 55. The length is given by 2 L dy dx = + ⎛ ⎞ ⎜ ⎟ 1 b a ∫ ⎝ dx ⎠ / 4 2 1 1 ( sin ) 0 π = ∫ + ⎡ ⎢ − ⎤ ⎣ cos ⎥ ⎦ x dx x = ∫ + / 4 2 / 4 2 0 1 tan x dx π sec x dx π = ∫ 0 / 4 0 sec x dx π = ∫ 0= ⎡ ⎣ ln sec x + tan x ⎤ π / 4 ⎦ = ln 2 +1 − ln 1 = ln 2 +1 ≈ 0.881 416 Section 7.1 Instructor’s Resource Manual © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
  • 6. x x 1 + 56. sec = = 1 sin x x x cos cos (1 + sin ) sin sin2 cos2 sin (1 sin ) cos2 x + x + x x + x + x = = x x x x cos (1 + sin ) cos (1 + sin ) x x x x sin cos cos 1 sin = + + x x x dx sec sin cos ∫ = ∫ ⎛ ⎞ ⎜ + ⎝ cos x 1 + sin x ⎟ ⎠ x dx x dx x x sin cos cos 1 sin = ∫ + ∫ + For the first integral use u = cos x, du = –sin x dx, and for the second integral use v = 1 + sin x, dv = cos x dx. sin cos – cos 1 sin x dx x dx du dv x x u v ∫ + ∫ = ∫ + ∫ + = – ln u + ln v +C = – ln cos x + ln 1+ sin x +C 1 + ln sin = + cos = ln sec x + tan x + C x C x 57. u = x – π , du = dx x x u u sin ( + π ) sin( + π ) 2 π π 0 2 – 2 + + + π ∫ ∫ dx = du x π u 1 cos 1 cos ( ) u u ( )sin 1 cos π π + π + ∫ – 2 du u = u sin u sin u π π π π π + + ∫ ∫ du du u u = + – 2 – 2 1 cos 1 cos u sin u π π ∫ 0 by symmetry. – + 2 1 cos du u = u u du du u u sin sin 2 π π π π π ∫ = ∫ + + v = cos u, dv = –sin u du – 2 0 2 1 cos 1 cos π 2 2 1 –1 1 1 2 –1 2 + + ∫ ∫ dv dv v v − = π 1 1 = 2 π [tan − 1 v ] 1 ⎡π ⎛ π ⎞⎤ − 1 = 2 π ⎢ − ⎜− ⎣ 4 ⎝ 4 ⎟⎥ ⎠⎦ 2 2 ⎛ π ⎞ = π⎜ ⎟ = π 2 ⎝ ⎠ 58. 3 4 4 – π π ⎛ π ⎞ = π ⎜ + ⎟ ⎝ ⎠ ∫ – , 4 V 2 x sin x – cos x dx 4 π u = x du = dx π π ⎛ π ⎞ ⎛ π ⎞ ⎛ π ⎞ = π ⎜ + ⎟ ⎜ + ⎟ ⎜ + ⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ∫ V u u u du 2 2 – 2 sin – cos 2 4 4 π π 2 2 sin 2 cos – 2 cos 2 sin ⎛ π ⎞ = π ⎜ + ⎟ + + ⎝ ⎠ ∫ 2 2 – u u u u udu 2 2 2 2 2 π π π −π −π −π ⎛ π ⎞ = π ⎜ + ⎟ = + 2 2 sin 2 2 sin 2 2 sin ⎝ ⎠ ∫ ∫ ∫ u u du π u u du π u du 2 2 2 2 2 2 2 π −π π∫ = by symmetry. Therefore, 2 2 u sin u du 0 2 2 π π 2 2 2 2 2 = π ∫ = π − = π V 2 2 sin u du 2 2 [ cosu] 2 2 0 0 Instructor’s Resource Manual Section 7.1 417 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
  • 7. 7.2 Concepts Review 1. uv – ∫v du 2. x; sin x dx 3. 1 4. reduction Problem Set 7.2 1. u = x dv = exdx du = dx v = ex ∫ xexdx = xex − ∫exdx = xex − ex +C 2. u = x dv = e3xdx du = dx 1 3 v = e x 3 3 1 3 1 3 ∫ xe xdx = xe x − ∫ e xdx 3 3 1 3 1 3 3 9 = xe x − e x +C 3. u = t dv = e5t+πdt du = dt 1 5 v = e t+π 5 5 1 5 – 1 5 ∫te t+πdt = te t+π ∫ e t+πdt 5 5 1 5 – 1 5 5 25 = te t+π e t+π +C 4. u = t + 7 dv = e2t+3dt du = dt v = 1 e 2 t+ 3 2 ( 7) 2 3 1 ( 7) 2 3 – 1 2 3 ∫ t + e t+ dt = t + e t+ ∫ e t+ dt 2 2 1 ( 7) 2 3 – 1 2 3 2 4 = t + e t+ e t+ +C = t e t+ + e t+ + C 2 3 13 2 3 2 4 5. u = x dv = cos x dx du = dx v = sin x ∫ x cos x dx = x sin x – ∫sin x dx = x sin x + cos x + C 6. u = x dv = sin 2x dx du = dx – 1 cos 2 v = x 2 sin 2 – 1 cos 2 – – 1 cos 2 ∫ x x dx = x x ∫ x dx 2 2 – 1 cos 2 1 sin 2 = x x + x +C 2 4 7. u = t – 3 dv = cos (t – 3)dt du = dt v = sin (t – 3) ∫(t – 3) cos(t – 3)dt = (t – 3)sin(t – 3) – ∫sin(t – 3)dt = (t – 3) sin (t – 3) + cos (t – 3) + C 8. u = x – π dv = sin(x)dx du = dx v = –cos x ∫(x – π)sin(x)dx = –(x – π) cos x + ∫cos x dx = (π – x) cos x + sin x + C 9. u = t dv = t +1 dt du = dt v = 2 ( t + 1)3/ 2 3 1 2 ( 1)3/ 2 – 2 ( 1)3/ 2 ∫t t + dt = t t + ∫ t + dt 3 3 2 ( 1)3/ 2 – 4 ( 1)5/ 2 3 15 = t t + t + +C 10. u = t dv = 3 2t + 7dt du = dt v = 3 (2 t + 7)4 / 3 8 3 2 7 3 (2 7)4 / 3 – 3 (2 7)4 / 3 ∫t t + dt = t t + ∫ t + dt 8 8 3 (2 7)4 / 3 – 9 (2 7)7 / 3 8 112 = t t + t + +C 11. u = ln 3x dv = dx du 1 dx = v = x x ln 3x dx x ln 3x x 1 dx ∫ = −∫ = x ln 3x − x +C x 12. u = ln(7x5 ) dv = dx du 5 dx = v = x x ln(7x5 )dx x ln(7x5 ) – x 5 dx x ∫ = ∫ = x ln(7x5 ) – 5x +C 418 Section 7.2 Instructor Solutions Manual © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
  • 8. 13. u = arctan x dv = dx du dx 2 1 1 x = + v = x x x x x dx + ∫ ∫ 2 arctan arctan 1 x = − x x x dx 2 arctan 1 2 + ∫ 2 1 x = − arctan 1 ln(1 2 ) = x x − + x +C 2 14. u = arctan 5x dv = dx du dx 2 5 1 25 x = + v = x x dx x x x dx 2 arctan 5 arctan 5 – 5 + ∫ ∫ 1 25 x = x x x dx 2 arctan 5 – 1 50 + ∫ 10 1 25 x = arctan 5 – 1 ln(1 25 2 ) = x x + x +C 10 dv dx 15. u = ln x 2 x = du 1 dx = v – 1 x x = ln x dx – ln x – – 1 1 dx x x x x ∫ 2 ∫ ⎝ ⎠ – ln x – 1 C = ⎛ ⎞ ⎜ ⎟ = + x x 16. u = ln 2x5 dv 1 dx 2 x = du 5 dx = v 1 x x = − 3 5 3 3 5 2 2 2 2 2 ln 2x dx 1 ln 2x 5 1 dx x x x = ⎡− ⎤ + ⎢⎣ ⎥⎦ ∫ ∫ 3 1 ln 2 5 5 1 ln(2 3 ) 5 1 ln(2 2 ) 5 3 3 2 2 1 ln 2 5 ln 3 5 3ln 2 5 3 3 3 2 = ⎡− ⎢⎣ x − ⎤ x x ⎥⎦ 2 = ⎛ − ⋅ 5 − ⎞ ⎜ ⎟ − ⎛− ⎜ ⋅ 5 − ⎞ ⎟ ⎝ ⎠ ⎝ ⎠ = − − − + + 8 ln 2 5 ln 3 5 0.8507 3 3 6 = − + ≈ 17. u = ln t dv = t dt du 1dt = 2 3/ 2 t v = t 3 e e ∫ t ln t dt = ⎡⎢ 2 t 3/ 2 ln t⎤⎥ – ∫ e 2 t 1/ 2 dt ⎣ 3 ⎦ 3 1 1 1 2 ln – 2 1ln1 4 3 3 9 = e 3/ 2 e ⋅ − ⎡⎢ t 3/ 2 ⎤⎥ ⎣ ⎦ 2 3/ 2 0 4 3/ 2 4 2 3/ 2 4 1.4404 3 9 9 9 9 e 1 = e − − e + = e + ≈ 18. u = ln x3 dv = 2xdx du 3 dx = 1 (2 )3/ 2 x v = x 3 5 3 1 ∫ 2x ln x dx 5 5 3 2 3 3 2 1 (2 ) ln 2 3 = ⎡⎢ x x ⎤⎥ − x dx ⎣ ⎦ ∫ 1 1 5/ 2 5 = ⎡ 1 ⎢⎣ (2 x ) 3/ 2 ln x 3 − 2 x 3/ 2 ⎤ 3 3 ⎥⎦ 1 5 2 5 2 ⎛ ⎞ 1 (10)3 2 ln 53 2 53/ 2 1 (2)3 2 ln13 2 3 3 3 3 = − − ⎜⎜ − ⎟⎟ ⎝ ⎠ 4 2 53 2 4 2 103 2 ln 5 31.699 3 3 = − + + ≈ 19. u = ln z dv = z3dz du 1 dz = 1 4 z v = z 4 3 ln 1 4 ln 1 4 1 ∫ = − ∫ ⋅ 1 4 ln 1 3 4 4 z zdz z z z dz 4 4 z = z z − ∫ z dz 1 4 ln 1 4 4 16 = z z − z +C 20. u = arctan t dv = t dt du dt 2 1 1 t = + 1 2 2 v = t 2 t arctan t dt 1 t 2 arctan t – 1 t dt 2 + ∫ ∫ 2 21 t = 2 t t t dt 1 2 1 1 + − arctan 1 2 2 1 t 2 = − + ∫ 1 2 arctan 1 ∫ 1 ∫ 1 2 2 2 1 + t t dt dt 2 t = − + 1 2 arctan 1 1 arctan 2 2 2 = t t − t + t +C Instructor's Resource Manual Section 7.2 419 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
  • 9. 21. u arctan 1 = ⎛ ⎞ ⎜ ⎟ t ⎝ ⎠ dv = dt du dt 2 – 1 1 t = + v = t dt t t dt t t t 2 arctan 1 arctan 1 ∫ ⎛ ⎞ ⎛ ⎞ ⎜ ⎟ = ⎜ ⎟ + ∫ ⎝ ⎠ ⎝ ⎠ 1 + arctan 1 1 ln(1 2 ) = ⎛ ⎞ + + + ⎜ ⎟ t t C 2 t ⎝ ⎠ 22. u = ln(t7 ) dv = t5dt du 7 dt = 1 6 t v = t 6 5 ln( 7 ) 1 6 ln( 7 ) – 7 5 ∫t t dt = t t ∫t dt 6 6 = 1 t 6 ln( t 7 ) – 7 t 6 +C 6 36 23. u = x dv = csc2 x dx du = dx v = −cot x [ ] / 2 2 / 2 / 2 / 6 / 6 / 6 x csc x dx x cot x cot x dx π π π π π π ∫ = − + ∫ 2 6 cot ln sin x x x π π = ⎡⎣− + ⎤⎦ 0 ln1 3 ln 1 ln 2 1.60 2 6 2 2 3 π π π = − ⋅ + + − = + ≈ 24. u = x dv = sec2 x dx du = dx v = tan x [ ] 4 2 4 4 6 6 6 x sec x dx x tan x tan x dx π π π π π π π ⎛ π ⎞ tan ln cos ln 2 ln 3 ∫ = − ∫ x x π 4 x = ⎡⎣ + ⎤⎦ = + − ⎜⎜ + ⎟⎟ 6 4 2 6 3 2 π ⎝ ⎠ 1 ln 2 0.28 π π = − + ≈ 4 6 3 2 3 25. u = x3 dv = x2 x3 + 4dx du = 3x2dx v = 2 ( x 3 + 4)3/ 2 9 ∫ x 5 x 3 + 4 dx = 2 x 3( x 3 + 4)3/ 2 – ∫ 2 x 2 ( x 3 + 4)3/ 2 dx 2 3( 3 4)3/ 2 – 4 ( 3 4)5 / 2 9 3 = x x + x + +C 9 45 26. u = x7 dv = x6 x7 +1 dx du = 7x6dx v = 2 ( x 7 + 1)3/ 2 21 ∫ x 13 x 7 + 1 dx = 2 x 7 ( x 7 + 1)3/ 2 – ∫ 2 x 6 ( x 7 + 1)3/ 2 dx 2 7 ( 7 1)3/ 2 – 4 ( 7 1)5/ 2 21 3 = x x + x + +C 21 105 27. u = t4 3 dv t dt (7 – 3 t 4 )3/ 2 = du = 4t3 dt 4 1/2 1 t 6(7 – 3 ) v = 7 4 3 4 3/ 2 4 1/ 2 4 1/ 2 t dt t – 2 t dt t t t ∫ = ∫ (7 – 3 ) 6(7 – 3 ) 3 (7 – 3 ) 4 t 1 (7 – 3 t 4 ) 1/2 C t = + + 4 1/2 6(7 – 3 ) 9 420 Section 7.2 Instructor Solutions Manual © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
  • 10. 28. u = x2 dv = x 4 – x2 dx du = 2x dx v = – 1 (4 – x 2 )3/ 2 3 ∫ x 3 4 – x 2 dx = – 1 x 2 (4 – x 2 )3/ 2 + 2 ∫ x (4 – x 2 )3/ 2 dx – 1 2 (4 – 2 )3/ 2 – 2 (4 – 2 )5 / 2 3 3 = x x x +C 3 15 29. u = z4 3 dv z dz (4 – z 4 )2 = du = 4z3dz 4 1 z 4(4 – ) v = 7 4 3 z dz z z dz z z z ∫ = − ∫ (4 – 4 )2 4(4 – 4 ) 4 – 4 4 z z 4 C z = + + 4 1 ln 4 – 4(4 – ) 4 30. u = x dv = cosh x dx du = dx v = sinh x ∫ x cosh x dx = x sinh x – ∫sinh x dx = x sinh x – cosh x + C 31. u = x dv = sinh x dx du = dx v = cosh x ∫ x sinh x dx = x cosh x – ∫cosh x dx = x cosh x – sinh x + C 32. u = ln x dv = x–1/ 2dx du 1 dx = v = 2x1/ 2 x ln x dx 2 x ln x – 2 1 dx x x ∫ = ∫ = 2 x ln x – 4 x +C 1/ 2 33. u = x dv = (3x +10)49 dx du = dx v = 1 (3 x + 10)50 150 ∫ x (3 x + 10)49 dx = x (3 x + 10)50 – 1 ∫ (3 x + 10)50 dx (3 10)50 – 1 (3 10)51 150 150 = x x + x + + C 150 22,950 34. u = t dv = (t −1)12 dt du = dt 1 ( 1)13 v = t − 13 ( ) ( ) 1 1 1 12 13 13 0 0 0 t ( t 1) dt t t 1 1 t 1 dt − = ⎡ − ⎤ − − ⎢⎣ ⎥⎦ ∫ ∫ 13 13 t t t 1 1 1 1 = ⎡ 13 14 ⎤ ⎢⎣ ( − ) − ( − ) ⎥⎦ = 1 13 182 182 0 35. u = x dv = 2x dx du = dx 1 2 v = x ln 2 ∫ x 2 x dx = x 2 x – 1 ∫ 2 x dx ln 2 ln 2 = x 2 x – 1 2 x +C 2 ln 2 (ln 2) 36. u = z dv = azdz du = dz 1 v az ln a = zazdz z az – 1 azdz ∫ = ∫ a a ln ln z az az C a a = + 2 – 1 ln (ln ) 37. u = x2 dv = exdx du = 2x dx v = ex ∫ x2exdx = x2ex − ∫ 2xexdx u = x dv = exdx du = dx v = ex ∫ x2ex dx = x2ex − 2(xex − ∫ex dx) = x2ex − 2xex + 2ex +C Instructor's Resource Manual Section 7.2 421 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
  • 11. 38. u = x4 x2 dv = xe dx du = 4x3dx 1 2 2 v = ex 5 2 1 4 2 3 2 – 2 ∫ x ex dx = x ex ∫ x ex dx 2 2 u = x2 dv = 2xex dx du = 2x dx x2 v = e 5 2 1 4 2 2 2 2 – 2 x ex dx = x ex ⎛ x ex − xex dx ⎞ ⎜ ⎟ ∫ ∫ 2 ⎝ ⎠ 1 4 2 2 2 – 2 2 = x ex x ex + ex +C 39. u = ln2 z dv = dz du 2ln z dz = v = z z ∫ln2 z dz = z ln2 z – 2∫ln z dz u = ln z dv = dz du 1 dz = v = z z ∫ln2 z dz = z ln2 z – 2(z ln z – ∫ dz) = z ln2 z – 2z ln z + 2z +C 40. u = ln2 x20 dv = dx 40ln x20 du dx = v = x x ∫ln2 x20dx = x ln2 x20 – 40∫ln x20dx u = ln x20 dv = dx du 20 dx = v = x x ∫ln2 x20dx = x ln2 x20 – 40(x ln x20 – 20∫ dx) = x ln2 x20 – 40x ln x20 + 800x +C 41. u = et dv = cos t dt du = etdt v = sin t ∫et cos t dt = et sin t − ∫et sin t dt u = et dv = sin t dt du = etdt v = –cos t ∫et cost dt = et sin t − ⎡⎣−et cost + ∫et cos t dt⎤⎦ ∫et cos t dt = et sin t + et cos t − ∫et cos t dt 2∫et cos t dt = et sin t + et cos t +C cos 1 (sin cos ) ∫et t dt = et t + t +C 2 42. u = eat dv = sin t dt du = aeatdt v = –cos t ∫eat sin t dt = –eat cos t + a∫eat cos t dt u = eat dv = cos t dt du = aeatdt v = sin t ∫eat sin t dt = –eat cos t + a (eat sin t – a∫eat sin t dt ) ∫eat sin t dt = –eat cos t + aeat sin t – a2 ∫eat sin t dt (1+ a2 )∫eat sin t dt = –eat cos t + aeat sin t + C at at eat sin t dt – e cos t ae sin t C + + ∫ = + + 2 2 a a 1 1 43. u = x2 dv = cos x dx du = 2x dx v = sin x ∫ x2 cos x dx = x2 sin x − ∫ 2x sin x dx u = 2x dv = sin x dx du = 2dx v = −cos x ∫ x2 cos x dx = x2 sin x − (−2x cos x + ∫ 2cos x dx) = x2 sin x + 2x cos x − 2sin x +C 44. u = r2 dv = sin r dr du = 2r dr v = –cos r ∫ r2 sin r dr = –r2 cos r + 2∫ r cos r dr u = r dv = cos r dr du = dr v = sin r ∫ r2 sin r dr = –r2 cos r + 2(r sin r – ∫sin r dr ) = –r2 cos r + 2r sin r + 2cos r +C 422 Section 7.2 Instructor Solutions Manual © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
  • 12. 45. u = sin(ln x) dv = dx du cos(ln x) 1 dx = ⋅ v = x x ∫sin(ln x)dx = x sin(ln x) − ∫cos(ln x) dx u = cos (ln x) dv = dx du sin(ln x) 1 dx = − ⋅ v = x x ∫sin(ln x)dx = x sin(ln x) − ⎡⎣x cos(ln x) − ∫ −sin(ln x)dx⎤⎦ ∫sin(ln x)dx = x sin(ln x) − x cos(ln x) − ∫sin(ln x)dx 2∫sin(ln x)dx = x sin(ln x) − x cos(ln x) +C sin(ln ) [sin(ln ) cos(ln )] ∫ x dx = x x − x +C 2 46. u = cos(ln x) dv = dx du – sin(ln x) 1 dx = v = x x ∫cos(ln x)dx = x cos(ln x) + ∫sin(ln x)dx u = sin(ln x) dv = dx du cos(ln x) 1 dx = v = x x ∫cos(ln x)dx = x cos(ln x) + ⎡⎣x sin(ln x) – ∫cos(ln x)dx⎤⎦ 2∫cos(ln x)dx = x[cos(ln x) + sin(ln x)]+C cos(ln ) [cos(ln ) sin(ln )] ∫ x dx = x x + x + C 2 47. u = (ln x)3 dv = dx 3ln2 x du dx = v = x x ∫(ln x)3dx = x(ln x)3 – 3∫ln2 x dx = x ln3 x – 3(x ln2 x – 2x ln x + 2x +C) = x ln3 x – 3x ln2 x + 6x ln x − 6x +C 48. u = (ln x)4 dv = dx 4ln3 x du dx = v = x x ∫(ln x)4 dx = x(ln x)4 – 4∫ln3 x dx = x ln4 x – 4(x ln3 x – 3x ln2 x + 6x ln x − 6x +C) = x ln4 x – 4x ln3 x +12x ln2 x − 24x ln x + 24x +C 49. u = sin x dv = sin(3x)dx du = cos x dx v = – 1 cos(3 x ) 3 sin sin(3 ) – 1 sin cos(3 ) 1 cos cos(3 ) ∫ x x dx = x x + ∫ x x dx 3 3 u = cos x dv = cos(3x)dx du = –sin x dx v = 1 sin(3 x ) 3 Instructor's Resource Manual Section 7.2 423 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
  • 13. sin sin(3 ) – 1 sin cos(3 ) 1 1 cos sin(3 ) 1 sin sin(3 ) ∫ x x dx = x x + ⎡⎢ x x + ∫ x x dx⎤⎥ 3 33 ⎣ 3 ⎦ – 1 sin cos(3 ) 1 cos sin(3 ) 1 sin sin(3 ) = x x + x x + ∫ x x dx 3 9 9 8 sin sin(3 ) – 1 sin cos(3 ) 1 cos sin(3 ) 9 3 9 ∫ x x dx = x x + x x + C sin sin(3 ) – 3 sin cos(3 ) 1 cos sin(3 ) ∫ x x dx = x x + x x +C 8 8 50. u = cos (5x) dv = sin(7x)dx du = –5 sin(5x)dx v = – 1 cos(7 x ) 7 cos(5 )sin(7 ) – 1 cos(5 ) cos(7 ) – 5 sin(5 ) cos(7 ) ∫ x x dx = x x ∫ x x dx 7 7 u = sin(5x) dv = cos(7x)dx du = 5 cos(5x)dx v = 1 sin(7 x ) 7 cos(5 )sin(7 ) – 1 cos(5 ) cos(7 ) – 5 1 sin(5 )sin(7 ) – 5 cos(5 )sin(7 ) ∫ x x dx = x x ⎡⎢ x x ∫ x x dx⎤⎥ 7 77 ⎣ 7 ⎦ – 1 cos(5 ) cos(7 ) – 5 sin(5 )sin(7 ) 25 cos(5 )sin(7 ) = x x x x + ∫ x x dx 7 49 49 24 cos(5 )sin(7 ) – 1 cos(5 ) cos(7 ) – 5 sin(5 )sin(7 ) 49 7 49 ∫ x x dx = x x x x +C cos(5 )sin(7 ) – 7 cos(5 ) cos(7 ) – 5 sin(5 )sin(7 ) ∫ x x dx = x x x x + C 24 24 51. u = eα z dv = sin βz dz du =αeα zdz v – 1 cosβ z β = eα z sin z dz – 1 eα z cos z α eα z cos z dz ∫ = + ∫ u = eα z dv = cos βz dz du =αeα zdz v 1 sinβ z β β β β β β = ⎡ ⎤ eα z sin z dz 1 eα z cos z α 1 eα z sin z α eα z sin z dz ⎣ ⎦ ∫ ∫ β β β β = − + ⎢ − ⎥ β β β β 2 – 1 eα z cos z α eα z sin z –α eα z sin z dz = + ∫ 2 2 β β β 2 2 β β β β α eα z sin z dz – 1 eα z cos z α eα z sin z C ∫ = + + β β β + 2 2 β β β e α z ( α sin β z – β cos β z) C eα z sin z dz –β eα z cos z α eα z sin z C ∫ β = β + β + 2 + 2 2 + 2 2 2 α β α β = + α + β 424 Section 7.2 Instructor Solutions Manual © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
  • 14. 52. u = eα z dv = cosβ z dz du =αeα zdz v 1 sinβ z β = eα z cos z dz 1 eα z sin z – α eα z sin z dz ∫ = ∫ u = eα z dv = sin βz dz du =αeα zdz v – 1 cosβ z β β β β β β = ⎡ ⎤ eα z cos z dz 1 eα z sin z α 1 eα z cos z α eα z cos z dz ⎣ ⎦ ∫ ∫ β β β β = − ⎢− + ⎥ β β β β 2 1 eα z sin z α eα z cos z –α eα z cos z dz = + ∫ 2 2 β β β 2 2 β β β α β eα z cos z dz α eα z cos z 1 eα z sin z C ∫ = + + β β β + 2 2 β β β z α α z e ( α cos β z + β β e cos z dz sin z ) C + ∫ = + 2 2 β α β 53. u = ln x dv = xα dx du 1 dx x = 1 1 α α v x + = + , α ≠ –1 α + 1 ln ln – 1 x x dx x x x dx α α 1 1 + + x x x C α α + + ∫ ∫ α α 1 1 = α 2 ln – , –1 1 ( 1) = + ≠ α α + + 54. u = (ln x)2 dv = xα dx du 2ln x dx x = 1 1 α α v x + = + , α ≠ –1 1 α + x (ln x )2 dx x (ln x )2 – 2 x ln x dx 1 1 1 + ⎡ + + ⎤ x α α α x x x x C α α α α (ln ) 2 ln 1 1 1 ( 1) α α + + ∫ ∫ α α 1 1 = 2 = − ⎢ − ⎥ + 2 + + ⎢⎣ + + ⎥⎦ 1 1 1 + + + α α α x x 2 x x x C α 2 3 (ln ) – 2 ln 2 , –1 1 ( 1) ( 1) = + + ≠ α + α + α + Problem 53 was used for xα ln x dx. ∫ 55. u = xα dv = eβ x dx du =α xα –1dx v 1 eβ x β = α β x α e β xdx x e α – x α –1 e β xdx x ∫ = ∫ β β 56. u = xα dv = sin βx dx du =α xα –1dx v – 1 cosβ x β = α x sin x dx – x cos x x –1 cos x dx α β α α ∫ = + ∫ β β β β Instructor's Resource Manual Section 7.2 425 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
  • 15. 57. u = xα dv = cos βx dx du =α xα –1dx v 1 sinβ x β = α x cos x dx x sin x – x –1 sin x dx α β α α ∫ = ∫ β β β β 58. u = (ln x)α dv = dx (ln x) –1 du dx α α = v = x x ∫(ln x)α dx = x(ln x)α –α ∫(ln x)α –1dx 59. u = (a2 – x2 )α dv = dx du = –2α x(a2 – x2 )α –1dx v = x ∫(a2 – x2 )α dx = x(a2 – x2 )α + 2α ∫ x2 (a2 – x2 )α –1dx 60. u = cosα –1 x dv = cos x dx du = –(α –1) cosα –2 x sin x dx v = sin x ∫cosα x dx = cosα –1 x sin x + (α –1)∫cosα –2 x sin2 x dx = cosα −1 x sin x + (α −1)∫cosα −2 x(1− cos2 x) dx = cosα –1 x sin x + (α –1)∫cosα –2 x dx – (α –1)∫cosα x dx α ∫cosα x dx = cosα −1 x sin x + (α −1)∫cosα −2 x dx –1 α cos x dx cos x sin x –1 cos –2 x dx α α α ∫ = + ∫ α α 61. u = cosα –1 β x dv = cos βx dx du = –β (α –1) cosα –2 β x sinβ x dx v 1 sinβ x β = –1 α cos x dx cos x sin x ( –1) cos –2 x sin2 x dx α β β α β α β β ∫ = + ∫ β 1 − α cos β x sin β x ( 1) cos α 2 x(1 cos2 x) dx = + − ∫ − − α β β β –1 α cos x sin x ( –1) cos –2 x dx – ( –1) cos x dx β β α α = + ∫ ∫ α β α β β 1 − α cos x cos x sin x ( 1) cos 2 x dx α β β α ∫ = + − ∫ − α β α β β –1 α cos x dx cos x sin x –1 cos –2 x dx α β β α α β β ∫ = + ∫ αβ α 62. 4 3 1 4 3 – 4 3 3 ∫ x e xdx = x e x ∫ x e xdx 1 4 3 – 4 1 3 3 – 2 3 3 3 = x e x ⎡ ⎢⎣ x e x ∫ x e xdx⎤ 3 33 ⎥⎦ = 1 x 4 e 3 x – 4 x 3 e 3 x + 4 ⎡ 1 x 2 e 3 x – 2 ∫ xe 3 xdx⎤ 1 4 3 – 4 3 3 4 2 3 – 8 1 3 – 1 3 3 9 33 ⎢⎣ 3 ⎥⎦ = x e x x e x + x e x ⎡ ⎢⎣ xe x ∫ e xdx⎤ 3 9 9 93 3 ⎥⎦ 1 4 3 – 4 3 3 4 2 3 – 8 3 8 3 3 9 9 27 81 = x e x x e x + x e x xe x + e x +C 426 Section 7.2 Instructor Solutions Manual © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
  • 16. 63. 4 cos3 1 4 sin 3 – 4 3 sin 3 ∫ x x dx = x x ∫ x x dx 1 4 sin 3 – 4 – 1 3 cos3 2 cos3 3 3 = x x ⎡⎢ x x + ∫ x x dx⎤⎥ 3 3 ⎣ 3 ⎦ 1 4 sin 3 4 3 cos3 – 4 1 2 sin 3 2 sin 3 3 9 3 3 3 = x x + x x ⎡⎢ x x − x x dx⎤⎥ ⎣ ⎦ ∫ 1 4 sin 3 4 3 cos3 – 4 2 sin 3 8 – 1 cos3 1 cos3 3 9 9 9 3 3 = x x + x x x x + ⎡⎢ x x + ∫ x dx⎤⎥ ⎣ ⎦ = 1 x 4 sin 3 x + 4 x 3 cos3 x – 4 x 2 sin 3 x – 8 x cos3 x + 8 sin 3 x + C 3 9 9 27 81 64. cos6 3 1 cos5 3 sin 3 5 cos4 3 ∫ x dx = x x + ∫ x dx 1 cos5 3 sin 3 5 1 cos3 3 sin 3 3 cos2 3 18 6 = x x + ⎡⎢ x x + ∫ x dx⎤⎥ 18 6 ⎣ 12 4 ⎦ 1 cos5 3 sin 3 5 cos3 3 sin 3 5 1 cos3 sin 3 1 18 72 8 6 2 = x x + x x + ⎡⎢ x x + ∫ dx⎤⎥ ⎣ ⎦ = 1 cos5 3 x sin 3 x + 5 cos3 3 x sin 3 x + 5 cos3 x sin 3 x + 5 x +C 18 72 48 16 65. First make a sketch. From the sketch, the area is given by ∫ e ln x dx 1 u = ln x dv = dx du 1 dx = v = x x ln ln ∫e x dx = x x e − ∫e dx 1 [ ln ]e [ ]1 1 1 = x x − x = (e – e) – (1 · 0 – 1) = 1 (ln ) e V = ∫ π x dx u = (ln x)2 dv = dx du 2ln x dx 66. 2 1 = v = x x π ∫ e 2 e (ln x ) dx = π⎛ 2 e ⎞ 2 1 ⎜ ⎡ ⎤ ⎝ ⎣ x (ln x ) ⎦ − 2 ∫ ln x dx 1 1 ⎟ ⎠ e ⎡x x x x x ⎤ ⎣ ⎦ = π − − 2 1 (ln ) 2( ln ) 1 [ (ln ) 2 ln 2 ]e = π x x − x x + x = π[(e − 2e + 2e) − (0 − 0 + 2)] = π(e − 2) ≈ 2.26 Instructor's Resource Manual Section 7.2 427 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
  • 17. 67. 3 –9 – 1 e x dx = e x ⎛ dx ⎞ ⎜ ⎟ 9 – / 3 9 – / 3 0 0 –9[e x ] – 9 9 ∫ 0 ∫ – /3 ⎝ 3 ⎠ 9= = + ≈ 8.55 3 e 68. 9 – / 3 2 9 –2 / 3 V = ∫ π(3e x ) dx = 9π∫ e x dx 0 0 9 – 3 – 2 = π⎛ ⎞ e x ⎛ dx ⎞ ⎜ ⎟ ⎜ ⎟ 9 –2 / 3 0 – 27 π [ e x ] – 27 π 27 π 42.31 2 2 2 ∫ –2 / 3 9 ⎝ 2 ⎠ ⎝ 3 ⎠ = = + ≈ 0 6 e 69. / 4 / 4 / 4 (x cos x – x sin x)dx x cos x dx – x sin x dx π π π ∫ = ∫ ∫ 0 0 0 4 4 0 0 xsin x sin x dx ⎛ π π ⎞ = ⎜ ⎡⎣ ⎤⎦ ⎟ ⎝ ⎠ − ∫ [ ] 4 4 xπ −⎜ ⎛ − x cos x π ∫ π + cos x dx ⎞ ⎟ ⎝ 0 0 ⎠ [ x sin x cos x x cos x – sin ] / 4 0 = + + 2 –1 = ≈ 0.11 4 π Use Problems 60 and 61 for ∫ x sin x dx and ∫ x cos x dx. V x x dx π ⎛ ⎞ = π ⎜ ⎟ 70. 2 ⎝ ⎠ ∫ 2 sin2 0 dv = x dx u = x sin 2 v = x du = dx –2cos 2 2 2 0 0 ⎛ ⎡ ⎤ π π ⎞ = π⎜ ⎢ ⎥ + ⎟ ⎜ ⎣ ⎦ ⎟ ⎝ ⎠ V x x x dx ∫ 2 –2 cos 2cos 2 2 2 2 ⎛ π ⎞ = 2 π⎜ 4 π + ⎡ 4sin x ⎤ ⎢ ⎥ ⎟ = 8 π ⎜ ⎝ ⎣ 2 ⎦ ⎟ 0 ⎠ ln 2 ln e e ∫ x dx = ∫ x dx u = ln x dv = dx du 1 dx 71. 2 1 1 = v = x x ( ) 1 1 1 1 2 ln 2 [ ln ] 2 [ ] 2 e x dx ⎛ x x e e dx⎞ e x e ⎜ − ⎟ ∫ = ∫ = − = ⎝ ⎠ ∫ e x ln x 2 dx = 2 ∫ e x ln x dx 1 1 u = ln x dv = x dx du = 1 dx 1 2 x v = x 2 e e e x xdx x x xdx ⎛ ⎡ ⎤ ⎞ = ⎜ ⎢ ⎥ ⎟ ⎜ ⎣ ⎦ ⎟ ⎝ ⎠ 2 ln 2 1 ln – 1 e ⎛ ⎡ ⎤ ⎞ = ⎜ ⎢ ⎥ ⎟ = + ⎜ ⎣ ⎦ ⎟ ⎝ ⎠ 2 1 – 1 1 ( 1) 2 4 2 ∫ 2 ∫ 2 2 2 2 2 1 1 1 e x e 1 428 Section 7.2 Instructor Solutions Manual © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
  • 18. ∫e x 2 dx u = (ln x)2 dv = dx du 2ln x dx 1 (ln ) 2 1 = v = x x 1 (ln ) 1 [ (ln ) ] – 2 ln 2 2 ∫ e x 2 dx = ⎛ ⎜ x x 2 e e 1 ∫ x dx ⎞ ⎟ = 1( e –2) 1 ⎝ 1 ⎠ 2 1 2 2 2( 1) 1 e e x + + = = 2 4 1 ( –2) 2– 2 e e y = = 2 4 72. a. u = cot x dv = csc2 x dx du = – csc2 x dx v = –cot x 2 2 2 ∫ ∫ ∫ ∫ x xdx x x xdx x xdx x C x xdx x C cot csc = − cot − cot csc 2 cot csc 2 = − cot 2 + cot csc 2 = − 1 cot 2 + 2 b. u = csc x dv = cot x csc x dx du = –cot x csc x dx v = –csc x 2 2 2 ∫ ∫ ∫ ∫ x xdx x x xdx x xdx x C x xdx x C cot csc = − csc − cot csc 2 cot csc 2 = − csc 2 + cot csc 2 = − 1 csc 2 + 2 c. – 1 cot2 – 1 (csc2 –1) x = x – 1 csc2 1 2 2 = x + 2 2 73. a. p(x) = x3 − 2x g(x) = ex All antiderivatives of g(x) = ex ∫(x3 − 2x)exdx = (x3 − 2x)ex − (3x2 − 2)ex + 6xex − 6ex + C b. p(x) = x2 − 3x +1 g(x) = sin x G1(x) = −cos x G2 (x) = −sin x G3(x) = cos x ∫(x2 − 3x +1)sin x dx = (x2 − 3x +1)(−cos x) − (2x − 3)(−sin x) + 2cos x + C Instructor's Resource Manual Section 7.2 429 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
  • 19. 74. a. We note that the nth arch extends from x = 2π (n −1) to x =π (2n −1) , so the area of the nth arch is ( ) sin n (2 − 1) 2 ( − 1) A n x xdx π = ∫ . Using integration by parts: n π u = x dv = sin xdx du = dx v =− cos x A n x xdx x x xdx x x x n n n n n n n n n n (2 − 1) (2 − 1) (2 − 1) (2 − 1) (2 − 1) 2 ( − 1) 2 ( − 1) 2 ( − 1) 2 ( − 1) 2 ( − 1) π [ ] π π [ ] π [ ] π π π π π π ( ) sin cos cos cos sin = ∫ = − − ∫ − = − + = − − − + − − +[ − − − ] [ ] n n n n n n )) (2 1) cos( (2 1)) 2 ( 1) cos(2 ( 1)) sin( (2 1)) sin(2 ( 1 π π π π π π [ ] = −π (2n −1)(−1) + 2π (n −1)(1) + 0 − 0 =π (2n −1) + (2n − 2) . So A(n) = (4n − 3)π b. 3 2 V 2 x sin x dx π = π∫ 2 π u = x2 dv = sin x dx du = 2x dx v = –cos x 2 3 3 π π π π ⎛ ⎡ ⎤ ⎞ ⎜ ⎣ ⎦ ⎟ ⎝ ⎠ = π + ∫ 2 2 3 V 2 –x cos x 2x cos x dx 2 2 2 2 9 4 2x cos x dx π ⎛ ⎞ ⎜ ⎝ π ⎟ ⎠ = π π + π + ∫ u = 2x dv = cos x dx du = 2 dx v = sin x 2 3 3 2 2 V 2 13 [2xsin x] – 2sin x π π ⎛ ⎞ ⎜ ⎟ ⎝ ⎠ = π π + π ∫ π ( 2 3 ) 2 2 13 [2cos x]2 2 (13 – 4) π = π π + π = π π ≈ 781 75. u = f(x) dv = sin nx dx du = f ′(x)dx v 1 cos nx n = − π π −π −π ⎡ ⎡ ⎤ ′ ⎤ = ⎢ ⎢− ⎥ + ⎥ π ⎣ ⎣ ⎦ ⎦ ∫ 1 1 cos( ) ( ) 1 cos( ) ( ) an nx f x nx f x dx n n Term 1 Term 2 Term 1 = 1 cos(n π )( f ( −π ) − f ( π )) =± 1 ( f ( −π ) − f ( π )) n n Since f ′(x) is continuous on [–∞ ,∞ ], it is bounded. Thus, cos(nx) f (x)dx π π ∫ ′ is bounded so – a 1 ⎡± f π lim n = lim ⎢⎣ ( ( −π ) − f ( π )) + ∫ cos( nx ) f ′ ( x ) dx ⎤ ⎥⎦ = 0. n n π n →∞ →∞ −π 76. 1 G n n n n n n [( + 1)( + 2) ⋅⋅⋅ ( + )] n 1 n [ ] n n = n n 1/ 1 1 1 2 1 = ⎡⎛ ⎢⎜ + ⎞⎛ ⎟⎜ + ⎟…⎜ ⎞ ⎛ + ⎞⎤ ⎣⎝ n ⎠⎝ n ⎠ ⎝ n ⎟⎥ ⎠⎦ ln Gn 1 ln 1 1 1 2 1 n ⎛ ⎞ ⎡⎛ ⎞⎛ ⎜ ⎟ = + + ⎞ ⎟…⎜ ⎛ + ⎞⎤ ⎝ n ⎠ n ⎢⎜ n ⎟⎜ ⎣⎝ ⎠⎝ n ⎠ ⎝ n ⎠⎦ ⎟⎥ 1 ln 1 1 ln 1 2 ln 1 n n n n n ⎡ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎤ = ⎢ ⎜ + ⎟ + ⎜ + ⎟ + ⋅⋅⋅+ ⎜ + ⎟⎥ ⎣ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎦ G xdx ⎛ ⎞ 2 ⎜ ⎟ = ∫ = ⎝ ⎠ 1 lim ln n ln 2ln 2 –1 n →∞ n G e e lim n 2ln 2–1 4 –1 4 n ⎛ ⎞ = = = ⎜ ⎟ ⎝ ⎠ →∞ n e 430 Section 7.2 Instructor Solutions Manual © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
  • 20. 77. The proof fails to consider the constants when integrating . 1t The symbol ( ) 1 t dt ∫ is a family of functions, all of who whom have derivative . 1t We know that any two of these functions will differ by a constant, so it is perfectly correct (notationally) to write ∫(1 t )dt = ∫(1 t )dt +1 [ ( 1 cos 7 2 sin 7 ) 3] 5 ( 1 cos7 2 sin 7 ) (–7 1 sin 7 7 2 cos 7 ) d e x C x C x C e x C x C x e x C x C x dx 78. 5 5 5 + + = + + + 5 [(5 1 7 2 ) cos 7 (5 2 – 7 1)sin 7 ] = e x C + C x + C C x Thus, 5C1 + 7C2 = 4 and 5C2 – 7C1 = 6. Solving, 1 2 – 11 ; 29 37 37 C = C = 79. u = f(x) dv = dx du = f ′(x)dx v = x ( ) [ ( )] – ( ) b b b a a a ∫ f x dx = xf x ∫ xf ′ x dx Starting with the same integral, u = f(x) dv = dx du = f ′(x)dx v = x – a ( ) [( – ) ( )] – ( – ) ( ) b b b a a a ∫ f x dx = x a f x ∫ x a f ′ x dx 80. u = f ′(x) dv = dx du = f ′′(x)dx v = x – a ( )– ( ) ( ) b f b f a = ∫ f ′ x dx [( – ) ( )] – ( – ) ( ) b b a = x a f ′ x ∫ x a f ′′ x dx ( )( – ) – ( – ) ( ) b a a = f ′ b b a ∫ x a f ′′ x dx a Starting with the same integral, u = f ′(x) dv = dx du = f ′′(x)dx v = x – b ( ) ( ) ( ) [( – ) ( )] – ( – ) ( ) b b b f b − f a = ∫ f ′ x dx = x b f ′ x ∫ x b f ′′ x dx ( )( ) – ( – ) ( ) b a a a = f ′ a b − a ∫ x b f ′′ x dx a 81. Use proof by induction. n = 1: ( ) ( )( – ) ( – ) ( ) ( ) ( )( – ) [ ( )( – )] ( ) t t t f a + f ′ a t a + ∫ t x f ′′ x dx = f a + f ′ a t a + f ′ x t x + ∫ f ′ x dx a a a ( ) ( )( – ) – ( )( – ) [ ( )]t ( ) = f a + f ′ a t a f ′ a t a + f x a = f t Thus, the statement is true for n = 1. Note that integration by parts was used with u = (t – x), dv = f ′′(x)dx. Suppose the statement is true for n. n ( i ) n i t n f ( t ) f ( a ) f ( a ) ( t – a ) ( t – x ) f ( 1) ( x ) dx = +Σ + ∫ 1 i n ! a ! i + = t n n a t x f x dx n Integrate ( – ) ( 1) ( ) + ∫ by parts. ! t x n dv dx u = f (n+1) (x) ( – ) ! n = du = f (n+2) (x) t x n v – ( – ) + 1 ( n 1)! = + 1 1 n n + t t t n + n n n a a + ⎡ + ⎤ + t x f x dx t x f x t x f x dx n n n ( – ) ( 1) ( ) – ( – ) ( 1) ( ) ( – ) ( 2) ( ) ∫ ∫ = ⎢ ⎥ + ⎢⎣ + ⎥⎦ + ! ( 1)! ( 1)! a Instructor's Resource Manual Section 7.2 431 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
  • 21. n + 1 t n + 1 n n t a f a t x f x dx n n ( – ) ( 1) ( ) ( – ) ( 2) ( ) ( 1)! ( 1)! = + + + ∫ + a + Thus n ( i ) n + 1 t n + 1 i n n f ( t ) f ( a ) f ( a ) ( t – a ) ( t – a ) f ( a ) ( t – x ) f ( x ) dx + + Σ ∫ ( 1) ( 2) = + + + 1 + + i n n ! ( 1)! a ( 1)! i = n + 1 ( i ) t n + 1 i n f ( a ) f ( a ) ( t – a ) ( t – x ) f ( 2) ( x ) dx + Σ ∫ = + + 1 i n ! a ( 1)! i + = Thus, the statement is true for n + 1. 82. a. 1 1 1 B(α , β ) = ∫ xα − (1− x)β − dx where α ≥ 1,β ≥ 1 0 x = 1 – u, dx = –du 1 1 1 0 1 1 0 1 ∫ xα − (1− x)β − dx = ∫ (1− u)α − (u)β − (−du) 1 1 1 = ∫ (1− u)α − uβ − du = B(β , α ) 0 Thus, B(α, β) = B(β, α). b. 1 1 1 B(α , β ) = ∫ xα − (1− x)β − dx 0 u = xα −1 dv = (1− x)β −1dx du = (α −1) xα −2dx v = − 1 (1 − x)β β 1 ⎡ − ⎤ − − − − = ⎢− − ⎥ + − = − ⎣ ⎦ ( , ) 1 (1 ) 1 (1 ) 1 (1 ) α β α α β α α β 1 1 2 1 2 ∫ ∫ B x x x x dx x x dx β β 0 β 0 0 1 B ( 1, 1) α β − α = − + α β β (*) Similarly, 1 1 1 0 B(α , β ) = ∫ xα − (1− x)β − dx u = (1− x)β −1 dv = xα −1dx du = −(β −1)(1− x)β −2 dx v 1 xα α = 1 1 1 2 0 0 B( , ) 1 xα (1 x)β β 1 xα (1 x)β dx β − 1 α β − β − x(1 x)dx 1 B( 1, 1) = ⎡ − − ⎤ + − − − ⎢⎣ ⎥⎦ ∫ 1 2 α β α α = ∫ − = + − α 0 α α β c. Assume that n ≤ m. Using part (b) n times, ( ) n n n B n m B n m B n m − 1 − 1 ( − 2) ( , ) = ( − 1, + 1) = ( − 2, + 2) m mm ( 1) ( n ) n ( n ) + 1 ( 2) 3 2 1 − − − …⋅ ⋅ = … = + − ( ) B m n (1, 1). m m m m n ( 1) 2 ( 2) + + … + − 1 2 11 0 0 (1, 1) (1 ) 1 [(1 ) ] 1 B m n x m n dx x m n + − = − + − = − − + − = ∫ + − + − m n m n 1 1 Thus, ( ) ( ) ( ) ( ) ( 1 ( 2) 3 2 1 1)!( 1)! ( 1)!( 1)! B n m ( , ) n n n n m n m − − − …⋅ ⋅ − − − − = = = m m m m n m n m n n m ( + 1) + 2 … ( + − 2) + − 1 ( + − 1)! ( + − 1)! If n m, then ( 1)!( 1)! B n m B m n ( , ) ( , ) n m − − n m ( 1)! = = + − by the above reasoning. 432 Section 7.2 Instructor Solutions Manual © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
  • 22. 83. u = f(t) dv = f ′′(t)dt du = f ′(t)dt v = f ′(t) ( ) ( ) [ ( ) ( )] – [ ( )]2 b b b a a a ∫ f ′′ t f t dt = f t f ′ t ∫ f ′ t dt = f ( b ) f ′ ( b ) − f ( a ) f ′ ( a ) − ∫ b [ f ′ ( t )]2 dt b [ ( )]2 a = −∫ f ′ t dt a [ ( )]2 0, so [ ( )]2 0 b f ′ t ≥ − ∫ f ′ t ≤ . a 84. ∫ x ⎛ ⎜ ∫ t f ( z ) dz ⎞ ⎟ dt 0 ⎝ 0 ⎠ u = ∫ t f ( z ) dz dv = dt 0 du = f(t)dt v = t ∫ x ⎛⎜ x ∫ t f ( z ) dz ⎞⎟ dt = ⎡⎢t ∫ t f ( z ) dz⎤⎥ – ∫ x t f ( t ) dt ⎝ ⎠ ⎣ ⎦ 0 0 0 0 0 0 0 ( ) – ( ) x x = ∫ x f z dz ∫ t f t dt By letting z = t, ( ) ( ) , x x ∫ x f z dz = ∫ x f t dt so 0 0 ∫ x ⎛⎜ ∫ t f ( z ) dz ⎞⎟ dt = ∫ x x f ( t ) dt – ∫ x t f ( t ) dt 0 ⎝ 0 ⎠ 0 0 0 ( – ) ( ) x = ∫ x t f t dt ( ) ... x t tn I f tn dtn dt dt = ∫ ∫ ⋅⋅⋅∫ − be the iterated integral. Note that for i ≥ 2, the limits of integration of the 85. Let 1 1 0 0 0 2 1 integral with respect to ti are 0 to ti−1 so that any change of variables in an outer integral affects the limits, and hence the variables in all interior integrals. We use induction on n, noting that the case n = 2 is solved in the previous problem. Assume we know the formula for n −1, and we want to show it for n. I x t 1 t 2 tn − 1 f ( tn ) dtn ... dt dt dt t 1 t 2 tn − 2 F ( tn ) dtn ... dt dt dt = ∫ ∫ ∫ ⋅⋅⋅∫ = ∫ ∫ ⋅⋅⋅∫ − − where ( ) 1 ( ) 0 0 0 0 3 2 1 0 0 0 1 1 3 2 1 tn − = ∫ . F tn f tn dn − 1 0 By induction, 1 2 ! I x F t x t n dt ( ) ( )( ) 2 − = − − ∫ ( ) 1 ( ) 1 0 0 1 1 1 n t dv x t n− = − u = F t = ∫ f tn dtn , ( ) 2 1 1 1 v x t n − = − − ( ) du = f t1 dt1 , ( ) 1 1 n − t = x ⎧⎪⎡ ⎤ ⎪⎫ = ⎨⎢− − ⎥ + − ⎬ − ⎩⎪⎣ − ⎦ − ⎪⎭ = − 1 1 1 2 ! 1 1 1 ( )( ) ( 1)! ( ) ( ) ( ) ( )( ) 1 n t x n − − 1 1 ∫ 1 ∫ I x t f t dt f t x t dt n n 1 0 0 1 1 1 n n n t 1 0 − 1 x n f t x t dt ∫ 0 1 1 1 n = − . (note: that the quantity in square brackets equals 0 when evaluated at the given limits) Instructor’s Resource Manual Section 7.3 433 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
  • 23. 86. Proof by induction. n = 1: u = P1(x) dv = exdx du x) = dP1(dx v = ex dx exP (x)dx exP (x) – ex dP (x) dx exP (x) – dP (x) exdx ∫ = ∫ 1 1 1 1 dx exP (x) – ex dP (x) = ∫ 1 1 dx 1 dx = Note that dP1(x) dx is a constant. Suppose the formula is true for n. By using integration by parts with u = Pn+1(x) and dv = exdx, dP x 1 x ( ) x ( ) – x n n n + ∫ + = + ∫ Note that n 1( ) dP x e P x dx e P x e dx 1 1 ( ) dx + is a polynomial of degree n, so dx ⎡ ⎛ ⎞⎤ = − ⎢ − ⎜ ⎟⎥ = − − ⎢⎣ ⎝ ⎠⎥⎦ n j n j + 1 ( ) ( ) ( ) e P x dx e P x e d dP ( x ) d P x e P x e x x x j n x x j n n n j n j ∫ Σ Σ 1 1 + + ( ) ( ) ( 1) 1 1 1 1 1 + + + + dx dx dx j j 0 0 = = n j 1 d P x + = + Σ − x x j n n j 1 e P x e 1 ( ) ( 1) 1 ( ) j + dx + = n 1 j x j n d P x 1 + = Σ − 0 ( ) ( 1) + j j e dx = 87. j 4 4 2 x x e dx e d x x (3 2 ) (–1) (3 2 ) ∫ 4 + 2 x = x Σ j = 0 dx = ex[3x4 + 2x2 –12x3 – 4x + 36x2 + 4 – 72x + 72] = ex (3x4 –12x3 + 38x2 – 76x + 76) + j j 7.3 Concepts Review 1. 1 cos2 2 x dx + ∫ 2. ∫(1– sin2 x) cos x dx 3. ∫sin2 x(1– sin2 x) cos x dx 4. cos mx cos nx = 1 [cos( m+ n ) x + cos( m− n ) x ] 2 Problem Set 7.3 ∫ x dx = ∫ x dx 1 – 1 cos 2 2 2 1. sin2 1– cos 2 2 = ∫ dx ∫ x dx = 1 x – 1 sin 2 x +C 2 4 2. u = 6x, du = 6 dx sin4 6 1 sin4 ∫ x dx = ∫ u du 6 1 1– cos 2 2 6 2 = ⎛ u ⎞ du ⎜ ⎟ ⎝ ⎠ ∫ 1 (1– 2cos 2 cos2 2 ) 24 = ∫ u + u du 1 – 1 2cos 2 1 (1 cos 4 ) 24 24 48 = ∫ du ∫ u du + ∫ + u du 3 – 1 2cos 2 1 4cos 4 48 24 192 = ∫ du ∫ u du + ∫ u du 3 (6 ) – 1 sin12 1 sin 24 48 24 192 = x x + x +C = 3 x – 1 sin12 x + 1 sin 24 x +C 8 24 192 434 Section 7.2 Instructor Solutions Manual © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
  • 24. 3. ∫sin3 x dx = ∫sin x(1− cos2 x)dx = ∫sin x dx − ∫sin x cos2 x dx cos 1 cos3 = − x + x +C 3 4. ∫cos3 x dx = = ∫cos x(1− sin2 x)dx = ∫cos x dx − ∫cos x sin2 x dx = sin x − 1 sin3 x + C 3 5. / 2 5 / 2 2 2 π π ∫ = ∫ cos θ dθ (1– sin θ ) cosθ dθ 0 0 / 2 2 4 0 = ∫ + (1– 2sin θ sin θ ) cosθ dθ π / 2 ⎡ π = sin – 2 sin 3 + 1 sin 5 ⎤ ⎢⎣ ⎥⎦ 1– 2 1 – 0 8 θ θ θ 0 3 5 = ⎛ + ⎞ = ⎜ ⎟ ⎝ ⎠ 3 5 15 6. π / 2 π sin 6 = / 2 ⎛ 1– cos 2 θ ⎞ 3 0 0 ⎜ ⎟ ⎝ ⎠ ∫ ∫ d d θ θ θ 2 1 / 2 (1– 3cos 2 3cos 2 2 – cos 3 2 ) 8 0 = ∫ + θ θ θ dθ π 1 π / 2 3 π / 2 3 π / 2 2 1 π – 2cos 2 cos 2 – / 2 cos 3 2 8 0 16 0 8 0 8 0 = ∫ ∫ + ∫ ∫ dθ θ dθ θ θ dθ 1[ 3 3 1 cos 4 θ ] – [sin 2 ] – 1 (1– sin 2 ) cos 2 8 16 8 2 8 π π π ⎛ + ⎞ π = + ⎜ ⎟ / 2 / 2 / 2 / 2 2 0 0 0 0 ⎝ ⎠ ∫ ∫ d d θ θ θ θ θ θ 1 π 3 π / 2 3 π / 2 π 4cos 4 – 1 / 2 π 2cos 2 1 / 2 sin 2 2 2cos 2 8 2 16 0 64 0 16 0 16 0 = ⋅ + ∫ + ∫ ∫ + ∫ ⋅ dθ θ dθ θ dθ θ θ dθ θ π θ π θ π π π = + + + 5 3 3 [sin 4 ] – 1 [sin 2 ] 1 [sin 2 ] / 2 / 2 3 / 2 0 0 0 16 32 64 16 48 π 32 = 7. ∫sin5 4x cos2 4x dx = ∫(1– cos2 4x)2 cos2 4x sin 4x dx = ∫(1– 2cos2 4x + cos4 4x) cos2 4x sin 4x dx = ∫ x x + x x dx – 1 cos3 4 1 cos5 4 – 1 cos7 4 – 1 (cos2 4 – 2cos4 4 cos6 4 )(–4sin 4 ) 4 = x + x x +C 12 10 28 8. ∫(sin3 2t) cos 2tdt = ∫(1– cos2 2t)(cos 2t)1/ 2 sin 2t dt – 1 [(cos 2 )1/ 2 – (cos 2 )5/ 2 ](–2sin 2 ) = ∫ t t t dt 2 – 1 (cos 2 )3/ 2 1 (cos 2 )7 / 2 3 7 = t + t +C 9. ∫cos3 3θ sin–2 3θ dθ = ∫(1– sin2 3θ )sin–2 3θ cos3θ dθ 1 (sin 2 3 1)3cos3 = ∫ − θ − θ dθ 3 – 1 csc3 – 1 sin 3 3 3 = θ θ +C 10. ∫sin1/ 2 2z cos3 2z dz = ∫(1– sin2 2z)sin1/ 2 2z cos 2z dz = ∫ z z z dz 1 sin3/ 2 2 – 1 sin7 / 2 2 1 (sin1/ 2 2 – sin5/ 2 2 )2cos 2 2 = z z +C 3 7 Instructor’s Resource Manual Section 7.3 435 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
  • 25. 11. 2 2 t t dt t t dt ∫ sin4 + 3 cos4 3 = ∫ ⎛ 1– cos 6 ⎞ ⎛ 1 cos 6 ⎞ 1 ⎜ ⎟ ⎜ ⎟ (1– 2cos2 6 cos4 6 ) ⎝ 2 ⎠ ⎝ 2 ⎠ = ∫ t + t dt 16 = 1 ∫ ⎡⎢ 1– (1 + cos12 t ) + 1 (1 + cos12 t )2 ⎤⎥ dt – 1 cos12 1 (1 2cos12 cos2 12 ) 16 ⎣ 4 ⎦ = ∫ t dt + ∫ + t + t dt 16 64 – 1 12cos12 1 1 12cos12 1 (1 cos 24 ) 192 64 384 128 = ∫ t dt + ∫ dt + ∫ t dt + ∫ + t dt – 1 sin12 1 1 sin12 1 1 sin 24 = t + t + t + t + t +C 3 – 1 sin12 1 sin 24 192 64 384 128 3072 = t t + t +C 128 384 3072 12. 3 ∫ cos6 sin2 d = ∫ ⎛ 1 + cos 2 θ ⎞ ⎛ 1– cos 2 θ ⎞ ⎜ ⎟ ⎜ ⎟ d 1 (1 2cos 2 – 2cos3 2 – cos4 2 ) ⎝ ⎠ ⎝ ⎠ = ∫ + θ θ θ dθ θ θ θ θ 2 2 16 1 1 2cos 2 – 1 (1– sin2 2 ) cos 2 – 1 (1 cos 4 )2 16 16 8 64 = ∫ dθ + ∫ θ dθ ∫ θ θ dθ ∫ + θ dθ 1 1 2cos 2 – 1 2cos 2 1 2sin2 2 cos 2 – 1 (1 2cos 4 cos2 4 ) 16 16 16 16 64 = ∫ dθ + ∫ θ dθ ∫ θ dθ + ∫ θ θ dθ ∫ + θ + θ dθ 1 1 sin2 2 2cos 2 – 1 – 1 4cos 4 – 1 (1 cos8 ) 16 16 64 128 128 = ∫ dθ + ∫ θ ⋅ θ dθ ∫ dθ ∫ θ dθ ∫ + θ dθ = 1 1 sin3 2 1 1 sin 4 1 1 sin8 16 48 64 128 128 1024 θ + θ − θ − θ − θ − θ +C 5 1 sin3 2 – 1 sin 4 – 1 sin8 128 48 128 1024 = θ + θ θ θ + C 13. sin 4 cos5 1 [sin 9 sin( )] 1 (sin 9 sin ) ∫ y y dy = ∫ y + −y dy = ∫ y − y dy 2 2 1 1 cos9 cos 1 cos 1 cos9 2 9 2 18 = ⎛⎜ − y + y ⎞⎟ +C = y − y +C ⎝ ⎠ ∫ y y dy = ∫ y + − y dy 1 sin 5 1 sin( 3 ) 14. cos cos 4 1 [cos5 cos( 3 )] 2 = y − − y +C 1 sin 5 1 sin 3 10 6 = y + y +C 10 6 15. 2 w w dw w w dw ∫ sin4 ⎛ ⎞ cos2 ⎛ ⎞ = ∫ ⎛ 1– cos ⎞ ⎛ 1 + cos ⎞ 1 ⎜ (1– cos – cos2 cos3 ) ⎝ 2 ⎟ ⎜ ⎠ ⎝ 2 ⎟ ⎜ ⎟ ⎜ ⎟ ⎠ ⎝ 2 ⎠ ⎝ 2 ⎠ = ∫ w w+ w dw 8 = 1 ∫ ⎡⎢ 1– cos w – 1 (1 + cos 2 w ) + (1– sin2 w ) cos w⎤⎥ dw 1 1 – 1 cos 2 – sin2 cos 8 ⎣ 2 ⎦ = ∫ ⎡⎢ w w w⎤⎥dw 8 ⎣ 2 2 ⎦ 1 – 1 sin 2 – 1 sin3 16 32 24 = w w w+C sin 3 sin 1 cos 4 cos 2 16. [ ] ∫ ∫ t t dt = − t − t dt 2 ( ) 1 ∫ cos 4 ∫ cos 2 2 1 1 sin 4 1 sin 2 2 4 2 1 sin 4 1 sin 2 8 4 tdt tdt = − − = − ⎛ − ⎞ + ⎜ ⎟ t t C ⎝ ⎠ t tC = − + + 436 Section 7.3 Instructor's Resource Manual © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
  • 26. 17. 2 ∫ x cos x sin xdx u = x du = 1 dx dv = 2 x x dx v = − x − x dx = − x cos sin (cos ) ( sin ) 1 cos 2 3 cos t = x 3 ∫ Thus 2 ∫ x x xdx x x xdx cos sin = ( 1 cos 3 ) ∫ (1)( 1 cos 3 ) 3 3 1 cos ∫ cos 3 1 cos ∫ cos (1 sin ) 3 − − − = ⎡− x 3 x + 3 ⎣ xdx ⎤ ⎦ = ⎡− x 3 ⎣ x + x − 2 xdx ⎤ ⎦ = ⎡ ⎤ ⎢− + − ⎥ = ⎣ ⎦ ⎡− + − ⎤ + ⎢⎣ ⎥⎦ 1 cos 3 ∫ (cos cos sin 2 ) 3 1 cos sin 1 sin 3 3 x x x x xdx t sin x 3 3 = x x x x C 18. 3 ∫ x sin x cos xdx u = x du = 1 dx dv = sin 3 x cos x dx v = (sin x ) (cos xdx ) = 1 sin x 3 4 sin t = x 4 ∫ Thus 3 ∫ x x xdx x x xdx sin cos = (1 sin 4 ) ∫ (1)(1 sin 4 ) 4 4 1 sin ∫ (sin ) 4 1 sin 1 ∫ (1 cos 2 ) 4 4 − = 4 2 2 ⎡ ⎣ x x − x dx ⎤ ⎦ = ⎡ 4 2 ⎤ ⎢⎣ x x − − x dx ⎥⎦ = 1 sin 1 (1 2cos 2 cos 2 ) 4 4 1 sin 1 1 sin 2 1 (1 cos 4 ) 4 4 4 8 1 sin 3 1 sin 2 1 sin 4 4 8 4 32 ⎡ ⎢⎣ x 4 x − ∫ − x + 2 xdx ⎤ ⎥⎦ = ⎡ ⎢⎣ x 4 x − x + x − ∫ + xdx ⎤ ⎥⎦ = ⎡ 4 ⎤ ⎢⎣ x x − x + x − x ⎥⎦ + C 19. 4 ( 2 )( 2 ) ∫ ∫ x dx x x dx tan tan tan = = ∫ ( 2 ) 2 − = ∫ ( − ) = ∫ − ∫ − = − + + x x dx x x xdx x x dx x dx x x x C tan (sec 1) tan 2 sec 2 tan 2 tan 2 sec 2 (sec 2 1) 1 tan 3 tan 3 20. 4 ( 2 )( 2 ) ∫ ∫ ∫ ( 2 2 2 ) x dx x x dx x x dx cot = cot cot cot (csc 1) ( ) 2 2 = − ∫ ∫ ∫ x x xdx x x dx x dx x x x C cot csc cot cot csc (csc 1) 1 cot cot 3 = − = 2 2 − 2 − = − 3 + + + 21. tan 3 x ( )( 2 ) x x dx x x dx x x C ∫ ∫ tan tan tan sec 1 1 tan ln cos 2 = = − ( )( 2 ) 2 = + + 22. 3 ( )( 2 ) ∫ ∫ ∫ ∫ ∫ t dt t t dt t t dt t tdt tdt cot 2 = cot 2 cot 2 ( cot 2 )( csc 2 2 1 ) cot 2 csc 2 cot 2 1 cot 2 1 ln sin 2 4 2 = − = 2 − = − 2 − + t t C Instructor’s Resource Manual Section 7.3 437 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
  • 27. θ ⎛ ⎞ θ ⎜ ⎟ ⎝ ⎠ ∫ 23. tan5 2 d u du d ⎛θ ⎞ θ = ⎜ 2 ⎟ ; = ⎝ ⎠ 2 θ ⎛ ⎞ = ⎜ ⎟ ⎝ ⎠ 5 5 ∫ ∫ d udu tan 2 tan ( )( ) ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ u u du u udu udu u u du u u du u udu u udu u 2 tan sec 1 2 tan sec 2 tan 2 tan sec 2 tan sec 1 2 tan sec 2 tan sec 2 tan du 1 tan tan 2ln cos 2 2 2 2 = − = − = − ( − ) = − + 3 2 3 2 3 3 2 2 3 2 2 θ θ θ = 4 ⎛ ⎞ − 2 ⎛ ⎞ ⎜ ⎟ ⎜ ⎟ − + 2 C θ ⎝ ⎠ ⎝ ⎠ 24. ∫cot5 2t dt u = 2t;du = 2dt cot 2 1 cot 5 5 ∫ ∫ t dt u du 2 1 ∫ ( cot 3 u )( cot 2 udu ) 1 ∫ ( cot 3 u )( csc 2 1 ) du 2 2 1 ∫ ( cot )( csc ) 1 ∫ cot 2 2 1 ∫ ( cot )( csc ) 1 ∫ ( cot )( csc 1 ) 2 2 1 ∫ ( cot )( csc ) 1 ∫ ( cot )( csc ) 1 ∫ cot 2 2 2 1 cot 1 cot 1 ln sin 8 4 2 1 cot 2 1 c 8 4 = = − 3 2 3 u udu udu = − 3 2 2 u u du u u du = − − 3 2 2 u u du u u du u = − + 4 2 = − + + + 4 u u u C t = = − + ot2 2 1 ln sin 2 t + t +C 2 25. − 3 4 ( − 3 )( 2 )( 2 ) ∫ ∫ x xdx x x x dx tan sec tan sec sec = = + = + = − + + ( 3 )( 2 )( 2 ) ∫ ∫ ∫ x x x dx x x x x dx x x C − tan 1 tan sec tan sec dx tan sec 1 tan ln tan 2 3 2 1 2 − − ( ) 2 − 26. − 3/ 2 4 ( − 3/ 2 )( 2 )( 2 ) ∫ ∫ x xdx x x x tan sec tan sec sec = = + = + = − + + ( 3/ 2 )( 2 )( 2 ) ∫ ∫ ∫ x x x dx x x dx x x dx x x C − tan 1 tan sec tan sec tan sec 2 tan 2 tan 3/2 2 1/2 2 1/ 2 3/ 2 3 − − 438 Section 7.3 Instructor’s Resource Manual © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
  • 28. 27. ∫ tan3 x sec2 x dx Let u = tan x . Then du = sec2 x dx . tan3 sec2 3 1 4 1 tan4 ∫ x x dx = ∫ u du = u +C = x +C 4 4 28. 3 − 1/2 2 − 3/2 ∫ ∫ x xdx x x x xdx tan sec tan sec (sec tan ) = = − = − = + + ( 2 )( − 3/ 2 )( ) ∫ ∫ ∫ x x x x dx x x x dx x x x dx x x C sec 1 sec sec tan sec 1/ 2 sec tan sec − 3/ 2 sec tan 2 sec 2sec 3 ( ) ( ) 3/ 2 − 1/ 2 29. ∫ cos cos = 1 ∫ (cos[( + ) ] + cos[( − ) ]) 1 1 sin[( ) ] 1 sin[( ) ] mx nx dx m n x m n x dx π π π π 2 – – = ⎡ m + n x + m − n x ⎤ 2 ⎢⎣ m + n m − n ⎥⎦ π −π = 0 for m ≠ n, since sin kπ = 0 for all integers k. 30. If we let u x π = then du dx L π = . Making the substitution and changing the limits as necessary, we get L m π x n π x dx L mu nu du L L L π cos cos cos cos 0 L π ∫ = ∫ = (See Problem 29 − π − (x sin x) dx π ∫ π + 2 2 31. 2 0 (x 2x sin x sin x) dx π x dx x x dx x dx π π π π = π∫ + + 2 0 = π∫ + π∫ + ∫ − 2 sin (1 cos2) 2 0 0 0 π π 1 2 sin cos 1 sin 2 3 2 2 ⎡ 3 ⎤ π π = π ⎡ ⎤ ⎢⎣ x ⎥⎦ + π [ x − x x ] + x − x 0 ⎢⎣ ⎥⎦ 0 0 = π + π + π − + π − − 1 4 5 2 57.1437 1 4 π 2 (0 0) ( 0 0) 3 2 = π + π ≈ 3 2 Use Formula 40 with u = x for ∫ x sin x dx 32. / 2 2 2 V 2 x sin (x )dx π = π∫ 0 u = x2 , du = 2x dx / 2 / 2 / 2 2 2 0 0 0 π π ⎡ ⎤π π = π = π = π ⎢ ⎥ = ≈ ⎣ ⎦ ∫ ∫ V u du u du u u sin 1– cos 2 1 – 1 sin 2 2.4674 2 2 4 4 33. a. 1 f (x)sin(mx)dx π π −π ∫ N ⎛ ⎞ 1 sin( ) sin( ) a nx mxdx π −π ∫ Σ = ⎜⎜ ⎟⎟ π ⎝ ⎠ 1 n n = N 1 sin( )sin( ) = π Σ ∫ 1 a nx mxdx π n n −π = From Example 6, 0 if ∫ ⎧ ≠ sin( nx )sin( mx ) dx = ⎨so every term in the sum is 0 except for when n = m. ⎩ π if = If m N, there is no term where n = m, while if m ≤ N, then n = m occurs. When n = m an π sin(nx)sin(mx) dx am n m n m π −π ∫ = π so when m ≤ N, −π 1 π f ( x )sin( mx ) dx 1 am am ∫ = ⋅ ⋅π = . π −π π Instructor’s Resource Manual Section 7.3 439 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
  • 29. b. 1 f 2 (x)dx π π −π ∫ N N ⎛ ⎞⎛ ⎞ 1 sin( ) sin( ) a nx a mx dx π −π ∫ Σ Σ = π ⎜⎜ n ⎟⎟⎜⎜ m ⎟⎟ ⎝ ⎠⎝ ⎠ n m 1 1 = = N N 1 sin( )sin( ) a a nx mxdx π = Σ n Σ ∫ πm n m 1 1 −π = = From Example 6, the integral is 0 except when m = n. When m = n, we obtain Σ Σ 2 . πN N 1 ( ) a a π = a = = n n n n n 1 1 34. a. Proof by induction x = x n = 1: cos cos 2 2 Assume true for k ≤ n. n ⎡ ⎤ x x x x x x x x + + cos cos cos cos cos 1 cos 3 cos 2 –1 1 cos ⋅ = ⎢ + + + ⎥ n n n n n n n 1 –1 1 2 4 2 2 2 2 2 2 2 ⎢⎣ ⎥⎦ Note that k x x k x k x + + + cos cos 1 1 cos 2 1 cos 2 –1 , 2n 2n 2 2n 2n ⎛ ⎞⎛ ⎞ ⎡ + ⎤ ⎜ ⎟⎜ = 1 ⎟ ⎢ + ⎥ ⎝ ⎠⎝ ⎠ ⎣ 1 1 ⎦ so 1 n n + ⎡ ⎤ ⎛ ⎞ ⎡ ⎤ ⎢ + + + ⎥ ⎜ ⎟ = ⎢ + + + ⎥ ⎢⎣ ⎥⎦ ⎝ ⎠ ⎢⎣ ⎥⎦ cos 1 cos 3 cos 2 –1 cos 1 1 cos 1 cos 3 cos 2 –1 1 x x x x x x x n n n n n n n n n 1 –1 1 1 1 + + + + 2 2 2 2 2 2 2 2 2 n n ⎡ ⎤ ⎡ ⎤ ⎢ + + + ⎥ = ⎢ + + + ⎥ ⎢⎣ ⎥⎦ ⎢⎣ ⎥⎦ x x x x x x x lim cos 1 cos 3 cos 2 –1 1 1 lim cos 1 cos 3 cos 2 –1 b. –1 –1 n n n n n n n n n n →∞ x →∞ 2 2 2 2 2 2 2 2 1 cos x t dt x = ∫ 0 1 ∫ x cos t dt = 1 [sin t ] x = sin x x x x c. 0 0 x + x = we see that since 35. Using the half-angle identity cos 1 cos , 2 2 π π = = cos cos 2 2 4 2 2 2 π π + + = = = 2 2 1 2 2 cos cos , 8 4 2 2 2 2 π π + + + + = = = etc. 2 2 1 2 2 2 cos cos , 16 8 2 2 Thus, 2 2 + 2 2 + 2 + 2 ⎛ π ⎞ ⎛ π ⎞ ⎛ π ⎞ ⋅ ⋅ cos 2 cos 2 cos 2 2 2 2 = ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎝ 2 ⎟ ⎜ ⎟ ⎜ ⎟ ⎠ ⎝ 4 ⎠ ⎝ 8 ⎠ ( ) 2 2 2 2 π π π π ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ sin 2 lim cos cos cos n 2 4 2n = ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ = = ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ π ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ →∞ π 2 440 Section 7.3 Instructor’s Resource Manual © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
  • 30. π π ∫ π − = ∫ − + 36. Since (k − sin x)2 = (sin x − k)2 , the volume of S is 2 2 2 (k sin x) π (k 2k sin x sin x) dx 0 0 k dx k xdx xdx π π π π x k x 2 k cos x x 1 sin 2 π = π π + π π + π ⎡ − ⎤ ⎢⎣ ⎥⎦ 2 = π ∫ − π∫ + ∫ − 2 [ ] [ ] 2 0 0 0 2 sin (1 cos2) 2 0 0 0 2 2 π π 2 2 2 ( 1 1) ( 0) 2 2 4 k k k k = π + π − − + π − = π − π + 2 2 Let 2 π = π − π + then f ′(k) = 2π2k − 4π and f ′(k) = 0 when k = 2 . ( ) 2 2 4 , 2 f k k k π The critical points of f(k) on 0 ≤ k ≤ 1 are 0, 2 , π 1. 2 2 2 (0) 4.93, 2 4 8 0.93, (1) 2 4 2.24 π ⎛ ⎞ π π = ≈ ⎜ ⎟ = − + ≈ = π − π + ≈ ⎝ π ⎠ f f f 2 2 2 a. S has minimum volume when k = 2 . π b. S has maximum volume when k = 0. 7.4 Concepts Review 1. x – 3 2. 2 sin t 3. 2 tan t 4. 2 sec t Problem Set 7.4 1. u = x +1, u2 = x +1, 2u du = dx ∫ x x +1dx = ∫(u2 –1)u(2u du) = ∫(2u4 – 2u2 )du 2 5 – 2 3 = u u +C 5 3 2 ( 1)5 / 2 – 2 ( 1)3/ 2 5 3 = x + x + + C 2. u = 3 x + π, u3 = x + π, 3u2du = dx ∫ x3 x + πdx = ∫(u3 – π)u(3u2du) = ∫(3u6 – 3πu3)du 3 7 – 3 π 4 u u C = + 7 4 3 7 / 3 3 π ( )– ( )4 / 3 7 4 x x C = +π +π + 3. u = 3t + 4, u2 = 3t + 4, 2u du = 3 dt 1 2 2 3 3 2 ( 4) 2 ( –4) t dt u − u du u du t u ∫ = ∫ = ∫ 3 + 4 9 2 3 – 8 27 9 = u u +C 2 (3 4)3/ 2 – 8 (3 4)1/ 2 27 9 = t + t + + C 4. u = x + 4, u2 = x + 4, 2u du = dx 2 2 2 2 3 ( – 4) 3( – 4)2 x + x u + dx u u du x u ∫ = ∫ + 4 = 2∫(u4 – 5u2 + 4)du 2 5 – 10 3 8 = u u + u + C 5 3 2 ( 4)5/ 2 – 10 ( 4)3/ 2 8( 4)1/ 2 5 3 = x + x + + x + +C 5. u = t , u2 = t, 2u du = dt dt 2u du 2 u e e du t e u e u e 2 2 2 1 1 1 + − ∫ = ∫ = ∫ + + + 2 –2 e du du 2 2 1 1 + ∫ ∫ u e = = 2[u] 2 1 – 2e ⎡⎣ln u + e ⎤⎦ 2 1 = 2( 2 –1) – 2e[ln( 2 + e) – ln(1+ e)] ⎛ 2 + ⎞ 2 2 – 2 – 2 ln e e = ⎜⎜ ⎝ 1 + e ⎟⎟ ⎠ 6. u = t , u2 = t, 2u du = dt t dt u u du t u 1 1 0 0 2 (2 ) ∫ = ∫ + + 1 1 1 2 1 2 0 2 0 2 u du u du u u + − 2 2 1 1 + + ∫ ∫ 1 1 0 0 2 = = 1 1 2 – 2 1 ∫ du ∫ du 1 –1 1 + 1 u = = 2[u]0 – 2[tan u]0 π 2 – 2 tan–11 2 – 0.4292 = = ≈ 2 Instructor’s Resource Manual Section 7.4 441 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
  • 31. 7. u = (3t + 2)1/ 2 , u2 = 3t + 2, 2u du = 3dt (3 2)3/ 2 1 ( 2 – 2) 3 2 t t + dt = u u ⎛⎜ u du ⎞⎟ ∫ ∫ 3 ⎝ 3 ⎠ 2 ( 6 – 2 4 ) 2 7 4 5 9 63 45 = ∫ u u du = u − u +C = 2 (3 t + 2)7 / 2 – 4 (3 t + 2)5 / 2 +C 63 45 8. u = (1– x)1/ 3, u3 = 1– x, 3u2du = –dx ∫ x(1– x)2 / 3dx = ∫(1– u3)u2 (–3u2 )du 3 ( 7 – 4 ) 3 8 3 5 = ∫ u u du = u − u +C 8 5 3 (1– )8/ 3 – 3 (1– )5 / 3 8 5 = x x +C 9. x = 2 sin t, dx = 2 cos t dt 4 – 2 2cos (2cos ) x dx t t dt x 2sin t ∫ = ∫ 1– sin2 2 = ∫ = 2∫csct dt – 2∫sin t dt sin = 2ln csct − cot t + 2cos t + C t dt t 2 2ln 2 4 – x 4 – x2 C = + + x − 10. x = 4sin t, dx = 4cos t dt 2 2 x dx t t dt ∫ = ∫ 16 – x 2 cos t = 16∫sin2 t dt = 8∫(1– cos 2t)dt = 8t – 4sin 2t +C = 8t −8sin t cos t +C 16 sin cos 2 = 8sin–1 ⎛ x ⎞ – x 16 – x ⎜ ⎟ +C 4 2 ⎝ ⎠ 11. x = 2 tan t, dx = 2sec2 t dt 2 dx 2sec t dt 1 cos t dt ∫ = = ( x 2 + 4) 3/2 ∫ 2 ∫ (4sec t ) 3/2 4 1 sin 4 = t + C x C x = + 4 2 + 4 12. t = sec x, dt = sec x tan x dx x π Note that 0 . 2 ≤ t2 –1 = tan x = tan x 3 sec–1(3) 2 2 2 / 3 2 dt sec x tan x dx ∫ = ∫ t t –1 π sec x tan x sec–1(3) / 3 = ∫ cos x dx π sec–1(3) 1 x − π [sin ] / 3 sin[sec (3)] sin π 3 = = − sin cos 1 1 3 2 2 – 3 0.0768 ⎡ = − ⎛ ⎞⎤ ⎢ ⎜ − = ≈ ⎣ ⎝ 3 ⎟⎥ ⎠⎦ 2 3 2 13. t = sec x, dt = sec x tan x dx π ≤ π x Note that . 2 t2 –1 = tan x = – tan x –3 2 sec–1(–3) –2 3 2 / 3 3 t –1 dt – tan x sec x tan x dx t π sec x ∫ = ∫ sec–1(–3) sec–1(–3) 2 2 /3 2 /3 – sin 1 cos 2 – 1 = = ⎛ ⎞ ⎜ ⎟ ⎝ ⎠ ∫ ∫ x dx x dx π π 2 2 sec–1(–3) π 2 /3 1 sin 2 – 1 4 2 = ⎡ ⎤ ⎢⎣ x x ⎥⎦ sec–1(–3) = ⎡ ⎢⎣ x x ⎤ ⎥⎦ 2 /3 – 2 – 1 sec–1(–3) π 3 x0.151252 1 sin cos – 1 2 2 π = + + ≈ 9 2 8 3 14. t = sin x, dt = cos x dx t dt x dx t ∫ = ∫ = –cos x + C 2 sin 1– = – 1– t2 +C 15. z = sin t, dz = cos t dt z dz t dt z 2 –3 (2sin – 3) 1– ∫ = ∫ 2 = –2 cos t – 3t + C = –2 1– z2 – 3sin–1 z +C 442 Section 7.4 Instructor’s Resource Manual © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
  • 32. 16. x = π tan t, dx = πsec2 t dt π x –1 dx ( 2 tan t –1)sect dt x ∫ = ∫ π 2 + π 2 = π2 ∫ tan t sect dt – ∫sect dt = π2 sect – ln sect + tan t +C = π x2 + π2 − ln 1 x2 + π2 + x + C π π x 1 dx x π π − ∫ 0 2 2 + π ⎡ π x 2 + π 2 ⎤ = ⎢π x 2 + π 2 – ln + x ⎥ ⎢ π π ⎥ ⎣ ⎦ 0 = [ 2π2 – ln( 2 +1)] – [π2 − ln1] = ( 2 –1)π2 – ln( 2 +1) ≈ 3.207 17. x2 + 2x + 5 = x2 + 2x +1+ 4 = (x +1)2 + 4 u = x + 1, du = dx dx du ∫ = ∫ u = 2 tan t, du = 2sec2 t dt 2 2 5 2 4 x x u + + + du sec t dt ln sec t tan t C u ∫ ∫ = = + + 2 1 4 + 2 u u C 1 + ln 4 = + + 2 2 2 x x x C 1 + 2 + 5 + + ln 1 = + 2 = ln x2 + 2x + 5 + x +1 +C 18. x2 + 4x + 5 = x2 + 4x + 4 +1 = (x + 2)2 +1 u = x + 2, du = dx dx du ∫ = ∫ u = tan t, du = sec2 t dt 2 4 5 2 1 x x u + + + du t dt t t C u ∫ ∫ 2 sec ln sec tan 1 = = + + + dx u 2 u C 2 ln 1 x x 4 5 = + + + + + ∫ = ln x2 + 4x + 5 + x + 2 +C 19. x2 + 2x + 5 = x2 + 2x +1+ 4 = (x +1)2 + 4 u = x + 1, du = dx x dx u du 3 3– 3 2 5 4 ∫ = ∫ 2 2 x x u + + + u du du u u ∫ ∫ 3 –3 2 2 4 4 = + + (Use the result of Problem 17.) = 3 u2 + 4 – 3ln u2 + 4 + u +C = 3 x2 + 2x + 5 – 3ln x2 + 2x + 5 + x +1 +C 20. x2 + 4x + 5 = x2 + 4x + 4 +1 = (x + 2)2 +1 u = x + 2, du = dx 2 x –1 2 u − dx 5 du x 4 x 5 u 1 ∫ = ∫ 2 2 + + + u du du u u 2 – 5 = ∫ ∫ 2 + 1 2 + 1 (Use the result of Problem 18.) = 2 u2 +1 – 5ln u2 +1 + u +C = 2 x2 + 4x + 5 – 5ln x2 + 4x + 5 + x + 2 +C 21. 5 − 4x − x2 = 9 − (4 + 4x + x2 ) = 9 − (x + 2)2 u = x + 2, du = dx ∫ 5 – 4x – x2 dx =∫ 9 – u2 du u = 3 sin t, du = 3 cos t dt 9 2 9 cos2 9 (1 cos 2 ) ∫ − u du = ∫ t dt = ∫ + t dt 2 9 1sin 2 2 2 = ⎛⎜ t + t ⎞⎟ +C ⎝ ⎠ 9( sin cos ) 2 = t + t t +C = ⎛ u ⎞ + u u +C ⎜ ⎟ 9 sin–1 1 9 – 2 2 3 2 ⎝ ⎠ x x x x C 9 sin–1 2 2 5 – 4 – 2 2 3 2 ⎛ + ⎞ + = ⎜ ⎟ + + ⎝ ⎠ 22. 16 + 6x – x2 = 25 − (9 − 6x + x2 ) = 25 – (x – 3)2 u = x – 3, du = dx dx du x x u ∫ = ∫ u = 5 sin t, du = 5 cos t 16 + 6 – 2 25 – 2 du dt t C u = ⎛ u ⎞ +C ⎜ ⎟ ∫ ∫ sin–1 25 2 = = + − 5 ⎝ ⎠ = sin–1 ⎛ x – 3 ⎞ ⎜ ⎟ +C 5 ⎝ ⎠ Instructor’s Resource Manual Section 7.4 443 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
  • 33. 23. 4x – x2 = 4 − (4 − 4x + x2 ) = 4 – (x – 2)2 u = x – 2, du = dx dx du x x u ∫ = ∫ 4 – 2 4 – 2 u = 2 sin t, du = 2 cos t dt du dt t C u = ⎛ u ⎞ +C ⎜ ⎟ ∫ ∫ sin–1 4 2 = = + − 2 ⎝ ⎠ = sin–1 ⎛ x – 2 ⎞ ⎜ ⎟ +C 2 ⎝ ⎠ 24. 4x – x2 = 4 − (4 − 4x + x2 ) = 4 – (x – 2)2 u = x – 2, du = dx x u + dx 2 du x x u ∫ = ∫ 2 2 4 – 4– u du du u u – – 2 = ∫ + ∫ 4 – 2 4 – 2 (Use the result of Problem 23.) – 4 – 2 2sin–1 = u + ⎛ u ⎞ +C ⎜ ⎟ 2 ⎝ ⎠ = – 4 x – x 2 + 2sin–1 ⎛ x – 2 ⎞ ⎜ ⎟ + C 2 ⎝ ⎠ 25. x2 + 2x + 2 = x2 + 2x +1+1 = (x +1)2 +1 u = x + 1, du = dx x dx u du 2 + 1 2 –1 2 2 1 ∫ = 2 ∫ + + 2 + x x u u du du u u 2 – 1 1 = ∫ 2 ∫ + 2 + = ln u2 +1 – tan–1 u +C = ln (x2 + 2x + 2)− tan−1(x +1) +C 26. x2 – 6x +18 = x2 – 6x + 9 + 9 = (x – 3)2 + 9 u = x – 3, du = dx x dx u du 2 –1 2 5 –6 18 9 ∫ = 2 ∫ + 2 + x x u + 2 u du 5 du u u + + ∫ ∫ ln ( 2 9) 5 tan 1 = + 2 2 9 9 = u + + − ⎛ u ⎞ +C ⎜ ⎟ 3 3 ⎝ ⎠ ln ( 2 6 18) 5 tan 1 3 = x − x + + − ⎛ x − ⎞ +C ⎜ ⎟ 3 3 ⎝ ⎠ 27. 2 ⎛ ⎞ 1 0 2 1 2 5 ⎝ + + ⎠ ∫ V dx = π ⎜ ⎟ x x 2 ⎡ ⎤ 1 1 0 2 ∫ = π ⎢ ⎥ x ( 1) 4 dx ⎢⎣ + + ⎥⎦ x + 1 = 2 tan t, dx = 2sec2 t dt 1 2sec 4sec π ⎛ ⎞ / 4 2 tan (1/ 2) 2 ⎝ ⎠ ∫ V tdt = π –1 ⎜ ⎟ 2 t 1 t dt π π π π = ∫ –1 / 4 tan –1 (1/ 2) 2 8 sec dt t / 4 cos 2 tan (1/ 2) = ∫ 8 t dt π π ⎛ ⎞ = ⎜ + ⎟ / 4 tan (1/ 2) ∫ –1 ⎝ ⎠ 1 1cos 2 8 2 2 / 4 –1 π ⎡ ⎤π = ⎢ + ⎥ ⎣ ⎦ tan (1/ 2) 1 1sin 2 8 2 4 t t / 4 t t t π –1 tan (1/ 2) 1 1sin cos 8 2 2 π ⎡ ⎤ = ⎢ + ⎥ ⎣ ⎦ 1 – 1 tan–1 1 1 π π = ⎡⎛ + ⎞ ⎛ ⎢⎜ ⎟ ⎜ + ⎞⎤ 8 ⎣⎝ 8 4 ⎠ ⎝ 2 2 5 ⎠⎦ ⎟⎥ 1 – tan–1 1 0.082811 π ⎛ π ⎞ = ⎜ + ⎟ ≈ 16 10 4 2 ⎝ ⎠ 2 1 28. 1 + + ∫ 1 0 2 V xdx 0 2 x x 2 5 = π 2 x dx ∫ ( x + 1) + 4 1 1 0 2 0 2 = π x dx dx x x + 2 1 – 2 1 + + + + ∫ ∫ = π π ( 1) 4 ( 1) 4 1 1 x x 2 1 ln[( 1) 4] – 2 1 tan 1 ⎡ ⎡ = π + 2 + ⎤ π –1 ⎛ + ⎞⎤ ⎜ ⎣ ⎢ 2 ⎥ ⎦ ⎢ ⎣ 2 ⎝ 2 ⎠⎦ ⎟⎥ [ln8 – ln 5] – tan–11– tan–1 1 0 0 = π π ⎡ ⎤ ⎢⎣ 2 ⎥⎦ ln 8 – tan–1 1 0.465751 5 4 2 ⎛ π ⎞ = π⎜ + ⎟ ≈ ⎝ ⎠ 29. a. u = x2 + 9, du = 2x dx xdx du u C x u ∫ 2 ∫ + 1 ln 2 9 1 ln ( 2 9) 2 2 1 1ln = = + 9 2 2 = x + +C = x + +C b. x = 3 tan t, dx = 3sec2 t dt xdx t dt x ∫ ∫ tan = – ln cost +C 2 + 9 = ⎛ ⎞ ln 3 ln 3 = − + = − ⎜ ⎟ + C C 2 1 2 1 + ⎜ + ⎟ ⎝ ⎠ x x 9 9 = ln ⎛⎜ x 2 + 9 ⎞⎟ − ln 3 + C1 ⎝ ⎠ = ln ((x2 + 9)1/ 2 )+C 1 ln ( 2 9) = x + +C 2 444 Section 7.4 Instructor’s Resource Manual © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
  • 34. 30. u = 9 + x2 , u2 = 9 + x2 , 2u du = 2x dx 3 3 3 2 3 2 2 0 2 0 2 3 x dx x u − x dx 9 udu ∫ = ∫ = ∫ x x u 9 9 + + 3 2 ⎡ 3 2 ⎤ 3 2 u du u u 3 ∫ ≈ 5.272 ( 9) – 9 18 – 9 2 = − = ⎢ ⎥ = 3 3 ⎢⎣ ⎥⎦ 31. a. u = 4 – x2 , u2 = 4 – x2 , 2u du = –2x dx 2 2 2 x dx x x dx u du x x u 4 – 4 − – ∫ = ∫ = ∫ 2 2 4 – 2 2 2 u du du du u u 4 4 4 1 4 4 − + − − − ∫ ∫ ∫ 4 1 ln 2 = =− + u + u C u = − ⋅ + + 4 2 − 2 x x 2 C x − + ln 4 2 4 = − + − + 2 4 − − 2 b. x = 2 sin t, dx = 2 cos t dt 4 – 2 cos2 2 x dx t dt x sin t ∫ = ∫ (1– sin2 ) 2 = ∫ sin = 2∫csct dt – 2∫sin t dt = 2ln csct − cot t + 2cos t + C t dt t 2 − 2ln 2 4 x 4 x2 C = − + − + x x 2 − − 2ln 2 4 x 4 x2 C = + − + x To reconcile the answers, note that 2 2 2 2 x x x x − + − − ln 4 2 ln 4 2 − = 4 − − 2 4 − + 2 2 2 x − − ln ( 4 2) ( 4 x 2 2)( 4 x 2 2) = − + − − 2 2 2 2 x x (2 − 4 − ln ) ln (2 − 4 − ) = = 2 2 x x 4 4 − − − 2 ⎛ − − ⎞ − − = ⎜ ⎟ = 2 4 2 2 4 2 ln x 2ln x x x ⎜ ⎟ ⎝ ⎠ 32. The equation of the circle with center (–a, 0) is (x + a)2 + y2 = b2 , so y = ± b2 – (x + a)2 . By symmetry, the area of the overlap is four times the area of the region bounded by x = 0, y = 0, and y = b2 – (x + a)2 dx . A = 4 ∫ b – a b 2 –( x + a ) 2 dx 0 x + a = b sin t, dx = b cos t dt / 2 2 2 sin ( / ) A b tdt π = ∫ 4 cos –1 a b b tdt π 2 / 2 sin ( / ) = ∫ + 2 (1 cos 2 ) –1 a b b t t π / 2 = ⎡ + ⎤ ⎢⎣ ⎥⎦ 2 –1 a b 2 2 1 sin 2 sin ( / ) b t t tπ 2 /2 –1 2 [ sin cos ] a b sin ( / ) = + ⎡π ⎛ ⎛ a ⎞ a b 2 – a 2 ⎞⎤ = 2 b 2 ⎢ – ⎜ sin–1 ⎢ 2 ⎜ ⎜ ⎟ + ⎟⎥ ⎝ ⎝ b ⎠ b b ⎟⎥ ⎣ ⎠⎦ b2 – 2b2 sin–1 a – 2a b2 – a2 = π ⎛ ⎞ ⎜ ⎟ b ⎝ ⎠ 33. a. The coordinate of C is (0, –a). The lower arc of the lune lies on the circle given by the equation x2 + ( y + a)2 = 2a2 or y = ± 2a2 – x2 – a. The upper arc of the lune lies on the circle given by the equation x2 + y2 = a2 or y = ± a2 – x2 . – – 2 – – a a a a A = a 2 x 2 dx ⎛⎜ a 2 x 2 a ⎞⎟ dx ∫ ∫ – – ⎝ ⎠ – – 2 – 2 a a a a 2 2 2 2 2 = ∫ a x dx ∫ a x dx + a – – Note that 2 2 – a a ∫ a x dx is the area of a – semicircle with radius a, so 2 a 2 x 2 dx a a a ∫ = – For 2 2 π – . 2 2 – , a a ∫ a x dx let – x = 2a sin t, dx = 2a cos t dt 2 – 2 cos a a a 2 x 2 dx π / 4 a 2 2 tdt π ∫ = ∫ – –/ 4 2 π / 4 1 π / 4 (1 cos 2 ) 2 sin 2 – π /4 – π / 4 = a ∫ + tdt = a ⎡ ⎢⎣ t + t ⎤ 2 ⎥⎦ 2 2 a a π = + 2 2 2 – 2 2 2 2 2 2 π ⎛ π ⎞ = ⎜⎜ + ⎟⎟ + = A a a a a a ⎝ ⎠ Thus, the area of the lune is equal to the area of the square. Instructor’s Resource Manual Section 7.4 445 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
  • 35. b. Without using calculus, consider the following labels on the figure. Area of the lune = Area of the semicircle of radius a at O + Area (ΔABC) – Area of the sector ABC. 1 2 2 – 1 ( 2 )2 2 2 2 ⎛ π ⎞ = π + ⎜ ⎟ A a a a ⎝ ⎠ 1 2 2 – 1 2 2 2 2 = πa + a πa = a Note that since BC has length 2a, the π measure of angle OCB is , 4 so the measure π of angle ACB is . 2 34. Using reasoning similar to Problem 33 b, the area is a a b a a b 1 1 (2 ) – – 1 2sin 2 2 2 1 – – sin . 2 π + ⎛ ⎞ ⎜ ⎟ 2 2 2 –1 2 ⎝ ⎠ a 2 a b 2 a 2 b 2 –1 a b b = π + 35. 2 – 2 dy – a x dx x = ; 2 – 2 y – a x dx x = ∫ x = a sin t, dx = a cos t dt cos cos2 – cos – y a t a t dt a t dt = ∫ = ∫ a sin t sin t 1– sin2 – (sin – csc ) a t dt a t t dt = ∫ = sin t ∫ = a (– cos t − ln csct − cot t ) +C 2 cos t = a – x 2 2 2 , csct = a , cot t = a – x a x x ⎛ − ⎞ = ⎜ − − ⎟ + 2 – 2 2 2 y a – a x ln a a x C ⎜ a x x ⎟ ⎝ ⎠ 2 2 a2 x2 a − a ln a − x C = − − − + x Since y = 0 when x = a, 0 = 0 – a ln 1 + C, so C = 0. 2 2 y – a2 x2 a ln a a – x x − = − − 7.5 Concepts Review 1. proper 2. –1 5 1 x x + + 3. a = 2; b = 3; c = –1 A B Cx + D x x x 4. + + –1 ( –1)2 2 + 1 Problem Set 7.5 1. 1 A B = + xx x x ( + 1) + 1 1 = A(x + 1) + Bx A = 1, B = –1 1 1 – 1 ( 1) 1 + + ∫ ∫ ∫ = ln x – ln x +1 + C dx = dx dx x x x x 2. 2 A B 2 = 2 = + 3 ( 3) 3 x x x x x x + + + 2 = A(x + 3) + Bx 2 , – 2 3 3 A = B = ∫ 2 ∫ ∫ + + 2 ln – 2 ln 3 3 3 dx dx B dx 2 = 2 1 – 2 3 3 3 3 x x x x = x x + + C A B 3 3 –1 ( 1)( –1) 1 –1 3. 2 = = + x x + x x + x 3 = A(x – 1) + B(x + 1) – 3 , 3 2 2 A = B = 3 – 3 1 3 1 –1 2 1 2 –1 ∫ 2 ∫ ∫ + – 3 ln 1 3 ln –1 dx = dx + dx x x x = x + + x + C 2 2 446 Section 7.5 Instructor’s Resource Manual © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
  • 36. x x 5 5 5 4. 3 2 2 = = x x x x x x 2 + 6 2 ( + 3) 2 ( + 3) 3 A B x x = + + 5 ( 3) 2 = A x + + Bx 5 , – 5 6 6 A = B = x dx dx 5 5 1 – 5 1 ∫ = x 3 + x 2 ∫ x ∫ x + 5 ln – 5 ln 3 6 6 2 6 6 6 3 = x x + +C x x A B x x x x x x 5. 2 11 11 3 4 ( 4)( 1) 4 1 − − = = + + − + − + − x – 11 = A(x – 1) + B(x + 4) A =3, B = –2 x dx dx dx x x x x ∫ 2 ∫ ∫ + − + − = 3ln x + 4 − 2ln x −1 + C 11 3 1 2 1 3 4 4 1 − = − x x A B x x x x x x 6. 2 – 7 = – 7 = + – –12 ( – 4)( + 3) – 4 + 3 x – 7 = A(x + 3) + B(x – 4) – 3 , 10 7 7 A = B = x dx dx dx x x x x ∫ 2 ∫ ∫ + – 3 ln – 4 10 ln 3 – 7 = – 3 1 + 10 1 – –12 7 – 4 7 3 = x + x + +C 7 7 7. 2 x x A B 3 − 13 3 − = 13 = + 3 10 ( 5)( 2) 5 2 x x x x x x + − + − + − 3x −13 = A(x − 2) + B(x + 5) A = 4, B = –1 ∫ x − dx 4 1 1 2 + − 3 13 3 10 x x + − ∫ ∫ dx dx = − x x 5 2 = 4ln x + 5 − ln x − 2 +C x x + π + π 8. = 2 – 3 2 2 ( – 2 )( – ) x x x x A B x x = + π + π π π – 2 – π π x +π = A(x −π ) + B(x − 2π ) A = 3, B = –2 x + π dx dx dx ∫ 2 π + π 2 ∫ ∫ π π = 3ln x – 2π – 2ln x – π + C 3 – 2 = x x x x – 3 2 – 2 – x x x x x x 2 21 2 21 2 9 – 5 (2 –1)( 5) 9. 2 + + = A B x x = + + + 2 –1 + 5 2x + 21 = A(x + 5) + B(2x – 1) A = 4, B = –1 x dx dx dx x x x x 2 21 4 – 1 2 9 – 5 2 –1 5 ∫ 2 ∫ ∫ + + = 2ln 2x –1 – ln x + 5 +C + = 10. 2 2 2 2 x x x x x x x x x 2 − − 20 2( + − 6)− 3 − 8 = 6 6 + − + − x x x 2 3 8 2 6 + = − + − x x x x x x 3 8 3 8 2 + + = A B x x = + + − + − 3 2 6 ( 3)( 2) + − 3x + 8 = A(x – 2) + B(x + 3) 1 , 14 5 5 A = B = 2 2 x x dx x x 2 20 6 − − + − ∫ 2 1 1 14 1 + − ∫ ∫ ∫ 2 1 ln 3 14 ln 2 dx dx dx = − − x x 5 3 5 2 = x − x + − x − +C 5 5 x x x x x x 17 – 3 17 – 3 3 – 2 (3 – 2)( 1) 11. 2 = A B x x = + + + 3 – 2 + 1 17x – 3 = A(x + 1) + B(3x – 2) A = 5, B = 4 x dx dx dx x x x x + + ∫ ∫ ∫ 5 ln 3 – 2 4ln 1 17 – 3 = 5 + 4 3 2 – 2 3 – 2 1 = x + x + +C 3 Instructor’s Resource Manual Section 7.5 447 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
  • 37. 12. 2 x x 5 – 5 – = x x x x – ( 4) 4 ( – )( – 4) A B x x = + π + + π π – π – 4 5 – x = A(x – 4) + B(x – π ) 5 – π , 1 –4 4– A B = = π π ∫ 2 ∫ ∫ 5 – ln – 1 ln – 4 − π + + π π π π x dx dx dx 5 – 5 – π = 1 + 1 1 ( 4) 4 – 4 – 4 – – 4 x x x x x x C π = π + + π π – 4 4 – 13. 2 2 3 2 x x x x x x x x x x 2 + − 4 2 + − 4 = A B C x x x = + + − − + − 1 2 2 ( 1)( 2) + − 2x2 + x − 4 = A(x +1)(x − 2) + Bx(x − 2) + Cx(x +1) A = 2, B = –1, C = 1 2 3 2 2 x + x − 4 dx 2 dx 1 dx 1 dx x x x x x x ∫ = ∫ − ∫ + ∫ = 2ln x − ln x +1 + ln x − 2 + C − − + − 2 1 2 14. 7 2 2 – 3 x + x A B C = + + x x x x x x (2 –1)(3 + 2)( – 3) 2 –1 3 + 2 – 3 7x2 + 2x – 3 = A(3x + 2)(x – 3) + B(2x –1)(x – 3) +C(2x –1)(3x + 2) 1 , – 1 , 6 35 7 5 A = B = C = 7 2 2 – 3 1 1 1 1 6 1 – x + x dx dx dx dx ∫ = ∫ ∫ + ∫ + + 1 ln 2 –1 – 1 ln 3 2 6 ln – 3 70 21 5 x x x x x x (2 –1)(3 2)( – 3) 35 2 –1 7 3 2 5 – 3 = x x + + x +C 15. 2 2 x x x x x x x x x x 6 + 22 − 23 + − = 6 22 23 (2 1)( 2 6) (2 1)( 3)( 2) A B C x x x = + + − + − − + − 2 − 1 + 3 − 2 6x2 + 22x − 23 = A(x + 3)(x − 2) + B(2x −1)(x − 2) + C(2x −1)(x + 3) A = 2, B = –1, C = 3 2 x x dx dx dx dx x x x x x x 6 + 22 − 23 2 1 3 (2 1)( 6) 2 1 3 2 ∫ = ∫ − ∫ + ∫ = ln 2x −1 − ln x + 3 + 3ln x − 2 + C − 2 + − − + − 16. 3 2 3 2 x x x x x x 6 11 6 − + − − + − 4 28 56 32 3 2 3 2 ⎛ − + − ⎞ x x x x x x 1 6 11 6 4 7 14 8 = ⎜⎜ ⎟⎟ ⎝ − + − ⎠ 2 ⎛ − + ⎞ x x 1 1 3 2 4 7 14 8 = ⎜⎜ + ⎝ x 3 ⎟⎟ − x 2 + x − ⎠ ⎛ − − ⎞ x x x x x 1 1 ( 1)( 2) 4 ( 1)( 2)( 4) = ⎜ + ⎟ ⎝ − − − ⎠ 1 1 1 4 x 4 = ⎛ + ⎞ ⎜ − ⎟ ⎝ ⎠ 3 2 3 2 x x x dx x x x ∫ – 6 + 11 – 6 1 1 1 + 4 –28 56 –32 = ∫ dx + ∫ dx 1 1ln – 4 x 4 4 –4 = x + x +C 4 4 448 Section 7.5 Instructor’s Resource Manual © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
  • 38. 17. 3 x x x –1 3 – 2 = + 2 2 x x x x –2 –2 + + 3 x –2 = 3 x –2 = A + B x 2 x x x x x – 2 ( 2)( –1) 2 –1 + + + 3x – 2 = A(x – 1) + B(x + 2) 8 , 1 3 3 A = B = 3 x dx ∫ ( 1) 8 1 1 1 x 2 + x – 2 ∫ x dx ∫ dx ∫ dx 1 2 – 8 ln 2 1 ln –1 + − = − + + x x 3 2 3 1 = x x + x + + x +C 2 3 3 18. 3 2 2 x x x x x x x x – 4 14 24 + + = + 5 6 ( 3)( 2) + + + + 14 x + 24 = A + B ( x 3)( x 2) x 3 x 2 + + + + 14x + 24 = A(x + 2) + B(x + 3) A = 18, B = –4 3 2 2 5 6 x x dx x x + + + ∫ ( 4) 18 – 4 ∫ x dx ∫ dx ∫ dx 1 2 4 18ln 3 – 4ln 2 + + x x 3 2 = − + = x − x + x + x + +C 2 19. 4 2 2 3 x x x x x x x x x 8 8 12 8 4 ( 2)( – 2) + + + = + − + 12 x 2 + 8 = A + B + C ( 2)( – 2) 2 – 2 x x + x x x + x 12x2 + 8 = A(x + 2)(x – 2) + Bx(x – 2) + Cx(x + 2) A = –2, B = 7, C = 7 4 2 3 x x dx x dx dx dx dx x x x x x + ∫ ∫ ∫ ∫ ∫ 1 2 – 2ln 7ln 2 7 ln – 2 8 8 – 2 1 7 1 7 1 – 4 2 – 2 + + = + + = x x + x + + x +C 2 20. 6 3 2 x x x x x x x x x x 4 4 4 16 68 272 4 – 4 – 4 + + + 3 2 = + + + + 3 2 3 2 2 x A B C 272 + 4 = + + x 2 ( x – 4) x x 2 x – 4 272x2 + 4 = Ax(x – 4) + B(x – 4) +Cx2 – 1 , –1, 1089 4 4 A = B = C = 6 3 3 2 x 4 x 4 dx x – 4 x ( 4 16 68) – 1 1 – 1 1089 1 + + ∫ 3 2 − ∫ ∫ ∫ ∫ x x x dx dx dx dx = + + + + 2 x x x 4 4 4 1 4 4 3 8 2 68 – 1 ln 1 1089 ln – 4 4 3 4 4 x x x x x x C = + + + + + + x x + 1 A B x x x 21. = + 2 2 ( 3) 3 ( 3) − − − x + 1 = A(x – 3) + B A = 1, B = 4 x dx dx dx x x x ∫ + 1 = ∫ 1 + ∫ 4 ln 3 4 − 2 − − 2 ( 3) 3 ( 3) x C = − − + 3 x − Instructor’s Resource Manual Section 7.5 449 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
  • 39. x x A B 5 + 7 5 + 7 4 4 ( 2) 2 ( 2) 22. = = + 2 2 2 x x x x x + + + + + 5x + 7 = A(x + 2) + B A = 5, B = –3 x dx dx dx + + + + ∫ ∫ ∫ 5ln 2 3 5 + 7 = 5 − 3 4 4 2 ( 2) 2 2 x x x x x C = + + + 2 x + x x 3 + 2 3 + 2 3 3 1 ( 1) 23. = 3 2 3 A B C x x x = + + + + + + 1 ( 1)2 ( 1)3 x x x x + + + 3x + 2 = A(x +1)2 + B(x +1) +C A = 0, B = 3, C = –1 x dx dx dx C 3 + 2 3 1 3 1 3 3 1 ( 1) ( 1) 1 2( 1) + + + + + + + ∫ ∫ ∫ = − = − + + 3 2 2 3 2 x x x x x x x 24. 6 x A B C D E F G = + + + + + + ( x – 2)2 (1– x )5 x – 2 ( x – 2)2 1– x (1– x )2 (1– x )3 (1– x )4 (1– x )5 A = 128, B = –64, C = 129, D = –72, E = 30, F = –8, G = 1 6 2 5 2 2 3 4 5 ⎡ ⎤ x dx 128 – 64 129 – 72 30 8 1 dx ∫ ∫ = ⎢ + + − + ⎥ x x x x x x x x x ( – 2) (1– ) – 2 ( – 2) 1– (1– ) (1– ) (1– ) (1– ) ⎢⎣ ⎥⎦ 128ln – 2 64 –129ln 1– 72 15 8 1 x x C = + + − + − + 2 3 4 x x x x x – 2 1– (1– ) 3(1– ) 4(1– ) 25. 2 2 3 2 2 2 x x x x A B C x x x x x x x x 3 − 21 + 32 3 − 21 + 32 = = + + 8 16 ( 4) 4 ( 4) − + − − − 3x2 − 21x + 32 = A(x − 4)2 + Bx(x − 4) + Cx A = 2, B = 1, C = –1 2 3 2 2 x x dx dx dx dx x x x x x ∫ 3 − 21 + 32 = ∫ 2 + ∫ 1 − ∫ 1 2ln ln 4 1 − + − − 8 16 4 ( 4) x x C = + − + + 4 x − 26. 2 2 x x x x x x x x + 19 + 10 + 19 + = 10 2 4 5 3 3 (2 5) A B C D x x x x = + + + + + 2 3 2 + 5 A = –1, B = 3, C = 2, D = 2 2 x + 19 x + 10 ⎛ 1 3 2 2 ⎞ dx – dx 2 x 5 x x x x 2 x 5 – ln x – 3 – 1 ln 2x 5 C ∫ = 4 3 ∫ ⎜ + + + + ⎝ 2 3 + ⎟ ⎠ 2 = + + + x x 27. 2 2 3 2 2 x x x x A BxC x x x x x x 2 –8 2 –8 + + + = = + 4 ( 4) 4 + + + A = –2, B = 4, C = 1 2 3 2 x x dx dx x dx x x x x 2 + – 8 –2 1 4 + 1 dx x dx dx x x x 2 1 2 2 1 + + ∫ ∫ ∫ ∫ = ∫ + ∫ + + 2 2 4 4 = − + + 4 4 = –2ln x + 2ln x 2 + 4 + 1 tan–1 ⎛ x ⎞ ⎜ ⎟ +C 2 2 ⎝ ⎠ 450 Section 7.5 Instructor’s Resource Manual © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
  • 40. x x 3 + 2 3 + 2 ( 2) 16 ( 4 20) 28. = 2 2 A Bx + C x x x = + + + + + 2 4 20 x x x x x x + + 1 , – 1 , 13 10 10 5 A = B = C = x dx 3 + 2 ( 2) 16 ∫ + 2 + xx x 1 x 13 10 5 2 1 1 – + 10 4 20 1 1 14 1 10 5 ( 2) 16 + + ∫ ∫ 2 dx dx x x x = + x dx 1 2 4 20 4 20 + + ∫ ∫ 2 dx dx x x = + + + + ∫ x x − x x 1 ln 7 tan–1 2 10 10 4 ⎛ + ⎞ = + ⎜ ⎟ ⎝ ⎠ – 1 ln 2 4 20 20 x + x + +C 29. 2 x x A Bx C x x x x 2 –3 –36 + = + (2 − 1)( 2 + 9) 2 –1 2 + 9 A = –4, B = 3, C = 0 2 x x dx dx x dx x x x x 2 – 3 – 36 –4 1 3 (2 –1)( 9) 2 –1 9 ∫ = ∫ + ∫ –2ln 2 –1 3 ln 2 9 2 + 2 + = x + x + +C 2 1 1 x –16 (x 2)(x 2)(x 4) 30. = 4 2 − + + A B Cx + D x x x = + + – 2 + 2 2 + 4 1 , – 1 , 0, – 1 32 32 8 A = B = C = D = = x x + ⎛ x ⎞ +C ⎜ ⎟ + + ∫ ∫ ∫ ∫ 1 ln – 2 – 1 ln 2 – 1 tan–1 1 1 1 – 1 1 1 1 –16 32 – 2 32 2 8 4 dx = dx dx − dx 4 2 x x x x 32 32 16 2 ⎝ ⎠ 1 A B C D 31. = + + + 2 2 2 2 x x x x x x ( –1) ( + 4) –1 ( –1) + 4 ( + 4) – 2 , 1 , 2 , 1 125 25 125 25 A = B = C = D = 1 – 2 1 1 1 2 1 1 1 + + + ∫ ∫ ∫ ∫ ∫ – 2 ln –1 – 1 2 ln 4 – 1 dx = dx + dx + dx + dx 2 2 2 2 x x x x x x ( –1) ( 4) 125 –1 25 ( –1) 125 4 25 ( 4) x x C = + + + x x 125 25( –1) 125 25( + 4) 32. 3 2 2 x x x x x x x x x x – 8 –1 + = 1 + –7 7 –16 2 2 ( + 3)( –4 + 5) ( + 3)( − 4 + 5) 2 2 2 x x A Bx C –7 + 7 –16 + = + ( x 3)( x – 4 x 5) x 3 x – 4 x 5 + + + + – 50 , – 41, 14 A = B = C = 13 13 13 3 2 41 14 ⎡ ⎛ ⎞ + ⎤ = ⎢ ⎜ ⎟ + ⎥ + + ⎢⎣ ⎝ + ⎠ + ⎥⎦ x – 8 x –1 – x dx 1– 50 1 13 13 dx x x x x x x ∫ ∫ 2 2 ( 3)( – 4 5) 13 3 – 4 5 dx dx dx x dx 50 1 68 1 41 2 4 13 3 13 ( 2) 1 26 4 5 + − + − + ∫ ∫ ∫ ∫ – 50 ln 3 – 68 tan–1( – 2) – 41 ln 2 – 4 5 = − − − 2 2 − x x x x = x x + x x x + +C 13 13 26 Instructor’s Resource Manual Section 7.5 451 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
  • 41. 33. x = sin t, dx = cos t dt 3 2 3 2 t t t dt x x dx t t t x x x (sin − 8sin − 1) cos − 8 − 1 (sin 3)(sin 4sin 5) ( 3)( 4 5) ∫ = 2 ∫ + − + + 2 − + 50 ln 3 68 tan 1( 2) 41 ln 2 4 5 13 13 26 = x − x + − − x − − x − x + + C which is the result of Problem 32. 3 2 t t t dt t t t t t C t t t (sin – 8sin –1) cos sin – 50 ln sin 3 – 68 tan –1 (sin – 2) – 41 ln sin 2 – 4sin 5 (sin 3)(sin – 4sin 5) 13 13 26 ∫ + 2 + = + + + 34. x = sin t, dx = cos t dt t dt dx x x x C t x cos 1 1 ln 2 1 ln 2 1 tan sin 16 16 32 32 16 2 = = − − + − − 1 ⎛ ⎞ ⎜ ⎟ + ∫ 4 ∫ − 4 − ⎝ ⎠ which is the result of Problem 30. t dt t t t C t cos 1 ln sin – 2 – 1 ln sin 2 – 1 tan sin sin –16 32 32 16 2 = + –1 ⎛ ⎞ ⎜ ⎟ + ∫ 4 ⎝ ⎠ 35. 3 2 2 2 2 2 x – 4 x + + = Ax B + Cx D x x x ( + 1) + 1 ( + 1) A = 1, B = 0, C = –5, D = 0 3 2 2 2 2 2 x – 4 x dx x dx 5 x dx x x x 1 ln 1 5 2 2( 1) ∫ = ∫ − ∫ 2 + + + ( 1) 1 ( 1) x C = + + + 2 x + 36. x = cos t, dx = –sin t dt 2 2 2 4 2 4 t t dt x dx (sin )(4cos –1) – 4 –1 ∫ = ∫ + + + + t t t x x x (cos )(1 2cos cos ) (1 2 ) 2 2 2 4 2 2 2 2 2 x x A BxC DxE 4 − 1 4 − 1 + + = = + + (1 2 ) ( 1) 1 ( 1) x x x x x x x x + + + + + A = –1, B = 1, C = 0, D = 5, E = 0 ⎡ ⎤ − ⎢− + + ⎥ = − + + + ⎢⎣ + + ⎥⎦ + x x dx x x C 1 5 ln 1 ln 1 5 ln cos 1 ln cos 1 5 ∫ 2 2 2 2 2 2 x x x x 1 ( 1) 2 2( 1) t t C = − + + + 2 2 2(cos t + 1) 37. 3 2 2 5 3 4 2 x x x x x x x x x xx x 2 + 5 + 16 (2 + 5 + 16) = 8 16 ( 8 16) + + + + 2 2 2 2 2 2 x x Ax B Cx D x x x 2 + 5 + 16 + + ( 4) 4 ( 4) = = + + + + A = 0, B = 2, C = 5, D = 8 3 2 5 3 2 2 2 x x x dx dx x dx x x x x x 2 + 5 + 16 2 5 + 8 dx x dx dx 2 5 8 4 ( 4) ( 4) ∫ = ∫ + ∫ + + + + 2 2 2 2 2 8 16 4 ( 4) + + + ∫ ∫ ∫ = + + x x x 8 , x + ∫ let x = 2 tan θ, dx = 2sec2θ dθ . To integrate 2 2 ( 4) dx 2 8 16sec θ ∫ dx = ∫ d cos2 1 1 cos 2 2 + 2 4 x ( 4) 16sec θ θ = θ dθ = ⎛⎜ + θ ⎞⎟ dθ ∫ ∫ ⎝ 2 2 ⎠ 1 1 sin 2 1 1 sin cos 2 4 2 2 x x C 1 tan 2 2 4 = θ + θ +C = θ + θ θ +C –1 = + + 2 x + 3 2 x x x dx x x x C x x x x x 2 5 16 tan – 5 1 tan x x C 3 tan 2 – 5 2 2 2( 4) ∫ –1 –1 –1 + + + + + + = + + + 5 3 2 2 8 16 2 2( 4) 2 2 4 = + + 2 x + 452 Section 7.5 Instructor’s Resource Manual © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
  • 42. x x A B x x x x x x 38. 2 –17 = –17 = + –12 ( 4)( – 3) 4 – 3 + + + A = 3, B = –2 6 6 4 2 4 x dx dx x x x x –17 3 – 2 –12 4 – 3 = ⎛ ⎞ ⎜ + ⎟ + ⎝ ⎠ ∫ ∫ 6 4 = ⎡⎣3ln x + 4 – 2ln x – 3 ⎤⎦ = (3ln10 – 2ln 3) – (3ln8 – 2ln1) = 3ln10 – 2ln 3 – 3ln8 ≈ –1.53 39. u = sin θ, du = cos θ dθ cos θ 1 ∫ / 4 d ∫ 1/ 2 du 1/ 2 0 2 2 + 2 0 2 2 + 2 u u θ = (1– sin θ )(sin θ 1) (1– )( 1) π 1 + + ∫ 0 2 2 u u u (1 – )(1 )( 1) du = 1 A B Cu + D Eu + F = + + + 2 2 2 2 2 2 u u u u u u (1– )( + 1) 1– 1 + + 1 ( + 1) 1 , 1 , 0, 1 , 0, 1 8 8 4 2 A = B = C = D = E = F = 1/ 2 1 1 1/ 2 1 1 1/ 2 1 1 1/ 2 1 1 1/ 2 1 0 2 2 2 0 0 0 2 0 2 2 − + − + + + ∫ ∫ ∫ ∫ ∫ du = du + du + du + du u u u u u u (1 )( 1) 8 1 8 1 4 1 2 ( 1) 1/ 2 ⎡ ⎛ ⎞⎤ = ⎢ – 1 ln 1– u + 1 ln 1 + u + 1 tan –1 u + 1 ⎜ tan –1 u + u ⎣ 8 8 4 4 ⎝ 2 ⎟⎥ + 1 ⎠⎦ 0 u 1/ 2 ⎡ + = 1 ln 1 u 1 ⎢ + tan –1 u + u ⎤ ⎥ ⎢⎣ 8 1 − u 2 4( u 2 + 1) ⎥⎦ 0 1 2 + ln 1 1 tan–1 1 1 0.65 8 2 1 2 2 6 2 = + + ≈ − 1 , u + ∫ let u = tan t.) (To integrate 2 2 ( 1) du x x x x x x 3 13 3 13 4 3 ( 3)( 1) 40. 2 + + = A B x x = + + + + + + 3 + 1 A = –2, B = 5 5 5 1 2 1 x dx x x x x 3 + 13 –2ln 3 5ln 1 4 3 ∫ = ⎡⎣ + + + ⎤⎦ = –2 ln 8 + 5 ln 6 + 2 ln 4 – 5 ln 2 = 5ln 3− 2ln 2 ≈ 4.11 + + 41. dy y(1 y) dt = − so that ∫ dy ∫ dt t C − a. Using partial fractions: 1 1 1 (1 ) y y = = + A B A y By 1 (1 − ) + (1 ) 1 (1 ) = + = ⇒ y y y y y y − − − ( ) 1 0 1, 0 1, 1 1 1 1 + − = + ⇒ = − = ⇒ = = ⇒ = + y (1 y ) y 1 y A B Ay y A B A A B − − ⎛ ⎞ ⎛ ⎞ y y y + = ⎜ + ⎟ = ⎝ − ⎠ ∫ ln ln(1 ) ln t C dy Thus: 1 1 1 y 1 y − − = ⎜ ⎟ ⎝ 1 − y ⎠ so that y e Ce y t C t = 1 = + 1 ( C1 ) C = e − y t e or 1 ( ) C t t e = + (0) 0.5, 0.5 1 or 1 y = = C = Since 1 1 C + y t e ; thus ( ) = + 1 t t e b. 3 3 (3) 0.953 y e = ≈ 1 e + Instructor’s Resource Manual Section 7.5 453 © 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.