SlideShare una empresa de Scribd logo
1 de 6
UNIDAD 2. RECURSOS DE LA NATURALEZA

2. ATMOSFERA

El ambiente está constituido por biosfera (seres vivos), atmósfera (gases) e hidrosfera (ríos, océanos, mares y lagos). La relación de masa es 1:300:
69.100. La atmósfera es la capa gaseosa que envuelve la tierra y se extiende alrededor de unos 1000 Km por encima de la superficie terrestre,
actuando como un acumulador y regulador de la energía que recibimos del sol. Sin la atmósfera no fuera posible sobre la tierra, la vida tal como hoy
existe.

2.1 PROPIEDADES DE LA ATMOSFERA

A causa de la refracción que experimenta la luz en las moléculas de la atmósfera, marchando en todas direcciones, se originan los fenómenos de
iluminación como los conocemos en la superficie de la tierra. A no ser por la atmósfera, el tránsito del día a la noche sería instantáneo. La atmósfera
sirve de protección contra los meteoritos que a causa de la gran velocidad con que atraviesan el aire, se calientan y estallan convirtiéndose en polvo
cósmico, llegando muy pocos a la superficie de la tierra. La atmósfera también funciona como reguladora del calor solar, pues absorbe 6/10 partes, las
cuatro restantes llegan a la superficie, la calienta y son indispensables fuentes de vida.

2.2 COMPOSICION

En la atmósfera primitiva sería lógico hallar numerosos compuestos de Hidrogeno, ya que este elemento es el mayor constituyente del universo y muy
común en el espacio. La abundancia de los gases de Hidrógeno en la atmósfera de los grandes planetas, en la de Júpiter, por ejemplo, sugiere que
este gas debió ser común en la primitiva atmósfera terrestre. Se plantea la hipótesis de que la vida se originó en una atmósfera de naturaleza
reductora. El paso de la atmósfera primitiva a un segundo tipo de aire implica la formación de cantidades relativamente grandes de Oxígeno libre. Este
elemento es esencial para los procesos vitales de numerosas reacciones oxidativas que tienen lugar hoy en la tierra. El aumento de oxígeno destruyó el
Metano, quemándolo y originando el CO2, el NH3 oxidándolo para producir Nitrógeno libre, el Hidrógeno se combinó con el Oxígeno originando el H 20,
la cual posteriormente se precipitó sobre la superficie.

A corto plazo, la composición de la atmósfera es fija y prácticamente su contenido es constante. A largo plazo hay elementos que sufren variaciones:
por ejemplo, el dióxido de carbono aumenta en una proporción de 0.7 ppm/año (partes por millón por año), como consecuencia de las combustiones de
carácter industrial y de la respiración.

La masa total de la atmósfera es de 5.6 x 10 16 Ton, y es 250 veces inferior a la del total del agua existente en el planeta. El 99.5% de esta masa esta
concentrada en los primeros 100 Km de la atmósfera y el restante 0.5% en los siguientes 900 Km. A causa de esta masa enorme, también los
componentes traza se hallan en cantidades totales relativamente grandes. Por ejemplo, el ozono está presente a un nivel de solo el 2 x 10–6 %; pero el
peso total en la atmósfera que representa este reducido porcentaje es de 190 millones de Ton.

La tabla 1 muestra la composición de la atmósfera limpia y seca y el peso total aproximado de los diversos constituyentes. Además de los componentes
mencionados el aire tiene cantidades de agua, polvo meteórico, cloruro de sodio, polen, bacterias, esporas y HCl (Tabla 2).

                      Tabla 1. Composición de la atmosfera limpia y seca y peso total aproximado de los diversos constituyentes
                                                COMPONENTE                                       CONCENTRACION           PESO TOTAL
                                  FORMULA                   NOMBRE                                (% En volumen)    (Millones de toneladas)
                                     N2                     Nitrógeno                                  78.09               4.22 x 10+9
                                     02                     Oxígeno                                    20.95               1.29 x 10+9
                                     Ar                       Argón                                     0.93               7.20 x 10+7
                                    CO2                Dióxido de carbono                              0.032               2.70 x 10+6
                                     Ne                       Neón                                    0.0018               7.00 x 10+4
                                     He                       Helio                                  1.5 x 10-4           4.60 x 10+3
                                    CH4                      Metano                                  1.5 x 10-4           4.60 x 10+3
                                     Kr                      Kriptón                                 1.0 x 10-4           1.62 x 10+4
                                     H2                    Hidrógeno                                 5.0 x 10-5           1.90 x 10+2
                                    N2O                   Oxido Nitroso                              2.0 x 10-5           1.70 x 10+3
                                    CO                Monóxido de carbono                            1.0 x 10-5           5.40 x 10+2
                                     Xe                      Xenón                                   8.0 x 10-6           2.00 x 10+3
                                     O3                      Ozono                                   2.0 x 10-6           1.90 x 10+2
                                    NH3                    Amoniaco                                  6.0 x 10-7                21
                                    N02               Dióxido de Nitrógeno                           1.0 x 10-7                 9
                                    NO                    Oxido Nítrico                              6.0 x 10-8                 3
                                    SO2                 Dióxido de Azufre                            2.0 x 10-8                 2
                                    H 2S                Acido Sulfhídrico                            2.0 x 10-8                 1
                                Fuente: STOKER H. SEAFER S. Química Ambiental. Contaminación del aire y del agua.


2.3 CAPAS ATMOSFERICAS

La atmósfera posee varias regiones entre las cuales tenemos (Figura 1):


                                                    Tabla 2. Comparación entre aire puro y aire contaminado
COMPONENTE                                    AIRE PURO                      AIRE CONTAMINADO
                                        Material particulado                            10 - 20 µg/m                     3260 - 3200 µg/m3
                                     Dióxido de azufre (SO2)                          0.001 - 0.01ppm                      0.02 - 3.2 ppm
                                      Dióxido de carbono (C02)                         300 - 330 ppm                       350 - 700 ppm
                                     Monóxido de carbono (CO)                              1 ppm                             2 - 300 ppm
                                        Óxidos de nitrógeno                           0.001 - 0.01ppm                       0.3 - 3.5 ppm
                                           Hidrocarburos                                   1 ppm                             1 - 20 ppm
                                         Oxidantes totales                                0.01ppm                           0.01 - 1 ppm
                                 NOTA: Estos niveles aumentan dependiendo del sitio.
                                       Óxidos de Nitrógeno: N20 Oxido nitroso.
                                                                NO Oxido nítrico.
                                                                N02 Oxido de nitrógeno o dióxido de nitrógeno.
                                       Hidrocarburos: Constituidos por el C e H del C1 a C4 son gases de C5 en adelante son líquidos o sólidos.
                                       Los contaminantes son los menores de 12 carbonos. Los Hidrocarburos pueden ser:
                                                        - Aromáticos: poseen anillos bencénicos (benceno, tolueno, etc.)
                                                        - Alifaticos: Presentan cadenas de C (metano, etileno, isopreno, etc.)


2.3.1 Troposfera: Es una franja que va desde la superficie de la tierra                                              Figura 1. Cambios de la temperatura con la altura
hasta los 13 Km. de altitud. En ella se efectúa casi la totalidad de los
fenómenos atmosféricos: Tormentas, lluvias, granizo, formación de
nubes, vientos, etc. La temperatura va disminuyendo con la altura a
una tasa media de 0.6 ºC cada 100 mt. El vapor de agua, el gas
carbónico y las impurezas se acumulan en la troposfera,
especialmente en sus 3 primeros Km. En esta zona se encuentra el
75% de la masa total de la atmósfera. Allí se acumulan todos los
productos de la actividad humana, luego es la zona contaminada de la
atmósfera. A continuación de la troposfera se encuentra una región
intermedia llamada TROPOPAUSA, especie de capa muy tenue, de
transición, en la cual la temperatura desciende a 55ºC bajo cero.

2.3.2 Estratosfera: Es una capa 3 veces más ancha que la anterior,
abarca hasta los 50 Kms. pero sólo contiene el 15% de la masa total;
en ella existen tan solo vestigios de vapor de agua y virtualmente libre
de nubes. Su temperatura es constante, su densidad disminuye hacia
arriba de tal forma que cada 6 Km se reduce a la mitad.


A partir de los 16 Kms. se extiende la capa de mayor ionización de rayos cósmicos. En esta zona ocurren los cambios químicos. Por ejemplo, en la
parte superior de la estratosfera se genera ozono, que absorbe el exceso de las radiaciones ultravioletas de la luz solar y hace posible la vida en la
tierra. El ozono se forma por fotodisociación del oxígeno molecular, con radiación ultravioleta proveniente del sol.
                                                       O2 ⇒ O + O y O + O 2 ⇔ O3
Los contaminantes tienden a permanecer en esta región debido a la distribución constante de la temperatura. El límite superior de la estratosfera está
formado por la ESTRATOPAUSA, en donde se halla la máxima concentración de ozono.

2.3.3 Mesosfera: Abarca hasta los 93 Kms. y su masa es del 5%. A los 35 Kms. el color azul del cielo se oscurece y a los 45 Kms. el sol y las estrellas
brillan con extraordinaria intensidad en un cielo totalmente negro. La temperatura crece y a 75 Kms de altura desciende a 76ºC bajo cero. En la
mesosfera también se forma ozono, se observan diversas reacciones fotoquímicas y se produce la transformación de la mayor parte de la radiación
cósmica primaria en secundaria. El límite superior de la mesosfera es la MESOPAUSA, donde se han observado nubes ocasionales.

2.3.4 Ionosfera: Abarca hasta los 600 Kms. La gravedad se encuentra tan disminuida que los fenómenos físicos salen de la esfera del equilibrio
termodinámica para depender del control solar directo. Existe allí partículas producidas por radiaciones ultravioletas, con carga eléctrica (ionizadas) en
el seno de un gas muy enrarecido. Algunas subcapas de la Ionosfera reflejan las ondas electromagnéticas que son de gran importancia en las
radiocomunicaciones.

2.3.5 Exosfera: Abarca hasta los 1500 Km. región de ionización intensísima de efectos mortíferos sobre todo a partir de los 1000 Km. En sus zonas
superiores los átomos y moléculas en movimiento no entran en colisión a no ser que desciendan a niveles más bajos por efectos de la gravedad pero,
si están dotados de suficiente velocidad, pueden sustraerse a la acción de la gravedad y alejarse del planeta.

2.4 CONTAMINACION ATMOSFERICA

La contaminación atmosférica no es un hecho reciente. Constituye uno de los problemas que afronta la humanidad y que tiende a adquirir proporciones
alarmantes, y que se puede convertir en una amenaza para la vida vegetal, animal e incluso del hombre. Los principales efectos de la contaminación
atmosférica recaen sobre la salud humana. En las grandes ciudades con una alta contaminación atmosférica la longevidad humana se ha reducido
como consecuencia de los efectos sobre las vías respiratorias, tales como bronquitis crónica, asma, tuberculosis y cáncer de pulmón. Las lesiones
también se extienden al aparato circulatorio, al sistema nervioso vegetativo central, a la cronicidad de las enfermedades, a la irreversibilidad de las
acciones de los diversos contaminantes y a las alteraciones genéticas.
El efecto también se extiende a las especies vegetales y animales. La acción de la contaminación atmosférica no se limita al área inmediata urbana o
de la fábrica, sino a las zonas agrícolas y a los bosques naturales. También, la contaminación atmosférica puede ocasionar cambios importantes en el
clima y en las condiciones atmosféricas.

2.4.1 definición de contaminación: La contaminación es toda la emisión de sustancias gaseosas, líquidas y sólidas, cualquiera que sea su origen, que
tenga un efecto perjudicial en la salud humana, en los animales, en las plantas, en los bienes y el ambiente y en nuestras condiciones de vida. Un
contaminante es algo que al ser introducido en la atmósfera reduce el contenido de oxígeno o cambia, en forma significativa, la composición del aire.
Aunque en ciertas ocasiones la atmósfera se contamina por los gases emitidos durante la actividad volcánica y los fenómenos geológicos, esto no
trasciende tanto como los de origen humano, resultantes de la actividad comercial, industrial, agrícola y doméstica, que son los causantes del aumento
de la concentración de los gases tóxicos, los cuales causan una serie de problemas en la salud humana.

2.4.2 Clasificación de contaminantes: Los contaminantes se clasifican según:

La Fuente: Pueden ser:

-    Específicas: si proviene de áreas fijas, y
-    Múltiples: si provienen de áreas dispersas.

Tipos de Emisión: Pueden ser:

-    Gaseosas: obedecen a las leyes de los gases, no sedimentan.
-    Particuladas: son sólidos finamente divididos o líquidos suspendidos en el aire y sólidos grandes, estos son sedimentables.
-    Polvos: Son partículas sólidas dispersas en gases, originadas por desintegración mecánica.
-    Humos: Son partículas pequeñas originadas por condensación de un vapor.
-    Nieblas: Son suspensiones de pequeñas gotas líquidas formadas por condensación de un vapor.
-    Aerosoles: Son nubes de partículas microscópicas y submicroscópicas en el aire (humo del cigarrillo).

Composición química:

-    Inorgánicos: Pueden ser gases derivados del azufre, del carbono y del nitrógeno.
-    Orgánicos: Pueden ser hidrocarburos, aldehídos, cetonas y ácidos orgánicos.

2.4.3 Tipos de Contaminantes

2.4.3.1 Monóxido de carbono (CO): Es el contaminante más abundante de la Troposfera; es un gas incoloro, inodoro e insípido; insoluble en agua, de
densidad 1.14 g/l a condiciones estándar; es inflamable y arde con llama azul, pero no mantiene la combustión.

Fuentes: El 90% del total de CO en la atmósfera es de origen natural, principalmente procedente de la Oxidación Atmosférica del Metano. Las
reacciones son:

CH4 + O                OH + CH3           ;      CH3                 CO

CH4 + OH              H2O + CH3          ;      CH3                 CO

El O y el OH necesarios para que reaccione el CH4, provienen de la descomposición del Ozono y del agua respectivamente. Los océanos constituyen
la segunda fuente de CO; es producido por las algas y otras fuentes biológicas y luego liberado a la atmósfera. Otra fuente natural del CO es la
degradación de la clorofila. Tan solo el 10% del total del CO atmosférico es de origen antropogénico.

Importancia del CO antropogénico: Su impacto es importante porque sus fuentes se concentran en zonas urbanas, con niveles cien veces mayores que
los del aire limpio. El problema se agrava en aquellas ciudades de tráfico muy intenso, de calles estrechas, con edificios altos y por tanto, mal
                                                                                                         FUENTE
ventiladas, impidiendo la dispersión adecuada de los contaminantes, por lo cual aumenta a nivel del suelo.               %
                                                                                                 Transporte                  75.4
                                                                                                 Quemas Forestales           11.4
                                                                                                 Procesos Industriales       7.7
                                                                                                 Incineración de Residuos     5
                         Tabla 3. Fuente del CO
              Antropogénico                        9.4
              Océanos                              3.9
              Degradación de la clorofila          2.6
              Otras fuentes naturales              6.5



                                                                                                 Tabla 4. Fuente del CO antropogénico
Química de la formación del CO antropogénico: La formación del CO antropogénico es el resultado de:

-    Combustión incompleta de combustibles Carbónicos: Sucede cuando el Oxígeno es deficiente para convertirse el CO en CO2, o cuando no hay
     suficiente tiempo para la combustión. El motor de gasolina funciona por una combustión casi instantánea de una mezcla combustible - aire y
     produce CO en cantidades hasta del 7% en los automóviles nuevos.
-    Reacción entre el CO2 y otros materiales ricos en Carbono.
-    Disociación del CO2 a alta temperatura.
      Proceso 1: 2C + O2                       2CO
      Proceso 2: CO2 + C                       2CO
      Esta es la misma reacción que ocurre en procesos industriales a elevada temperatura en donde el CO es requerido por ejemplo en la producción
      de hierro en un alto horno.
      Proceso 3: CO2                 CO + O
      Por ser esta una reacción endotérmica (absorbe calor), al aumentar la temperatura aumenta el porcentaje de disociación del CO2.

Distribución del CO: Debido a que el automóvil es la fuente aislada más importante de CO, los centros urbanos muestran las mayores concentraciones
ambientales de dicho gas. La concentración diaria muestra valores elevados a las horas pico. La concentración diaria depende de la tasa de emisión a
la atmósfera y de las tasas de dispersión y eliminación. La tasa de dispersión depende directamente de factores meteorológicos, tales como: velocidad
y dirección del viento, turbulencia del aire y estabilidad atmosférica (Figura 2). En las grandes ciudades aunque haya turbulencia por el movimiento del
aire por encima y alrededor de los edificios, se da un estancamiento aéreo que conduce a una inadecuada dispersión y al consecuente incremento de
la concentración del CO.

Cuando el viento sopla alrededor de los edificios, tiende a crear cavidades o bolsas de vacío y si en un radio menor de un kilómetro se encuentran
chimeneas menores de 2.5 metros de altura, los contaminantes son atrapados en dichas cavidades creando problemas para los habitantes.
                        Figura 2. Circulación global del viento                         Figura 3. Perfiles de temperatura en la atmósfera




La temperatura incide en la contaminación del aire y está estrechamente relacionada con la estabilidad atmosférica. De acuerdo al comportamiento de
la temperatura respecto a la altura, se obtienen diferentes perfiles de temperatura, los cuales pueden ser (Figura 3):

a)   Gradiente adiabático de temperatura: La temperatura disminuye con la altura (1 ºC por cada 100 metros de altura), de tal manera que cualquier
     movimiento vertical ejercido sobre un volumen de aire hará que este mantenga la misma temperatura o la misma densidad que el aire circundante
     (estabilidad neutra).
b)   Superadiabática: La temperatura de un volumen de aire ascendente será superior a la del aire que le rodea y, al ser menos denso que éste,
     continuará ascendiendo (inestable).
c)   Subadiabática: La temperatura de un volumen de aire ascendente será inferior a la del aire que le rodea y, al ser menos denso que éste, volverá a
     su condición inicial (estable).
d)   Isotérmico: La temperatura es constante con la altura (estable).
e)   Inversión: La temperatura aumenta con la altura (muy estable).

En cuanto a la inversión térmica, se tienen diferentes condiciones dependiendo de la zona en que se da el aumento de la temperatura con la altura y de
que tan elevada se encuentre la capa de inversión respecto a la superficie de la tierra. De acuerdo a lo anterior, se tiene:

a)   Inversión de superficie: Cuando el aumento de la temperatura del aire con la altura se da a partir de la superficie del suelo (Figura 4).
b)   Inversión baja: Ocurre cuando se da el descenso de la temperatura del aire a cierta altura medida a partir de la superficie del suelo, pero a poca
     distancia de este (Figura 5).
c)   Inversión alta: Al igual que en el caso inmediatamente anterior, se presenta ésta cuando desciende la temperatura del aire a cierta altura medida a
     partir de la superficie del suelo, pero a mayor distancia de este (Figura 6).
Figura 4. Inversión de superficie               Figura 5. Inversión baja                   Figura 6. Inversión alta
La altura de la fuente de contaminación estaría en función de la altura de la capa de inversión térmica. Después de que un efluente sale de su fuente de
origen, por lo general, sigue elevándose. Obviamente, mientras más se eleve, menor será el grado de polución al nivel del suelo. La elevación de los
contaminantes depende de los factores meteorológicos como no meteorológicos, tales como el área de la fuente y la velocidad de salida. La altura del
contaminante depende también de la diferencia de temperatura entre el efluente y el aire circundante. La Figura 7 muestra la terminología comúnmente
utilizada para describir el contorno de un penacho en función del tiempo y la Figura 8 deja ver el comportamiento de una pluma en función de la
estabilidad atmosférica.




      Figura 7. Contorno de un penacho en función del tiempo                    Figura 8. Comportamiento de una pluma en función de la estabilidad
                                                                                                  Condición inestable (en forma de rizo)
                                                                                                  Condición neutra (en forma de cono)




                    Condición de inversión (abanico)                                      Inestable abajo, estable arriba (fumigación)
                       Inversión abajo (elevado)                                         Estable abajo, inversión arriba (atrapamiento)

El estado de la atmósfera afecta muchas de las fuentes de la contaminación. Así por ejemplo, en un día nublado la radiación solar es poca y tiene una
influencia directa sobre la producción de humo - niebla (smog)

Destino del CO atmosférico: La cantidad de CO emitida en el mundo se estima en 350 millones de toneladas al año. El tiempo de residencia del CO en
la atmósfera es de un mes a dos años. A pesar de las enormes cantidades descargadas al ambiente anualmente, hay procesos naturales que lo
ayudan a eliminar de la atmósfera:

-    Conversión a CO2, por reacción con el O2. Pero sólo se elimina el 1%.
-    Descomposición biológica, a partir de hongos, los cuales producen CO2.
-    Absorción del suelo, siempre que sea rico en materia orgánica; pero generalmente las zonas productoras de CO, son las de menor suelo
     disponible.

Efecto sobre las plantas: Concentraciones hasta de 100 ppm durante tres semanas, no producen efectos detrimentales, sobre las plantas superiores.
Estudios sobre el impacto del CO en las bacterias que viven en las raíces de algunas plantas, muestran inhibición de la actividad de bacterias fijadoras
de nitrógeno, con exposiciones de 35 horas a 2000 ppm. Ya que los niveles de CO raramente alcanzan las 100 ppm, se concluye que el impacto no es
significativo sobre la vegetación y los microorganismos asociados.

Efectos sobre el hombre: A diferencia de los demás gases contaminantes, los cuales afectan las vías respiratorias, el CO pasa directamente de los
pulmones al torrente sanguíneo, interfiriendo en el transporte del oxígeno en la sangre. Debido a la afinidad con la hemoglobina se forma
carboxihemoglobina. El oxígeno es desplazado de la molécula de hemoglobina, ya que el CO tiene 200 veces más afinidad por la hemoglobina que el
Oxígeno. Los fumadores de cigarrillo tienen, por lo general, un nivel de carboxihemoglobina del 5% y los grandes fumadores, del 10%, lo cual produce
efectos en el sistema nervioso central y cambios en las funciones cardiacas y pulmonares. Si la carboxihemoglobina está por encima del 2% y hasta el
5%, presenta un efecto deletéreo sobre la ejecución de trabajos que precisan tiempo y concentración. A niveles superiores del 5%, causa problemas
personales en corazón y pulmones. Niveles mayores del 10% de carboxihemoglobina producen coma, fallo respiratorio y muerte. Los síntomas de las
concentraciones altas de CO son: dolor de cabeza, mareos, cansancio, parpadea, zumbido de los oídos, náuseas, vómitos, palpitaciones, opresión en
el pecho, dificultades para respirar, debilidad muscular, caídas, desmayos y finalmente la muerte. Las intoxicaciones crónicas se caracterizan por lo
general por cefalea, vértigos y astenias, asociados a trastornos digestivos. La concentración máxima tolerable en el aire ha sido fijada en América del
Norte por los higienistas en 50 ppm, para ambientes industriales.

Control de contaminación por CO: El mayor control debe ejercerse sobre los autos, pues son los que más contribuyen a la emisión antropogénica. Sin
embargo debe tratarse en forma conjunta con los otros gases de escape (hidrocarburos y óxidos). Se están estudiando alternativas como: Modificación
de los motores de combustión interna, Desarrollar reactores para colocar catalizadores en los exostos y Desarrollar productos sustitutos de la gasolina,
que produzcan bajas concentraciones de contaminantes. Las alternativas más adecuadas involucran tratamientos térmicos y catalíticos, para completar
la combustión hasta CO2. Se usan catalizadores de platino, paladio y zeolitas. Como sustitutos de la gasolina se presentan metano, hidrógeno, metanol.
Como aditivos a la gasolina se puede usar mezclas con alcohol y/o agua.
Aire

Más contenido relacionado

La actualidad más candente

Toxicología y fluorescentes
Toxicología y fluorescentesToxicología y fluorescentes
Toxicología y fluorescentesCarlos Coto
 
Los elementos de la tabla periodica
Los elementos de la tabla periodicaLos elementos de la tabla periodica
Los elementos de la tabla periodicaLeonel-27
 
Elementos del grupo 1 de la tabla periodica
Elementos del grupo 1 de  la tabla periodica Elementos del grupo 1 de  la tabla periodica
Elementos del grupo 1 de la tabla periodica Ramdon Mendoza
 
Estrucutras químicas en el carbón
Estrucutras químicas en el carbónEstrucutras químicas en el carbón
Estrucutras químicas en el carbónAlejandro Requena
 

La actualidad más candente (7)

Toxicología y fluorescentes
Toxicología y fluorescentesToxicología y fluorescentes
Toxicología y fluorescentes
 
Semana 8 fotoquimi
Semana 8 fotoquimiSemana 8 fotoquimi
Semana 8 fotoquimi
 
Los elementos de la tabla periodica
Los elementos de la tabla periodicaLos elementos de la tabla periodica
Los elementos de la tabla periodica
 
Elementos del grupo 1 de la tabla periodica
Elementos del grupo 1 de  la tabla periodica Elementos del grupo 1 de  la tabla periodica
Elementos del grupo 1 de la tabla periodica
 
Combustión del carbón
Combustión del carbónCombustión del carbón
Combustión del carbón
 
Ciencias elementos
Ciencias elementosCiencias elementos
Ciencias elementos
 
Estrucutras químicas en el carbón
Estrucutras químicas en el carbónEstrucutras químicas en el carbón
Estrucutras químicas en el carbón
 

Similar a Aire

4 Contaminacion Del Aire 1
4   Contaminacion Del Aire   14   Contaminacion Del Aire   1
4 Contaminacion Del Aire 1Yvonne Mondragon
 
Presentacion smog 26052012
Presentacion smog 26052012Presentacion smog 26052012
Presentacion smog 26052012Alvaro Silva
 
HUMOS POR VALADURA.pdf
HUMOS POR VALADURA.pdfHUMOS POR VALADURA.pdf
HUMOS POR VALADURA.pdfAlonsoAranda7
 
Contaminación atmosférica
Contaminación atmosféricaContaminación atmosférica
Contaminación atmosféricaAnel Flores
 
Contaminación de la Atmósfera
Contaminación de la AtmósferaContaminación de la Atmósfera
Contaminación de la AtmósferaMargarita Matas
 
10 Gases Y La TeoríA CinéTica Molecular
10 Gases Y La TeoríA CinéTica Molecular10 Gases Y La TeoríA CinéTica Molecular
10 Gases Y La TeoríA CinéTica MolecularEMEBIOQ y FARMA A.C.
 
Trabajo PráCtico Mol Avogadro
Trabajo PráCtico Mol AvogadroTrabajo PráCtico Mol Avogadro
Trabajo PráCtico Mol AvogadroVerónica Rosso
 
Atmosfera
AtmosferaAtmosfera
AtmosferaRudlf0
 
Contaminación atmosferica
Contaminación atmosfericaContaminación atmosferica
Contaminación atmosfericaLuisPuello10
 
Ensayos para la caracterización del carbón
Ensayos para la caracterización del carbónEnsayos para la caracterización del carbón
Ensayos para la caracterización del carbónAlejandro Requena
 
trabajo final cuarto perido
trabajo final cuarto perido trabajo final cuarto perido
trabajo final cuarto perido Alejandro Manco
 
Sp ventilacion total(1)
Sp ventilacion total(1)Sp ventilacion total(1)
Sp ventilacion total(1)ildemarog
 
PRÁCTICA N°6: NOMENCLATURA INORGÁNICA
PRÁCTICA N°6: NOMENCLATURA INORGÁNICAPRÁCTICA N°6: NOMENCLATURA INORGÁNICA
PRÁCTICA N°6: NOMENCLATURA INORGÁNICAElias Navarrete
 
Agentes contaminantes del aire
Agentes contaminantes del aireAgentes contaminantes del aire
Agentes contaminantes del airecortes_vandres
 
Cuestiones problemas redox
Cuestiones problemas redoxCuestiones problemas redox
Cuestiones problemas redoxJose Sánchez
 

Similar a Aire (20)

4 Contaminacion Del Aire 1
4   Contaminacion Del Aire   14   Contaminacion Del Aire   1
4 Contaminacion Del Aire 1
 
Presentacion smog 26052012
Presentacion smog 26052012Presentacion smog 26052012
Presentacion smog 26052012
 
Hipotesis
HipotesisHipotesis
Hipotesis
 
Emisiones de un horno
Emisiones de un hornoEmisiones de un horno
Emisiones de un horno
 
HUMOS POR VALADURA.pdf
HUMOS POR VALADURA.pdfHUMOS POR VALADURA.pdf
HUMOS POR VALADURA.pdf
 
Contaminación atmosférica
Contaminación atmosféricaContaminación atmosférica
Contaminación atmosférica
 
Contaminación de la Atmósfera
Contaminación de la AtmósferaContaminación de la Atmósfera
Contaminación de la Atmósfera
 
10 Gases Y La TeoríA CinéTica Molecular
10 Gases Y La TeoríA CinéTica Molecular10 Gases Y La TeoríA CinéTica Molecular
10 Gases Y La TeoríA CinéTica Molecular
 
Trabajo PráCtico Mol Avogadro
Trabajo PráCtico Mol AvogadroTrabajo PráCtico Mol Avogadro
Trabajo PráCtico Mol Avogadro
 
Atmosfera
AtmosferaAtmosfera
Atmosfera
 
Contaminación atmosferica
Contaminación atmosfericaContaminación atmosferica
Contaminación atmosferica
 
Ensayos para la caracterización del carbón
Ensayos para la caracterización del carbónEnsayos para la caracterización del carbón
Ensayos para la caracterización del carbón
 
Redox presentación
Redox presentaciónRedox presentación
Redox presentación
 
trabajo final cuarto perido
trabajo final cuarto perido trabajo final cuarto perido
trabajo final cuarto perido
 
Sp ventilacion total(1)
Sp ventilacion total(1)Sp ventilacion total(1)
Sp ventilacion total(1)
 
PRÁCTICA N°6: NOMENCLATURA INORGÁNICA
PRÁCTICA N°6: NOMENCLATURA INORGÁNICAPRÁCTICA N°6: NOMENCLATURA INORGÁNICA
PRÁCTICA N°6: NOMENCLATURA INORGÁNICA
 
Agentes contaminantes del aire
Agentes contaminantes del aireAgentes contaminantes del aire
Agentes contaminantes del aire
 
QUIMICA
QUIMICAQUIMICA
QUIMICA
 
Cuestiones problemas redox
Cuestiones problemas redoxCuestiones problemas redox
Cuestiones problemas redox
 
Carbono
CarbonoCarbono
Carbono
 

Más de Universidad Surcolombiana

Marco legal de la gestión de los residuos sólidos
Marco legal de la gestión de los residuos sólidosMarco legal de la gestión de los residuos sólidos
Marco legal de la gestión de los residuos sólidosUniversidad Surcolombiana
 
Proyecto: Apoyo a los PRAES Institucionales. ie 2011
Proyecto: Apoyo a los PRAES Institucionales. ie 2011Proyecto: Apoyo a los PRAES Institucionales. ie 2011
Proyecto: Apoyo a los PRAES Institucionales. ie 2011Universidad Surcolombiana
 
Nueve disposición final de los residuos sólidos
Nueve disposición final de los residuos sólidosNueve disposición final de los residuos sólidos
Nueve disposición final de los residuos sólidosUniversidad Surcolombiana
 
Programa de apoyo PRAES I.E. El Pomo - Algeciras (Huila)
Programa de apoyo PRAES I.E. El Pomo - Algeciras (Huila)Programa de apoyo PRAES I.E. El Pomo - Algeciras (Huila)
Programa de apoyo PRAES I.E. El Pomo - Algeciras (Huila)Universidad Surcolombiana
 
Siete almacenamiento domiciliario de residuos sólidos
Siete almacenamiento domiciliario de residuos sólidosSiete almacenamiento domiciliario de residuos sólidos
Siete almacenamiento domiciliario de residuos sólidosUniversidad Surcolombiana
 
Unidad 2 Los Seres Vivos y su Medio Ambiente
Unidad 2 Los Seres Vivos y su Medio AmbienteUnidad 2 Los Seres Vivos y su Medio Ambiente
Unidad 2 Los Seres Vivos y su Medio AmbienteUniversidad Surcolombiana
 
Resumen Ejecutivo Informe Manejo Residuos en ALC
Resumen Ejecutivo Informe Manejo Residuos en ALCResumen Ejecutivo Informe Manejo Residuos en ALC
Resumen Ejecutivo Informe Manejo Residuos en ALCUniversidad Surcolombiana
 
Dos Gestión Integral de los Residuos Sólidos
Dos Gestión Integral de los Residuos SólidosDos Gestión Integral de los Residuos Sólidos
Dos Gestión Integral de los Residuos SólidosUniversidad Surcolombiana
 

Más de Universidad Surcolombiana (20)

2. problematica ambiental
2. problematica ambiental2. problematica ambiental
2. problematica ambiental
 
Marco legal de la gestión de los residuos sólidos
Marco legal de la gestión de los residuos sólidosMarco legal de la gestión de los residuos sólidos
Marco legal de la gestión de los residuos sólidos
 
Manualde convivencia en revisión
Manualde convivencia  en revisiónManualde convivencia  en revisión
Manualde convivencia en revisión
 
Trabajo final medio ambient epptx
Trabajo final medio ambient epptxTrabajo final medio ambient epptx
Trabajo final medio ambient epptx
 
I.e. el lago
I.e. el lagoI.e. el lago
I.e. el lago
 
Proyecto: Apoyo a los PRAES Institucionales. ie 2011
Proyecto: Apoyo a los PRAES Institucionales. ie 2011Proyecto: Apoyo a los PRAES Institucionales. ie 2011
Proyecto: Apoyo a los PRAES Institucionales. ie 2011
 
Microdiseño curricular Medio Ambiente
Microdiseño curricular Medio AmbienteMicrodiseño curricular Medio Ambiente
Microdiseño curricular Medio Ambiente
 
Nueve disposición final de los residuos sólidos
Nueve disposición final de los residuos sólidosNueve disposición final de los residuos sólidos
Nueve disposición final de los residuos sólidos
 
Programa Medio Ambiente con apoyo virtual
Programa Medio Ambiente con apoyo virtualPrograma Medio Ambiente con apoyo virtual
Programa Medio Ambiente con apoyo virtual
 
Programa de apoyo PRAES I.E. El Pomo - Algeciras (Huila)
Programa de apoyo PRAES I.E. El Pomo - Algeciras (Huila)Programa de apoyo PRAES I.E. El Pomo - Algeciras (Huila)
Programa de apoyo PRAES I.E. El Pomo - Algeciras (Huila)
 
Ocho frecuencia de recolección de los rs
Ocho frecuencia de recolección de los rsOcho frecuencia de recolección de los rs
Ocho frecuencia de recolección de los rs
 
Siete almacenamiento domiciliario de residuos sólidos
Siete almacenamiento domiciliario de residuos sólidosSiete almacenamiento domiciliario de residuos sólidos
Siete almacenamiento domiciliario de residuos sólidos
 
Seis método sencillo de análisis de rsu
Seis método sencillo de análisis de rsuSeis método sencillo de análisis de rsu
Seis método sencillo de análisis de rsu
 
Cinco producción de rsu
Cinco producción de rsuCinco producción de rsu
Cinco producción de rsu
 
Cuatro composición de los rsu
Cuatro composición de los rsuCuatro composición de los rsu
Cuatro composición de los rsu
 
Tres estimación de la población
Tres estimación de la poblaciónTres estimación de la población
Tres estimación de la población
 
Unidad 2 Los Seres Vivos y su Medio Ambiente
Unidad 2 Los Seres Vivos y su Medio AmbienteUnidad 2 Los Seres Vivos y su Medio Ambiente
Unidad 2 Los Seres Vivos y su Medio Ambiente
 
Teoría Desarrollo Sotenible
Teoría Desarrollo SotenibleTeoría Desarrollo Sotenible
Teoría Desarrollo Sotenible
 
Resumen Ejecutivo Informe Manejo Residuos en ALC
Resumen Ejecutivo Informe Manejo Residuos en ALCResumen Ejecutivo Informe Manejo Residuos en ALC
Resumen Ejecutivo Informe Manejo Residuos en ALC
 
Dos Gestión Integral de los Residuos Sólidos
Dos Gestión Integral de los Residuos SólidosDos Gestión Integral de los Residuos Sólidos
Dos Gestión Integral de los Residuos Sólidos
 

Aire

  • 1. UNIDAD 2. RECURSOS DE LA NATURALEZA 2. ATMOSFERA El ambiente está constituido por biosfera (seres vivos), atmósfera (gases) e hidrosfera (ríos, océanos, mares y lagos). La relación de masa es 1:300: 69.100. La atmósfera es la capa gaseosa que envuelve la tierra y se extiende alrededor de unos 1000 Km por encima de la superficie terrestre, actuando como un acumulador y regulador de la energía que recibimos del sol. Sin la atmósfera no fuera posible sobre la tierra, la vida tal como hoy existe. 2.1 PROPIEDADES DE LA ATMOSFERA A causa de la refracción que experimenta la luz en las moléculas de la atmósfera, marchando en todas direcciones, se originan los fenómenos de iluminación como los conocemos en la superficie de la tierra. A no ser por la atmósfera, el tránsito del día a la noche sería instantáneo. La atmósfera sirve de protección contra los meteoritos que a causa de la gran velocidad con que atraviesan el aire, se calientan y estallan convirtiéndose en polvo cósmico, llegando muy pocos a la superficie de la tierra. La atmósfera también funciona como reguladora del calor solar, pues absorbe 6/10 partes, las cuatro restantes llegan a la superficie, la calienta y son indispensables fuentes de vida. 2.2 COMPOSICION En la atmósfera primitiva sería lógico hallar numerosos compuestos de Hidrogeno, ya que este elemento es el mayor constituyente del universo y muy común en el espacio. La abundancia de los gases de Hidrógeno en la atmósfera de los grandes planetas, en la de Júpiter, por ejemplo, sugiere que este gas debió ser común en la primitiva atmósfera terrestre. Se plantea la hipótesis de que la vida se originó en una atmósfera de naturaleza reductora. El paso de la atmósfera primitiva a un segundo tipo de aire implica la formación de cantidades relativamente grandes de Oxígeno libre. Este elemento es esencial para los procesos vitales de numerosas reacciones oxidativas que tienen lugar hoy en la tierra. El aumento de oxígeno destruyó el Metano, quemándolo y originando el CO2, el NH3 oxidándolo para producir Nitrógeno libre, el Hidrógeno se combinó con el Oxígeno originando el H 20, la cual posteriormente se precipitó sobre la superficie. A corto plazo, la composición de la atmósfera es fija y prácticamente su contenido es constante. A largo plazo hay elementos que sufren variaciones: por ejemplo, el dióxido de carbono aumenta en una proporción de 0.7 ppm/año (partes por millón por año), como consecuencia de las combustiones de carácter industrial y de la respiración. La masa total de la atmósfera es de 5.6 x 10 16 Ton, y es 250 veces inferior a la del total del agua existente en el planeta. El 99.5% de esta masa esta concentrada en los primeros 100 Km de la atmósfera y el restante 0.5% en los siguientes 900 Km. A causa de esta masa enorme, también los componentes traza se hallan en cantidades totales relativamente grandes. Por ejemplo, el ozono está presente a un nivel de solo el 2 x 10–6 %; pero el peso total en la atmósfera que representa este reducido porcentaje es de 190 millones de Ton. La tabla 1 muestra la composición de la atmósfera limpia y seca y el peso total aproximado de los diversos constituyentes. Además de los componentes mencionados el aire tiene cantidades de agua, polvo meteórico, cloruro de sodio, polen, bacterias, esporas y HCl (Tabla 2). Tabla 1. Composición de la atmosfera limpia y seca y peso total aproximado de los diversos constituyentes COMPONENTE CONCENTRACION PESO TOTAL FORMULA NOMBRE (% En volumen) (Millones de toneladas) N2 Nitrógeno 78.09 4.22 x 10+9 02 Oxígeno 20.95 1.29 x 10+9 Ar Argón 0.93 7.20 x 10+7 CO2 Dióxido de carbono 0.032 2.70 x 10+6 Ne Neón 0.0018 7.00 x 10+4 He Helio 1.5 x 10-4 4.60 x 10+3 CH4 Metano 1.5 x 10-4 4.60 x 10+3 Kr Kriptón 1.0 x 10-4 1.62 x 10+4 H2 Hidrógeno 5.0 x 10-5 1.90 x 10+2 N2O Oxido Nitroso 2.0 x 10-5 1.70 x 10+3 CO Monóxido de carbono 1.0 x 10-5 5.40 x 10+2 Xe Xenón 8.0 x 10-6 2.00 x 10+3 O3 Ozono 2.0 x 10-6 1.90 x 10+2 NH3 Amoniaco 6.0 x 10-7 21 N02 Dióxido de Nitrógeno 1.0 x 10-7 9 NO Oxido Nítrico 6.0 x 10-8 3 SO2 Dióxido de Azufre 2.0 x 10-8 2 H 2S Acido Sulfhídrico 2.0 x 10-8 1 Fuente: STOKER H. SEAFER S. Química Ambiental. Contaminación del aire y del agua. 2.3 CAPAS ATMOSFERICAS La atmósfera posee varias regiones entre las cuales tenemos (Figura 1): Tabla 2. Comparación entre aire puro y aire contaminado
  • 2. COMPONENTE AIRE PURO AIRE CONTAMINADO Material particulado 10 - 20 µg/m 3260 - 3200 µg/m3 Dióxido de azufre (SO2) 0.001 - 0.01ppm 0.02 - 3.2 ppm Dióxido de carbono (C02) 300 - 330 ppm 350 - 700 ppm Monóxido de carbono (CO) 1 ppm 2 - 300 ppm Óxidos de nitrógeno 0.001 - 0.01ppm 0.3 - 3.5 ppm Hidrocarburos 1 ppm 1 - 20 ppm Oxidantes totales 0.01ppm 0.01 - 1 ppm NOTA: Estos niveles aumentan dependiendo del sitio. Óxidos de Nitrógeno: N20 Oxido nitroso. NO Oxido nítrico. N02 Oxido de nitrógeno o dióxido de nitrógeno. Hidrocarburos: Constituidos por el C e H del C1 a C4 son gases de C5 en adelante son líquidos o sólidos. Los contaminantes son los menores de 12 carbonos. Los Hidrocarburos pueden ser: - Aromáticos: poseen anillos bencénicos (benceno, tolueno, etc.) - Alifaticos: Presentan cadenas de C (metano, etileno, isopreno, etc.) 2.3.1 Troposfera: Es una franja que va desde la superficie de la tierra Figura 1. Cambios de la temperatura con la altura hasta los 13 Km. de altitud. En ella se efectúa casi la totalidad de los fenómenos atmosféricos: Tormentas, lluvias, granizo, formación de nubes, vientos, etc. La temperatura va disminuyendo con la altura a una tasa media de 0.6 ºC cada 100 mt. El vapor de agua, el gas carbónico y las impurezas se acumulan en la troposfera, especialmente en sus 3 primeros Km. En esta zona se encuentra el 75% de la masa total de la atmósfera. Allí se acumulan todos los productos de la actividad humana, luego es la zona contaminada de la atmósfera. A continuación de la troposfera se encuentra una región intermedia llamada TROPOPAUSA, especie de capa muy tenue, de transición, en la cual la temperatura desciende a 55ºC bajo cero. 2.3.2 Estratosfera: Es una capa 3 veces más ancha que la anterior, abarca hasta los 50 Kms. pero sólo contiene el 15% de la masa total; en ella existen tan solo vestigios de vapor de agua y virtualmente libre de nubes. Su temperatura es constante, su densidad disminuye hacia arriba de tal forma que cada 6 Km se reduce a la mitad. A partir de los 16 Kms. se extiende la capa de mayor ionización de rayos cósmicos. En esta zona ocurren los cambios químicos. Por ejemplo, en la parte superior de la estratosfera se genera ozono, que absorbe el exceso de las radiaciones ultravioletas de la luz solar y hace posible la vida en la tierra. El ozono se forma por fotodisociación del oxígeno molecular, con radiación ultravioleta proveniente del sol. O2 ⇒ O + O y O + O 2 ⇔ O3 Los contaminantes tienden a permanecer en esta región debido a la distribución constante de la temperatura. El límite superior de la estratosfera está formado por la ESTRATOPAUSA, en donde se halla la máxima concentración de ozono. 2.3.3 Mesosfera: Abarca hasta los 93 Kms. y su masa es del 5%. A los 35 Kms. el color azul del cielo se oscurece y a los 45 Kms. el sol y las estrellas brillan con extraordinaria intensidad en un cielo totalmente negro. La temperatura crece y a 75 Kms de altura desciende a 76ºC bajo cero. En la mesosfera también se forma ozono, se observan diversas reacciones fotoquímicas y se produce la transformación de la mayor parte de la radiación cósmica primaria en secundaria. El límite superior de la mesosfera es la MESOPAUSA, donde se han observado nubes ocasionales. 2.3.4 Ionosfera: Abarca hasta los 600 Kms. La gravedad se encuentra tan disminuida que los fenómenos físicos salen de la esfera del equilibrio termodinámica para depender del control solar directo. Existe allí partículas producidas por radiaciones ultravioletas, con carga eléctrica (ionizadas) en el seno de un gas muy enrarecido. Algunas subcapas de la Ionosfera reflejan las ondas electromagnéticas que son de gran importancia en las radiocomunicaciones. 2.3.5 Exosfera: Abarca hasta los 1500 Km. región de ionización intensísima de efectos mortíferos sobre todo a partir de los 1000 Km. En sus zonas superiores los átomos y moléculas en movimiento no entran en colisión a no ser que desciendan a niveles más bajos por efectos de la gravedad pero, si están dotados de suficiente velocidad, pueden sustraerse a la acción de la gravedad y alejarse del planeta. 2.4 CONTAMINACION ATMOSFERICA La contaminación atmosférica no es un hecho reciente. Constituye uno de los problemas que afronta la humanidad y que tiende a adquirir proporciones alarmantes, y que se puede convertir en una amenaza para la vida vegetal, animal e incluso del hombre. Los principales efectos de la contaminación atmosférica recaen sobre la salud humana. En las grandes ciudades con una alta contaminación atmosférica la longevidad humana se ha reducido como consecuencia de los efectos sobre las vías respiratorias, tales como bronquitis crónica, asma, tuberculosis y cáncer de pulmón. Las lesiones también se extienden al aparato circulatorio, al sistema nervioso vegetativo central, a la cronicidad de las enfermedades, a la irreversibilidad de las acciones de los diversos contaminantes y a las alteraciones genéticas.
  • 3. El efecto también se extiende a las especies vegetales y animales. La acción de la contaminación atmosférica no se limita al área inmediata urbana o de la fábrica, sino a las zonas agrícolas y a los bosques naturales. También, la contaminación atmosférica puede ocasionar cambios importantes en el clima y en las condiciones atmosféricas. 2.4.1 definición de contaminación: La contaminación es toda la emisión de sustancias gaseosas, líquidas y sólidas, cualquiera que sea su origen, que tenga un efecto perjudicial en la salud humana, en los animales, en las plantas, en los bienes y el ambiente y en nuestras condiciones de vida. Un contaminante es algo que al ser introducido en la atmósfera reduce el contenido de oxígeno o cambia, en forma significativa, la composición del aire. Aunque en ciertas ocasiones la atmósfera se contamina por los gases emitidos durante la actividad volcánica y los fenómenos geológicos, esto no trasciende tanto como los de origen humano, resultantes de la actividad comercial, industrial, agrícola y doméstica, que son los causantes del aumento de la concentración de los gases tóxicos, los cuales causan una serie de problemas en la salud humana. 2.4.2 Clasificación de contaminantes: Los contaminantes se clasifican según: La Fuente: Pueden ser: - Específicas: si proviene de áreas fijas, y - Múltiples: si provienen de áreas dispersas. Tipos de Emisión: Pueden ser: - Gaseosas: obedecen a las leyes de los gases, no sedimentan. - Particuladas: son sólidos finamente divididos o líquidos suspendidos en el aire y sólidos grandes, estos son sedimentables. - Polvos: Son partículas sólidas dispersas en gases, originadas por desintegración mecánica. - Humos: Son partículas pequeñas originadas por condensación de un vapor. - Nieblas: Son suspensiones de pequeñas gotas líquidas formadas por condensación de un vapor. - Aerosoles: Son nubes de partículas microscópicas y submicroscópicas en el aire (humo del cigarrillo). Composición química: - Inorgánicos: Pueden ser gases derivados del azufre, del carbono y del nitrógeno. - Orgánicos: Pueden ser hidrocarburos, aldehídos, cetonas y ácidos orgánicos. 2.4.3 Tipos de Contaminantes 2.4.3.1 Monóxido de carbono (CO): Es el contaminante más abundante de la Troposfera; es un gas incoloro, inodoro e insípido; insoluble en agua, de densidad 1.14 g/l a condiciones estándar; es inflamable y arde con llama azul, pero no mantiene la combustión. Fuentes: El 90% del total de CO en la atmósfera es de origen natural, principalmente procedente de la Oxidación Atmosférica del Metano. Las reacciones son: CH4 + O OH + CH3 ; CH3 CO CH4 + OH H2O + CH3 ; CH3 CO El O y el OH necesarios para que reaccione el CH4, provienen de la descomposición del Ozono y del agua respectivamente. Los océanos constituyen la segunda fuente de CO; es producido por las algas y otras fuentes biológicas y luego liberado a la atmósfera. Otra fuente natural del CO es la degradación de la clorofila. Tan solo el 10% del total del CO atmosférico es de origen antropogénico. Importancia del CO antropogénico: Su impacto es importante porque sus fuentes se concentran en zonas urbanas, con niveles cien veces mayores que los del aire limpio. El problema se agrava en aquellas ciudades de tráfico muy intenso, de calles estrechas, con edificios altos y por tanto, mal FUENTE ventiladas, impidiendo la dispersión adecuada de los contaminantes, por lo cual aumenta a nivel del suelo. % Transporte 75.4 Quemas Forestales 11.4 Procesos Industriales 7.7 Incineración de Residuos 5 Tabla 3. Fuente del CO Antropogénico 9.4 Océanos 3.9 Degradación de la clorofila 2.6 Otras fuentes naturales 6.5 Tabla 4. Fuente del CO antropogénico
  • 4. Química de la formación del CO antropogénico: La formación del CO antropogénico es el resultado de: - Combustión incompleta de combustibles Carbónicos: Sucede cuando el Oxígeno es deficiente para convertirse el CO en CO2, o cuando no hay suficiente tiempo para la combustión. El motor de gasolina funciona por una combustión casi instantánea de una mezcla combustible - aire y produce CO en cantidades hasta del 7% en los automóviles nuevos. - Reacción entre el CO2 y otros materiales ricos en Carbono. - Disociación del CO2 a alta temperatura. Proceso 1: 2C + O2 2CO Proceso 2: CO2 + C 2CO Esta es la misma reacción que ocurre en procesos industriales a elevada temperatura en donde el CO es requerido por ejemplo en la producción de hierro en un alto horno. Proceso 3: CO2 CO + O Por ser esta una reacción endotérmica (absorbe calor), al aumentar la temperatura aumenta el porcentaje de disociación del CO2. Distribución del CO: Debido a que el automóvil es la fuente aislada más importante de CO, los centros urbanos muestran las mayores concentraciones ambientales de dicho gas. La concentración diaria muestra valores elevados a las horas pico. La concentración diaria depende de la tasa de emisión a la atmósfera y de las tasas de dispersión y eliminación. La tasa de dispersión depende directamente de factores meteorológicos, tales como: velocidad y dirección del viento, turbulencia del aire y estabilidad atmosférica (Figura 2). En las grandes ciudades aunque haya turbulencia por el movimiento del aire por encima y alrededor de los edificios, se da un estancamiento aéreo que conduce a una inadecuada dispersión y al consecuente incremento de la concentración del CO. Cuando el viento sopla alrededor de los edificios, tiende a crear cavidades o bolsas de vacío y si en un radio menor de un kilómetro se encuentran chimeneas menores de 2.5 metros de altura, los contaminantes son atrapados en dichas cavidades creando problemas para los habitantes. Figura 2. Circulación global del viento Figura 3. Perfiles de temperatura en la atmósfera La temperatura incide en la contaminación del aire y está estrechamente relacionada con la estabilidad atmosférica. De acuerdo al comportamiento de la temperatura respecto a la altura, se obtienen diferentes perfiles de temperatura, los cuales pueden ser (Figura 3): a) Gradiente adiabático de temperatura: La temperatura disminuye con la altura (1 ºC por cada 100 metros de altura), de tal manera que cualquier movimiento vertical ejercido sobre un volumen de aire hará que este mantenga la misma temperatura o la misma densidad que el aire circundante (estabilidad neutra). b) Superadiabática: La temperatura de un volumen de aire ascendente será superior a la del aire que le rodea y, al ser menos denso que éste, continuará ascendiendo (inestable). c) Subadiabática: La temperatura de un volumen de aire ascendente será inferior a la del aire que le rodea y, al ser menos denso que éste, volverá a su condición inicial (estable). d) Isotérmico: La temperatura es constante con la altura (estable). e) Inversión: La temperatura aumenta con la altura (muy estable). En cuanto a la inversión térmica, se tienen diferentes condiciones dependiendo de la zona en que se da el aumento de la temperatura con la altura y de que tan elevada se encuentre la capa de inversión respecto a la superficie de la tierra. De acuerdo a lo anterior, se tiene: a) Inversión de superficie: Cuando el aumento de la temperatura del aire con la altura se da a partir de la superficie del suelo (Figura 4). b) Inversión baja: Ocurre cuando se da el descenso de la temperatura del aire a cierta altura medida a partir de la superficie del suelo, pero a poca distancia de este (Figura 5). c) Inversión alta: Al igual que en el caso inmediatamente anterior, se presenta ésta cuando desciende la temperatura del aire a cierta altura medida a partir de la superficie del suelo, pero a mayor distancia de este (Figura 6).
  • 5. Figura 4. Inversión de superficie Figura 5. Inversión baja Figura 6. Inversión alta La altura de la fuente de contaminación estaría en función de la altura de la capa de inversión térmica. Después de que un efluente sale de su fuente de origen, por lo general, sigue elevándose. Obviamente, mientras más se eleve, menor será el grado de polución al nivel del suelo. La elevación de los contaminantes depende de los factores meteorológicos como no meteorológicos, tales como el área de la fuente y la velocidad de salida. La altura del contaminante depende también de la diferencia de temperatura entre el efluente y el aire circundante. La Figura 7 muestra la terminología comúnmente utilizada para describir el contorno de un penacho en función del tiempo y la Figura 8 deja ver el comportamiento de una pluma en función de la estabilidad atmosférica. Figura 7. Contorno de un penacho en función del tiempo Figura 8. Comportamiento de una pluma en función de la estabilidad Condición inestable (en forma de rizo) Condición neutra (en forma de cono) Condición de inversión (abanico) Inestable abajo, estable arriba (fumigación) Inversión abajo (elevado) Estable abajo, inversión arriba (atrapamiento) El estado de la atmósfera afecta muchas de las fuentes de la contaminación. Así por ejemplo, en un día nublado la radiación solar es poca y tiene una influencia directa sobre la producción de humo - niebla (smog) Destino del CO atmosférico: La cantidad de CO emitida en el mundo se estima en 350 millones de toneladas al año. El tiempo de residencia del CO en la atmósfera es de un mes a dos años. A pesar de las enormes cantidades descargadas al ambiente anualmente, hay procesos naturales que lo ayudan a eliminar de la atmósfera: - Conversión a CO2, por reacción con el O2. Pero sólo se elimina el 1%. - Descomposición biológica, a partir de hongos, los cuales producen CO2. - Absorción del suelo, siempre que sea rico en materia orgánica; pero generalmente las zonas productoras de CO, son las de menor suelo disponible. Efecto sobre las plantas: Concentraciones hasta de 100 ppm durante tres semanas, no producen efectos detrimentales, sobre las plantas superiores. Estudios sobre el impacto del CO en las bacterias que viven en las raíces de algunas plantas, muestran inhibición de la actividad de bacterias fijadoras de nitrógeno, con exposiciones de 35 horas a 2000 ppm. Ya que los niveles de CO raramente alcanzan las 100 ppm, se concluye que el impacto no es significativo sobre la vegetación y los microorganismos asociados. Efectos sobre el hombre: A diferencia de los demás gases contaminantes, los cuales afectan las vías respiratorias, el CO pasa directamente de los pulmones al torrente sanguíneo, interfiriendo en el transporte del oxígeno en la sangre. Debido a la afinidad con la hemoglobina se forma carboxihemoglobina. El oxígeno es desplazado de la molécula de hemoglobina, ya que el CO tiene 200 veces más afinidad por la hemoglobina que el Oxígeno. Los fumadores de cigarrillo tienen, por lo general, un nivel de carboxihemoglobina del 5% y los grandes fumadores, del 10%, lo cual produce efectos en el sistema nervioso central y cambios en las funciones cardiacas y pulmonares. Si la carboxihemoglobina está por encima del 2% y hasta el 5%, presenta un efecto deletéreo sobre la ejecución de trabajos que precisan tiempo y concentración. A niveles superiores del 5%, causa problemas personales en corazón y pulmones. Niveles mayores del 10% de carboxihemoglobina producen coma, fallo respiratorio y muerte. Los síntomas de las concentraciones altas de CO son: dolor de cabeza, mareos, cansancio, parpadea, zumbido de los oídos, náuseas, vómitos, palpitaciones, opresión en el pecho, dificultades para respirar, debilidad muscular, caídas, desmayos y finalmente la muerte. Las intoxicaciones crónicas se caracterizan por lo general por cefalea, vértigos y astenias, asociados a trastornos digestivos. La concentración máxima tolerable en el aire ha sido fijada en América del Norte por los higienistas en 50 ppm, para ambientes industriales. Control de contaminación por CO: El mayor control debe ejercerse sobre los autos, pues son los que más contribuyen a la emisión antropogénica. Sin embargo debe tratarse en forma conjunta con los otros gases de escape (hidrocarburos y óxidos). Se están estudiando alternativas como: Modificación de los motores de combustión interna, Desarrollar reactores para colocar catalizadores en los exostos y Desarrollar productos sustitutos de la gasolina, que produzcan bajas concentraciones de contaminantes. Las alternativas más adecuadas involucran tratamientos térmicos y catalíticos, para completar la combustión hasta CO2. Se usan catalizadores de platino, paladio y zeolitas. Como sustitutos de la gasolina se presentan metano, hidrógeno, metanol. Como aditivos a la gasolina se puede usar mezclas con alcohol y/o agua.