SlideShare una empresa de Scribd logo
1 de 10
Descargar para leer sin conexión
GBODI, E. B.; GAMBARI A. I. AND OYEDUM, N. A. Design and Development of Computer-Aided
Learning Software for Individualized Instruction of Physics in Some Selected Secondary Schools in Niger
State. Journal of Educational Media and Technology, Vol. 12 No 1, 2006

DESIGN AND DEVELOPMENT OF COMPUTER-AIDED LEARNING
SOFTWARE FOR INDIVIDUALIZED INSTRUCTION OF PHYSICS
IN SOME SELECTED SECONDARY SCHOOLS IN NIGER STATE
BY
GBODI, E. B., GAMBARI A. I. & OYEDUM, N. A.
Department of Science Education,
Federal University of Technology, Minna
Abstract
In this, paper, the effect of a researcher-designed Computer-Aided Learning software on
students’ physics achievement in senior secondary school in Niger State, Nigeria was
investigated. The pre-test-post-test experimental-control group research design was
employed. Stratified random sampling was used to select 80 students (40 males and 40
females) for each of the experimental and control groups. A 50-item achievement test, the
Physics Achievement Test (PAT), was administered to the students as pre-test and post-test.
Two hypotheses were postulated and tested at 0.05 level of significance. From the analysis
the following findings were reached: (i) There was a significant difference between the
achievement scores of physics students taught with the Computer-Aided Learning (CAL)
software and those taught without the CAL software on the post-test (t = 15.74, df = 39, p £
0.05). This shows that CAL is a better approach to embark upon by physics teachers for
meaningful learning than traditional lecture method. (ii) There was no significant difference
between the mean achievement scores of male and female physics students taught with the
Computer-Aided Learning software (t = 0.31, df = 19, p ³ 0.05). This shows that the CAL
software stimulated males and females alike. The implications of the findings for the use of
CAL software were discussed. Recommendations for the improvement of physics education in
Niger State and suggestions for further studies were made.
Keyword: Computer-Aided Learning (CAL); CAL software; Individualised Instruction;
Physics; Achievement; Senior Secondary Students; Niger State.

Introduction
One of the problems of teaching and learning is the method of imparting knowledge
to learners. According to Stone (1991), the major difficulty in sciences is the method by
which the subjects were customarily taught without regard to instructional materials. The
pedagogical approach in imparting knowledge to learners has become inadequate to their
needs. Bajah (1995) and Okeke (1986) found that science subjects has not been taught in
Nigerian schools the way that pupils would benefit most, as science instruction has mostly
been teacher-centred.
For the past two decades, science education has been facing a lot of difficulties which
include poor performance of students in science subjects (Adeyegbe, 1992). Physics, like
other science subjects, recorded poor students’ performance both in national and international
97
examination (Ali, 1983). Many factors contributed to the poor performance of students in
physics examination (Akale, 1986; Okebukola and Jegede, 1986; Offiah, 1987; and Ali,
1988). The factors include:
(i)
Inability of the physics teachers to put across the physics concepts to the students
(ii)
Lack of skills and competence required for teaching physics
(iii) Shortage of qualified physics teachers
(iv)
Lack of teaching materials and equipment
Physics as a subject is very important for the scientific and technological
advancement of any nation. Though its usefulness cuts across all fields of human endeavour,
the low enrolment of students in the subject at both secondary and post secondary levels has
been a source of concern to various people especially physics educators at various times
(Omosewo, 1999; Balogun, 1985; Otuka, 1983; Ogunneye, 1982; Orisaseyi, 1977; Ogunyemi
and Eboda, 1974).
Lack of active participation of students is one of the factors responsible for students’
poor performances in science subjects (Inyang, 1988; Bichi, 1988). This has also been
indicated in West African Examination Council (WAEC) results of secondary schools where
students’ performances are generally poor in physics, chemistry, biology and other sciencerelated subjects (WAEC, 2000). This pattern of poor performance in the sciences by students
is also observed in tertiary institutions (Olarinoye, 1987). Omosewo (1999:99), asserted that
“physics teachers were using the lecture method for teaching the subject
in the secondary schools. The direct impact of this method on learners is
that it often leads to lack of understanding and this might cause poor
performance and low enrolment of students in the subject. The low
enrolment in physics is a cog in the wheel of the scientific and technological
progress in this nation”.
Many of the students see science as too abstract to comprehend, thereby resorting to
memorization or rote method of learning. Many students have also changed from science
subjects to art and commercial subjects while some dropped out and some failed woefully at
the final examination. Meanwhile, various attempts have been made by government, school
proprietors and teachers to facilitate effective teaching and learning of these science courses
which are the rudiments of development of any nation. Textbooks have been constantly
reviewed and rewritten in simpler forms and instructional materials of various types had been
designed yet the problems persist.
Ogunleye (2000) found out that in the era of technological advancement, technology
has had minimum impact on education. This is because 80% of teachers in Nigeria are mostly
using the chalkboard and textbook method (traditional method) in teaching. Actually most
schools do not have modern equipment and materials. The few schools that have these
equipment are unable to use them effectively as a result of erratic electric power supply and
at times the inability of some teachers to operate some of these equipment. However, constant
use of the traditional method of teaching is a major factor contributing to poor academic
achievement of physics students.
One of the major problems faced by students is inability to remember what has been
learnt. This problem is often caused by too much theoretical expression by the teachers while
learners are passive listeners. Students memorize and regurgitate facts and concepts.
98
The above problems confronting the teaching and learning of physics can be handled
using Computer-Aided Learning (CAL). Computer Aided Learning is a learning process in
which a student interacts with and is guided by a computer through the course of study aimed
at achieving certain instructional goals (Eke, 1988). Computer has been used in developed
countries to tackle most of these problems it could be used to transform classroom instruction
into a series of rich memorable experiences and thus reduce boredom and forgetfulness.
Computer can be used to teach all school subjects including science. In recent years,
the use of computer in the process of teaching and learning has become widespread in
educational institutions with the development of microcomputer (Ezeliora, 1997). According
to Ezeliora (1997),
“Computer is useful in almost all spheres of life such as in hospitals for
keeping records of patients, drugs, staff and accounts, instruments for
diagnosis and treatment. It facilitates the banking system and quickens
banking services to clients. It is very useful in professional services such
as engineering, chartered firms and business. Thus computer is regarded
as an all-purpose machine”.
Abimbade (1996) reported that the use of computer: (i) increase the time of learners
devoted to learning, (ii) Enhance the speed of availability of data and information, (iii)
Provide immediate feed-back (iv) Assist less qualified teachers and (v) increase teachers
efficiency and effectiveness. Udousoro and Abimbade (1997) and Adeniyi (1997) pointed
out that students taught mathematics and physics with computer achieved higher cognitively
than those taught without computer.
The purpose of the study was to compare the effect of Computer-Aided Learning and
the traditional method of teaching (chalk-and-talk method) in teaching and learning physics
in senior secondary schools in Niger State, Nigeria.
Research Hypotheses
The following null hypotheses were formulated and tested at p £ 0.05 so as to obtain
answers to the research questions:
(i)
There is no significant difference between the mean achievement scores of physics
students taught with Computer-Aided Learning (CAL) software and those taught
without it.
(ii)
There is no significant difference between the mean achievement scores of male and
female physics students taught with the Computer-Aided Learning software.
Research Design
The research design was a pretest-posttest experimental control group design.
Sample and Sampling Technique
The population for this study was made up of all the senior secondary class one (SSI)
students in two Local Government Areas in Niger State. The sample subjects were drawn
from two co-educational and two single gender schools in Bosso and Shiroro Local
Government Areas of Niger State. The subjects from the co-educational schools were
99
selected by the use of stratified random sampling technique. This method was chosen so that
the gender variable could be appropriately represented.
Twenty (20) science students were randomly selected for the study from each of the
four schools. In all there were forty (40) males and forty (40) females. The students were
taught the same concept of physics using chalk-and-talk method and Computer-Aided
Learning software.
Research Instrument
The research instrument was made up of 50 items of the Physics Achievement Test
(PAT) which was used as pre-test and post-test to measure both the lower and higher
cognitive skills of the students in physics. The fifty questions were selected from eighty
questions initially prepared. To obtain the fifty questions, the initial eighty questions were
subjected to the processes of validation and item analysis to determine the discrimination and
facility indices. The questions were also subjected to pilot study and reliability test before
using them as a research instrument. The time allocated for the test was eighty minutes.
A stem followed by four (4) options lettered (A-E) out of which only “one” was
correct. Students were instructed to select only one option as answer for each item. All the
options were plausible answers to the item.
Development of Self–Instructional Computer-Based Package
The Computer-Aided Learning (CAL) software was developed by the researcher
using the lesson notes prepared for the traditional (chalk–and–talk) method. The program
was written in Visual FoxPro programming language. The topics treated were selected based
on senior secondary school syllabus. The topic selected was from first term scheme of work
and falls between the periods that research was carried out.
The development of courseware for this research material follows the systematic and
recursive approach of instructional development model put forth by Mervill and Goodman
(1972); Philips et al. (1987); and Dick and Carey (1996). However, five trials were made
before the packages become successful. It was then tested with some few selected secondary
schools in Minna, Niger State. These schools used for testing the package falls between the
population of the study but not part of the schools selected for research study. Some of the
complaints from these selected pupils about the package was later used for further
modification and finally perfected the package
Validity and Reliability of the Instruments
The Computer-Aided Learning (physics package lesson) and the physics achievement
test (PAT) items was pilot tested and found to satisfy face, content and construct validity by
three experts in educational technology, physics and computer science departments. Item
analysis of the instrument was also carried out to determine the facility and discrimination
indices after which the final items for the instrument were selected and the reliability
coefficient computed using the split-half approach and the Richard Kuderson formula 21
(KR–2). The value obtained for the reliability coefficient was 0.97 and this was considered to
be quite adequate for this study.

100
Method of Data Collection
The data for testing the hypotheses were collected from the pre-test and post-test
administered to the subjects used in the study. Each of the tests was marked and scored over
hundred percent. The experimental group were exposed to physics lesson using ComputerAided Learning software for the period of six weeks while the control group were taught the
same physics lesson with traditional (chalk-and-talk) method. The total number of lesson
within six weeks is eighteen periods lasted for forty minutes.
After the duration of six weeks of treatment for the experimental group and six week
of lecture method with control group, the post-test was administered to both groups at the
same duration in the usual paper per-pencil method.
Method of Data Analysis
The scores obtained by different groups were computed and used in testing the
hypothesis. This data were analysed using mean, standard deviation and the t–test statistical
analysis. The level of the significance adopted for the analysis was p ≤ 0.05. This level of
significance formed the basis for rejecting or not rejecting each of the hypotheses.
Results and Discussion
Two Research questions were raised in this study and two null hypotheses were
formulated and tested to provide answers to the research questions. Analysis of the pre-test
and post-test data collected by means of the physics achievement test (PAT) were used to
answer the research questions using the two null hypotheses as guide. Means, standard
deviations and the t-test were employed in analysing the pre-test and post-test data.
The level of significance adopted for the analysis is 0.05. This level of significance
formed the basis for rejecting or not rejecting a null hypothesis. The summary of the data
analyses and results is presented below.
Performance of Experimental and Control Groups on the Pre-test
A pre-test was administered to both the experimental and control groups. The test was
the 50-item multiple-choice physics objective test (PAT). The subjects were allowed forty
minutes to do the test. The test was given to determine the academic equivalence of the
experimental and control groups.
The mean scores of students in the experimental and control groups on the pre-test
were calculated and the t-test computed for the two means. Table 1 shows the means,
standard deviations and the result of the t-test analysis.
Table 1: t - test Comparison of the Mean Scores of Experimental and Control
Groups on the Pre-test
Variable
N
df X
SD
t-value
t-value p-value Remark
calculated critical
Experimental 40 39 14.43 2.91
Not
ns
Group
0.24
2.02
0.81
significant
Control Group 40
14.35 3.13
ns - Not significant at p > 0.05

101
The result in Table 1 indicates that there is no significant difference at 0.05 level of
significance between the pre-test mean scores of the experimental and control groups (t =
0.24, df = 39, p = 0.81). This means that subjects in the experimental and control groups were
at the same entry level with regard to academic ability before the physics topics were
presented to them. Their mean scores were statistically the same.
Performance of the Experimental and Control Groups on the Post-test
Hypothesis 1: There is no significant difference between the mean scores of physics students
taught with Computer-Aided Learning (CAL) software and those taught without the use CAL
software.
To test this hypothesis the post-test means scores of the experimental and control
groups were computed and compared using the t-test statistic. The result is shown in Table 2.
Table 2: t–test Comparison of the Post-test Mean Scores of the Experimental and
Control Groups
Variable
N
df
X
SD
t-value
t-value P-value Remark
calculated critical
Experimental 40 39
68.95 5.99
Group
15.74*
2.02
0.001
Significant
Control
40
58.90 5.38
Group
* - Significant at p£ 0.05
The result (of the t-test analyses) in Table 2 shows that there was significant
difference between the post-test mean scores of the experimental and control groups at 0.05
level of significance (t = 15.74, df = 39, p = 0.001). Hypothesis I was therefore, rejected. This
means that there was a significant difference at 0.05 level of significance between the
performances of students taught with the CAL software and those taught without the
software. Students taught with the CAL software performed better than those who were
taught without it. Hence, the CAL software enhanced the learning of physics.
Performance of Male and Female Students in the Experimental Group on the Post-test
Hypothesis 2: There is no significant difference between the mean achievement scores of
male and female physics students taught with the Computer-Aided Learning software.
To test this hypothesis, the post-test mean scores of male and female students in the
experimental group were computed. The analysis was carried out using the t-test statistic and
the result shown in table 3.
Table 3: t–test Comparison of the Post-test Mean Scores of Male and Female Physics
Students in the Experimental Group
Variable
N
df
X
SD
t-value
t-value p-value Remark
calculated critical
Males
20
19
68.70 6.37 0.31ns
2.09
0.757
Not
Females
20
69.20 5.75
Significant
ns - Not Significant at p> 0.05

102
From the result in Table 3, it can be seen that there was no significant difference
between the post-test mean scores of male and female physics students in the experimental
group at 0.05 level of significance (t = 0.31, df = 19, p = 0.757). Null hypothesis 2 was
therefore not rejected. The performances of the male and female physics students in the
experimental group were equally enhanced by the use of the computer physics software.
Hence the CAL physics software was gender friendly.
Discussion
Findings on Table 2 indicate that there was a significant difference in the physics
achievement of students taught with the Computer-Aided Learning software. Those students
taught with the computer software performed better in the physics achievement test compared
with those who were taught without the computer software. The result seem to agree with
earlier studies which concluded that students taught mathematics and physics with computer
achieved higher cognitively than those taught without computer (Udousoro and Abimbade,
1997; Adeniyi, 1997; Hassan, 1997; and Jonah, 1991). Computer can, therefore, be seen as a
tool for effective teaching and learning of science subjects. CAL is an effective tool and
efficient development of individual cognitive structure, psychomotor and affective abilities.
Findings on Table 3 indicate that there was no significant difference between the
performances of male and female students who were taught physics with the computer
software. The male and female students performed equally well. The result agrees with the
findings of Abdullahi (1981) and Fuller (1982) who found that gender did not influence
students’ performance in science generally.
Conclusion
From the findings of this research work, the following conclusions were drawn:
(i)
Instructional strategies that teachers employ in teaching science subjects at senior
secondary school level have significant effects on students’ achievement. The
findings of the present study showed that better performance in physics was achieved
through the use of CAL software.
(ii)
The male and female students were affected positively and equally by the use of CAL
software in teaching physics. This showed that the effect of CAL software is not
gender dependent.
Recommendations
From the findings of the present study, the following recommendations are made:
1.
The use of computer for teaching and learning in our schools should be encouraged.
Therefore, computer education should be made compulsory for teachers and students
in all levels of our educational systems.
2.
Curriculum planners should enforce/inculcate the use of computer in
teaching/learning into school curricula.
3.
Educators should continue to lay more emphasis and implement the concepts of
educational technology as a means of enhancing the quality of education.
4.
Federal Government should fully implement computer literacy policy formulated in
1988.
103
5.

6.

7.
8.
9.
10.
11.

In–service training should be given to teachers on Educational Technology
particularly on the production and use of computerised instructional media so that
they can appropriate the use of modern instructional technology.
There is need for government and non-governmental organisations to organise
seminars, workshops, conferences as well as in-service training for teachers on
methodology of teaching so as to be able to compare and contrast effects of different
methods of teaching on students’ achievement.
Schools should be equipped with computers and Internet facilities and other necessary
instructional packages for teaching and learning.
Science teachers should learn how to prepare Computer-Aided Learning software.
Emphasis should be placed on making learning to be a learner-centred affair as well
as teaching for meaningful learning.
The role differentiation amongst boys and girls should continue to be avoided when
teaching science. Each gender deserves equity in exposure to educational experience.
Academic cooperation, though not to the point of replication or subjugation, should be
worked out by departments of Mathematics/Computer science, Physics/Computer
science and Educational Technology to develop adequate software for effective
science teaching and learning.

References
Abdullahi, A. (1981). A Study of Factors with Interest in Science Careers. Journal of
Research in Curriculum (JORIC), 6 (1), 69-76.
Abimbade, A. (1996). Principle and Practice of Educational Technology. Ibadan:
International Publishers Ltd.
Adeniyi, A. (1997). Computer Aided Instruction and Achievement in Physics. Innovations in
Science, Technology and Mathematics, STAN Proceedings of Ajumogobia Memorial
Conference, pp257-260.
Adeyegbe, S. O. (1992). Assessing Students’ Work in Chemistry: The WAEC State of the
Art. A Paper Delivered at STAN Chemistry Workshop For Chemistry Teachers,
ABU, Kano Campus, 10-15 April.
Akale, M. A. G. (1986). Assessment of Students Achievement in Science: What Implications
for Teacher Training. Proceeding of the 27th Annual Conference of the Science
Teachers Association of Nigeria (STAN).
Baja, S. T. (1995). Practical Skills in Science and Technology. A key Note Address
Delivered at the 36th Annual Conference of STAN, Maiduguri, 14th – 19th August.
Balogun, T. A. (1985). Interest in Service and Technology Education in Nigeria. Journal of
the Science Teachers Association of Nigeria (STAN), 2 (1&2), 92- 99.
Bichi, S. S. (1988). The Design of Inventory Skills in Senior Secondary Schools Practical
Biology. Unpublished M.Ed. Thesis ABU, Zaria.

104
Dick, W. and Carey, L. (1996). The Systematic Design of Instruction (4th edition). New
York: Harper Collins College Publishers.
Ezeliora, B. (1997). Computer: A New Technology in Chemistry Teaching and Learning:
Innovation in Science, Technology and Mathematics. STAN Proceedings of
Ajumogobia Memorial Conference, Pp257-260.
Federal Republic of Nigeria (1988). National Policy on Computer Literacy. Lagos: Federal
Government Press.
Fuller, R. G. (1982). The Puzzle of the Tacoma Narrows Bridge Collapse. New York: John
Wiley & Sons.
Hassan, Z. M. (1997). An Expert System for Teaching Mathematics and Physics. Unpublished
B. Tech. Project, Mathematics/Computer Science Department, Federal University of
Technology, Minna.
Inyang, N. E. (1988). The Constructing, Validation, Standardization of Integrated Science
Achievement Test. Unpublished Ph.D Dissertation. ABU. Zaria.
Jegede, O. J. and Fraser, B. (1989). Influence of Socio-Cultural Factors on Secondary School
Students Attitude Towards Science. A paper Presented at 20th Annual Conference of
the Australia Science Education, Research Association, Melbourne.
Jonah, A. O. (1991). Use of Computer to Aid Effective Teaching of Mathematics in Secondary
School. Unpublished B. Tech. Project, Mathematics /Computer science Department,
federal University of Technology, Minna.
Merril, M. A. and Goodman, R. I. (1972). Selecting Instructional Strategies and Media: A
Place to being in. U.S.A. National Special Media Institute.
Ogunleye, A. O. (2000). Towards the Optimal Utilization and Management of Resources for
the Effective Teaching and Learning of Physics in Schools. In O. O. Busari (Ed), 41st
Annual Conference Proceedings, Journal of STAN.
Ogunneye, W. (1982). The Relative Effects of Selected Instructional Styles on Students
Achievement in Physics. Journal of (STAN), 21 (1), 97-101.
Ogunyemi, E. O. and Eboda, F. M. (1974). Cognitive Preferences among High and Low
Physics Achievers in Two Nigeria Secondary Schools. African Journal of Education
Research, 1 (1), 107-113.
Okebukola, A. O. and Jegede, O. J. (1986). The Under Achieving Student in Science.
Opinions on the aetiology of ailment. Proceedings of the 27th Annual Conference of
the STAN. Pp. 57-63.
Okeke, E. A. (1986). Remedies for Students Poor Performance in Biology. Proceedings of the
27th Annual Conference of Science Teacher Association of Nigeria.

105
Olarinoye R. D. (1987). The Inquiry and Discovery Methods of Teaching Science. Journal of
STAN, 21 (1), 168-180.
Omosewo, E. O. (1999). Impact of Discovery Method of Teaching on Students’ Achievement
in Physics. Journal of Nigerian Association of Teachers of Technology (JONATT), 3
(1), 99-107.
Orisaseyi, S. (1977). A Critical Look at the Attitude of Secondary School Students to
Physics. Journal of STAN, 16 (1), 49-55.
Otuka, J. O. E. (1983). Problems Relating to the Development of Physics Education in
Secondary Schools. Journal of STAN, 2 (2), 133-136.
Philip, B. (1987). Author Languages for Computer Aided Learning: London. Macmillan
Education Ltd.
Udousoro, U. J. and Abimbade, A. (1997). The Place of Computer Assisted Instruction in
Mathematics, STAN Proceedings of Ajumogobia Memorial Conference. Pp.238-243.
West African Examination Council (WAEC), (2000). Examiners Report in Science Subjects.
Lagos: WAEC.

106

Más contenido relacionado

La actualidad más candente

Perception of Students and Teachers Towards Computer Aided Instructional Mate...
Perception of Students and Teachers Towards Computer Aided Instructional Mate...Perception of Students and Teachers Towards Computer Aided Instructional Mate...
Perception of Students and Teachers Towards Computer Aided Instructional Mate...IJSRED
 
Improvisation: an alternative approach to solving the problem of ill-equipped...
Improvisation: an alternative approach to solving the problem of ill-equipped...Improvisation: an alternative approach to solving the problem of ill-equipped...
Improvisation: an alternative approach to solving the problem of ill-equipped...theijes
 
Ict+chemistry
Ict+chemistryIct+chemistry
Ict+chemistryDoaa Abdo
 
Draft of Research Proposa l(Property of Azreen)
Draft of Research Proposa l(Property of Azreen)Draft of Research Proposa l(Property of Azreen)
Draft of Research Proposa l(Property of Azreen)Azreen5520
 
Pre service teachers’ perception of using
Pre service teachers’ perception of usingPre service teachers’ perception of using
Pre service teachers’ perception of usingIJITE
 
Effectiveness of video based cooperative learning strategy on high, medium an...
Effectiveness of video based cooperative learning strategy on high, medium an...Effectiveness of video based cooperative learning strategy on high, medium an...
Effectiveness of video based cooperative learning strategy on high, medium an...Gambari Isiaka
 
Effects of computer assisted instructional package on social studies achievem...
Effects of computer assisted instructional package on social studies achievem...Effects of computer assisted instructional package on social studies achievem...
Effects of computer assisted instructional package on social studies achievem...Gambari Isiaka
 
Assessment of Chemistry Teachers Usage of National Commission for Colleges of...
Assessment of Chemistry Teachers Usage of National Commission for Colleges of...Assessment of Chemistry Teachers Usage of National Commission for Colleges of...
Assessment of Chemistry Teachers Usage of National Commission for Colleges of...iosrjce
 
STUDENT’S ATTITUDES TOWARD INTEGRATING MOBILE TECHNOLOGY INTO TRANSLATION ACT...
STUDENT’S ATTITUDES TOWARD INTEGRATING MOBILE TECHNOLOGY INTO TRANSLATION ACT...STUDENT’S ATTITUDES TOWARD INTEGRATING MOBILE TECHNOLOGY INTO TRANSLATION ACT...
STUDENT’S ATTITUDES TOWARD INTEGRATING MOBILE TECHNOLOGY INTO TRANSLATION ACT...IJITE
 
Research proposal assg 3rd
Research proposal assg 3rdResearch proposal assg 3rd
Research proposal assg 3rdMiraAlmirys
 
Techniques for integrating native technologies with ict to teach zoology
Techniques for integrating native technologies with ict to teach zoologyTechniques for integrating native technologies with ict to teach zoology
Techniques for integrating native technologies with ict to teach zoologyDr. C.V. Suresh Babu
 
Effect of gender on students academic achievement in secondary school social ...
Effect of gender on students academic achievement in secondary school social ...Effect of gender on students academic achievement in secondary school social ...
Effect of gender on students academic achievement in secondary school social ...Alexander Decker
 

La actualidad más candente (15)

Perception of Students and Teachers Towards Computer Aided Instructional Mate...
Perception of Students and Teachers Towards Computer Aided Instructional Mate...Perception of Students and Teachers Towards Computer Aided Instructional Mate...
Perception of Students and Teachers Towards Computer Aided Instructional Mate...
 
Improvisation: an alternative approach to solving the problem of ill-equipped...
Improvisation: an alternative approach to solving the problem of ill-equipped...Improvisation: an alternative approach to solving the problem of ill-equipped...
Improvisation: an alternative approach to solving the problem of ill-equipped...
 
Ict+chemistry
Ict+chemistryIct+chemistry
Ict+chemistry
 
Draft of Research Proposa l(Property of Azreen)
Draft of Research Proposa l(Property of Azreen)Draft of Research Proposa l(Property of Azreen)
Draft of Research Proposa l(Property of Azreen)
 
ICT IN CHEMISTRY EDUCATION
ICT IN CHEMISTRY EDUCATIONICT IN CHEMISTRY EDUCATION
ICT IN CHEMISTRY EDUCATION
 
Pre service teachers’ perception of using
Pre service teachers’ perception of usingPre service teachers’ perception of using
Pre service teachers’ perception of using
 
Effectiveness of video based cooperative learning strategy on high, medium an...
Effectiveness of video based cooperative learning strategy on high, medium an...Effectiveness of video based cooperative learning strategy on high, medium an...
Effectiveness of video based cooperative learning strategy on high, medium an...
 
Effects of computer assisted instructional package on social studies achievem...
Effects of computer assisted instructional package on social studies achievem...Effects of computer assisted instructional package on social studies achievem...
Effects of computer assisted instructional package on social studies achievem...
 
Assessment of Chemistry Teachers Usage of National Commission for Colleges of...
Assessment of Chemistry Teachers Usage of National Commission for Colleges of...Assessment of Chemistry Teachers Usage of National Commission for Colleges of...
Assessment of Chemistry Teachers Usage of National Commission for Colleges of...
 
8gravoso
8gravoso8gravoso
8gravoso
 
STUDENT’S ATTITUDES TOWARD INTEGRATING MOBILE TECHNOLOGY INTO TRANSLATION ACT...
STUDENT’S ATTITUDES TOWARD INTEGRATING MOBILE TECHNOLOGY INTO TRANSLATION ACT...STUDENT’S ATTITUDES TOWARD INTEGRATING MOBILE TECHNOLOGY INTO TRANSLATION ACT...
STUDENT’S ATTITUDES TOWARD INTEGRATING MOBILE TECHNOLOGY INTO TRANSLATION ACT...
 
Research proposal assg 3rd
Research proposal assg 3rdResearch proposal assg 3rd
Research proposal assg 3rd
 
Techniques for integrating native technologies with ict to teach zoology
Techniques for integrating native technologies with ict to teach zoologyTechniques for integrating native technologies with ict to teach zoology
Techniques for integrating native technologies with ict to teach zoology
 
2719
27192719
2719
 
Effect of gender on students academic achievement in secondary school social ...
Effect of gender on students academic achievement in secondary school social ...Effect of gender on students academic achievement in secondary school social ...
Effect of gender on students academic achievement in secondary school social ...
 

Destacado

My child project group2
My child project group2My child project group2
My child project group2G4ESL
 
Computer assisted instruction
Computer assisted instructionComputer assisted instruction
Computer assisted instructionVinci Viveka
 
Information And Communication Technology Mediated Learning
Information And Communication Technology Mediated LearningInformation And Communication Technology Mediated Learning
Information And Communication Technology Mediated LearningFlorigine Tamesis
 
Computer as ttur
Computer as tturComputer as ttur
Computer as tturSFYC
 
Tools for Designing Distance Learning Instruction
Tools for Designing Distance Learning InstructionTools for Designing Distance Learning Instruction
Tools for Designing Distance Learning InstructionMarsha J. Chan
 
Impact on Student Learning and Instruction
Impact on Student Learning and InstructionImpact on Student Learning and Instruction
Impact on Student Learning and InstructionDr. James Lake
 
Gamification of Learning and Instruction: What Research tells Us About 3D Ava...
Gamification of Learning and Instruction: What Research tells Us About 3D Ava...Gamification of Learning and Instruction: What Research tells Us About 3D Ava...
Gamification of Learning and Instruction: What Research tells Us About 3D Ava...Karl Kapp
 
Individualized Instruction and Learning Using the iPod Touch
Individualized Instruction and Learning Using the iPod TouchIndividualized Instruction and Learning Using the iPod Touch
Individualized Instruction and Learning Using the iPod TouchMobicip.com
 
Five Things Game Designers Can Teach eLearning Designers
Five Things Game Designers Can Teach eLearning DesignersFive Things Game Designers Can Teach eLearning Designers
Five Things Game Designers Can Teach eLearning DesignersKarl Kapp
 
Learning styles & differentiation in instruction
Learning styles & differentiation in instructionLearning styles & differentiation in instruction
Learning styles & differentiation in instructionJanet Walsh-Davis
 
Instructional Design and Development
Instructional Design and DevelopmentInstructional Design and Development
Instructional Design and Developmentgglaus
 
Instructional Development STaR Chart Week 2 Staff Development
Instructional Development STaR Chart Week 2 Staff DevelopmentInstructional Development STaR Chart Week 2 Staff Development
Instructional Development STaR Chart Week 2 Staff Developmentlindywelborn
 
Future of Learning: Games and Gamification
Future of Learning: Games and GamificationFuture of Learning: Games and Gamification
Future of Learning: Games and GamificationKarl Kapp
 
Teaching and Learning Theories for Instructional Development
Teaching and Learning Theories for Instructional DevelopmentTeaching and Learning Theories for Instructional Development
Teaching and Learning Theories for Instructional DevelopmentPrachyanun Nilsook
 
Accountability in Developing Student Learning
Accountability in Developing Student LearningAccountability in Developing Student Learning
Accountability in Developing Student LearningCarlo Magno
 
Theories and models of learning instruction revised
Theories and models of learning instruction revisedTheories and models of learning instruction revised
Theories and models of learning instruction revisedFelisa Isakson
 

Destacado (20)

My child project group2
My child project group2My child project group2
My child project group2
 
Computer assisted instruction
Computer assisted instructionComputer assisted instruction
Computer assisted instruction
 
Information And Communication Technology Mediated Learning
Information And Communication Technology Mediated LearningInformation And Communication Technology Mediated Learning
Information And Communication Technology Mediated Learning
 
NOTES ON "FOXPRO"
NOTES ON "FOXPRO" NOTES ON "FOXPRO"
NOTES ON "FOXPRO"
 
Computer as ttur
Computer as tturComputer as ttur
Computer as ttur
 
Tools for Designing Distance Learning Instruction
Tools for Designing Distance Learning InstructionTools for Designing Distance Learning Instruction
Tools for Designing Distance Learning Instruction
 
Impact on Student Learning and Instruction
Impact on Student Learning and InstructionImpact on Student Learning and Instruction
Impact on Student Learning and Instruction
 
Gamification of Learning and Instruction: What Research tells Us About 3D Ava...
Gamification of Learning and Instruction: What Research tells Us About 3D Ava...Gamification of Learning and Instruction: What Research tells Us About 3D Ava...
Gamification of Learning and Instruction: What Research tells Us About 3D Ava...
 
Individualized Instruction and Learning Using the iPod Touch
Individualized Instruction and Learning Using the iPod TouchIndividualized Instruction and Learning Using the iPod Touch
Individualized Instruction and Learning Using the iPod Touch
 
Five Things Game Designers Can Teach eLearning Designers
Five Things Game Designers Can Teach eLearning DesignersFive Things Game Designers Can Teach eLearning Designers
Five Things Game Designers Can Teach eLearning Designers
 
Learning styles & differentiation in instruction
Learning styles & differentiation in instructionLearning styles & differentiation in instruction
Learning styles & differentiation in instruction
 
Instructional Design and Development
Instructional Design and DevelopmentInstructional Design and Development
Instructional Design and Development
 
Instructional Development STaR Chart Week 2 Staff Development
Instructional Development STaR Chart Week 2 Staff DevelopmentInstructional Development STaR Chart Week 2 Staff Development
Instructional Development STaR Chart Week 2 Staff Development
 
Future of Learning: Games and Gamification
Future of Learning: Games and GamificationFuture of Learning: Games and Gamification
Future of Learning: Games and Gamification
 
Teaching and Learning Theories for Instructional Development
Teaching and Learning Theories for Instructional DevelopmentTeaching and Learning Theories for Instructional Development
Teaching and Learning Theories for Instructional Development
 
Accountability in Developing Student Learning
Accountability in Developing Student LearningAccountability in Developing Student Learning
Accountability in Developing Student Learning
 
Learning theories
Learning theoriesLearning theories
Learning theories
 
Learning and Instruction
Learning and InstructionLearning and Instruction
Learning and Instruction
 
Theories and models of learning instruction revised
Theories and models of learning instruction revisedTheories and models of learning instruction revised
Theories and models of learning instruction revised
 
Cognitive learning
Cognitive learningCognitive learning
Cognitive learning
 

Similar a Design and development of computer aided learning software for individualized instruction of physics in some selected secondary schools in niger state, nigeria

A correlational analysis of students achievement in waec and neco mathematics
A correlational analysis of students achievement in waec and neco mathematicsA correlational analysis of students achievement in waec and neco mathematics
A correlational analysis of students achievement in waec and neco mathematicsAlexander Decker
 
11.a correlational analysis of students achievement in waec and neco mathematics
11.a correlational analysis of students achievement in waec and neco mathematics11.a correlational analysis of students achievement in waec and neco mathematics
11.a correlational analysis of students achievement in waec and neco mathematicsAlexander Decker
 
Acorrelationalanalysisofstudentsachievementinwaecandnecomathematics 120126063...
Acorrelationalanalysisofstudentsachievementinwaecandnecomathematics 120126063...Acorrelationalanalysisofstudentsachievementinwaecandnecomathematics 120126063...
Acorrelationalanalysisofstudentsachievementinwaecandnecomathematics 120126063...Nagpur home
 
The use of ict in education for improving engineering education and training
The use of ict in education for improving engineering education and trainingThe use of ict in education for improving engineering education and training
The use of ict in education for improving engineering education and trainingGambari Isiaka
 
Qualitative Chemistry Education: The Role of the Teacher
Qualitative Chemistry Education: The Role of the TeacherQualitative Chemistry Education: The Role of the Teacher
Qualitative Chemistry Education: The Role of the TeacherIOSR Journals
 
Effect of simulation on studentsí achievement in senior secondary school che...
Effect of simulation on studentsí  achievement in senior secondary school che...Effect of simulation on studentsí  achievement in senior secondary school che...
Effect of simulation on studentsí achievement in senior secondary school che...Alexander Decker
 
Mathematics abilities of physics students implication for the application and...
Mathematics abilities of physics students implication for the application and...Mathematics abilities of physics students implication for the application and...
Mathematics abilities of physics students implication for the application and...Alexander Decker
 
Factors militating against teaching of basic technology in
 Factors militating against teaching of basic technology in  Factors militating against teaching of basic technology in
Factors militating against teaching of basic technology in Alexander Decker
 
An investigation into the challenges facing the implementation of technical c...
An investigation into the challenges facing the implementation of technical c...An investigation into the challenges facing the implementation of technical c...
An investigation into the challenges facing the implementation of technical c...Alexander Decker
 
Causes of mass failure in senior school certificate mathematics examinations
Causes of mass failure in senior school certificate mathematics examinationsCauses of mass failure in senior school certificate mathematics examinations
Causes of mass failure in senior school certificate mathematics examinationsAlexander Decker
 
Chemistry Students Assessment of Their Chemistry Teachers Usage of Ncce Pedag...
Chemistry Students Assessment of Their Chemistry Teachers Usage of Ncce Pedag...Chemistry Students Assessment of Their Chemistry Teachers Usage of Ncce Pedag...
Chemistry Students Assessment of Their Chemistry Teachers Usage of Ncce Pedag...iosrjce
 
Resources used by universal basic education (ube) teachers in teaching basic ...
Resources used by universal basic education (ube) teachers in teaching basic ...Resources used by universal basic education (ube) teachers in teaching basic ...
Resources used by universal basic education (ube) teachers in teaching basic ...Alexander Decker
 
James Jurica and Lori Webb - Published National Refereed Article in NATIONAL ...
James Jurica and Lori Webb - Published National Refereed Article in NATIONAL ...James Jurica and Lori Webb - Published National Refereed Article in NATIONAL ...
James Jurica and Lori Webb - Published National Refereed Article in NATIONAL ...William Kritsonis
 
Dr. Lori Webb and Dr. James Jurica, NATIONAL FORUM OF EDUCATIONAL ADMINISTRAT...
Dr. Lori Webb and Dr. James Jurica, NATIONAL FORUM OF EDUCATIONAL ADMINISTRAT...Dr. Lori Webb and Dr. James Jurica, NATIONAL FORUM OF EDUCATIONAL ADMINISTRAT...
Dr. Lori Webb and Dr. James Jurica, NATIONAL FORUM OF EDUCATIONAL ADMINISTRAT...William Kritsonis
 
www.nationalforum.com - Dr. Lorie Webb and Dr. James Jurica - NATIONAL FORUM ...
www.nationalforum.com - Dr. Lorie Webb and Dr. James Jurica - NATIONAL FORUM ...www.nationalforum.com - Dr. Lorie Webb and Dr. James Jurica - NATIONAL FORUM ...
www.nationalforum.com - Dr. Lorie Webb and Dr. James Jurica - NATIONAL FORUM ...William Kritsonis
 
Influence of sex and ability level on students’ mathematics readiness in enug...
Influence of sex and ability level on students’ mathematics readiness in enug...Influence of sex and ability level on students’ mathematics readiness in enug...
Influence of sex and ability level on students’ mathematics readiness in enug...Alexander Decker
 
Effect of Contextual Teaching Learning Approach on Students’ Retention in Che...
Effect of Contextual Teaching Learning Approach on Students’ Retention in Che...Effect of Contextual Teaching Learning Approach on Students’ Retention in Che...
Effect of Contextual Teaching Learning Approach on Students’ Retention in Che...YogeshIJTSRD
 
Effects of hands-on instructional strategy on senior school students’ perform...
Effects of hands-on instructional strategy on senior school students’ perform...Effects of hands-on instructional strategy on senior school students’ perform...
Effects of hands-on instructional strategy on senior school students’ perform...Journal of Education and Learning (EduLearn)
 
Information communication technology (ict) — supported
Information communication technology (ict) — supportedInformation communication technology (ict) — supported
Information communication technology (ict) — supportedAlexander Decker
 
Effect Of Supervised Peer-Led Group Counselling Programme On Academic Achieve...
Effect Of Supervised Peer-Led Group Counselling Programme On Academic Achieve...Effect Of Supervised Peer-Led Group Counselling Programme On Academic Achieve...
Effect Of Supervised Peer-Led Group Counselling Programme On Academic Achieve...iosrjce
 

Similar a Design and development of computer aided learning software for individualized instruction of physics in some selected secondary schools in niger state, nigeria (20)

A correlational analysis of students achievement in waec and neco mathematics
A correlational analysis of students achievement in waec and neco mathematicsA correlational analysis of students achievement in waec and neco mathematics
A correlational analysis of students achievement in waec and neco mathematics
 
11.a correlational analysis of students achievement in waec and neco mathematics
11.a correlational analysis of students achievement in waec and neco mathematics11.a correlational analysis of students achievement in waec and neco mathematics
11.a correlational analysis of students achievement in waec and neco mathematics
 
Acorrelationalanalysisofstudentsachievementinwaecandnecomathematics 120126063...
Acorrelationalanalysisofstudentsachievementinwaecandnecomathematics 120126063...Acorrelationalanalysisofstudentsachievementinwaecandnecomathematics 120126063...
Acorrelationalanalysisofstudentsachievementinwaecandnecomathematics 120126063...
 
The use of ict in education for improving engineering education and training
The use of ict in education for improving engineering education and trainingThe use of ict in education for improving engineering education and training
The use of ict in education for improving engineering education and training
 
Qualitative Chemistry Education: The Role of the Teacher
Qualitative Chemistry Education: The Role of the TeacherQualitative Chemistry Education: The Role of the Teacher
Qualitative Chemistry Education: The Role of the Teacher
 
Effect of simulation on studentsí achievement in senior secondary school che...
Effect of simulation on studentsí  achievement in senior secondary school che...Effect of simulation on studentsí  achievement in senior secondary school che...
Effect of simulation on studentsí achievement in senior secondary school che...
 
Mathematics abilities of physics students implication for the application and...
Mathematics abilities of physics students implication for the application and...Mathematics abilities of physics students implication for the application and...
Mathematics abilities of physics students implication for the application and...
 
Factors militating against teaching of basic technology in
 Factors militating against teaching of basic technology in  Factors militating against teaching of basic technology in
Factors militating against teaching of basic technology in
 
An investigation into the challenges facing the implementation of technical c...
An investigation into the challenges facing the implementation of technical c...An investigation into the challenges facing the implementation of technical c...
An investigation into the challenges facing the implementation of technical c...
 
Causes of mass failure in senior school certificate mathematics examinations
Causes of mass failure in senior school certificate mathematics examinationsCauses of mass failure in senior school certificate mathematics examinations
Causes of mass failure in senior school certificate mathematics examinations
 
Chemistry Students Assessment of Their Chemistry Teachers Usage of Ncce Pedag...
Chemistry Students Assessment of Their Chemistry Teachers Usage of Ncce Pedag...Chemistry Students Assessment of Their Chemistry Teachers Usage of Ncce Pedag...
Chemistry Students Assessment of Their Chemistry Teachers Usage of Ncce Pedag...
 
Resources used by universal basic education (ube) teachers in teaching basic ...
Resources used by universal basic education (ube) teachers in teaching basic ...Resources used by universal basic education (ube) teachers in teaching basic ...
Resources used by universal basic education (ube) teachers in teaching basic ...
 
James Jurica and Lori Webb - Published National Refereed Article in NATIONAL ...
James Jurica and Lori Webb - Published National Refereed Article in NATIONAL ...James Jurica and Lori Webb - Published National Refereed Article in NATIONAL ...
James Jurica and Lori Webb - Published National Refereed Article in NATIONAL ...
 
Dr. Lori Webb and Dr. James Jurica, NATIONAL FORUM OF EDUCATIONAL ADMINISTRAT...
Dr. Lori Webb and Dr. James Jurica, NATIONAL FORUM OF EDUCATIONAL ADMINISTRAT...Dr. Lori Webb and Dr. James Jurica, NATIONAL FORUM OF EDUCATIONAL ADMINISTRAT...
Dr. Lori Webb and Dr. James Jurica, NATIONAL FORUM OF EDUCATIONAL ADMINISTRAT...
 
www.nationalforum.com - Dr. Lorie Webb and Dr. James Jurica - NATIONAL FORUM ...
www.nationalforum.com - Dr. Lorie Webb and Dr. James Jurica - NATIONAL FORUM ...www.nationalforum.com - Dr. Lorie Webb and Dr. James Jurica - NATIONAL FORUM ...
www.nationalforum.com - Dr. Lorie Webb and Dr. James Jurica - NATIONAL FORUM ...
 
Influence of sex and ability level on students’ mathematics readiness in enug...
Influence of sex and ability level on students’ mathematics readiness in enug...Influence of sex and ability level on students’ mathematics readiness in enug...
Influence of sex and ability level on students’ mathematics readiness in enug...
 
Effect of Contextual Teaching Learning Approach on Students’ Retention in Che...
Effect of Contextual Teaching Learning Approach on Students’ Retention in Che...Effect of Contextual Teaching Learning Approach on Students’ Retention in Che...
Effect of Contextual Teaching Learning Approach on Students’ Retention in Che...
 
Effects of hands-on instructional strategy on senior school students’ perform...
Effects of hands-on instructional strategy on senior school students’ perform...Effects of hands-on instructional strategy on senior school students’ perform...
Effects of hands-on instructional strategy on senior school students’ perform...
 
Information communication technology (ict) — supported
Information communication technology (ict) — supportedInformation communication technology (ict) — supported
Information communication technology (ict) — supported
 
Effect Of Supervised Peer-Led Group Counselling Programme On Academic Achieve...
Effect Of Supervised Peer-Led Group Counselling Programme On Academic Achieve...Effect Of Supervised Peer-Led Group Counselling Programme On Academic Achieve...
Effect Of Supervised Peer-Led Group Counselling Programme On Academic Achieve...
 

Más de Gambari Isiaka

020. students’ attitude and behavioural intention on adoption of internet for...
020. students’ attitude and behavioural intention on adoption of internet for...020. students’ attitude and behavioural intention on adoption of internet for...
020. students’ attitude and behavioural intention on adoption of internet for...Gambari Isiaka
 
Effectiveness of computer supported cooperative learning
Effectiveness of computer supported cooperative learningEffectiveness of computer supported cooperative learning
Effectiveness of computer supported cooperative learningGambari Isiaka
 
Availability and utilization of information and communication technology ict...
Availability and utilization of information and communication technology  ict...Availability and utilization of information and communication technology  ict...
Availability and utilization of information and communication technology ict...Gambari Isiaka
 
Understanding the concept of digestive system in biology using computer simul...
Understanding the concept of digestive system in biology using computer simul...Understanding the concept of digestive system in biology using computer simul...
Understanding the concept of digestive system in biology using computer simul...Gambari Isiaka
 
Effectiveness of computer supported jigsaw ii cooperative learning strategy
Effectiveness of computer supported jigsaw ii cooperative learning strategyEffectiveness of computer supported jigsaw ii cooperative learning strategy
Effectiveness of computer supported jigsaw ii cooperative learning strategyGambari Isiaka
 
How to use fut repository
How to use fut repositoryHow to use fut repository
How to use fut repositoryGambari Isiaka
 
Communication skills by dr. gambari, a. i.
Communication skills by dr. gambari, a. i.Communication skills by dr. gambari, a. i.
Communication skills by dr. gambari, a. i.Gambari Isiaka
 
What is technology by dr. gambari, a. i.
What is technology by dr. gambari, a. i.What is technology by dr. gambari, a. i.
What is technology by dr. gambari, a. i.Gambari Isiaka
 
Concept of audiovisual technology by dr. gambari, a. i.
Concept of audiovisual technology by dr. gambari, a. i.Concept of audiovisual technology by dr. gambari, a. i.
Concept of audiovisual technology by dr. gambari, a. i.Gambari Isiaka
 
Edt 303 presentation 1
Edt 303 presentation 1Edt 303 presentation 1
Edt 303 presentation 1Gambari Isiaka
 
Ite 201 presentation 2 copy
Ite 201 presentation 2   copyIte 201 presentation 2   copy
Ite 201 presentation 2 copyGambari Isiaka
 
Who is a professional secretary by dr. gambari, a. i.
Who is a professional secretary by dr. gambari, a. i.Who is a professional secretary by dr. gambari, a. i.
Who is a professional secretary by dr. gambari, a. i.Gambari Isiaka
 
Effective documents filling system
Effective documents filling systemEffective documents filling system
Effective documents filling systemGambari Isiaka
 
Current innovative instructional methods and technologies for quality tertiar...
Current innovative instructional methods and technologies for quality tertiar...Current innovative instructional methods and technologies for quality tertiar...
Current innovative instructional methods and technologies for quality tertiar...Gambari Isiaka
 
Prof. odigure's presentation
Prof. odigure's presentationProf. odigure's presentation
Prof. odigure's presentationGambari Isiaka
 
Effective teaching, learning and research for university lecturers
Effective teaching, learning and research for university lecturersEffective teaching, learning and research for university lecturers
Effective teaching, learning and research for university lecturersGambari Isiaka
 
Theories of team building
Theories of team buildingTheories of team building
Theories of team buildingGambari Isiaka
 
How to use the repository(1)
How to use the repository(1)How to use the repository(1)
How to use the repository(1)Gambari Isiaka
 
10. concept of odl course materials
10. concept of odl course materials10. concept of odl course materials
10. concept of odl course materialsGambari Isiaka
 

Más de Gambari Isiaka (20)

020. students’ attitude and behavioural intention on adoption of internet for...
020. students’ attitude and behavioural intention on adoption of internet for...020. students’ attitude and behavioural intention on adoption of internet for...
020. students’ attitude and behavioural intention on adoption of internet for...
 
Effectiveness of computer supported cooperative learning
Effectiveness of computer supported cooperative learningEffectiveness of computer supported cooperative learning
Effectiveness of computer supported cooperative learning
 
Availability and utilization of information and communication technology ict...
Availability and utilization of information and communication technology  ict...Availability and utilization of information and communication technology  ict...
Availability and utilization of information and communication technology ict...
 
Understanding the concept of digestive system in biology using computer simul...
Understanding the concept of digestive system in biology using computer simul...Understanding the concept of digestive system in biology using computer simul...
Understanding the concept of digestive system in biology using computer simul...
 
Effectiveness of computer supported jigsaw ii cooperative learning strategy
Effectiveness of computer supported jigsaw ii cooperative learning strategyEffectiveness of computer supported jigsaw ii cooperative learning strategy
Effectiveness of computer supported jigsaw ii cooperative learning strategy
 
How to use fut repository
How to use fut repositoryHow to use fut repository
How to use fut repository
 
Communication skills by dr. gambari, a. i.
Communication skills by dr. gambari, a. i.Communication skills by dr. gambari, a. i.
Communication skills by dr. gambari, a. i.
 
What is technology by dr. gambari, a. i.
What is technology by dr. gambari, a. i.What is technology by dr. gambari, a. i.
What is technology by dr. gambari, a. i.
 
Concept of audiovisual technology by dr. gambari, a. i.
Concept of audiovisual technology by dr. gambari, a. i.Concept of audiovisual technology by dr. gambari, a. i.
Concept of audiovisual technology by dr. gambari, a. i.
 
Edt 303 presentation 1
Edt 303 presentation 1Edt 303 presentation 1
Edt 303 presentation 1
 
What is technology
What is technologyWhat is technology
What is technology
 
Ite 201 presentation 2 copy
Ite 201 presentation 2   copyIte 201 presentation 2   copy
Ite 201 presentation 2 copy
 
Who is a professional secretary by dr. gambari, a. i.
Who is a professional secretary by dr. gambari, a. i.Who is a professional secretary by dr. gambari, a. i.
Who is a professional secretary by dr. gambari, a. i.
 
Effective documents filling system
Effective documents filling systemEffective documents filling system
Effective documents filling system
 
Current innovative instructional methods and technologies for quality tertiar...
Current innovative instructional methods and technologies for quality tertiar...Current innovative instructional methods and technologies for quality tertiar...
Current innovative instructional methods and technologies for quality tertiar...
 
Prof. odigure's presentation
Prof. odigure's presentationProf. odigure's presentation
Prof. odigure's presentation
 
Effective teaching, learning and research for university lecturers
Effective teaching, learning and research for university lecturersEffective teaching, learning and research for university lecturers
Effective teaching, learning and research for university lecturers
 
Theories of team building
Theories of team buildingTheories of team building
Theories of team building
 
How to use the repository(1)
How to use the repository(1)How to use the repository(1)
How to use the repository(1)
 
10. concept of odl course materials
10. concept of odl course materials10. concept of odl course materials
10. concept of odl course materials
 

Design and development of computer aided learning software for individualized instruction of physics in some selected secondary schools in niger state, nigeria

  • 1. GBODI, E. B.; GAMBARI A. I. AND OYEDUM, N. A. Design and Development of Computer-Aided Learning Software for Individualized Instruction of Physics in Some Selected Secondary Schools in Niger State. Journal of Educational Media and Technology, Vol. 12 No 1, 2006 DESIGN AND DEVELOPMENT OF COMPUTER-AIDED LEARNING SOFTWARE FOR INDIVIDUALIZED INSTRUCTION OF PHYSICS IN SOME SELECTED SECONDARY SCHOOLS IN NIGER STATE BY GBODI, E. B., GAMBARI A. I. & OYEDUM, N. A. Department of Science Education, Federal University of Technology, Minna Abstract In this, paper, the effect of a researcher-designed Computer-Aided Learning software on students’ physics achievement in senior secondary school in Niger State, Nigeria was investigated. The pre-test-post-test experimental-control group research design was employed. Stratified random sampling was used to select 80 students (40 males and 40 females) for each of the experimental and control groups. A 50-item achievement test, the Physics Achievement Test (PAT), was administered to the students as pre-test and post-test. Two hypotheses were postulated and tested at 0.05 level of significance. From the analysis the following findings were reached: (i) There was a significant difference between the achievement scores of physics students taught with the Computer-Aided Learning (CAL) software and those taught without the CAL software on the post-test (t = 15.74, df = 39, p £ 0.05). This shows that CAL is a better approach to embark upon by physics teachers for meaningful learning than traditional lecture method. (ii) There was no significant difference between the mean achievement scores of male and female physics students taught with the Computer-Aided Learning software (t = 0.31, df = 19, p ³ 0.05). This shows that the CAL software stimulated males and females alike. The implications of the findings for the use of CAL software were discussed. Recommendations for the improvement of physics education in Niger State and suggestions for further studies were made. Keyword: Computer-Aided Learning (CAL); CAL software; Individualised Instruction; Physics; Achievement; Senior Secondary Students; Niger State. Introduction One of the problems of teaching and learning is the method of imparting knowledge to learners. According to Stone (1991), the major difficulty in sciences is the method by which the subjects were customarily taught without regard to instructional materials. The pedagogical approach in imparting knowledge to learners has become inadequate to their needs. Bajah (1995) and Okeke (1986) found that science subjects has not been taught in Nigerian schools the way that pupils would benefit most, as science instruction has mostly been teacher-centred. For the past two decades, science education has been facing a lot of difficulties which include poor performance of students in science subjects (Adeyegbe, 1992). Physics, like other science subjects, recorded poor students’ performance both in national and international 97
  • 2. examination (Ali, 1983). Many factors contributed to the poor performance of students in physics examination (Akale, 1986; Okebukola and Jegede, 1986; Offiah, 1987; and Ali, 1988). The factors include: (i) Inability of the physics teachers to put across the physics concepts to the students (ii) Lack of skills and competence required for teaching physics (iii) Shortage of qualified physics teachers (iv) Lack of teaching materials and equipment Physics as a subject is very important for the scientific and technological advancement of any nation. Though its usefulness cuts across all fields of human endeavour, the low enrolment of students in the subject at both secondary and post secondary levels has been a source of concern to various people especially physics educators at various times (Omosewo, 1999; Balogun, 1985; Otuka, 1983; Ogunneye, 1982; Orisaseyi, 1977; Ogunyemi and Eboda, 1974). Lack of active participation of students is one of the factors responsible for students’ poor performances in science subjects (Inyang, 1988; Bichi, 1988). This has also been indicated in West African Examination Council (WAEC) results of secondary schools where students’ performances are generally poor in physics, chemistry, biology and other sciencerelated subjects (WAEC, 2000). This pattern of poor performance in the sciences by students is also observed in tertiary institutions (Olarinoye, 1987). Omosewo (1999:99), asserted that “physics teachers were using the lecture method for teaching the subject in the secondary schools. The direct impact of this method on learners is that it often leads to lack of understanding and this might cause poor performance and low enrolment of students in the subject. The low enrolment in physics is a cog in the wheel of the scientific and technological progress in this nation”. Many of the students see science as too abstract to comprehend, thereby resorting to memorization or rote method of learning. Many students have also changed from science subjects to art and commercial subjects while some dropped out and some failed woefully at the final examination. Meanwhile, various attempts have been made by government, school proprietors and teachers to facilitate effective teaching and learning of these science courses which are the rudiments of development of any nation. Textbooks have been constantly reviewed and rewritten in simpler forms and instructional materials of various types had been designed yet the problems persist. Ogunleye (2000) found out that in the era of technological advancement, technology has had minimum impact on education. This is because 80% of teachers in Nigeria are mostly using the chalkboard and textbook method (traditional method) in teaching. Actually most schools do not have modern equipment and materials. The few schools that have these equipment are unable to use them effectively as a result of erratic electric power supply and at times the inability of some teachers to operate some of these equipment. However, constant use of the traditional method of teaching is a major factor contributing to poor academic achievement of physics students. One of the major problems faced by students is inability to remember what has been learnt. This problem is often caused by too much theoretical expression by the teachers while learners are passive listeners. Students memorize and regurgitate facts and concepts. 98
  • 3. The above problems confronting the teaching and learning of physics can be handled using Computer-Aided Learning (CAL). Computer Aided Learning is a learning process in which a student interacts with and is guided by a computer through the course of study aimed at achieving certain instructional goals (Eke, 1988). Computer has been used in developed countries to tackle most of these problems it could be used to transform classroom instruction into a series of rich memorable experiences and thus reduce boredom and forgetfulness. Computer can be used to teach all school subjects including science. In recent years, the use of computer in the process of teaching and learning has become widespread in educational institutions with the development of microcomputer (Ezeliora, 1997). According to Ezeliora (1997), “Computer is useful in almost all spheres of life such as in hospitals for keeping records of patients, drugs, staff and accounts, instruments for diagnosis and treatment. It facilitates the banking system and quickens banking services to clients. It is very useful in professional services such as engineering, chartered firms and business. Thus computer is regarded as an all-purpose machine”. Abimbade (1996) reported that the use of computer: (i) increase the time of learners devoted to learning, (ii) Enhance the speed of availability of data and information, (iii) Provide immediate feed-back (iv) Assist less qualified teachers and (v) increase teachers efficiency and effectiveness. Udousoro and Abimbade (1997) and Adeniyi (1997) pointed out that students taught mathematics and physics with computer achieved higher cognitively than those taught without computer. The purpose of the study was to compare the effect of Computer-Aided Learning and the traditional method of teaching (chalk-and-talk method) in teaching and learning physics in senior secondary schools in Niger State, Nigeria. Research Hypotheses The following null hypotheses were formulated and tested at p £ 0.05 so as to obtain answers to the research questions: (i) There is no significant difference between the mean achievement scores of physics students taught with Computer-Aided Learning (CAL) software and those taught without it. (ii) There is no significant difference between the mean achievement scores of male and female physics students taught with the Computer-Aided Learning software. Research Design The research design was a pretest-posttest experimental control group design. Sample and Sampling Technique The population for this study was made up of all the senior secondary class one (SSI) students in two Local Government Areas in Niger State. The sample subjects were drawn from two co-educational and two single gender schools in Bosso and Shiroro Local Government Areas of Niger State. The subjects from the co-educational schools were 99
  • 4. selected by the use of stratified random sampling technique. This method was chosen so that the gender variable could be appropriately represented. Twenty (20) science students were randomly selected for the study from each of the four schools. In all there were forty (40) males and forty (40) females. The students were taught the same concept of physics using chalk-and-talk method and Computer-Aided Learning software. Research Instrument The research instrument was made up of 50 items of the Physics Achievement Test (PAT) which was used as pre-test and post-test to measure both the lower and higher cognitive skills of the students in physics. The fifty questions were selected from eighty questions initially prepared. To obtain the fifty questions, the initial eighty questions were subjected to the processes of validation and item analysis to determine the discrimination and facility indices. The questions were also subjected to pilot study and reliability test before using them as a research instrument. The time allocated for the test was eighty minutes. A stem followed by four (4) options lettered (A-E) out of which only “one” was correct. Students were instructed to select only one option as answer for each item. All the options were plausible answers to the item. Development of Self–Instructional Computer-Based Package The Computer-Aided Learning (CAL) software was developed by the researcher using the lesson notes prepared for the traditional (chalk–and–talk) method. The program was written in Visual FoxPro programming language. The topics treated were selected based on senior secondary school syllabus. The topic selected was from first term scheme of work and falls between the periods that research was carried out. The development of courseware for this research material follows the systematic and recursive approach of instructional development model put forth by Mervill and Goodman (1972); Philips et al. (1987); and Dick and Carey (1996). However, five trials were made before the packages become successful. It was then tested with some few selected secondary schools in Minna, Niger State. These schools used for testing the package falls between the population of the study but not part of the schools selected for research study. Some of the complaints from these selected pupils about the package was later used for further modification and finally perfected the package Validity and Reliability of the Instruments The Computer-Aided Learning (physics package lesson) and the physics achievement test (PAT) items was pilot tested and found to satisfy face, content and construct validity by three experts in educational technology, physics and computer science departments. Item analysis of the instrument was also carried out to determine the facility and discrimination indices after which the final items for the instrument were selected and the reliability coefficient computed using the split-half approach and the Richard Kuderson formula 21 (KR–2). The value obtained for the reliability coefficient was 0.97 and this was considered to be quite adequate for this study. 100
  • 5. Method of Data Collection The data for testing the hypotheses were collected from the pre-test and post-test administered to the subjects used in the study. Each of the tests was marked and scored over hundred percent. The experimental group were exposed to physics lesson using ComputerAided Learning software for the period of six weeks while the control group were taught the same physics lesson with traditional (chalk-and-talk) method. The total number of lesson within six weeks is eighteen periods lasted for forty minutes. After the duration of six weeks of treatment for the experimental group and six week of lecture method with control group, the post-test was administered to both groups at the same duration in the usual paper per-pencil method. Method of Data Analysis The scores obtained by different groups were computed and used in testing the hypothesis. This data were analysed using mean, standard deviation and the t–test statistical analysis. The level of the significance adopted for the analysis was p ≤ 0.05. This level of significance formed the basis for rejecting or not rejecting each of the hypotheses. Results and Discussion Two Research questions were raised in this study and two null hypotheses were formulated and tested to provide answers to the research questions. Analysis of the pre-test and post-test data collected by means of the physics achievement test (PAT) were used to answer the research questions using the two null hypotheses as guide. Means, standard deviations and the t-test were employed in analysing the pre-test and post-test data. The level of significance adopted for the analysis is 0.05. This level of significance formed the basis for rejecting or not rejecting a null hypothesis. The summary of the data analyses and results is presented below. Performance of Experimental and Control Groups on the Pre-test A pre-test was administered to both the experimental and control groups. The test was the 50-item multiple-choice physics objective test (PAT). The subjects were allowed forty minutes to do the test. The test was given to determine the academic equivalence of the experimental and control groups. The mean scores of students in the experimental and control groups on the pre-test were calculated and the t-test computed for the two means. Table 1 shows the means, standard deviations and the result of the t-test analysis. Table 1: t - test Comparison of the Mean Scores of Experimental and Control Groups on the Pre-test Variable N df X SD t-value t-value p-value Remark calculated critical Experimental 40 39 14.43 2.91 Not ns Group 0.24 2.02 0.81 significant Control Group 40 14.35 3.13 ns - Not significant at p > 0.05 101
  • 6. The result in Table 1 indicates that there is no significant difference at 0.05 level of significance between the pre-test mean scores of the experimental and control groups (t = 0.24, df = 39, p = 0.81). This means that subjects in the experimental and control groups were at the same entry level with regard to academic ability before the physics topics were presented to them. Their mean scores were statistically the same. Performance of the Experimental and Control Groups on the Post-test Hypothesis 1: There is no significant difference between the mean scores of physics students taught with Computer-Aided Learning (CAL) software and those taught without the use CAL software. To test this hypothesis the post-test means scores of the experimental and control groups were computed and compared using the t-test statistic. The result is shown in Table 2. Table 2: t–test Comparison of the Post-test Mean Scores of the Experimental and Control Groups Variable N df X SD t-value t-value P-value Remark calculated critical Experimental 40 39 68.95 5.99 Group 15.74* 2.02 0.001 Significant Control 40 58.90 5.38 Group * - Significant at p£ 0.05 The result (of the t-test analyses) in Table 2 shows that there was significant difference between the post-test mean scores of the experimental and control groups at 0.05 level of significance (t = 15.74, df = 39, p = 0.001). Hypothesis I was therefore, rejected. This means that there was a significant difference at 0.05 level of significance between the performances of students taught with the CAL software and those taught without the software. Students taught with the CAL software performed better than those who were taught without it. Hence, the CAL software enhanced the learning of physics. Performance of Male and Female Students in the Experimental Group on the Post-test Hypothesis 2: There is no significant difference between the mean achievement scores of male and female physics students taught with the Computer-Aided Learning software. To test this hypothesis, the post-test mean scores of male and female students in the experimental group were computed. The analysis was carried out using the t-test statistic and the result shown in table 3. Table 3: t–test Comparison of the Post-test Mean Scores of Male and Female Physics Students in the Experimental Group Variable N df X SD t-value t-value p-value Remark calculated critical Males 20 19 68.70 6.37 0.31ns 2.09 0.757 Not Females 20 69.20 5.75 Significant ns - Not Significant at p> 0.05 102
  • 7. From the result in Table 3, it can be seen that there was no significant difference between the post-test mean scores of male and female physics students in the experimental group at 0.05 level of significance (t = 0.31, df = 19, p = 0.757). Null hypothesis 2 was therefore not rejected. The performances of the male and female physics students in the experimental group were equally enhanced by the use of the computer physics software. Hence the CAL physics software was gender friendly. Discussion Findings on Table 2 indicate that there was a significant difference in the physics achievement of students taught with the Computer-Aided Learning software. Those students taught with the computer software performed better in the physics achievement test compared with those who were taught without the computer software. The result seem to agree with earlier studies which concluded that students taught mathematics and physics with computer achieved higher cognitively than those taught without computer (Udousoro and Abimbade, 1997; Adeniyi, 1997; Hassan, 1997; and Jonah, 1991). Computer can, therefore, be seen as a tool for effective teaching and learning of science subjects. CAL is an effective tool and efficient development of individual cognitive structure, psychomotor and affective abilities. Findings on Table 3 indicate that there was no significant difference between the performances of male and female students who were taught physics with the computer software. The male and female students performed equally well. The result agrees with the findings of Abdullahi (1981) and Fuller (1982) who found that gender did not influence students’ performance in science generally. Conclusion From the findings of this research work, the following conclusions were drawn: (i) Instructional strategies that teachers employ in teaching science subjects at senior secondary school level have significant effects on students’ achievement. The findings of the present study showed that better performance in physics was achieved through the use of CAL software. (ii) The male and female students were affected positively and equally by the use of CAL software in teaching physics. This showed that the effect of CAL software is not gender dependent. Recommendations From the findings of the present study, the following recommendations are made: 1. The use of computer for teaching and learning in our schools should be encouraged. Therefore, computer education should be made compulsory for teachers and students in all levels of our educational systems. 2. Curriculum planners should enforce/inculcate the use of computer in teaching/learning into school curricula. 3. Educators should continue to lay more emphasis and implement the concepts of educational technology as a means of enhancing the quality of education. 4. Federal Government should fully implement computer literacy policy formulated in 1988. 103
  • 8. 5. 6. 7. 8. 9. 10. 11. In–service training should be given to teachers on Educational Technology particularly on the production and use of computerised instructional media so that they can appropriate the use of modern instructional technology. There is need for government and non-governmental organisations to organise seminars, workshops, conferences as well as in-service training for teachers on methodology of teaching so as to be able to compare and contrast effects of different methods of teaching on students’ achievement. Schools should be equipped with computers and Internet facilities and other necessary instructional packages for teaching and learning. Science teachers should learn how to prepare Computer-Aided Learning software. Emphasis should be placed on making learning to be a learner-centred affair as well as teaching for meaningful learning. The role differentiation amongst boys and girls should continue to be avoided when teaching science. Each gender deserves equity in exposure to educational experience. Academic cooperation, though not to the point of replication or subjugation, should be worked out by departments of Mathematics/Computer science, Physics/Computer science and Educational Technology to develop adequate software for effective science teaching and learning. References Abdullahi, A. (1981). A Study of Factors with Interest in Science Careers. Journal of Research in Curriculum (JORIC), 6 (1), 69-76. Abimbade, A. (1996). Principle and Practice of Educational Technology. Ibadan: International Publishers Ltd. Adeniyi, A. (1997). Computer Aided Instruction and Achievement in Physics. Innovations in Science, Technology and Mathematics, STAN Proceedings of Ajumogobia Memorial Conference, pp257-260. Adeyegbe, S. O. (1992). Assessing Students’ Work in Chemistry: The WAEC State of the Art. A Paper Delivered at STAN Chemistry Workshop For Chemistry Teachers, ABU, Kano Campus, 10-15 April. Akale, M. A. G. (1986). Assessment of Students Achievement in Science: What Implications for Teacher Training. Proceeding of the 27th Annual Conference of the Science Teachers Association of Nigeria (STAN). Baja, S. T. (1995). Practical Skills in Science and Technology. A key Note Address Delivered at the 36th Annual Conference of STAN, Maiduguri, 14th – 19th August. Balogun, T. A. (1985). Interest in Service and Technology Education in Nigeria. Journal of the Science Teachers Association of Nigeria (STAN), 2 (1&2), 92- 99. Bichi, S. S. (1988). The Design of Inventory Skills in Senior Secondary Schools Practical Biology. Unpublished M.Ed. Thesis ABU, Zaria. 104
  • 9. Dick, W. and Carey, L. (1996). The Systematic Design of Instruction (4th edition). New York: Harper Collins College Publishers. Ezeliora, B. (1997). Computer: A New Technology in Chemistry Teaching and Learning: Innovation in Science, Technology and Mathematics. STAN Proceedings of Ajumogobia Memorial Conference, Pp257-260. Federal Republic of Nigeria (1988). National Policy on Computer Literacy. Lagos: Federal Government Press. Fuller, R. G. (1982). The Puzzle of the Tacoma Narrows Bridge Collapse. New York: John Wiley & Sons. Hassan, Z. M. (1997). An Expert System for Teaching Mathematics and Physics. Unpublished B. Tech. Project, Mathematics/Computer Science Department, Federal University of Technology, Minna. Inyang, N. E. (1988). The Constructing, Validation, Standardization of Integrated Science Achievement Test. Unpublished Ph.D Dissertation. ABU. Zaria. Jegede, O. J. and Fraser, B. (1989). Influence of Socio-Cultural Factors on Secondary School Students Attitude Towards Science. A paper Presented at 20th Annual Conference of the Australia Science Education, Research Association, Melbourne. Jonah, A. O. (1991). Use of Computer to Aid Effective Teaching of Mathematics in Secondary School. Unpublished B. Tech. Project, Mathematics /Computer science Department, federal University of Technology, Minna. Merril, M. A. and Goodman, R. I. (1972). Selecting Instructional Strategies and Media: A Place to being in. U.S.A. National Special Media Institute. Ogunleye, A. O. (2000). Towards the Optimal Utilization and Management of Resources for the Effective Teaching and Learning of Physics in Schools. In O. O. Busari (Ed), 41st Annual Conference Proceedings, Journal of STAN. Ogunneye, W. (1982). The Relative Effects of Selected Instructional Styles on Students Achievement in Physics. Journal of (STAN), 21 (1), 97-101. Ogunyemi, E. O. and Eboda, F. M. (1974). Cognitive Preferences among High and Low Physics Achievers in Two Nigeria Secondary Schools. African Journal of Education Research, 1 (1), 107-113. Okebukola, A. O. and Jegede, O. J. (1986). The Under Achieving Student in Science. Opinions on the aetiology of ailment. Proceedings of the 27th Annual Conference of the STAN. Pp. 57-63. Okeke, E. A. (1986). Remedies for Students Poor Performance in Biology. Proceedings of the 27th Annual Conference of Science Teacher Association of Nigeria. 105
  • 10. Olarinoye R. D. (1987). The Inquiry and Discovery Methods of Teaching Science. Journal of STAN, 21 (1), 168-180. Omosewo, E. O. (1999). Impact of Discovery Method of Teaching on Students’ Achievement in Physics. Journal of Nigerian Association of Teachers of Technology (JONATT), 3 (1), 99-107. Orisaseyi, S. (1977). A Critical Look at the Attitude of Secondary School Students to Physics. Journal of STAN, 16 (1), 49-55. Otuka, J. O. E. (1983). Problems Relating to the Development of Physics Education in Secondary Schools. Journal of STAN, 2 (2), 133-136. Philip, B. (1987). Author Languages for Computer Aided Learning: London. Macmillan Education Ltd. Udousoro, U. J. and Abimbade, A. (1997). The Place of Computer Assisted Instruction in Mathematics, STAN Proceedings of Ajumogobia Memorial Conference. Pp.238-243. West African Examination Council (WAEC), (2000). Examiners Report in Science Subjects. Lagos: WAEC. 106