SlideShare una empresa de Scribd logo
1 de 5
Descargar para leer sin conexión
International Journal of Research in Engineering and Science (IJRES)
ISSN (Online): 2320-9364, ISSN (Print): 2320-9356
www.ijres.org Volume 1 Issue 6 ǁ Oct 2013 ǁ PP.24-28
www.ijres.org 24 | Page
Vehicle route scheduling and transportation cost minimization in
a latex industry using PSO
Felix Koshi1
, Georgekutty S. Mangalath2
, C.B. Saji3
1
(Mechanical Engineering Department, M.A.College of Engineering, India)
2
(Mechanical Engineering Department, M.A.College of Engineering, India)
3
(Principal, Sree Narayana Gurukulam College of Engineering, India)
ABSTRACT : The vehicle route scheduling problem is concerned with the determination of routes and
schedules for a fleet of vehicles to satisfy the demands of a set of customers. The goal of vehicle routing is to
schedule multiple suppliers from various places. Vehicle routing has existed since the advent of the Industrial
age, when large-scale production became possible. As the complexity and scale of the manufacturing world
increased, the task of optimizing vehicle routing grew. The vehicle routing problem is a combinatorial
optimization and integer programming problem seeking to service a number of customers with a fleet of
vehicles. Often the context is that of delivering goods located at a central depot to customers who have placed
orders for such goods or vice-versa. Implicit is the goal of minimizing the cost of distributing the goods. Many
methods have been developed for searching for good solutions to the problem, however even for the smallest
problems, finding global minimum for the cost function is computationally complex. The paper presents an
optimization algorithm using Particle Swarm Optimization (PSO) for the vehicle routing that would enable the
logistic manager of a latex industry to minimize the transportation cost and maximize the collection using
minimum number of vehicles.
Keywords – Vehicle route scheduling, transportation cost, Particle Swarm Optimization
I. INTRODUCTION
Vehicle route scheduling and cost minimization of a latex industry with a capacity to process 1000
barrels of normal latex a day and 17460 M.T. per year has been considered in the present paper. The factory
collects rubber latex from 143 permanent collection centers located around 200 kilometers from the factory in
addition to few non-permanent suppliers. The company uses about 30 vehicles on an average per trip. The
collection capacities of these vehicles vary from 24 to 65 barrels (4800kg -13,000kg). The charge per kilometer
of these vehicles depends on their carrying capacity. A manual procedure of vehicle route allotment is in
practice in the organization, for which the efficiency cannot be predicted. Hence a stochastic procedure for
optimization is considered for vehicle route scheduling of the organization.
Genetic algorithm for solving capacitated vehicle routing problem are reported that are mainly
characterized by using vehicles of the same capacity based at a central depot that will be optimally routed to
supply customers with known demands. The algorithms are used to find an optimal set of delivery routes
satisfying the requirements and giving minimal total cost [1, 2].
An iterative route construction and improvement algorithm for the vehicle routing problem with soft
time windows is presented by Miguel [3]. This paper presents a problem with practical applications in
distribution and logistics due to the rising importance of just-in-time procedure.
A particle swarm optimization algorithm for open vehicle routing problem (OVRP) presented by Mir
Hassani [4] reports that in OVRP a vehicle does not return to the depot after servicing the last customer on a
route. Studies on solving the capacitated vehicle routing problem by Jin Ai [5] presents two solution
representations and the corresponding decoding methods for solving the problem using particle swarm
optimization. In problems where the customers require not only the delivery of goods but also the simultaneous
pick up of goods, a general assumption is that all delivered goods originate from the depot and all pickup goods
must be transported back to the depot [6].
Literatures on solving vehicle routing problems using Ant Colony Optimization (ACO) algorithm
constructs a complete tour for the first ant prior to the second ant starting its tour [7].Once the vehicle capacity
constraint is met, the ant will return to the depot before selecting the next customer. This selection process
continues until each customer is visited and the tour is complete.
A heuristic approach for solving large scale bus transits vehicle scheduling problem with route time
constraints is presented by Ali Haghani., & Mohamaadreza Banihashemi [8]. They conducted a study of
multiple depots with time window, with the constraint of restriction fuel efficiency. Russel Eberhart, Balter and
Vehicle route scheduling and transportation cost minimization in a latex industry using PSO
www.ijres.org 25 | Page
James Kennedy reviewed the PSO concept and introduced a new form of particle swarm optimizer [9]. They
examined how changes in the procedure affect the number of iteration required to meet an error criterion, and
the frequency with which models interminably around a new optimum. In the binary version, trajectories are
traced in the probability that a co-ordinate will take on a zero or one value. Yuhui Shi and Renhart W introduced
a new parameter “inertia weight” in to the original PSO [10]. It is proved that PSO with inertia weight will have
better performance and has a bigger chance to find the global optimum within a reasonable number of iterations.
A large inertia weight facilitates a more powerful global search while a small inertia weight facilitates a more
powerful local search Yuhuishe, Russell and Engelbrecht AP conducted empirical studies on the performance of
PSO and found that PSO converges very quickly towards the optimal positions but may slow its convergence
sped when it is near a minimum [11]. Also proved that using an adaptive inertia weight, performance of PSO
near optima can be improved. PSO may lack global search ability at the end of a run due to the utilization of a
linearly decreasing inertia weight they implemented a Fuzzy system to dynamically adjust the inertia weight in
order to improve the performance of the PSO.
II. MATHEMATICAL MODELING
A mathematical model for developing the optimization algorithm is explained in the subsequent
section. Objective is to Objective is to minimize
)1(
001
ijkijk
N
j
N
i
K
k
XC 
Subjected to the constraints:
)2(,.......,2,1,1
01
NjXijk
N
i
K
k
 
)3(,.......,2,1,1
01
NiXijk
N
j
K
k
 
)4(,........,2,1;,,.........2,1,0
00
NtKkXX tjk
N
j
itk
N
i
  
)5(,.......,2,1,
00
KkDXd kijkijk
N
j
N
i
 
)6(,.......,2,1
00
KkQXq kijk
N
i
j
N
j






 
)7(,.......,2,1,10
1
KkX jk
N
j

)8(,.......,2,1,10
1
KkX ki
N
i

)9(,
11
 

K
k
ki
N
i
Qq
  )10(,....,2,1;,.......,2,1,0,,1,0 KkNjiXijk 
)11(,1
0
jtoicustomermtravelsfrokvehicleif
otherwiseijkX 
Where depot is represented by node 0,
No. of collection centers =N,
No of vehicles=K,
Quantity of rubber latex at customer “i” = qi
Capacity of kth
vehicles= Qk
Maximum allowable distance by vehicle k =Dk
Cost of traveling from customer i to j by vehicle k= Cijk
The basic process of the PSO algorithm is given as follows.
Step 1: (Initialization) randomly generate initial particles.
Step 2: (Fitness) Measure the fitness of each particle in the population.
Step 3: (Update) Compute the position vector of each particle with Eq. (12).
Vehicle route scheduling and transportation cost minimization in a latex industry using PSO
www.ijres.org 26 | Page
Step 4: (Construction) for each particle, move to the next position according to Eq. (13).
Step 5: (Termination) Stop the algorithm if termination criterion is satisfied; return to Step 2 otherwise.
is the best position of the particle
is the global best position of particle
is the position of the previous particle
where c1 indicates the cognition learning factor; c2 indicates the social learning factor, and r1 and r2 are
random numbers
In the present analysis, first the population of particles is initialized, each particle having a random
position within the dimensional space and a random position vector for each dimension. Second, each particle’s
fitness for the vehicle routing problem is evaluated. If the fitness is better than the particle’s best fitness, then the
position vector is saved for the particle. If the particle’s fitness is better than the global best fitness, then the
position vector is saved for the global best. Finally the values are updated until the termination condition is
satisfied
PSO algorithm can be described as follows.
(14)
(15)
(16)
Where are control parameters which indicate the control degree of V.
w+c1+c2=1, 0< w, c1, c2<1.In Equation (16), the first part represents the inertia of previous probability; the
second part is the “cognition” part, which represents the local exploration probability; the third part is the
“social” part, which represents the cooperation among all quantum particles.
Fitness is used to evaluate the performance of particles in the swarm. Generally, choosing a proper
objective function as fitness function to represent the corresponding superiority of each particle is one of the key
factors for successful resolution of the relevant problem using PSO algorithm. In the capacitated vehicle routing
problem, the objective is to minimize the total cost or distance. Therefore, according to the description in above
section, the following equation as fitness function has been selected:
(17)
The objective of the scheduling is to minimize the total cost, i.e. fit, so the particle with the minimal
fitness will outperform others and should be reserved during the optimization process.
III. SOLUTIONS USING PSO
A MATLAB program has been initially developed to calculate the least travelling cost of two vehicles between
eight destinations. The program is initiated with the capacity and kilometer cost of each vehicle whereas the
number of barrels to be collected from each places and the distance between the destination and depot are fed in
the form of excel sheet.
The program works on the basis of permutations of 8 destinations. According to this, in case one, the first node
is visited by the first vehicle and all the other nodes are visited by the second vehicle. For the second case, the
first two nodes are visited by the first vehicle and rest is covered by the second vehicle. Similarly, all cases are
considered and the cost for each is evaluated based on the various parameters given. At last the route with least
route cost is found out.
An algorithm is developed based on PSO for two vehicles and eight destinations. After ensuring its acceptable
agreement with the exact solutions, the algorithm in PSO is also extended to solve the present problem with 30
vehicles and 143 destinations for which the route of one vehicle of a particular trip is shown in Table 1.
Vehicle route scheduling and transportation cost minimization in a latex industry using PSO
www.ijres.org 27 | Page
Table 1. Results for the month of June using PSO
Demands vary with the seasons and environmental conditions. These varying demand requirements were
considered and the corresponding plans for each of the cases are obtained using the proposed PSO algorithm.
The algorithm is used to compute the optimum route to perform all deliveries. The plans generated by the
algorithm are compared with the plans made manually in the company. Table 2 shows the cost estimation using
the proposed and existing methods. The PSO algorithm - implemented in Matlab - provided a good solution in
two-three minutes on a Pentium PC at 1 GHz. It is found that the proposed PSO algorithm can provide a better
solution for the present problem faced by the organization in connection with vehicle routing. The algorithm
allows a reduction of Rs.3, 00000/- per year in cost.
Table 2. Cost estimation using proposed and existing methods
Month
Cost in Rs.
Proposed Method Existing method
JAN 124894 149894
FEB 123736 148736
MAR 120370 145370
APRIL 105500 130500
MAY 116000 141000
JUNE 104415 129415
JULY 107794 132794
AUG 116794 141794
SEP 120662 145662
OCT 120370 145370
NOV 122737 147737
DEC 124223 149223
Total Transportation Cost (in Rs.) 1407494/- 1707494/-
Vehicle route scheduling and transportation cost minimization in a latex industry using PSO
www.ijres.org 28 | Page
IV. CONCLUSION
A PSO algorithm has been developed for vehicle route scheduling and transportation cost minimization
of latex industry. The algorithm has been initially used for 2 vehicles and 8 destinations and the obtained results
are compared with the exact solution. The result obtained by the PSO algorithm has been in good agreement.
The ruggedness of the algorithm is ensured by varying the vehicle capacities and comparing the same with exact
solutions. The effectiveness of the proposed algorithm has been proved from the above comparisons. Thereafter,
the algorithm is extended to solve the vehicle routing problem of the latex industry under consideration, with 30
vehicles and 143 destinations. Travelling cost of the proposed method is obtained for all the months and is
compared with the manual method. The algorithm allows a reduction of Rs.3, 00000/- per year in cost. It is
found that the PSO algorithm presented in the paper provide a better solution for the vehicle routing challenges
faced by the organization.
REFERENCES
[1] Habibeh Nazif., and Lai Soon Lee.,. Optimized crossover genetic algorithm for capacitated vehicle routing problem., Department
of Mathematics, Institute for Mathematical Research,14( University Putra Malaysia., 2011) 247-255
[2] King Wah Pang. An adaptive parallel route construction heuristic for the vehicle routing problem with time windows
constraints., Department of Logistics and Maritime Studies, 38 (The Hong Kong Polytechnic University, Hung Hom,
Kowloon.,2011) 11939-11946
[3] Miguel Andres Figliozzi.(2010). An iterative route construction and improvement algorithm for the vehicle routing problem with
soft time windows.,Department of Civil and Environmental Engineering, 18 (Portland State University, 2010), 668–679
[4] Mir Hassani, S.A., and Abolghasemi, N, A particle swarm optimization algorithm for open vehicle routing problem., Faculty of
Mathematics and Computer Sciences, Amirkabir,38 ( University of Technology, Tehran, Iran.,Expert Systems with Applications,
2011) 11547–11551
[5] The Jin Ai., and Voratas Kachitvichyanukul., Particle swarm optimization and two solution representations for solving the
capacitated vehicle routing problem., Industrial Engineering and Management, School of Engineering and Technology, 56 (Asian
Institute of Technology, Computers & Operations Research, 2009) 380–387
[6] The Jin Ai., and Voratas Kachitvichyanukul. A particle swarm optimization for the vehicle routing problem with simultaneous
pickup and delivery., Industrial Engineering and Management, School of Engineering and Technology,36 ( Asian Institute of
Technology ., Computers & Operations Research, 2009) 1693 -- 1702
[7] John, E. Bella., and Patrick, R. Ant colony optimization techniques for the vehicle routing problem., Department of Operational
Sciences, Air Force Institute of Technology., Babcock Graduate School of Management,18 ( Wake Forest University., Advanced
Engineering Informatics,2009) 41–48
[8] Ali Haghani., and Mohamaadreza Banihashemi.(2002). Heuristic approach for solving large scale bus transits vehicle
scheduling problem with route time constraints., Department of civil and environmental engineering,36(,university of Mary land,
Transportation research art, 2012) 309-399
[9] Baltar AM, Fontane DG, A generalized multi-objective particle swarm optimization solver for spreadsheet models: application to
water quality. In: Proceedings of the twenty sixth annual American geophysical union hydrology days, 2006, 20–22
[10] Baumgartner U, Magele C, Renhart W, Pareto optimality and particle swarm optimization. IEEE Trans 2004, 40(2):1172–1175
[11] Brits R, Engelbrecht AP, van den Bergh F, A niching particle swarm optimizer. In: Proceedings of the fourth Asia-Pacific
conference on simulated evolution and learning, 2012, 88-93.

Más contenido relacionado

La actualidad más candente

La actualidad más candente (16)

Bidding Strategies for Carrier in Combinatorial Transportation Auction
Bidding Strategies for Carrier in Combinatorial Transportation AuctionBidding Strategies for Carrier in Combinatorial Transportation Auction
Bidding Strategies for Carrier in Combinatorial Transportation Auction
 
Solving capacity problems as asymmetric
Solving capacity problems as asymmetricSolving capacity problems as asymmetric
Solving capacity problems as asymmetric
 
Multi depot Time-dependent Vehicle Routing Problem with Heterogeneous Fleet
Multi depot Time-dependent Vehicle Routing Problem with Heterogeneous FleetMulti depot Time-dependent Vehicle Routing Problem with Heterogeneous Fleet
Multi depot Time-dependent Vehicle Routing Problem with Heterogeneous Fleet
 
International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)
 
A Minimum Spanning Tree Approach of Solving a Transportation Problem
A Minimum Spanning Tree Approach of Solving a Transportation ProblemA Minimum Spanning Tree Approach of Solving a Transportation Problem
A Minimum Spanning Tree Approach of Solving a Transportation Problem
 
A Solution for Multi-objective Commodity Vehicle Routing Problem by NSGA-II
A Solution for Multi-objective Commodity Vehicle Routing Problem by NSGA-IIA Solution for Multi-objective Commodity Vehicle Routing Problem by NSGA-II
A Solution for Multi-objective Commodity Vehicle Routing Problem by NSGA-II
 
Vehicle Routing Problem with Backhauls
Vehicle Routing Problem with BackhaulsVehicle Routing Problem with Backhauls
Vehicle Routing Problem with Backhauls
 
A02610106
A02610106A02610106
A02610106
 
tAnt colony optimization for
tAnt colony optimization fortAnt colony optimization for
tAnt colony optimization for
 
J011119198
J011119198J011119198
J011119198
 
HYBRID ANT COLONY ALGORITHM FOR THE MULTI-DEPOT PERIODIC OPEN CAPACITATED ARC...
HYBRID ANT COLONY ALGORITHM FOR THE MULTI-DEPOT PERIODIC OPEN CAPACITATED ARC...HYBRID ANT COLONY ALGORITHM FOR THE MULTI-DEPOT PERIODIC OPEN CAPACITATED ARC...
HYBRID ANT COLONY ALGORITHM FOR THE MULTI-DEPOT PERIODIC OPEN CAPACITATED ARC...
 
Koptreport
KoptreportKoptreport
Koptreport
 
REVIEW OF OPTIMAL SPEED MODEL
REVIEW OF OPTIMAL SPEED MODELREVIEW OF OPTIMAL SPEED MODEL
REVIEW OF OPTIMAL SPEED MODEL
 
A modal shift for the logistics network system in japan
A modal shift for the logistics network system in japanA modal shift for the logistics network system in japan
A modal shift for the logistics network system in japan
 
Car Dynamics using Quarter Model and Passive Suspension, Part II: A Novel Sim...
Car Dynamics using Quarter Model and Passive Suspension, Part II: A Novel Sim...Car Dynamics using Quarter Model and Passive Suspension, Part II: A Novel Sim...
Car Dynamics using Quarter Model and Passive Suspension, Part II: A Novel Sim...
 
Improving initial generations in pso algorithm for transportation network des...
Improving initial generations in pso algorithm for transportation network des...Improving initial generations in pso algorithm for transportation network des...
Improving initial generations in pso algorithm for transportation network des...
 

Destacado

Cost Minimization
Cost Minimization Cost Minimization
Cost Minimization
tnblogspot
 
Construction Project Managment Techniques
Construction Project Managment TechniquesConstruction Project Managment Techniques
Construction Project Managment Techniques
guestc8140fe
 
Transportation Problem in Operational Research
Transportation Problem in Operational ResearchTransportation Problem in Operational Research
Transportation Problem in Operational Research
Neha Sharma
 

Destacado (16)

20320140507011
2032014050701120320140507011
20320140507011
 
ON Fuzzy Linear Programming Technique Application
ON Fuzzy Linear Programming Technique ApplicationON Fuzzy Linear Programming Technique Application
ON Fuzzy Linear Programming Technique Application
 
Efficient multicast delivery for data redundancy minimization
Efficient multicast delivery for data redundancy minimizationEfficient multicast delivery for data redundancy minimization
Efficient multicast delivery for data redundancy minimization
 
New microsoft power point presentation
New microsoft power point presentationNew microsoft power point presentation
New microsoft power point presentation
 
Do you need quality construction craftsmen?
Do you need quality construction craftsmen?Do you need quality construction craftsmen?
Do you need quality construction craftsmen?
 
Optimizing profit with linear programming model
Optimizing profit with linear programming modelOptimizing profit with linear programming model
Optimizing profit with linear programming model
 
Application of linear programming techniques to practical
Application of linear programming techniques to practicalApplication of linear programming techniques to practical
Application of linear programming techniques to practical
 
Man prod 1
Man prod 1Man prod 1
Man prod 1
 
Linear Programming: The Construction Problem
Linear Programming: The Construction ProblemLinear Programming: The Construction Problem
Linear Programming: The Construction Problem
 
Linear Programming on Digital Advertising
Linear Programming on Digital AdvertisingLinear Programming on Digital Advertising
Linear Programming on Digital Advertising
 
Linear programming 1
Linear programming 1Linear programming 1
Linear programming 1
 
Lp simplex method example in construction managment
Lp simplex method example in construction managmentLp simplex method example in construction managment
Lp simplex method example in construction managment
 
Cost Minimization
Cost Minimization Cost Minimization
Cost Minimization
 
Construction Project Managment Techniques
Construction Project Managment TechniquesConstruction Project Managment Techniques
Construction Project Managment Techniques
 
Transportation Problem in Operational Research
Transportation Problem in Operational ResearchTransportation Problem in Operational Research
Transportation Problem in Operational Research
 
Human Resource planning
Human Resource planningHuman Resource planning
Human Resource planning
 

Similar a Vehicle route scheduling and transportation cost minimization in a latex industry using PSO

An Enhanced Agglomerative Clustering Algorithm for Solving Vehicle Routing Pr...
An Enhanced Agglomerative Clustering Algorithm for Solving Vehicle Routing Pr...An Enhanced Agglomerative Clustering Algorithm for Solving Vehicle Routing Pr...
An Enhanced Agglomerative Clustering Algorithm for Solving Vehicle Routing Pr...
ijtsrd
 

Similar a Vehicle route scheduling and transportation cost minimization in a latex industry using PSO (20)

B04 05 1116
B04 05 1116B04 05 1116
B04 05 1116
 
2213ijccms02.pdf
2213ijccms02.pdf2213ijccms02.pdf
2213ijccms02.pdf
 
INTEGRATION OF GIS AND OPTIMIZATION ROUTINES FOR THE VEHICLE ROUTING PROBLEM
INTEGRATION OF GIS AND OPTIMIZATION ROUTINES FOR THE VEHICLE ROUTING PROBLEMINTEGRATION OF GIS AND OPTIMIZATION ROUTINES FOR THE VEHICLE ROUTING PROBLEM
INTEGRATION OF GIS AND OPTIMIZATION ROUTINES FOR THE VEHICLE ROUTING PROBLEM
 
Integration Of Gis And Optimization Routines For The Vehicle Routing Problem
Integration Of Gis And Optimization Routines For The Vehicle Routing ProblemIntegration Of Gis And Optimization Routines For The Vehicle Routing Problem
Integration Of Gis And Optimization Routines For The Vehicle Routing Problem
 
HOPX Crossover Operator for the Fixed Charge Logistic Model with Priority Bas...
HOPX Crossover Operator for the Fixed Charge Logistic Model with Priority Bas...HOPX Crossover Operator for the Fixed Charge Logistic Model with Priority Bas...
HOPX Crossover Operator for the Fixed Charge Logistic Model with Priority Bas...
 
A Combined Method for Capacitated Periodic Vehicle Routing Problem with Stric...
A Combined Method for Capacitated Periodic Vehicle Routing Problem with Stric...A Combined Method for Capacitated Periodic Vehicle Routing Problem with Stric...
A Combined Method for Capacitated Periodic Vehicle Routing Problem with Stric...
 
V26136141
V26136141V26136141
V26136141
 
T HE PASSENGER VEHICLE ' S LOGISTICS TRANSPORTATION PLANNING PROBLEM BASED O...
T HE PASSENGER VEHICLE ' S LOGISTICS  TRANSPORTATION PLANNING PROBLEM BASED O...T HE PASSENGER VEHICLE ' S LOGISTICS  TRANSPORTATION PLANNING PROBLEM BASED O...
T HE PASSENGER VEHICLE ' S LOGISTICS TRANSPORTATION PLANNING PROBLEM BASED O...
 
An Enhanced Agglomerative Clustering Algorithm for Solving Vehicle Routing Pr...
An Enhanced Agglomerative Clustering Algorithm for Solving Vehicle Routing Pr...An Enhanced Agglomerative Clustering Algorithm for Solving Vehicle Routing Pr...
An Enhanced Agglomerative Clustering Algorithm for Solving Vehicle Routing Pr...
 
D04452233
D04452233D04452233
D04452233
 
Efficient evaluation of flatness error from Coordinate Measurement Data using...
Efficient evaluation of flatness error from Coordinate Measurement Data using...Efficient evaluation of flatness error from Coordinate Measurement Data using...
Efficient evaluation of flatness error from Coordinate Measurement Data using...
 
Optimal Allocation Policy for Fleet Management
Optimal Allocation Policy for Fleet ManagementOptimal Allocation Policy for Fleet Management
Optimal Allocation Policy for Fleet Management
 
Aerodynamic Drag Reduction for A Generic Sport Utility Vehicle Using Rear Suc...
Aerodynamic Drag Reduction for A Generic Sport Utility Vehicle Using Rear Suc...Aerodynamic Drag Reduction for A Generic Sport Utility Vehicle Using Rear Suc...
Aerodynamic Drag Reduction for A Generic Sport Utility Vehicle Using Rear Suc...
 
Comp prese (1)
Comp prese (1)Comp prese (1)
Comp prese (1)
 
Ant colony optimization for
Ant colony optimization forAnt colony optimization for
Ant colony optimization for
 
Dispatching taxi cabs with passenger pool
Dispatching taxi cabs with passenger poolDispatching taxi cabs with passenger pool
Dispatching taxi cabs with passenger pool
 
A Survey of Solving Travelling Salesman Problem using Ant Colony Optimization
A Survey of Solving Travelling Salesman Problem using Ant Colony OptimizationA Survey of Solving Travelling Salesman Problem using Ant Colony Optimization
A Survey of Solving Travelling Salesman Problem using Ant Colony Optimization
 
Simulation-based Optimization of a Real-world Travelling Salesman Problem Usi...
Simulation-based Optimization of a Real-world Travelling Salesman Problem Usi...Simulation-based Optimization of a Real-world Travelling Salesman Problem Usi...
Simulation-based Optimization of a Real-world Travelling Salesman Problem Usi...
 
robotaxi2023.pdf
robotaxi2023.pdfrobotaxi2023.pdf
robotaxi2023.pdf
 
Route optimization via improved ant colony algorithm with graph network
Route optimization via improved ant colony algorithm with  graph networkRoute optimization via improved ant colony algorithm with  graph network
Route optimization via improved ant colony algorithm with graph network
 

Más de IJRES Journal

Review: Nonlinear Techniques for Analysis of Heart Rate Variability
Review: Nonlinear Techniques for Analysis of Heart Rate VariabilityReview: Nonlinear Techniques for Analysis of Heart Rate Variability
Review: Nonlinear Techniques for Analysis of Heart Rate Variability
IJRES Journal
 

Más de IJRES Journal (20)

Exploratory study on the use of crushed cockle shell as partial sand replacem...
Exploratory study on the use of crushed cockle shell as partial sand replacem...Exploratory study on the use of crushed cockle shell as partial sand replacem...
Exploratory study on the use of crushed cockle shell as partial sand replacem...
 
Congenital Malaria: Correlation of Umbilical Cord Plasmodium falciparum Paras...
Congenital Malaria: Correlation of Umbilical Cord Plasmodium falciparum Paras...Congenital Malaria: Correlation of Umbilical Cord Plasmodium falciparum Paras...
Congenital Malaria: Correlation of Umbilical Cord Plasmodium falciparum Paras...
 
Review: Nonlinear Techniques for Analysis of Heart Rate Variability
Review: Nonlinear Techniques for Analysis of Heart Rate VariabilityReview: Nonlinear Techniques for Analysis of Heart Rate Variability
Review: Nonlinear Techniques for Analysis of Heart Rate Variability
 
Dynamic Modeling for Gas Phase Propylene Copolymerization in a Fluidized Bed ...
Dynamic Modeling for Gas Phase Propylene Copolymerization in a Fluidized Bed ...Dynamic Modeling for Gas Phase Propylene Copolymerization in a Fluidized Bed ...
Dynamic Modeling for Gas Phase Propylene Copolymerization in a Fluidized Bed ...
 
Study and evaluation for different types of Sudanese crude oil properties
Study and evaluation for different types of Sudanese crude oil propertiesStudy and evaluation for different types of Sudanese crude oil properties
Study and evaluation for different types of Sudanese crude oil properties
 
A Short Report on Different Wavelets and Their Structures
A Short Report on Different Wavelets and Their StructuresA Short Report on Different Wavelets and Their Structures
A Short Report on Different Wavelets and Their Structures
 
A Case Study on Academic Services Application Using Agile Methodology for Mob...
A Case Study on Academic Services Application Using Agile Methodology for Mob...A Case Study on Academic Services Application Using Agile Methodology for Mob...
A Case Study on Academic Services Application Using Agile Methodology for Mob...
 
Wear Analysis on Cylindrical Cam with Flexible Rod
Wear Analysis on Cylindrical Cam with Flexible RodWear Analysis on Cylindrical Cam with Flexible Rod
Wear Analysis on Cylindrical Cam with Flexible Rod
 
DDOS Attacks-A Stealthy Way of Implementation and Detection
DDOS Attacks-A Stealthy Way of Implementation and DetectionDDOS Attacks-A Stealthy Way of Implementation and Detection
DDOS Attacks-A Stealthy Way of Implementation and Detection
 
An improved fading Kalman filter in the application of BDS dynamic positioning
An improved fading Kalman filter in the application of BDS dynamic positioningAn improved fading Kalman filter in the application of BDS dynamic positioning
An improved fading Kalman filter in the application of BDS dynamic positioning
 
Positioning Error Analysis and Compensation of Differential Precision Workbench
Positioning Error Analysis and Compensation of Differential Precision WorkbenchPositioning Error Analysis and Compensation of Differential Precision Workbench
Positioning Error Analysis and Compensation of Differential Precision Workbench
 
Status of Heavy metal pollution in Mithi river: Then and Now
Status of Heavy metal pollution in Mithi river: Then and NowStatus of Heavy metal pollution in Mithi river: Then and Now
Status of Heavy metal pollution in Mithi river: Then and Now
 
The Low-Temperature Radiant Floor Heating System Design and Experimental Stud...
The Low-Temperature Radiant Floor Heating System Design and Experimental Stud...The Low-Temperature Radiant Floor Heating System Design and Experimental Stud...
The Low-Temperature Radiant Floor Heating System Design and Experimental Stud...
 
Experimental study on critical closing pressure of mudstone fractured reservoirs
Experimental study on critical closing pressure of mudstone fractured reservoirsExperimental study on critical closing pressure of mudstone fractured reservoirs
Experimental study on critical closing pressure of mudstone fractured reservoirs
 
Correlation Analysis of Tool Wear and Cutting Sound Signal
Correlation Analysis of Tool Wear and Cutting Sound SignalCorrelation Analysis of Tool Wear and Cutting Sound Signal
Correlation Analysis of Tool Wear and Cutting Sound Signal
 
Reduce Resources for Privacy in Mobile Cloud Computing Using Blowfish and DSA...
Reduce Resources for Privacy in Mobile Cloud Computing Using Blowfish and DSA...Reduce Resources for Privacy in Mobile Cloud Computing Using Blowfish and DSA...
Reduce Resources for Privacy in Mobile Cloud Computing Using Blowfish and DSA...
 
Resistance of Dryland Rice to Stem Borer (Scirpophaga incertulas Wlk.) Using ...
Resistance of Dryland Rice to Stem Borer (Scirpophaga incertulas Wlk.) Using ...Resistance of Dryland Rice to Stem Borer (Scirpophaga incertulas Wlk.) Using ...
Resistance of Dryland Rice to Stem Borer (Scirpophaga incertulas Wlk.) Using ...
 
A novel high-precision curvature-compensated CMOS bandgap reference without u...
A novel high-precision curvature-compensated CMOS bandgap reference without u...A novel high-precision curvature-compensated CMOS bandgap reference without u...
A novel high-precision curvature-compensated CMOS bandgap reference without u...
 
Structural aspect on carbon dioxide capture in nanotubes
Structural aspect on carbon dioxide capture in nanotubesStructural aspect on carbon dioxide capture in nanotubes
Structural aspect on carbon dioxide capture in nanotubes
 
Thesummaryabout fuzzy control parameters selected based on brake driver inten...
Thesummaryabout fuzzy control parameters selected based on brake driver inten...Thesummaryabout fuzzy control parameters selected based on brake driver inten...
Thesummaryabout fuzzy control parameters selected based on brake driver inten...
 

Último

Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort ServiceCall Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ssuser89054b
 
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
dharasingh5698
 
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Kandungan 087776558899
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
dharasingh5698
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
Epec Engineered Technologies
 

Último (20)

Double Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueDouble Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torque
 
chapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineeringchapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineering
 
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort ServiceCall Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
 
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
 
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
 
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
 
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
 
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
 
Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024
 
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - V
 
Introduction to Serverless with AWS Lambda
Introduction to Serverless with AWS LambdaIntroduction to Serverless with AWS Lambda
Introduction to Serverless with AWS Lambda
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdf
 
22-prompt engineering noted slide shown.pdf
22-prompt engineering noted slide shown.pdf22-prompt engineering noted slide shown.pdf
22-prompt engineering noted slide shown.pdf
 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performance
 
Work-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxWork-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptx
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
 

Vehicle route scheduling and transportation cost minimization in a latex industry using PSO

  • 1. International Journal of Research in Engineering and Science (IJRES) ISSN (Online): 2320-9364, ISSN (Print): 2320-9356 www.ijres.org Volume 1 Issue 6 ǁ Oct 2013 ǁ PP.24-28 www.ijres.org 24 | Page Vehicle route scheduling and transportation cost minimization in a latex industry using PSO Felix Koshi1 , Georgekutty S. Mangalath2 , C.B. Saji3 1 (Mechanical Engineering Department, M.A.College of Engineering, India) 2 (Mechanical Engineering Department, M.A.College of Engineering, India) 3 (Principal, Sree Narayana Gurukulam College of Engineering, India) ABSTRACT : The vehicle route scheduling problem is concerned with the determination of routes and schedules for a fleet of vehicles to satisfy the demands of a set of customers. The goal of vehicle routing is to schedule multiple suppliers from various places. Vehicle routing has existed since the advent of the Industrial age, when large-scale production became possible. As the complexity and scale of the manufacturing world increased, the task of optimizing vehicle routing grew. The vehicle routing problem is a combinatorial optimization and integer programming problem seeking to service a number of customers with a fleet of vehicles. Often the context is that of delivering goods located at a central depot to customers who have placed orders for such goods or vice-versa. Implicit is the goal of minimizing the cost of distributing the goods. Many methods have been developed for searching for good solutions to the problem, however even for the smallest problems, finding global minimum for the cost function is computationally complex. The paper presents an optimization algorithm using Particle Swarm Optimization (PSO) for the vehicle routing that would enable the logistic manager of a latex industry to minimize the transportation cost and maximize the collection using minimum number of vehicles. Keywords – Vehicle route scheduling, transportation cost, Particle Swarm Optimization I. INTRODUCTION Vehicle route scheduling and cost minimization of a latex industry with a capacity to process 1000 barrels of normal latex a day and 17460 M.T. per year has been considered in the present paper. The factory collects rubber latex from 143 permanent collection centers located around 200 kilometers from the factory in addition to few non-permanent suppliers. The company uses about 30 vehicles on an average per trip. The collection capacities of these vehicles vary from 24 to 65 barrels (4800kg -13,000kg). The charge per kilometer of these vehicles depends on their carrying capacity. A manual procedure of vehicle route allotment is in practice in the organization, for which the efficiency cannot be predicted. Hence a stochastic procedure for optimization is considered for vehicle route scheduling of the organization. Genetic algorithm for solving capacitated vehicle routing problem are reported that are mainly characterized by using vehicles of the same capacity based at a central depot that will be optimally routed to supply customers with known demands. The algorithms are used to find an optimal set of delivery routes satisfying the requirements and giving minimal total cost [1, 2]. An iterative route construction and improvement algorithm for the vehicle routing problem with soft time windows is presented by Miguel [3]. This paper presents a problem with practical applications in distribution and logistics due to the rising importance of just-in-time procedure. A particle swarm optimization algorithm for open vehicle routing problem (OVRP) presented by Mir Hassani [4] reports that in OVRP a vehicle does not return to the depot after servicing the last customer on a route. Studies on solving the capacitated vehicle routing problem by Jin Ai [5] presents two solution representations and the corresponding decoding methods for solving the problem using particle swarm optimization. In problems where the customers require not only the delivery of goods but also the simultaneous pick up of goods, a general assumption is that all delivered goods originate from the depot and all pickup goods must be transported back to the depot [6]. Literatures on solving vehicle routing problems using Ant Colony Optimization (ACO) algorithm constructs a complete tour for the first ant prior to the second ant starting its tour [7].Once the vehicle capacity constraint is met, the ant will return to the depot before selecting the next customer. This selection process continues until each customer is visited and the tour is complete. A heuristic approach for solving large scale bus transits vehicle scheduling problem with route time constraints is presented by Ali Haghani., & Mohamaadreza Banihashemi [8]. They conducted a study of multiple depots with time window, with the constraint of restriction fuel efficiency. Russel Eberhart, Balter and
  • 2. Vehicle route scheduling and transportation cost minimization in a latex industry using PSO www.ijres.org 25 | Page James Kennedy reviewed the PSO concept and introduced a new form of particle swarm optimizer [9]. They examined how changes in the procedure affect the number of iteration required to meet an error criterion, and the frequency with which models interminably around a new optimum. In the binary version, trajectories are traced in the probability that a co-ordinate will take on a zero or one value. Yuhui Shi and Renhart W introduced a new parameter “inertia weight” in to the original PSO [10]. It is proved that PSO with inertia weight will have better performance and has a bigger chance to find the global optimum within a reasonable number of iterations. A large inertia weight facilitates a more powerful global search while a small inertia weight facilitates a more powerful local search Yuhuishe, Russell and Engelbrecht AP conducted empirical studies on the performance of PSO and found that PSO converges very quickly towards the optimal positions but may slow its convergence sped when it is near a minimum [11]. Also proved that using an adaptive inertia weight, performance of PSO near optima can be improved. PSO may lack global search ability at the end of a run due to the utilization of a linearly decreasing inertia weight they implemented a Fuzzy system to dynamically adjust the inertia weight in order to improve the performance of the PSO. II. MATHEMATICAL MODELING A mathematical model for developing the optimization algorithm is explained in the subsequent section. Objective is to Objective is to minimize )1( 001 ijkijk N j N i K k XC  Subjected to the constraints: )2(,.......,2,1,1 01 NjXijk N i K k   )3(,.......,2,1,1 01 NiXijk N j K k   )4(,........,2,1;,,.........2,1,0 00 NtKkXX tjk N j itk N i    )5(,.......,2,1, 00 KkDXd kijkijk N j N i   )6(,.......,2,1 00 KkQXq kijk N i j N j         )7(,.......,2,1,10 1 KkX jk N j  )8(,.......,2,1,10 1 KkX ki N i  )9(, 11    K k ki N i Qq   )10(,....,2,1;,.......,2,1,0,,1,0 KkNjiXijk  )11(,1 0 jtoicustomermtravelsfrokvehicleif otherwiseijkX  Where depot is represented by node 0, No. of collection centers =N, No of vehicles=K, Quantity of rubber latex at customer “i” = qi Capacity of kth vehicles= Qk Maximum allowable distance by vehicle k =Dk Cost of traveling from customer i to j by vehicle k= Cijk The basic process of the PSO algorithm is given as follows. Step 1: (Initialization) randomly generate initial particles. Step 2: (Fitness) Measure the fitness of each particle in the population. Step 3: (Update) Compute the position vector of each particle with Eq. (12).
  • 3. Vehicle route scheduling and transportation cost minimization in a latex industry using PSO www.ijres.org 26 | Page Step 4: (Construction) for each particle, move to the next position according to Eq. (13). Step 5: (Termination) Stop the algorithm if termination criterion is satisfied; return to Step 2 otherwise. is the best position of the particle is the global best position of particle is the position of the previous particle where c1 indicates the cognition learning factor; c2 indicates the social learning factor, and r1 and r2 are random numbers In the present analysis, first the population of particles is initialized, each particle having a random position within the dimensional space and a random position vector for each dimension. Second, each particle’s fitness for the vehicle routing problem is evaluated. If the fitness is better than the particle’s best fitness, then the position vector is saved for the particle. If the particle’s fitness is better than the global best fitness, then the position vector is saved for the global best. Finally the values are updated until the termination condition is satisfied PSO algorithm can be described as follows. (14) (15) (16) Where are control parameters which indicate the control degree of V. w+c1+c2=1, 0< w, c1, c2<1.In Equation (16), the first part represents the inertia of previous probability; the second part is the “cognition” part, which represents the local exploration probability; the third part is the “social” part, which represents the cooperation among all quantum particles. Fitness is used to evaluate the performance of particles in the swarm. Generally, choosing a proper objective function as fitness function to represent the corresponding superiority of each particle is one of the key factors for successful resolution of the relevant problem using PSO algorithm. In the capacitated vehicle routing problem, the objective is to minimize the total cost or distance. Therefore, according to the description in above section, the following equation as fitness function has been selected: (17) The objective of the scheduling is to minimize the total cost, i.e. fit, so the particle with the minimal fitness will outperform others and should be reserved during the optimization process. III. SOLUTIONS USING PSO A MATLAB program has been initially developed to calculate the least travelling cost of two vehicles between eight destinations. The program is initiated with the capacity and kilometer cost of each vehicle whereas the number of barrels to be collected from each places and the distance between the destination and depot are fed in the form of excel sheet. The program works on the basis of permutations of 8 destinations. According to this, in case one, the first node is visited by the first vehicle and all the other nodes are visited by the second vehicle. For the second case, the first two nodes are visited by the first vehicle and rest is covered by the second vehicle. Similarly, all cases are considered and the cost for each is evaluated based on the various parameters given. At last the route with least route cost is found out. An algorithm is developed based on PSO for two vehicles and eight destinations. After ensuring its acceptable agreement with the exact solutions, the algorithm in PSO is also extended to solve the present problem with 30 vehicles and 143 destinations for which the route of one vehicle of a particular trip is shown in Table 1.
  • 4. Vehicle route scheduling and transportation cost minimization in a latex industry using PSO www.ijres.org 27 | Page Table 1. Results for the month of June using PSO Demands vary with the seasons and environmental conditions. These varying demand requirements were considered and the corresponding plans for each of the cases are obtained using the proposed PSO algorithm. The algorithm is used to compute the optimum route to perform all deliveries. The plans generated by the algorithm are compared with the plans made manually in the company. Table 2 shows the cost estimation using the proposed and existing methods. The PSO algorithm - implemented in Matlab - provided a good solution in two-three minutes on a Pentium PC at 1 GHz. It is found that the proposed PSO algorithm can provide a better solution for the present problem faced by the organization in connection with vehicle routing. The algorithm allows a reduction of Rs.3, 00000/- per year in cost. Table 2. Cost estimation using proposed and existing methods Month Cost in Rs. Proposed Method Existing method JAN 124894 149894 FEB 123736 148736 MAR 120370 145370 APRIL 105500 130500 MAY 116000 141000 JUNE 104415 129415 JULY 107794 132794 AUG 116794 141794 SEP 120662 145662 OCT 120370 145370 NOV 122737 147737 DEC 124223 149223 Total Transportation Cost (in Rs.) 1407494/- 1707494/-
  • 5. Vehicle route scheduling and transportation cost minimization in a latex industry using PSO www.ijres.org 28 | Page IV. CONCLUSION A PSO algorithm has been developed for vehicle route scheduling and transportation cost minimization of latex industry. The algorithm has been initially used for 2 vehicles and 8 destinations and the obtained results are compared with the exact solution. The result obtained by the PSO algorithm has been in good agreement. The ruggedness of the algorithm is ensured by varying the vehicle capacities and comparing the same with exact solutions. The effectiveness of the proposed algorithm has been proved from the above comparisons. Thereafter, the algorithm is extended to solve the vehicle routing problem of the latex industry under consideration, with 30 vehicles and 143 destinations. Travelling cost of the proposed method is obtained for all the months and is compared with the manual method. The algorithm allows a reduction of Rs.3, 00000/- per year in cost. It is found that the PSO algorithm presented in the paper provide a better solution for the vehicle routing challenges faced by the organization. REFERENCES [1] Habibeh Nazif., and Lai Soon Lee.,. Optimized crossover genetic algorithm for capacitated vehicle routing problem., Department of Mathematics, Institute for Mathematical Research,14( University Putra Malaysia., 2011) 247-255 [2] King Wah Pang. An adaptive parallel route construction heuristic for the vehicle routing problem with time windows constraints., Department of Logistics and Maritime Studies, 38 (The Hong Kong Polytechnic University, Hung Hom, Kowloon.,2011) 11939-11946 [3] Miguel Andres Figliozzi.(2010). An iterative route construction and improvement algorithm for the vehicle routing problem with soft time windows.,Department of Civil and Environmental Engineering, 18 (Portland State University, 2010), 668–679 [4] Mir Hassani, S.A., and Abolghasemi, N, A particle swarm optimization algorithm for open vehicle routing problem., Faculty of Mathematics and Computer Sciences, Amirkabir,38 ( University of Technology, Tehran, Iran.,Expert Systems with Applications, 2011) 11547–11551 [5] The Jin Ai., and Voratas Kachitvichyanukul., Particle swarm optimization and two solution representations for solving the capacitated vehicle routing problem., Industrial Engineering and Management, School of Engineering and Technology, 56 (Asian Institute of Technology, Computers & Operations Research, 2009) 380–387 [6] The Jin Ai., and Voratas Kachitvichyanukul. A particle swarm optimization for the vehicle routing problem with simultaneous pickup and delivery., Industrial Engineering and Management, School of Engineering and Technology,36 ( Asian Institute of Technology ., Computers & Operations Research, 2009) 1693 -- 1702 [7] John, E. Bella., and Patrick, R. Ant colony optimization techniques for the vehicle routing problem., Department of Operational Sciences, Air Force Institute of Technology., Babcock Graduate School of Management,18 ( Wake Forest University., Advanced Engineering Informatics,2009) 41–48 [8] Ali Haghani., and Mohamaadreza Banihashemi.(2002). Heuristic approach for solving large scale bus transits vehicle scheduling problem with route time constraints., Department of civil and environmental engineering,36(,university of Mary land, Transportation research art, 2012) 309-399 [9] Baltar AM, Fontane DG, A generalized multi-objective particle swarm optimization solver for spreadsheet models: application to water quality. In: Proceedings of the twenty sixth annual American geophysical union hydrology days, 2006, 20–22 [10] Baumgartner U, Magele C, Renhart W, Pareto optimality and particle swarm optimization. IEEE Trans 2004, 40(2):1172–1175 [11] Brits R, Engelbrecht AP, van den Bergh F, A niching particle swarm optimizer. In: Proceedings of the fourth Asia-Pacific conference on simulated evolution and learning, 2012, 88-93.