SlideShare una empresa de Scribd logo
1 de 8
Descargar para leer sin conexión
UNIVERSIDAD DEL QUINDÍO
FACULTY OF BASIC SCIENCES AND TECHNOLOGIES
PHYSICS PROGRAM
DIFFERENTIAL CALCULUS COURSE
Juan A. Álvarez A. - jaalvareza@uqvirtual.edu.co
Part 1. Limits and Their Properties
Exercise. 5) Find the limit L. Then use ε − δ denition to prove that the limit is L.
lim
x→1
(x + 4) = 5
For all ε  0, exists δ  0, such that, |x − 1|  δ, implies that |x + 4 − 5|  ε
|x − 1|  δ ⇒ |x + 4 − 5|  ε
⇒ |x − 1|  ε
ε = δ
Exercise. 16) Find the limit (if it exists)
lim
t→3
t2
− 9
t − 3
= lim
t→3
$$$$(t − 3)(t + 3)
$$$$(t − 3)
= lim
t→3
t + 3 = 6
Exercise. 36) Find the limit (if it exists). If the limit doesn't exist, explain why.
lim
x→4
x − 1
Remark. By the nature of the greatest integer function, we calculate the limit by their lateral limits.
lim
x→4−
x − 1 = 2 ; lim
x→4+
x − 1 = 3
The function is not continuous since its lateral limits are not equal, therefore there isn t limit.
Exercise. 44) Determine the intervals on which the function is continuous.
f (x) =
3x2
− x − 2
x − 1
Intervals (−∞, 1) ∪ (1, ∞)
Remark. The discontinuity is removable, since g (x) = 3x2
+ 2 , is a function that has the same behavior that f (x), except at
x = 1.
1
UNIVERSIDAD DEL QUINDÍO 2
Exercise. 72) Find the one-sided limit (if it exists).
lim
x→0+
sec x
x
= lim
x→0+
1
x cos x
+∞
Part 2. Dierentiation
Exercise. 33) (Vibrating string) When a guitar string is plucked, it vibrates with a frequency of F = 200
√
T, where F is
measured in vibrations per second and the tension is measured in pounds. Find the rates of change of when (a) T = 4 and (b)
T = 9.
F´(T) =
200
2
(T)− 1
2 =
100
√
T
(a)
F´(4) =
100
√
4
= 50
(b)
F´(9) =
100
√
9
=
100
3
Exercise. 42) nd the derivative of the function g (x) = (x3
+ 7x)(x + 3).
g´ (x) = (3x2
+ 7)(x + 3) + (x3
+ 7x)
= 3x3
+ 9x2
+ 7x + 21 + x3
+ 7x
= 4x3
+ 9x2
+ 14x + 21
Exercise. 66) nd the second derivative of the function h (t) = 10 cos t − 15 sin t.
h´ (t) = −10 sin t − 15 cos t
= −5(2 sin t + 3 cos t)
h´´ (t) = −5(2 cos t − 3 sin t)
= 15 sin t − 10 cos t)
Exercise. 105) nd dy/dx by implicit dierentiation.
UNIVERSIDAD DEL QUINDÍO 3
√
xy = x − 4y
x
1
2 y
1
2 = x − 4y
1
2
x− 1
2 y
1
2 dx +
1
2
x
1
2 y− 1
2 dy = dx − 4dy
√
x
2
√
y
dy + 4dy = dx −
√
y
2
√
x
dx
dy
√
x + 8
√
y
2
√
y
= dx
2
√
x −
√
y
2
√
x
dy
dx
=
¡2
√
y(2
√
x −
√
y)
¡2
√
x(
√
x + 8
√
y)
dy
dx
=
2
√
xy − y
x + 8
√
xy
Exercise. 115) (Moving Shadow) A sandbag is dropped from a balloon at a height of 60 meters when the angle of elevation to
the sun is 30
°
(see gure). Find the rate at which the shadow of the sandbag is traveling along the ground when the sandbag is
at a height of 35 meters. Hint: The position of the sandbag is given by s (t) = 60 − 4.9t2
.
s (t) = 60 − 4.9t2
35 = 60 − 4.9t2
5.1 = t2
2.26s = t
Be x the position of the shadow of the sandbag.
UNIVERSIDAD DEL QUINDÍO 4
x =
s (t)
tan 30
x =
60 − 4.9t2
tan 30
dx
dt
=
(−9.8t)(tan 30) − 0
tan2
30
dx
dt
=
(−9.8)(2.26)(tan 30)
tan2
30
dx
dt
= −3(22.148)(tan 30)
dx
dt
= −38.36
m
s
The rate of change is negative, because the distance decreases.
Part 3. Applications of dierentation
Exercise. 14) Determine whether the Mean Value Theorem can be applied to on the closed interval [a, b]. If the Mean Value
Theorem can be applied, nd all values of in the open interval (a, b) such that f (c) = f(b)−f(a)
b−a . If the Mean Value Theorem
cannot be applied, explain why not.
f (x) =
1
x
, [4, 1]
f (x) = −
1
x2
f (c) = −
f (4) − f1
4 − 1
f (c) = −
1
4
−
1
4
= −
1
c2
c = ±2
UNIVERSIDAD DEL QUINDÍO 5
Exercise. 39) Use the Second Derivative Test to nd all relative extrema. g (x) = 2x2
1 − x2
.
g (x) = 2x2
− 2x4
g (x) = 4x − 8x3
4x − 8x3
= 0
4x 1 − 2x2
= 0
x = 0
x =
√
2
2
x = −
√
2
2
g (x) = 4 − 24x2
g (0) = 4 − 24(0)2
g (0) = 4  0
g
√
2
2
= 4 − 24
√
2
2
2
g
√
2
2
= −8  0
g −
√
2
2
= 4 − 24 −
√
2
2
2
g −
√
2
2
= −8  0
By the Second Derivative Test, in x = 0 a relative minimum occurs, whose value is 0; in x =
√
2
2 n' x = −
√
2
2 relative maxima
occur, whose value is given in both points, by
1
2 .
Exercise. 56) Find the limit.
lim
x→−∞
x
2 sin x
=
limx→−∞ x
limx→−∞ 2 sin x
=
limx→−∞
x
x
limx→−∞
2 sin x
x
=
limx→−∞ 1
limx→−∞ 0±
= +∞, −∞
= Limit doesn t exists
Exercise. 45) (Section 3.7, Projectile Range) The range R of a projectile red with an initial velocity Vo at an angle θ with the
horizontal is R =
V
2
o sin 2θ
g , where g is the acceleration due to gravity. Find the angle θ such that the range is a maximum.
UNIVERSIDAD DEL QUINDÍO 6
R (θ) =
V
2
o sin 2θ
g
R (θ) =
2Vo
g
cos 2θ
Sea, R (θ) = 0
Entonces, 0 =
2Vo
g
cos 2θ
0 = cos 2θ
cos
−1
0
2
= θ
45°
= θ
Part 4. Integration
Exercise. 21) Use the properties of summation and Theorem 4.2 to evaluate the sum.
20
i=1
(i + 1)
2
=
20
i=1
i2
+ 2i + 1
=
20
i=1
i2
+ 2
20
i=1
i +
20
i=1
1
=
n(n + 1)(2n + 1)
6
+ n(n + 1) + n
=
(n2
+ n)(2n + 1)
6
+ n(n + 1) + n
=
2n3
+ 3n + n
6
+ n(n + 1) + n
=
2(20)3
+ 3(20) + (20)
6
+ (20)((20) + 1) + (20)
=
16000 + 60 + 20
6
+ 420 + 20
=
16080
6
+ 440
= 3120
Exercise. 28) Use the limit process to nd the area of the region between the graph of the function and the x-axis over the
given interval. Sketch the region.
y = x2
+ 3, [0, 2]
Drawn region,
a = 0 ; b = 2 ; x = 2
n ; xi = 2i
n
UNIVERSIDAD DEL QUINDÍO 7
Area = lim
n→∞
n
i=1
f (xi) x
n
i=1
f (xi) x =
n
i=1
2i
n
2
+ 3
2
n
=
n
i=1
4i2
n2
+ 3
2
n
=
n
i=1
8i2
n3
+
6
n
=
8
n3
n
i=1
i2
+
6
n
n
i=1
1
=
8
n3
n(n + 1)(2n + 1)
6
+
6
n
[n]
=
(4n + 4)(2n + 1)
3n2
+ 6
=
8n2
+ 12n + 4
3n2
+ 6
=
(8n2
+ 12n + 4) + 18n2
3n2
=
26n2
+ 12n + 4
3n2
lim
n→∞
n
i=1
f (xi) x = lim
n→∞
26n2
+ 12n + 4
3n2
= lim
n→∞
26n2
n2 + 12n
n2 + 4
n2
3n2
n2
= lim
n→∞
26 + 12
n + 4
n2
3
Area =
26
3
Exercise. 69) Find the indenite integral.
´
x 1 − 3x2 4
dx
u = 1 − 3x2
du = −6xdx
−
1
6
du = xdx
ˆ
x 1 − 3x2 4
dx = −
1
6
ˆ
u4
du
= −
1
6
u5
5
+ constant
= −
1 − 3x2 5
30
+ constant
Exercise. 69) Evaluate the denite integral. Use a graphing utility to verify your result.
´ 3
0
1√
1+x
dx
u = 1 + x
du = dx
UNIVERSIDAD DEL QUINDÍO 8
3ˆ
0
1
√
1 + x
dx =
4ˆ
1
1
√
u
du
=
4ˆ
1
u− 1
2 du
= 2 u
1
2
4
1
= 2
√
4 −
√
1
= 2

Más contenido relacionado

La actualidad más candente

Regret Minimization in Multi-objective Submodular Function Maximization
Regret Minimization in Multi-objective Submodular Function MaximizationRegret Minimization in Multi-objective Submodular Function Maximization
Regret Minimization in Multi-objective Submodular Function Maximization
Tasuku Soma
 
Integration
IntegrationIntegration
Integration
lecturer
 

La actualidad más candente (11)

Banco de preguntas para el ap
Banco de preguntas para el apBanco de preguntas para el ap
Banco de preguntas para el ap
 
Regret Minimization in Multi-objective Submodular Function Maximization
Regret Minimization in Multi-objective Submodular Function MaximizationRegret Minimization in Multi-objective Submodular Function Maximization
Regret Minimization in Multi-objective Submodular Function Maximization
 
Gaussian Integration
Gaussian IntegrationGaussian Integration
Gaussian Integration
 
Local linear approximation
Local linear approximationLocal linear approximation
Local linear approximation
 
Complex analysis notes
Complex analysis notesComplex analysis notes
Complex analysis notes
 
Solutions Manual for Foundations Of MEMS 2nd Edition by Chang Liu
Solutions Manual for Foundations Of MEMS 2nd Edition by Chang LiuSolutions Manual for Foundations Of MEMS 2nd Edition by Chang Liu
Solutions Manual for Foundations Of MEMS 2nd Edition by Chang Liu
 
A series of maximum entropy upper bounds of the differential entropy
A series of maximum entropy upper bounds of the differential entropyA series of maximum entropy upper bounds of the differential entropy
A series of maximum entropy upper bounds of the differential entropy
 
Unit 2 analysis of continuous time signals-mcq questions
Unit 2   analysis of continuous time signals-mcq questionsUnit 2   analysis of continuous time signals-mcq questions
Unit 2 analysis of continuous time signals-mcq questions
 
Integration
IntegrationIntegration
Integration
 
Numerical integration based on the hyperfunction theory
Numerical integration based on the hyperfunction theoryNumerical integration based on the hyperfunction theory
Numerical integration based on the hyperfunction theory
 
Math
MathMath
Math
 

Destacado

Slide show for weebly
Slide show for weeblySlide show for weebly
Slide show for weebly
patmg
 
Guia 1 conexion a base de datos sql server
Guia 1 conexion a base de datos sql serverGuia 1 conexion a base de datos sql server
Guia 1 conexion a base de datos sql server
Mayito CH
 

Destacado (20)

Construcción de pila con limones
Construcción de pila con limonesConstrucción de pila con limones
Construcción de pila con limones
 
Análisis dimensional, notación científica & cifras significaticas
Análisis dimensional, notación científica & cifras significaticasAnálisis dimensional, notación científica & cifras significaticas
Análisis dimensional, notación científica & cifras significaticas
 
Conexión Java - MySql
Conexión Java - MySqlConexión Java - MySql
Conexión Java - MySql
 
Calculo integral - Larson
Calculo integral - LarsonCalculo integral - Larson
Calculo integral - Larson
 
Proyecto Final(Paneles)
Proyecto Final(Paneles)Proyecto Final(Paneles)
Proyecto Final(Paneles)
 
PROYECTO HERENCIA FINAL
PROYECTO HERENCIA FINALPROYECTO HERENCIA FINAL
PROYECTO HERENCIA FINAL
 
1 each and every
1 each and every1 each and every
1 each and every
 
Bab ii
Bab iiBab ii
Bab ii
 
Variasi belajar jadi
Variasi belajar jadiVariasi belajar jadi
Variasi belajar jadi
 
Slide show for weebly
Slide show for weeblySlide show for weebly
Slide show for weebly
 
Combustión
CombustiónCombustión
Combustión
 
Re_source
Re_sourceRe_source
Re_source
 
La nube Informática
 La nube Informática  La nube Informática
La nube Informática
 
Guia 1 conexion a base de datos sql server
Guia 1 conexion a base de datos sql serverGuia 1 conexion a base de datos sql server
Guia 1 conexion a base de datos sql server
 
وانةى دووةم
وانةى دووةموانةى دووةم
وانةى دووةم
 
Curso de sistemas de encendido de motocicleta
Curso de sistemas de encendido de motocicletaCurso de sistemas de encendido de motocicleta
Curso de sistemas de encendido de motocicleta
 
Master Plan Homes
Master Plan HomesMaster Plan Homes
Master Plan Homes
 
Why pdhpe
Why pdhpeWhy pdhpe
Why pdhpe
 
Alex amado
Alex amadoAlex amado
Alex amado
 
Continuous Delivery - Voxxed Days Thessaloniki 21.10.2016
Continuous Delivery - Voxxed Days Thessaloniki 21.10.2016Continuous Delivery - Voxxed Days Thessaloniki 21.10.2016
Continuous Delivery - Voxxed Days Thessaloniki 21.10.2016
 

Similar a Calculo Diferencial

maths Individual assignment on differentiation
maths Individual assignment on differentiationmaths Individual assignment on differentiation
maths Individual assignment on differentiation
tenwoalex
 
Review for the Third Midterm of Math 150 B 11242014Probl.docx
Review for the Third Midterm of Math 150 B 11242014Probl.docxReview for the Third Midterm of Math 150 B 11242014Probl.docx
Review for the Third Midterm of Math 150 B 11242014Probl.docx
joellemurphey
 
Integration techniques
Integration techniquesIntegration techniques
Integration techniques
Krishna Gali
 
Howard, anton calculo i- um novo horizonte - exercicio resolvidos v1
Howard, anton   calculo i- um novo horizonte - exercicio resolvidos v1Howard, anton   calculo i- um novo horizonte - exercicio resolvidos v1
Howard, anton calculo i- um novo horizonte - exercicio resolvidos v1
cideni
 

Similar a Calculo Diferencial (20)

Applications of Differential Calculus in real life
Applications of Differential Calculus in real life Applications of Differential Calculus in real life
Applications of Differential Calculus in real life
 
Class XII assignment chapters (1 to 9)
Class XII   assignment chapters (1 to 9)Class XII   assignment chapters (1 to 9)
Class XII assignment chapters (1 to 9)
 
Class xii assignment chapters (1 to 9)
Class xii    assignment chapters (1 to 9)Class xii    assignment chapters (1 to 9)
Class xii assignment chapters (1 to 9)
 
Assignment of class 12 (chapters 2 to 9)
Assignment of class 12 (chapters 2 to 9)Assignment of class 12 (chapters 2 to 9)
Assignment of class 12 (chapters 2 to 9)
 
maths Individual assignment on differentiation
maths Individual assignment on differentiationmaths Individual assignment on differentiation
maths Individual assignment on differentiation
 
2020 preTEST4A
2020 preTEST4A2020 preTEST4A
2020 preTEST4A
 
final15
final15final15
final15
 
Differential Calculus
Differential Calculus Differential Calculus
Differential Calculus
 
Review for the Third Midterm of Math 150 B 11242014Probl.docx
Review for the Third Midterm of Math 150 B 11242014Probl.docxReview for the Third Midterm of Math 150 B 11242014Probl.docx
Review for the Third Midterm of Math 150 B 11242014Probl.docx
 
Integration techniques
Integration techniquesIntegration techniques
Integration techniques
 
II PUC (MATHEMATICS) ANNUAL MODEL QUESTION PAPER FOR ALL SCIENCE STUDENTS WHO...
II PUC (MATHEMATICS) ANNUAL MODEL QUESTION PAPER FOR ALL SCIENCE STUDENTS WHO...II PUC (MATHEMATICS) ANNUAL MODEL QUESTION PAPER FOR ALL SCIENCE STUDENTS WHO...
II PUC (MATHEMATICS) ANNUAL MODEL QUESTION PAPER FOR ALL SCIENCE STUDENTS WHO...
 
Howard, anton calculo i- um novo horizonte - exercicio resolvidos v1
Howard, anton   calculo i- um novo horizonte - exercicio resolvidos v1Howard, anton   calculo i- um novo horizonte - exercicio resolvidos v1
Howard, anton calculo i- um novo horizonte - exercicio resolvidos v1
 
Chapter 5 assignment
Chapter 5 assignmentChapter 5 assignment
Chapter 5 assignment
 
some important questions for practice clas 12
some important questions for practice clas 12  some important questions for practice clas 12
some important questions for practice clas 12
 
Sample question paper 2 with solution
Sample question paper 2 with solutionSample question paper 2 with solution
Sample question paper 2 with solution
 
Core 2 revision notes
Core 2 revision notesCore 2 revision notes
Core 2 revision notes
 
Crib Sheet AP Calculus AB and BC exams
Crib Sheet AP Calculus AB and BC examsCrib Sheet AP Calculus AB and BC exams
Crib Sheet AP Calculus AB and BC exams
 
Maths04
Maths04Maths04
Maths04
 
preTEST3A Double Integrals
preTEST3A Double IntegralspreTEST3A Double Integrals
preTEST3A Double Integrals
 
2020 preTEST3A
2020 preTEST3A2020 preTEST3A
2020 preTEST3A
 

Último

1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
QucHHunhnh
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
ZurliaSoop
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
heathfieldcps1
 

Último (20)

How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
 
Dyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptxDyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptx
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptx
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
 
ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptx
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
Fostering Friendships - Enhancing Social Bonds in the Classroom
Fostering Friendships - Enhancing Social Bonds  in the ClassroomFostering Friendships - Enhancing Social Bonds  in the Classroom
Fostering Friendships - Enhancing Social Bonds in the Classroom
 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - English
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 

Calculo Diferencial

  • 1. UNIVERSIDAD DEL QUINDÍO FACULTY OF BASIC SCIENCES AND TECHNOLOGIES PHYSICS PROGRAM DIFFERENTIAL CALCULUS COURSE Juan A. Álvarez A. - jaalvareza@uqvirtual.edu.co Part 1. Limits and Their Properties Exercise. 5) Find the limit L. Then use ε − δ denition to prove that the limit is L. lim x→1 (x + 4) = 5 For all ε 0, exists δ 0, such that, |x − 1| δ, implies that |x + 4 − 5| ε |x − 1| δ ⇒ |x + 4 − 5| ε ⇒ |x − 1| ε ε = δ Exercise. 16) Find the limit (if it exists) lim t→3 t2 − 9 t − 3 = lim t→3 $$$$(t − 3)(t + 3) $$$$(t − 3) = lim t→3 t + 3 = 6 Exercise. 36) Find the limit (if it exists). If the limit doesn't exist, explain why. lim x→4 x − 1 Remark. By the nature of the greatest integer function, we calculate the limit by their lateral limits. lim x→4− x − 1 = 2 ; lim x→4+ x − 1 = 3 The function is not continuous since its lateral limits are not equal, therefore there isn t limit. Exercise. 44) Determine the intervals on which the function is continuous. f (x) = 3x2 − x − 2 x − 1 Intervals (−∞, 1) ∪ (1, ∞) Remark. The discontinuity is removable, since g (x) = 3x2 + 2 , is a function that has the same behavior that f (x), except at x = 1. 1
  • 2. UNIVERSIDAD DEL QUINDÍO 2 Exercise. 72) Find the one-sided limit (if it exists). lim x→0+ sec x x = lim x→0+ 1 x cos x +∞ Part 2. Dierentiation Exercise. 33) (Vibrating string) When a guitar string is plucked, it vibrates with a frequency of F = 200 √ T, where F is measured in vibrations per second and the tension is measured in pounds. Find the rates of change of when (a) T = 4 and (b) T = 9. F´(T) = 200 2 (T)− 1 2 = 100 √ T (a) F´(4) = 100 √ 4 = 50 (b) F´(9) = 100 √ 9 = 100 3 Exercise. 42) nd the derivative of the function g (x) = (x3 + 7x)(x + 3). g´ (x) = (3x2 + 7)(x + 3) + (x3 + 7x) = 3x3 + 9x2 + 7x + 21 + x3 + 7x = 4x3 + 9x2 + 14x + 21 Exercise. 66) nd the second derivative of the function h (t) = 10 cos t − 15 sin t. h´ (t) = −10 sin t − 15 cos t = −5(2 sin t + 3 cos t) h´´ (t) = −5(2 cos t − 3 sin t) = 15 sin t − 10 cos t) Exercise. 105) nd dy/dx by implicit dierentiation.
  • 3. UNIVERSIDAD DEL QUINDÍO 3 √ xy = x − 4y x 1 2 y 1 2 = x − 4y 1 2 x− 1 2 y 1 2 dx + 1 2 x 1 2 y− 1 2 dy = dx − 4dy √ x 2 √ y dy + 4dy = dx − √ y 2 √ x dx dy √ x + 8 √ y 2 √ y = dx 2 √ x − √ y 2 √ x dy dx = ¡2 √ y(2 √ x − √ y) ¡2 √ x( √ x + 8 √ y) dy dx = 2 √ xy − y x + 8 √ xy Exercise. 115) (Moving Shadow) A sandbag is dropped from a balloon at a height of 60 meters when the angle of elevation to the sun is 30 ° (see gure). Find the rate at which the shadow of the sandbag is traveling along the ground when the sandbag is at a height of 35 meters. Hint: The position of the sandbag is given by s (t) = 60 − 4.9t2 . s (t) = 60 − 4.9t2 35 = 60 − 4.9t2 5.1 = t2 2.26s = t Be x the position of the shadow of the sandbag.
  • 4. UNIVERSIDAD DEL QUINDÍO 4 x = s (t) tan 30 x = 60 − 4.9t2 tan 30 dx dt = (−9.8t)(tan 30) − 0 tan2 30 dx dt = (−9.8)(2.26)(tan 30) tan2 30 dx dt = −3(22.148)(tan 30) dx dt = −38.36 m s The rate of change is negative, because the distance decreases. Part 3. Applications of dierentation Exercise. 14) Determine whether the Mean Value Theorem can be applied to on the closed interval [a, b]. If the Mean Value Theorem can be applied, nd all values of in the open interval (a, b) such that f (c) = f(b)−f(a) b−a . If the Mean Value Theorem cannot be applied, explain why not. f (x) = 1 x , [4, 1] f (x) = − 1 x2 f (c) = − f (4) − f1 4 − 1 f (c) = − 1 4 − 1 4 = − 1 c2 c = ±2
  • 5. UNIVERSIDAD DEL QUINDÍO 5 Exercise. 39) Use the Second Derivative Test to nd all relative extrema. g (x) = 2x2 1 − x2 . g (x) = 2x2 − 2x4 g (x) = 4x − 8x3 4x − 8x3 = 0 4x 1 − 2x2 = 0 x = 0 x = √ 2 2 x = − √ 2 2 g (x) = 4 − 24x2 g (0) = 4 − 24(0)2 g (0) = 4 0 g √ 2 2 = 4 − 24 √ 2 2 2 g √ 2 2 = −8 0 g − √ 2 2 = 4 − 24 − √ 2 2 2 g − √ 2 2 = −8 0 By the Second Derivative Test, in x = 0 a relative minimum occurs, whose value is 0; in x = √ 2 2 n' x = − √ 2 2 relative maxima occur, whose value is given in both points, by 1 2 . Exercise. 56) Find the limit. lim x→−∞ x 2 sin x = limx→−∞ x limx→−∞ 2 sin x = limx→−∞ x x limx→−∞ 2 sin x x = limx→−∞ 1 limx→−∞ 0± = +∞, −∞ = Limit doesn t exists Exercise. 45) (Section 3.7, Projectile Range) The range R of a projectile red with an initial velocity Vo at an angle θ with the horizontal is R = V 2 o sin 2θ g , where g is the acceleration due to gravity. Find the angle θ such that the range is a maximum.
  • 6. UNIVERSIDAD DEL QUINDÍO 6 R (θ) = V 2 o sin 2θ g R (θ) = 2Vo g cos 2θ Sea, R (θ) = 0 Entonces, 0 = 2Vo g cos 2θ 0 = cos 2θ cos −1 0 2 = θ 45° = θ Part 4. Integration Exercise. 21) Use the properties of summation and Theorem 4.2 to evaluate the sum. 20 i=1 (i + 1) 2 = 20 i=1 i2 + 2i + 1 = 20 i=1 i2 + 2 20 i=1 i + 20 i=1 1 = n(n + 1)(2n + 1) 6 + n(n + 1) + n = (n2 + n)(2n + 1) 6 + n(n + 1) + n = 2n3 + 3n + n 6 + n(n + 1) + n = 2(20)3 + 3(20) + (20) 6 + (20)((20) + 1) + (20) = 16000 + 60 + 20 6 + 420 + 20 = 16080 6 + 440 = 3120 Exercise. 28) Use the limit process to nd the area of the region between the graph of the function and the x-axis over the given interval. Sketch the region. y = x2 + 3, [0, 2] Drawn region, a = 0 ; b = 2 ; x = 2 n ; xi = 2i n
  • 7. UNIVERSIDAD DEL QUINDÍO 7 Area = lim n→∞ n i=1 f (xi) x n i=1 f (xi) x = n i=1 2i n 2 + 3 2 n = n i=1 4i2 n2 + 3 2 n = n i=1 8i2 n3 + 6 n = 8 n3 n i=1 i2 + 6 n n i=1 1 = 8 n3 n(n + 1)(2n + 1) 6 + 6 n [n] = (4n + 4)(2n + 1) 3n2 + 6 = 8n2 + 12n + 4 3n2 + 6 = (8n2 + 12n + 4) + 18n2 3n2 = 26n2 + 12n + 4 3n2 lim n→∞ n i=1 f (xi) x = lim n→∞ 26n2 + 12n + 4 3n2 = lim n→∞ 26n2 n2 + 12n n2 + 4 n2 3n2 n2 = lim n→∞ 26 + 12 n + 4 n2 3 Area = 26 3 Exercise. 69) Find the indenite integral. ´ x 1 − 3x2 4 dx u = 1 − 3x2 du = −6xdx − 1 6 du = xdx ˆ x 1 − 3x2 4 dx = − 1 6 ˆ u4 du = − 1 6 u5 5 + constant = − 1 − 3x2 5 30 + constant Exercise. 69) Evaluate the denite integral. Use a graphing utility to verify your result. ´ 3 0 1√ 1+x dx u = 1 + x du = dx
  • 8. UNIVERSIDAD DEL QUINDÍO 8 3ˆ 0 1 √ 1 + x dx = 4ˆ 1 1 √ u du = 4ˆ 1 u− 1 2 du = 2 u 1 2 4 1 = 2 √ 4 − √ 1 = 2