SlideShare una empresa de Scribd logo
1 de 33
Metals
Ceramics
Polymers
Composites
ZrO2
synthesis
Poornaprajna institute of
scientific Research ,
Bangalore
Vijaykumar Marakatti
Sulfated Zirconia as a strong solid acid
catalyst for selected organic
transformations
Outline of the talk
 Introduction.
 Synthesis of zirconia supported catalyst.
 Characterization.
 Structure.
 Acidity and super acidic properties of SZ.
 Application of SZ catalyst for organic
transformations.
 Conclusions.
Introduction
Most of the industrially catalyzed
process are based on acid catalyst.
 Different types of acid catalysts
1. Heteropolyacids.
2.Amberlyst
3.Nafion-H
4.Clays and Zeolites.
5.Metal oxides.
6. Anion modified metal oxide.(1980)
ex:Sulfated zirconia, tungated zirconia
Metal oxide – ZrO2,TiO2,SnO2,Al2O3 etc
Anion - MoO4
-2 ,SO4
-2,WO4
-2 .
 Modification of metal oxide with anion generate
new active acid sites.
Which are different then their individual acid sites.
Combination of different metal oxide with different
anion gives a large no of catalyst with different
distribution of acid sites.
Advantages of Anion Modified metal oxide
 Active over wide range of Temperature.
 Resistant to thermal extrusion.
 Low reaction temperature.
 Easy preparation and low cost.
Disadvantages of Anion Modified metal oxide
 Sensitive to Reducing atmosphere.
 Forms acid if Water is present at high
temperature
Synthesis
Sulfated zirconia
a. Sol-Gel
H2SO4
Zirconium n- Propoxide
propanol
Drying 120 C
Calcination 650 C
b. Decomposition
Zr(SO4)2
SO4
-2/ZrO2
Journal of catalysis 150, 18-33(1994)
C. Precipitation and impregnation method
ZrOCl2 NH4OH
PH - 8
Zr(OH)4
Zr(OH)4
120 C
H2SO4
SO4
-2/ Zr(OH)4
650 C
SO4
-2/ZrO2
Acidity of catalyst depends
 Activation temperature.
 Precursor
zirconium
sulufur
 sulfur content 1N,2N.
 PH
Synthesis
Chemical review 109, 2185-2206(2009)
Synthesis
Tungstated zirconia
a. Impregnation method( dry , wet ,incipient)
Ammonium tungatate + H2O
ZrO2 or Zr(OH)4
80 C 2hr
Stir for 4 hr
110 C 6hr
Calcined at 600C
WOX/ZrO2
Evaporation
 Co-precipitation
 Calcinations temperature.
 Preparation method.
Catalysis letters 131, 122-128(2009)
Characterization
a. X-Ray Diffractometer
10 20 30 40 50 60 70
ZrO2
SZ 1N
SZ 1.5N
SZ 2N
WO3
/ZrO2
Intensity(a.u)
tt
Present Work
WOX/ZrO2
SZ-2N
SZ-1.5N
SZ-1N
ZrO2
b. FT-IR Spectra
Characterization
900 1000 1100 1200 1300 1400
995
1044
1138
1212
%Transmitance
Wavenumber(cm
-1
)
SZ 2N
PRESENT WORK
C. TG-DTA
Characterization
575 C
600 C
650 C
B.M Ready .etal Chemical review 109, 2185-2206(2009)
d. Textural properties
Characterization
material Surface
area
M2/g
Crystalline
size(nm)
Sulfur / W
loading
ZrO2 42 11.2 --
SO4
-2/ZrO2 100 7.3 2.3
WO3/ZrO2 35 11.9 6
Journal of molecular catalysis A. Chemical 109, 2185-2206(2009)
Structure
B.M Ready .etal Chemical review 109, 2185-2206(2009)
ACIDITY
material NH3 desorbed
(Ml/gram)
ZrO2 5
SO4
-2/ZrO2 16
WO3/ZrO2 9
(TPD)
ACIDITY(FTIR- Pyridine)
Catalyst B/L ratio
SO4
2/ZrO2(1N) 1.6
SO4
2/ZrO2(1.5 N) 1.03
SO4
2/ZrO2(2 N) 0.92
B/L Ratio : SZ 2N<SZ 1.5N< SZ1N.
Present work
1700 1650 1600 1550 1500 1450 1400
ZrO2
SZ-1N
SZ-1.5N
SZ-2N
LB+LB
Absorption(a.u))
wavenumber (cm
-1
)
Super acidity?
 Bronstead & lewis acidity.
 Ho indicator method.
 Colour change.
 Different acid sites.
 TPD
 Decomposition of
adsorbate molecule.
 adsorption on catalytically
not active.
 CaO-NH3- at high T
 Skeletal isomerization
at low T.
Commercial application in hydroisomerization process
n- Paraffins H2 iso-Paraffin
- Aromatics – high octane number and C/H ratio
- Branched HC – High octane Number
- Hydro cracking is competing reaction.
- Low temperature.
- Bi-functional catalyst.
- Pt/Alumina /Cl-.
- Pt / SiO2-Al2O3.
- Pt /Sulfated zirconia-HYSOPAR-100 ppm
- WO3/ZrO2.
Applications in organic transformations
Selective hydrolysis of cellulose into glucose
 Cellulose is the most abundant source of biomass.
 Enzyme catalyst – separation problems.
Reaction conditions: milled cellulose 45 mg, catalyst 50 mg, distilled water 5.0
mL, 24 h.
Prins Cyclization
O
H H
O
OH+
 Condensation of olefin with aldehyde.
 C-C bond forming reaction.
Styrene Para formaldehyde 4-Phenyl 1,3-Dioxane
 Industrially high boiling solvent.
 Plasticizer, curing agent , Pigment dispersant
 Protecting group in organic synthesis.
 monomer and additives in polymer industry.
U.S Patent -4,185 ,019 Jan.22(1980)
Catalyst Formaldehyde source Yield
Sulfuric acid Formaldehyde 75
Heteropolyacids Paraformaldehyde 99
Trifluromethane sulfonic acid Formaldehyde 92
MoO3/SiO2 paraformaldehyde 73
SO3H-SBA-15 Formaldehyde 100
Indium bromide
Ionic liquids
paraformaldehyde 91
Organic salt of heteropolyacids Formaldehyde 97
Zeolites paraformaldehyde 40
Sulfated zirconia paraformaldehyde 93
Literature survey
Reaction conditions; 20 mmol styrene, 60 mmol
paraformaldehyde, solvent :dichloroethane =10ml ;
Catalyst: SZ-2N. Temp =80 C. Reaction time: 6hr
Catalyst Time
in hrs
Conversion
Wt%
Selectivity
Wt%
TON
mmol/gram
SO4-2/ZrO2 7 99.8 92 67.66
WO3/ZrO2
7 96 85 60.14
H-Beta(25) 7 22 88 14.14
H-ZSM-5(38) 7 1 30 o.22
H-Y(16) 7 1 50 o.36
H-Mordenite(16) 7 2 46 0.67
Cs2.5H0.5SiW12O40 1 97 68 49.33
Montomorlonite-K-10 2 100 67 49.36
Reaction conditions; 20 mmol styrene, 60 mmol paraformaldehyde, solvent :dichloroethane =10ml ;
Catalyst : 7 wt % of reactant, Temp =80 C. Reaction time: 6hr
Screening of catalyst
Effect of solvent
solvent Dielectric
constant
Acceptor
Number(A.N)
Donor
Number (D.N)
Yield for
4-Phenyl
1,3 dioxane
No solvent --- --- --- 56
Tri ethyl amine 2.4 0
Cyclohexane 2.6 47
Toluene 2.4 64
1,2dichloro ethane 10.1 85
Nitrobenzene 34.8 22
Acetonitrile 36 0
Isopropyl alcohol 18.3 33.8 21.1 0
Reaction condition: 10 mmol styrene; 30 mmol Paraformaldehyde; 10 wt% of catalyst (reactant); Temp =80 C;
solvent =5ml; reaction time =7 hr.
The acceptor number( Lewis acidic) is obtained from the 31PNMR chemical shift values related to that of the
1:1 adduct (C2H5)3PO-SbCl5 dissolved in 1,2 dichloroethane.
The Donor number (Lewis base) defines the negative DH value for 1:1-adduct formation between sbCl5 and an
electron pair donor solvent in diluted solution in non coordinating solvent 1, 2-dichloro ethane.
1.4 61
0 0
8.2 0
16.7 0
14.8 4.4
18.9 14.1
Catalyst Acidity B/L
ratio
Time in (hr) conversion Selectivity
Blank ---- 7hr 1.6 70
Zr(OH)4 --- 7hr 1.7 72
ZrO2 --- 7hr 2.3 74
SZ-1N 1.6 3hr 87.8 74.6
SZ-1.5N 1.04 3hr 76.3 78
SZ-2N 0.92 3hr 73 88
7hr 99.8 92
Sz-2Na --- 7hr -- --
Sz-2Nb -- 7hr -- --
Reaction conditions; 20 mmol styrene, 60 mmol paraformaldehyde, solvent :dichloroethane =10ml ;
Catalyst: SZ-2N. Temp =80 C. Reaction time: 6hr.
a- Aqueous Formaldehyde instead of paraformaldehyde.
b – Aqueous Formaldehyde instead of paraformaldehyde, reaction temperature = 100 C
Sulfated zirconia catalyst
60 80 100
40
50
60
70
80
90
100
Reaction Temperature
conversionofstyrene
60
70
80
90
100
selectivityofdioxane
Optimization of reaction conditions.
a. Temperature
Reaction conditions; 20 mmol styrene, 60 mmol paraformaldehyde, solvent :dichloroethane
=10ml ;Catalyst: SZ-2N. Temp =80 C. Reaction time: 7hr , catalyst weight -7 wt%.
Reaction time -100C – 4hr
3 5 7 9
60
65
70
75
80
85
90
95
100
Percentage(%)
catalyst (wt%)
conversion of styrene
selectivity for 4 phenyl 1,3 dioxane
b. Catalyst weight
Reaction conditions; 20 mmol styrene, 60 mmol paraformaldehyde, solvent :dichloroethane
=10ml ;Catalyst: SZ-2N. Temp =80 C. Reaction time: 7hr
1:1 1:2 1:3 1:4
0
20
40
60
80
100
Percentage(%)
Styrene:Paraformaldehyde mole ratio
conversion of styrene
selectivity for 4-Phenyl 1,3-dioxane
selectivity for cinnamyl alcohol
C. Mole ratio of styrene :paraformaldehyde
Reaction conditions; solvent :dichloroethane =10ml ;Catalyst: SZ-2N. Temp =80 C. Reaction
time: 7hr , catalyst weight -7 wt%.
Leaching test
0 1 2 3 4 5 6 7 8 9 10
0
10
20
30
40
50
60
70
80
90
Percentage(%)
Time (hr)
conversion of styrene
selectivity for 4-Phenyl1,3-dioxane
Reaction condition: 20 mmol styrene: 60 mmol Paraformaldehyde; 7 wt% of
catalyst (reactant); Temp =80 C; solvent: Dichloro ethane =10ml.
Recycling test
Catalyst Yield
cycle 1 92
cycle 2 91.4
cycle 3 90
cycle 4 89.8
10 20 30 40 50 60 70
Cycle 4
Cycle 3
Cycle 2
Cycle 1
Intensity(a.u)
2 Theta
S
O
O
Mechanism of reaction
C
O
H H
H
OH
H
C
O
H
Zr
O
O
O
O
OH
O
O
CH2OH
O
O
OH
H
S
L
B
ZrO2
conclusion
 Sulfated and tungstated zirconia catalyst were
synthesized by the precipitation and impregnation
method.
 Characterization of sulfated zirconia by various
methods were discussed.
 Prins reaction of styrene with Paraformaldehyde
is carried out using Sulfated zirconia catalyst.
 Optimization study , effect of solvent and comparison of
other acid catalyst is done.
 SZ-2N showed good activity and selectivity for the prins
reaction.
Thank You

Más contenido relacionado

La actualidad más candente

03. .concentracion.magnetica
03. .concentracion.magnetica03. .concentracion.magnetica
03. .concentracion.magnetica
kevineste
 

La actualidad más candente (20)

Green synthesis
Green synthesisGreen synthesis
Green synthesis
 
Mixeds Oxides by Nikhil Betkiker
Mixeds Oxides by Nikhil BetkikerMixeds Oxides by Nikhil Betkiker
Mixeds Oxides by Nikhil Betkiker
 
zeolites and their applications
zeolites and their applicationszeolites and their applications
zeolites and their applications
 
Geometry, combinatorics, computation with Zeolites
Geometry, combinatorics, computation with ZeolitesGeometry, combinatorics, computation with Zeolites
Geometry, combinatorics, computation with Zeolites
 
PERUMIN 31: Los Estándares de Calidad del Aire en Perú y su efecto en las ope...
PERUMIN 31: Los Estándares de Calidad del Aire en Perú y su efecto en las ope...PERUMIN 31: Los Estándares de Calidad del Aire en Perú y su efecto en las ope...
PERUMIN 31: Los Estándares de Calidad del Aire en Perú y su efecto en las ope...
 
Magnesium
MagnesiumMagnesium
Magnesium
 
Monazite
MonaziteMonazite
Monazite
 
Zeolite Synthesis.ppt
Zeolite Synthesis.pptZeolite Synthesis.ppt
Zeolite Synthesis.ppt
 
Photocatalysis
Photocatalysis Photocatalysis
Photocatalysis
 
SPINELS,INVERSE SPINELS AND PEROVSKITES
SPINELS,INVERSE SPINELS AND PEROVSKITESSPINELS,INVERSE SPINELS AND PEROVSKITES
SPINELS,INVERSE SPINELS AND PEROVSKITES
 
Zeolite and its uses
 Zeolite and its uses Zeolite and its uses
Zeolite and its uses
 
Li substituted Cu-Mn ferrites
Li substituted Cu-Mn ferritesLi substituted Cu-Mn ferrites
Li substituted Cu-Mn ferrites
 
AUTOLAB ( A Laboratory Instrument)
AUTOLAB ( A Laboratory Instrument)AUTOLAB ( A Laboratory Instrument)
AUTOLAB ( A Laboratory Instrument)
 
Nanomaterials & nanotechnology Part 5
Nanomaterials & nanotechnology Part 5Nanomaterials & nanotechnology Part 5
Nanomaterials & nanotechnology Part 5
 
Waste management in metallurgical
Waste management in metallurgical Waste management in metallurgical
Waste management in metallurgical
 
Bio-Synthesis and Characterisation of Cuo Nanoparticles using Aloe Barbadensis
Bio-Synthesis and Characterisation of Cuo Nanoparticles using Aloe BarbadensisBio-Synthesis and Characterisation of Cuo Nanoparticles using Aloe Barbadensis
Bio-Synthesis and Characterisation of Cuo Nanoparticles using Aloe Barbadensis
 
Zeolite and its application.pptx
Zeolite and its application.pptxZeolite and its application.pptx
Zeolite and its application.pptx
 
Sintesis dan Karakterisasi Nanopartikel ZnO Menggunakan Esktrak Daun Kelor: I...
Sintesis dan Karakterisasi Nanopartikel ZnO Menggunakan Esktrak Daun Kelor: I...Sintesis dan Karakterisasi Nanopartikel ZnO Menggunakan Esktrak Daun Kelor: I...
Sintesis dan Karakterisasi Nanopartikel ZnO Menggunakan Esktrak Daun Kelor: I...
 
03. .concentracion.magnetica
03. .concentracion.magnetica03. .concentracion.magnetica
03. .concentracion.magnetica
 
Electrochemistry
ElectrochemistryElectrochemistry
Electrochemistry
 

Destacado

Materiales Mesoporosos SBA-15 y MCM-41
Materiales Mesoporosos SBA-15 y MCM-41Materiales Mesoporosos SBA-15 y MCM-41
Materiales Mesoporosos SBA-15 y MCM-41
David Macias Ferrer
 
Introduction of hybrid zirconium abutment
Introduction of hybrid zirconium abutmentIntroduction of hybrid zirconium abutment
Introduction of hybrid zirconium abutment
Tsung Yang
 

Destacado (20)

Vijay ppisr
Vijay ppisrVijay ppisr
Vijay ppisr
 
CO2 to Chemicals : An Overview
CO2 to Chemicals : An Overview CO2 to Chemicals : An Overview
CO2 to Chemicals : An Overview
 
12 principles of Green chemistry
12 principles of Green chemistry12 principles of Green chemistry
12 principles of Green chemistry
 
Modification & Application of Borate Zirconia Catalyst
Modification & Application of Borate Zirconia CatalystModification & Application of Borate Zirconia Catalyst
Modification & Application of Borate Zirconia Catalyst
 
Introduction to material science
Introduction to material scienceIntroduction to material science
Introduction to material science
 
Mesoporous materials
Mesoporous materialsMesoporous materials
Mesoporous materials
 
Thermal analysis-TG-DTA
Thermal analysis-TG-DTAThermal analysis-TG-DTA
Thermal analysis-TG-DTA
 
Enc vip english
Enc vip englishEnc vip english
Enc vip english
 
CCS: Global opportunities and strategic directions
CCS: Global opportunities and strategic directionsCCS: Global opportunities and strategic directions
CCS: Global opportunities and strategic directions
 
CO2 to fuels and chemicals course material final version
CO2 to fuels and chemicals course material final versionCO2 to fuels and chemicals course material final version
CO2 to fuels and chemicals course material final version
 
Materiales Mesoporosos SBA-15 y MCM-41
Materiales Mesoporosos SBA-15 y MCM-41Materiales Mesoporosos SBA-15 y MCM-41
Materiales Mesoporosos SBA-15 y MCM-41
 
Lava zirconia Crowns Scientific Facts
Lava zirconia Crowns Scientific FactsLava zirconia Crowns Scientific Facts
Lava zirconia Crowns Scientific Facts
 
Alumina Zirconia composite
Alumina Zirconia compositeAlumina Zirconia composite
Alumina Zirconia composite
 
Dental zirconia milling
Dental zirconia millingDental zirconia milling
Dental zirconia milling
 
Esthetic crowns for posterior primary teeth
Esthetic crowns for posterior primary teethEsthetic crowns for posterior primary teeth
Esthetic crowns for posterior primary teeth
 
Introduction of hybrid zirconium abutment
Introduction of hybrid zirconium abutmentIntroduction of hybrid zirconium abutment
Introduction of hybrid zirconium abutment
 
Full mouth rehabilitation of periodontal involved teeth with Aadva NT Zirconia
Full mouth rehabilitation of periodontal involved teeth with Aadva NT ZirconiaFull mouth rehabilitation of periodontal involved teeth with Aadva NT Zirconia
Full mouth rehabilitation of periodontal involved teeth with Aadva NT Zirconia
 
Porcelain Layering On Zirconia Coping
Porcelain Layering On Zirconia CopingPorcelain Layering On Zirconia Coping
Porcelain Layering On Zirconia Coping
 
Pediatric Zirconia Crowns: up-to-date
Pediatric Zirconia Crowns: up-to-datePediatric Zirconia Crowns: up-to-date
Pediatric Zirconia Crowns: up-to-date
 
Anterior crowns in pediatric dentistry
Anterior crowns in pediatric dentistryAnterior crowns in pediatric dentistry
Anterior crowns in pediatric dentistry
 

Similar a Sulfated zirconia[1]

ICWES15 -Comparative Absorption of Copper from Synthetic and Real Wastewater ...
ICWES15 -Comparative Absorption of Copper from Synthetic and Real Wastewater ...ICWES15 -Comparative Absorption of Copper from Synthetic and Real Wastewater ...
ICWES15 -Comparative Absorption of Copper from Synthetic and Real Wastewater ...
Engineers Australia
 
Ph.D thesis
Ph.D thesisPh.D thesis
Ph.D thesis
Tony Rao
 
Surface activation of Calcium bentonite clay
Surface activation of Calcium bentonite claySurface activation of Calcium bentonite clay
Surface activation of Calcium bentonite clay
S k Parida
 
WVWC - Alt Oxidant & CC - AZ Presentation May 2012
WVWC - Alt Oxidant & CC - AZ Presentation May 2012WVWC - Alt Oxidant & CC - AZ Presentation May 2012
WVWC - Alt Oxidant & CC - AZ Presentation May 2012
Joel Wade
 

Similar a Sulfated zirconia[1] (20)

ICWES15 -Comparative Absorption of Copper from Synthetic and Real Wastewater ...
ICWES15 -Comparative Absorption of Copper from Synthetic and Real Wastewater ...ICWES15 -Comparative Absorption of Copper from Synthetic and Real Wastewater ...
ICWES15 -Comparative Absorption of Copper from Synthetic and Real Wastewater ...
 
Carbon- Nitrogen Bond formation reactions
Carbon- Nitrogen Bond formation reactionsCarbon- Nitrogen Bond formation reactions
Carbon- Nitrogen Bond formation reactions
 
Bio derived glycerol conversion into fuel additive
Bio derived glycerol conversion into fuel additiveBio derived glycerol conversion into fuel additive
Bio derived glycerol conversion into fuel additive
 
APR of sorbitol viva
APR of sorbitol vivaAPR of sorbitol viva
APR of sorbitol viva
 
Ph.D thesis
Ph.D thesisPh.D thesis
Ph.D thesis
 
Catalysis
CatalysisCatalysis
Catalysis
 
Catalysis
CatalysisCatalysis
Catalysis
 
Surface activation of Calcium bentonite clay
Surface activation of Calcium bentonite claySurface activation of Calcium bentonite clay
Surface activation of Calcium bentonite clay
 
D0342934
D0342934D0342934
D0342934
 
Hydrogen Peroxide- Review of its Role as Part of a Mine Drainage Treatment St...
Hydrogen Peroxide- Review of its Role as Part of a Mine Drainage Treatment St...Hydrogen Peroxide- Review of its Role as Part of a Mine Drainage Treatment St...
Hydrogen Peroxide- Review of its Role as Part of a Mine Drainage Treatment St...
 
Hydrogenation of sugars over supported metal catalyst - effect of support
Hydrogenation of sugars over supported metal catalyst - effect of supportHydrogenation of sugars over supported metal catalyst - effect of support
Hydrogenation of sugars over supported metal catalyst - effect of support
 
WVWC - Alt Oxidant & CC - AZ Presentation May 2012
WVWC - Alt Oxidant & CC - AZ Presentation May 2012WVWC - Alt Oxidant & CC - AZ Presentation May 2012
WVWC - Alt Oxidant & CC - AZ Presentation May 2012
 
Kinetics Etude of the Experimental Leaching of Sphalerite Using Acidic Lixivi...
Kinetics Etude of the Experimental Leaching of Sphalerite Using Acidic Lixivi...Kinetics Etude of the Experimental Leaching of Sphalerite Using Acidic Lixivi...
Kinetics Etude of the Experimental Leaching of Sphalerite Using Acidic Lixivi...
 
ThesisPresentation.pptx
ThesisPresentation.pptxThesisPresentation.pptx
ThesisPresentation.pptx
 
Sathityatiwat ChIR thesis defense
Sathityatiwat ChIR thesis defense Sathityatiwat ChIR thesis defense
Sathityatiwat ChIR thesis defense
 
Acid–base reactions on alumina supported niobia
Acid–base reactions on alumina supported niobiaAcid–base reactions on alumina supported niobia
Acid–base reactions on alumina supported niobia
 
Research Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and ScienceResearch Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and Science
 
Dv25732742
Dv25732742Dv25732742
Dv25732742
 
Sample Dissolution
Sample DissolutionSample Dissolution
Sample Dissolution
 
Fianl PPT Nanotechnology.ppt
Fianl PPT Nanotechnology.pptFianl PPT Nanotechnology.ppt
Fianl PPT Nanotechnology.ppt
 

Sulfated zirconia[1]

  • 1. Metals Ceramics Polymers Composites ZrO2 synthesis Poornaprajna institute of scientific Research , Bangalore Vijaykumar Marakatti Sulfated Zirconia as a strong solid acid catalyst for selected organic transformations
  • 2. Outline of the talk  Introduction.  Synthesis of zirconia supported catalyst.  Characterization.  Structure.  Acidity and super acidic properties of SZ.  Application of SZ catalyst for organic transformations.  Conclusions.
  • 3. Introduction Most of the industrially catalyzed process are based on acid catalyst.  Different types of acid catalysts 1. Heteropolyacids. 2.Amberlyst 3.Nafion-H 4.Clays and Zeolites. 5.Metal oxides. 6. Anion modified metal oxide.(1980) ex:Sulfated zirconia, tungated zirconia
  • 4. Metal oxide – ZrO2,TiO2,SnO2,Al2O3 etc Anion - MoO4 -2 ,SO4 -2,WO4 -2 .  Modification of metal oxide with anion generate new active acid sites. Which are different then their individual acid sites. Combination of different metal oxide with different anion gives a large no of catalyst with different distribution of acid sites.
  • 5. Advantages of Anion Modified metal oxide  Active over wide range of Temperature.  Resistant to thermal extrusion.  Low reaction temperature.  Easy preparation and low cost. Disadvantages of Anion Modified metal oxide  Sensitive to Reducing atmosphere.  Forms acid if Water is present at high temperature
  • 6. Synthesis Sulfated zirconia a. Sol-Gel H2SO4 Zirconium n- Propoxide propanol Drying 120 C Calcination 650 C b. Decomposition Zr(SO4)2 SO4 -2/ZrO2 Journal of catalysis 150, 18-33(1994)
  • 7. C. Precipitation and impregnation method ZrOCl2 NH4OH PH - 8 Zr(OH)4 Zr(OH)4 120 C H2SO4 SO4 -2/ Zr(OH)4 650 C SO4 -2/ZrO2 Acidity of catalyst depends  Activation temperature.  Precursor zirconium sulufur  sulfur content 1N,2N.  PH Synthesis Chemical review 109, 2185-2206(2009)
  • 8. Synthesis Tungstated zirconia a. Impregnation method( dry , wet ,incipient) Ammonium tungatate + H2O ZrO2 or Zr(OH)4 80 C 2hr Stir for 4 hr 110 C 6hr Calcined at 600C WOX/ZrO2 Evaporation  Co-precipitation  Calcinations temperature.  Preparation method. Catalysis letters 131, 122-128(2009)
  • 9. Characterization a. X-Ray Diffractometer 10 20 30 40 50 60 70 ZrO2 SZ 1N SZ 1.5N SZ 2N WO3 /ZrO2 Intensity(a.u) tt Present Work WOX/ZrO2 SZ-2N SZ-1.5N SZ-1N ZrO2
  • 10. b. FT-IR Spectra Characterization 900 1000 1100 1200 1300 1400 995 1044 1138 1212 %Transmitance Wavenumber(cm -1 ) SZ 2N PRESENT WORK
  • 11. C. TG-DTA Characterization 575 C 600 C 650 C B.M Ready .etal Chemical review 109, 2185-2206(2009)
  • 12. d. Textural properties Characterization material Surface area M2/g Crystalline size(nm) Sulfur / W loading ZrO2 42 11.2 -- SO4 -2/ZrO2 100 7.3 2.3 WO3/ZrO2 35 11.9 6 Journal of molecular catalysis A. Chemical 109, 2185-2206(2009)
  • 13. Structure B.M Ready .etal Chemical review 109, 2185-2206(2009)
  • 14. ACIDITY material NH3 desorbed (Ml/gram) ZrO2 5 SO4 -2/ZrO2 16 WO3/ZrO2 9 (TPD)
  • 15. ACIDITY(FTIR- Pyridine) Catalyst B/L ratio SO4 2/ZrO2(1N) 1.6 SO4 2/ZrO2(1.5 N) 1.03 SO4 2/ZrO2(2 N) 0.92 B/L Ratio : SZ 2N<SZ 1.5N< SZ1N. Present work 1700 1650 1600 1550 1500 1450 1400 ZrO2 SZ-1N SZ-1.5N SZ-2N LB+LB Absorption(a.u)) wavenumber (cm -1 )
  • 16. Super acidity?  Bronstead & lewis acidity.  Ho indicator method.  Colour change.  Different acid sites.  TPD  Decomposition of adsorbate molecule.  adsorption on catalytically not active.  CaO-NH3- at high T  Skeletal isomerization at low T.
  • 17. Commercial application in hydroisomerization process n- Paraffins H2 iso-Paraffin - Aromatics – high octane number and C/H ratio - Branched HC – High octane Number - Hydro cracking is competing reaction. - Low temperature. - Bi-functional catalyst. - Pt/Alumina /Cl-. - Pt / SiO2-Al2O3. - Pt /Sulfated zirconia-HYSOPAR-100 ppm - WO3/ZrO2. Applications in organic transformations
  • 18.
  • 19. Selective hydrolysis of cellulose into glucose  Cellulose is the most abundant source of biomass.  Enzyme catalyst – separation problems.
  • 20. Reaction conditions: milled cellulose 45 mg, catalyst 50 mg, distilled water 5.0 mL, 24 h.
  • 21. Prins Cyclization O H H O OH+  Condensation of olefin with aldehyde.  C-C bond forming reaction. Styrene Para formaldehyde 4-Phenyl 1,3-Dioxane  Industrially high boiling solvent.  Plasticizer, curing agent , Pigment dispersant  Protecting group in organic synthesis.  monomer and additives in polymer industry. U.S Patent -4,185 ,019 Jan.22(1980)
  • 22. Catalyst Formaldehyde source Yield Sulfuric acid Formaldehyde 75 Heteropolyacids Paraformaldehyde 99 Trifluromethane sulfonic acid Formaldehyde 92 MoO3/SiO2 paraformaldehyde 73 SO3H-SBA-15 Formaldehyde 100 Indium bromide Ionic liquids paraformaldehyde 91 Organic salt of heteropolyacids Formaldehyde 97 Zeolites paraformaldehyde 40 Sulfated zirconia paraformaldehyde 93 Literature survey
  • 23. Reaction conditions; 20 mmol styrene, 60 mmol paraformaldehyde, solvent :dichloroethane =10ml ; Catalyst: SZ-2N. Temp =80 C. Reaction time: 6hr Catalyst Time in hrs Conversion Wt% Selectivity Wt% TON mmol/gram SO4-2/ZrO2 7 99.8 92 67.66 WO3/ZrO2 7 96 85 60.14 H-Beta(25) 7 22 88 14.14 H-ZSM-5(38) 7 1 30 o.22 H-Y(16) 7 1 50 o.36 H-Mordenite(16) 7 2 46 0.67 Cs2.5H0.5SiW12O40 1 97 68 49.33 Montomorlonite-K-10 2 100 67 49.36 Reaction conditions; 20 mmol styrene, 60 mmol paraformaldehyde, solvent :dichloroethane =10ml ; Catalyst : 7 wt % of reactant, Temp =80 C. Reaction time: 6hr Screening of catalyst
  • 24. Effect of solvent solvent Dielectric constant Acceptor Number(A.N) Donor Number (D.N) Yield for 4-Phenyl 1,3 dioxane No solvent --- --- --- 56 Tri ethyl amine 2.4 0 Cyclohexane 2.6 47 Toluene 2.4 64 1,2dichloro ethane 10.1 85 Nitrobenzene 34.8 22 Acetonitrile 36 0 Isopropyl alcohol 18.3 33.8 21.1 0 Reaction condition: 10 mmol styrene; 30 mmol Paraformaldehyde; 10 wt% of catalyst (reactant); Temp =80 C; solvent =5ml; reaction time =7 hr. The acceptor number( Lewis acidic) is obtained from the 31PNMR chemical shift values related to that of the 1:1 adduct (C2H5)3PO-SbCl5 dissolved in 1,2 dichloroethane. The Donor number (Lewis base) defines the negative DH value for 1:1-adduct formation between sbCl5 and an electron pair donor solvent in diluted solution in non coordinating solvent 1, 2-dichloro ethane. 1.4 61 0 0 8.2 0 16.7 0 14.8 4.4 18.9 14.1
  • 25. Catalyst Acidity B/L ratio Time in (hr) conversion Selectivity Blank ---- 7hr 1.6 70 Zr(OH)4 --- 7hr 1.7 72 ZrO2 --- 7hr 2.3 74 SZ-1N 1.6 3hr 87.8 74.6 SZ-1.5N 1.04 3hr 76.3 78 SZ-2N 0.92 3hr 73 88 7hr 99.8 92 Sz-2Na --- 7hr -- -- Sz-2Nb -- 7hr -- -- Reaction conditions; 20 mmol styrene, 60 mmol paraformaldehyde, solvent :dichloroethane =10ml ; Catalyst: SZ-2N. Temp =80 C. Reaction time: 6hr. a- Aqueous Formaldehyde instead of paraformaldehyde. b – Aqueous Formaldehyde instead of paraformaldehyde, reaction temperature = 100 C Sulfated zirconia catalyst
  • 26. 60 80 100 40 50 60 70 80 90 100 Reaction Temperature conversionofstyrene 60 70 80 90 100 selectivityofdioxane Optimization of reaction conditions. a. Temperature Reaction conditions; 20 mmol styrene, 60 mmol paraformaldehyde, solvent :dichloroethane =10ml ;Catalyst: SZ-2N. Temp =80 C. Reaction time: 7hr , catalyst weight -7 wt%. Reaction time -100C – 4hr
  • 27. 3 5 7 9 60 65 70 75 80 85 90 95 100 Percentage(%) catalyst (wt%) conversion of styrene selectivity for 4 phenyl 1,3 dioxane b. Catalyst weight Reaction conditions; 20 mmol styrene, 60 mmol paraformaldehyde, solvent :dichloroethane =10ml ;Catalyst: SZ-2N. Temp =80 C. Reaction time: 7hr
  • 28. 1:1 1:2 1:3 1:4 0 20 40 60 80 100 Percentage(%) Styrene:Paraformaldehyde mole ratio conversion of styrene selectivity for 4-Phenyl 1,3-dioxane selectivity for cinnamyl alcohol C. Mole ratio of styrene :paraformaldehyde Reaction conditions; solvent :dichloroethane =10ml ;Catalyst: SZ-2N. Temp =80 C. Reaction time: 7hr , catalyst weight -7 wt%.
  • 29. Leaching test 0 1 2 3 4 5 6 7 8 9 10 0 10 20 30 40 50 60 70 80 90 Percentage(%) Time (hr) conversion of styrene selectivity for 4-Phenyl1,3-dioxane Reaction condition: 20 mmol styrene: 60 mmol Paraformaldehyde; 7 wt% of catalyst (reactant); Temp =80 C; solvent: Dichloro ethane =10ml.
  • 30. Recycling test Catalyst Yield cycle 1 92 cycle 2 91.4 cycle 3 90 cycle 4 89.8 10 20 30 40 50 60 70 Cycle 4 Cycle 3 Cycle 2 Cycle 1 Intensity(a.u) 2 Theta
  • 31. S O O Mechanism of reaction C O H H H OH H C O H Zr O O O O OH O O CH2OH O O OH H S L B ZrO2
  • 32. conclusion  Sulfated and tungstated zirconia catalyst were synthesized by the precipitation and impregnation method.  Characterization of sulfated zirconia by various methods were discussed.  Prins reaction of styrene with Paraformaldehyde is carried out using Sulfated zirconia catalyst.  Optimization study , effect of solvent and comparison of other acid catalyst is done.  SZ-2N showed good activity and selectivity for the prins reaction.