SlideShare una empresa de Scribd logo
University of Pittsburgh




      Ordered TiO2 Nanotube Arrays
   on TCO for Dye-sensitized Solar Cells


              CHENGKUN XU AND DI GAO*
                         * gaod@pitt.edu

     DEPARTMENT OF CHEMICAL AND PETROLEUM ENGINEERING
                  UNIVERSITY OF PITTSBURGH



12/2/2010                                               1
Current Dye-sensitized Solar Cells (DSC)

                     Current DSC anode structure
    e                  mesoporous film
                       a random TiO2 nanoparticle network
                       a disordered pore structure


           I-   I-   Consequences:

 TCO        −    −   1. Slow electron transport;
           I3   I3
                     2. Poor electrolyte filling,
                        hampering further improvement in
  Dye coated TiO2       DSC performance.
  nanoparticles
Vertically Ordered Nanostructures for DSC

A promising solution: replace the nanoparticle film with vertically
                            aligned nanowire or nanotube arrays.

                 Advantages:
    e
                 Vertically ordered nanostructures provide:
                 1. A direct pathway for electron transport, reducing
                    the probability of electron recombination.

                 2. A straight channel for electrolyte filling, increasing
                    the pore filling of solid state DSC with electrolytes .
Challenges of Fabricating
Vertically Ordered Nanostructures

                                 TiO2 nanotube arrays on titanium substrate


                                 an illumination on the platinum deposited
                                 counter-electrode side has to be used.

       Ti Substrate
M. Paulose et al. Nanotechnol.
17 (2006) 1446–1448
                                   about 20% loss of incident photons




        Ordered nanostructure must be fabricated
        directly on transparent conducting oxides (TCO)
Current Ordered Nanostructures on TCO




                                                         η:6.95%

   X. Feng et al. Nano Lett.   B. Liu et al. JACS   O. Varghese et al. Nat.
   2008, 8, 3782               2009, 131, 3985      Nanotechnol. 2009, 4, 592.



• The efficiencies: 3 to 7%, still low compared with
  nanoparticle-base DSC.
• The cause: low surface area and thus low light absorption.
• Must fabricate high surface area vertically ordered
  nanostructures on TCO at a low cost.
Solution-based synthesis of TiO2 nanotube arrays
directly on TCO
     a                            b                         c                          d
           ZnO seed crystal
     TiO2 underlayer
                              1                         2                          3



      ITO substrate               ZnO nanowire arrays       Top-end closed             Top-end opened
                                                            TiO2 nanotube arrays       TiO2 nanotube arrays




Growth of ZnO nanowire arrays on TCO:or Zn2+ + 2OH- → ZnO + H 2O
Deposition of TiO2 on ZnO nanowires:                                   TiF62− + 2H 2O = TiO 2 + 6F − + 4H +

Dissolution of ZnO nanowires:                                      ZnO + 2H + = Zn 2+ + H 2O

Etching of the top ends of the tubes:                             TiO 2 + 6F − + 4H + = TiF62− + 2H 2O
Morphology Characterization and DSC performance




             5 µm

 10-11 µm long                      5 µm
 300-500 nm wide                                5 µm          1 µm
 1.6×109 wires/cm2
    ×



     Chengkun Xu and Di Gao, Chem. Mater. 2010, 22, 143–148
DSC performance

                           8
                                                                            60
                           7
Current Density (mA/cm )
2




                           6                                                50




                                                                 IPCE (%)
                           5                                                40
                           4   VOC: 0.810 V
                                             2
                                                                            30
                           3   ISC: 6.8 mA/cm
                               FF: 0.655                                    20
                           2
                               η : 3.6%                                     10
                           1
                           0                                                0
                           0.0   0.2    0.4   0.6    0.8   1.0                   400   500    600      700
                                       Voltage (V)                                     Wavelength (nm)



                           • Demonstrating the success of our fabricating approach.

                           • Higher surface area arrays required.

                            Chengkun Xu and Di Gao, Chem. Mater. 2010, 22, 143–148
Growth of ZnO nanowire arrays

Conventional solution based method:
 ZnO forms simultaneously on seeded substrates
 and in the bulk solution.

 Rapid depletion of reactants

 Slow growth rate of wires on substrates

 Time consuming

It is challenging to grow ZnO nanowire arrays longer than 10 µm.



  Chengkun Xu and Di Gao, J. Phys. Chem. C 2010, 114, 125–129
Our approach to growing ZnO nanowire arrays:
 Added NH4OH          reducing solution supersaturation.
 Added polyethyleneimine (PEI)            adsorption

   In the bulk solution:

        ZnO homogeneous nucleation completely suppressed.


  On seeded substrates




         Nanowires can normally grow.

   Chengkun Xu and Di Gao, J. Phys. Chem. C 2010, 114, 125–129
10 times faster growth rate using our approach



                      16
                      14
   Wire Length (µm)




                      12
                                            Our approach
                      10
                       8
                       6
                                       Solution bath refreshed
                       4
                       2
                       0                    Conventional process
                           0   1   2    3   4   5   6   7   8   9 10
                                       Growth Time (h)




  Chengkun Xu and Di Gao, J. Phys. Chem. C 2010, 114, 125–129
Growth of long TiO2 nanotube arrays
   •   Reduced reactant concentration
   •   Increased solution volume to substrate area ratio
   •   Radial growth of the wires is mass transport limited


                                                                                                                   VOC: 0.820 V
                                                                    14




                                         Current Density (mA/cm )
                                                                                                                                  2




                                         2
                                                                                                                   ISC: 12.2 mA/cm
                                                                    12                                             FF: 0.613
                                                                                                                   η: 6.1%
                                                                    10
                                                                                   80
                                                                                   70
                                                                     8             60




                                                                         IPCE(%)
                                                                                   50
                                                                     6             40
                                                                                   30
                                                                     4             20
                                                                                   10
                                                                     2             0
                                                                                        400     500    600   700
                                                                                              Wavelength (nm)
                                                                     0
                                                                     0.0                0.2            0.4     0.6         0.8
                                                                                                      Voltage (V)
Electron recombination kinetics
                                       a
                                                                  0.9    Light on (100 mW/cm )
                                                                                                2




                                       Open circuit voltage (V)
         Dye                                                      0.8
  CB                                                              0.7      Light off           TiO2 tube cell
                                                                                               T iO2 particle cell
                                                                  0.6
                                                                  0.5
                                                                  0.4
                       Voc
                                                                  0.3
                                                                  0.2
               I3 I−
                −

                                                                  0.1
                       Pt/TCO
  TiO2                                                            0.0
                                                                     0     50    100     150        200   250   300
                                                                                       Time (s)


           Electron lifetime τ n = −( k BT e)( dVoc dt ) −1


                        Nanotube DSC   Nanoparticle DSC
          τn(s)                 ~1                                       ~0.1-0.2


  Chengkun Xu and Di Gao, Chem. Mater. 2010, 22, 143–148
Formation of Potential Barrier within the tube wall



         n-type
  E
 EF,n
    C


        Eg

  EV              Solution   20 nm


                                                    50-100 nm


Implication: allow the use of kinetically fast hole transporting
             materials and thus make it possible to fabricate
             efficient solid state DSC.
Summary
•   We have developed a strategy for synthesizing vertically
    ordered and long TiO2 nanotube arrays directly on TCO.
•   The processes involve solution-based growth of ZnO nanowire
    arrays on TCO and subsequent aqueous conversion into TiO2
    nanotube arrays.
•    All the synthesis steps utilize wet chemical processes, which
    feature low cost, low temperature, and ease in scale-up.
•   The approach has a potential of being further improved and opens
    up opportunities of fabricating efficient and economically viable
    dye-sensitized solar cells.

Más contenido relacionado

La actualidad más candente

Synthesis & Characterisation of CNT reinforced Al Nanocomposite
Synthesis & Characterisation of CNT reinforced Al NanocompositeSynthesis & Characterisation of CNT reinforced Al Nanocomposite
Synthesis & Characterisation of CNT reinforced Al Nanocomposite
Malik Tayyab
 
final accept-Optical and structural properties of TiO2 nanopowders with Co-Ce...
final accept-Optical and structural properties of TiO2 nanopowders with Co-Ce...final accept-Optical and structural properties of TiO2 nanopowders with Co-Ce...
final accept-Optical and structural properties of TiO2 nanopowders with Co-Ce...
nasrollah najibi ilkhchy
 
Synthesis and characterisation of k doped zno 1
Synthesis and characterisation of k doped zno 1Synthesis and characterisation of k doped zno 1
Synthesis and characterisation of k doped zno 1
Jeslin Mattam
 
Zr doped TiO2 nanocomposites for dye sensitized solar cells
Zr doped TiO2 nanocomposites for dye sensitized solar cellsZr doped TiO2 nanocomposites for dye sensitized solar cells
Zr doped TiO2 nanocomposites for dye sensitized solar cells
venkatamanthina
 
CeO2 Nanoparticles Report
CeO2 Nanoparticles ReportCeO2 Nanoparticles Report
CeO2 Nanoparticles Report
Ayeman Mazdi
 
Natural Dye-Sensitized Solar Cells (NDSSCs) From Opuntia Prickly Pear Dye Usi...
Natural Dye-Sensitized Solar Cells (NDSSCs) From Opuntia Prickly Pear Dye Usi...Natural Dye-Sensitized Solar Cells (NDSSCs) From Opuntia Prickly Pear Dye Usi...
Natural Dye-Sensitized Solar Cells (NDSSCs) From Opuntia Prickly Pear Dye Usi...
IJERA Editor
 
ETE444-lec5-micro-fabrication.pptx
ETE444-lec5-micro-fabrication.pptxETE444-lec5-micro-fabrication.pptx
ETE444-lec5-micro-fabrication.pptx
mashiur
 

La actualidad más candente (20)

Synthesis & Characterisation of CNT reinforced Al Nanocomposite
Synthesis & Characterisation of CNT reinforced Al NanocompositeSynthesis & Characterisation of CNT reinforced Al Nanocomposite
Synthesis & Characterisation of CNT reinforced Al Nanocomposite
 
Grds conferences icst and icbelsh (6)
Grds conferences icst and icbelsh (6)Grds conferences icst and icbelsh (6)
Grds conferences icst and icbelsh (6)
 
final presentation
final presentationfinal presentation
final presentation
 
final accept-Optical and structural properties of TiO2 nanopowders with Co-Ce...
final accept-Optical and structural properties of TiO2 nanopowders with Co-Ce...final accept-Optical and structural properties of TiO2 nanopowders with Co-Ce...
final accept-Optical and structural properties of TiO2 nanopowders with Co-Ce...
 
Photoelectrochemical characterization of titania photoanodes fabricated using...
Photoelectrochemical characterization of titania photoanodes fabricated using...Photoelectrochemical characterization of titania photoanodes fabricated using...
Photoelectrochemical characterization of titania photoanodes fabricated using...
 
Ti o2 films produced by electron beam vacuum deposition from nanometric powder
Ti o2 films produced by electron beam vacuum deposition from nanometric powder Ti o2 films produced by electron beam vacuum deposition from nanometric powder
Ti o2 films produced by electron beam vacuum deposition from nanometric powder
 
Effect of Annealing on the Structural and Optical Properties of Nanostr...
Effect of Annealing on the Structural and       Optical Properties of Nanostr...Effect of Annealing on the Structural and       Optical Properties of Nanostr...
Effect of Annealing on the Structural and Optical Properties of Nanostr...
 
Poster_water splitting1
Poster_water splitting1Poster_water splitting1
Poster_water splitting1
 
Photocatalytic Performance of TiO2 as a Catalyst
Photocatalytic Performance of TiO2 as a CatalystPhotocatalytic Performance of TiO2 as a Catalyst
Photocatalytic Performance of TiO2 as a Catalyst
 
Synthesis of zn o nanoparticles and electrodeposition of polypyrrolezno nanoc...
Synthesis of zn o nanoparticles and electrodeposition of polypyrrolezno nanoc...Synthesis of zn o nanoparticles and electrodeposition of polypyrrolezno nanoc...
Synthesis of zn o nanoparticles and electrodeposition of polypyrrolezno nanoc...
 
TiO2 Nanomaterial
TiO2 NanomaterialTiO2 Nanomaterial
TiO2 Nanomaterial
 
Synthesis and charecterization studies of nano ti o2 prepared via sol gel method
Synthesis and charecterization studies of nano ti o2 prepared via sol gel methodSynthesis and charecterization studies of nano ti o2 prepared via sol gel method
Synthesis and charecterization studies of nano ti o2 prepared via sol gel method
 
Synthesis and characterisation of k doped zno 1
Synthesis and characterisation of k doped zno 1Synthesis and characterisation of k doped zno 1
Synthesis and characterisation of k doped zno 1
 
Band edge engineering of composite photoanodes for dye sensitized solar cells
Band edge engineering of composite photoanodes for dye sensitized solar cellsBand edge engineering of composite photoanodes for dye sensitized solar cells
Band edge engineering of composite photoanodes for dye sensitized solar cells
 
Zr doped TiO2 nanocomposites for dye sensitized solar cells
Zr doped TiO2 nanocomposites for dye sensitized solar cellsZr doped TiO2 nanocomposites for dye sensitized solar cells
Zr doped TiO2 nanocomposites for dye sensitized solar cells
 
CeO2 Nanoparticles Report
CeO2 Nanoparticles ReportCeO2 Nanoparticles Report
CeO2 Nanoparticles Report
 
Aem Lect4
Aem Lect4Aem Lect4
Aem Lect4
 
Photocatalytic degradation of some organic dyes under solar light irradiation...
Photocatalytic degradation of some organic dyes under solar light irradiation...Photocatalytic degradation of some organic dyes under solar light irradiation...
Photocatalytic degradation of some organic dyes under solar light irradiation...
 
Natural Dye-Sensitized Solar Cells (NDSSCs) From Opuntia Prickly Pear Dye Usi...
Natural Dye-Sensitized Solar Cells (NDSSCs) From Opuntia Prickly Pear Dye Usi...Natural Dye-Sensitized Solar Cells (NDSSCs) From Opuntia Prickly Pear Dye Usi...
Natural Dye-Sensitized Solar Cells (NDSSCs) From Opuntia Prickly Pear Dye Usi...
 
ETE444-lec5-micro-fabrication.pptx
ETE444-lec5-micro-fabrication.pptxETE444-lec5-micro-fabrication.pptx
ETE444-lec5-micro-fabrication.pptx
 

Destacado

Destacado (11)

Communiqué Vilogia hep mouvaux 23-10-2014
Communiqué Vilogia hep mouvaux 23-10-2014Communiqué Vilogia hep mouvaux 23-10-2014
Communiqué Vilogia hep mouvaux 23-10-2014
 
BE Degree Certificate
BE Degree CertificateBE Degree Certificate
BE Degree Certificate
 
Pelota vasca
Pelota vascaPelota vasca
Pelota vasca
 
Meter Tampering | Energy Theft
Meter Tampering | Energy TheftMeter Tampering | Energy Theft
Meter Tampering | Energy Theft
 
ABCs of Webpagetest ( WPT )
ABCs of Webpagetest ( WPT )ABCs of Webpagetest ( WPT )
ABCs of Webpagetest ( WPT )
 
Capvespre de portes obertes
Capvespre de portes obertesCapvespre de portes obertes
Capvespre de portes obertes
 
استراتژی مدیریت ذینفعان - Stakeholder Management Strategy
استراتژی مدیریت ذینفعان - Stakeholder Management Strategyاستراتژی مدیریت ذینفعان - Stakeholder Management Strategy
استراتژی مدیریت ذینفعان - Stakeholder Management Strategy
 
ماتریس آنالیز ذینفعان - Stakeholder Analysis Matrix
ماتریس آنالیز ذینفعان - Stakeholder Analysis Matrixماتریس آنالیز ذینفعان - Stakeholder Analysis Matrix
ماتریس آنالیز ذینفعان - Stakeholder Analysis Matrix
 
Human Resource Management
Human Resource ManagementHuman Resource Management
Human Resource Management
 
Developing brand identity
Developing brand identityDeveloping brand identity
Developing brand identity
 
Sistema general-de-seguridad-social-en-salud-fish
Sistema general-de-seguridad-social-en-salud-fishSistema general-de-seguridad-social-en-salud-fish
Sistema general-de-seguridad-social-en-salud-fish
 

Similar a Ordered TiO2 Nanotube Arrays For DSC

CMOS VLSI design
CMOS VLSI designCMOS VLSI design
CMOS VLSI design
Rajan Kumar
 
Synthesis And Characterization Of Individual ZnO Nanowires
Synthesis And Characterization Of Individual ZnO NanowiresSynthesis And Characterization Of Individual ZnO Nanowires
Synthesis And Characterization Of Individual ZnO Nanowires
Martial Duchamp
 
Experimental and simulation analysis for insulation deterioration and partial...
Experimental and simulation analysis for insulation deterioration and partial...Experimental and simulation analysis for insulation deterioration and partial...
Experimental and simulation analysis for insulation deterioration and partial...
IJECEIAES
 
Poster_STEM_Research
Poster_STEM_ResearchPoster_STEM_Research
Poster_STEM_Research
Jada Gray
 
Nanomaterials in Coating and Colorant Technologies
Nanomaterials in Coating and Colorant TechnologiesNanomaterials in Coating and Colorant Technologies
Nanomaterials in Coating and Colorant Technologies
Jelliarko Palgunadi
 
NanowireSensor (Nano-Tera)
NanowireSensor (Nano-Tera)NanowireSensor (Nano-Tera)
NanowireSensor (Nano-Tera)
dalgetty
 

Similar a Ordered TiO2 Nanotube Arrays For DSC (20)

Research Summary 20090111
Research Summary 20090111Research Summary 20090111
Research Summary 20090111
 
CMOS VLSI design
CMOS VLSI designCMOS VLSI design
CMOS VLSI design
 
Synthesis And Characterization Of Individual ZnO Nanowires
Synthesis And Characterization Of Individual ZnO NanowiresSynthesis And Characterization Of Individual ZnO Nanowires
Synthesis And Characterization Of Individual ZnO Nanowires
 
Junctionless Transistor
Junctionless Transistor Junctionless Transistor
Junctionless Transistor
 
Teresa Puig - Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Espa...
Teresa Puig - Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Espa...Teresa Puig - Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Espa...
Teresa Puig - Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Espa...
 
Velez reyes 2 b
Velez reyes 2 bVelez reyes 2 b
Velez reyes 2 b
 
Experimental and simulation analysis for insulation deterioration and partial...
Experimental and simulation analysis for insulation deterioration and partial...Experimental and simulation analysis for insulation deterioration and partial...
Experimental and simulation analysis for insulation deterioration and partial...
 
2012 Reenergize the Americas 2B: Miguel Velez-Reyes
2012 Reenergize the Americas 2B: Miguel Velez-Reyes2012 Reenergize the Americas 2B: Miguel Velez-Reyes
2012 Reenergize the Americas 2B: Miguel Velez-Reyes
 
Poster_STEM_Research
Poster_STEM_ResearchPoster_STEM_Research
Poster_STEM_Research
 
Pvc cmos finale
Pvc cmos finale Pvc cmos finale
Pvc cmos finale
 
SOTA.pptx
SOTA.pptxSOTA.pptx
SOTA.pptx
 
Microstrip antennas
Microstrip antennasMicrostrip antennas
Microstrip antennas
 
Contact Resistance of Graphene/Single-Walled Carbon Nanotube Thin Film Transi...
Contact Resistance of Graphene/Single-Walled Carbon Nanotube Thin Film Transi...Contact Resistance of Graphene/Single-Walled Carbon Nanotube Thin Film Transi...
Contact Resistance of Graphene/Single-Walled Carbon Nanotube Thin Film Transi...
 
3 di metrology-slideshare
3 di metrology-slideshare3 di metrology-slideshare
3 di metrology-slideshare
 
Nanomaterials in Coating and Colorant Technologies
Nanomaterials in Coating and Colorant TechnologiesNanomaterials in Coating and Colorant Technologies
Nanomaterials in Coating and Colorant Technologies
 
NanowireSensor (Nano-Tera)
NanowireSensor (Nano-Tera)NanowireSensor (Nano-Tera)
NanowireSensor (Nano-Tera)
 
Vapor phase cutting of carbon nanotubes using a nanomanipulator platform-ms&t...
Vapor phase cutting of carbon nanotubes using a nanomanipulator platform-ms&t...Vapor phase cutting of carbon nanotubes using a nanomanipulator platform-ms&t...
Vapor phase cutting of carbon nanotubes using a nanomanipulator platform-ms&t...
 
Final od college
Final od collegeFinal od college
Final od college
 
Cabtures
CabturesCabtures
Cabtures
 
CNFET Technology
CNFET TechnologyCNFET Technology
CNFET Technology
 

Último

Último (20)

WSO2CONMay2024OpenSourceConferenceDebrief.pptx
WSO2CONMay2024OpenSourceConferenceDebrief.pptxWSO2CONMay2024OpenSourceConferenceDebrief.pptx
WSO2CONMay2024OpenSourceConferenceDebrief.pptx
 
Connecting the Dots in Product Design at KAYAK
Connecting the Dots in Product Design at KAYAKConnecting the Dots in Product Design at KAYAK
Connecting the Dots in Product Design at KAYAK
 
Unpacking Value Delivery - Agile Oxford Meetup - May 2024.pptx
Unpacking Value Delivery - Agile Oxford Meetup - May 2024.pptxUnpacking Value Delivery - Agile Oxford Meetup - May 2024.pptx
Unpacking Value Delivery - Agile Oxford Meetup - May 2024.pptx
 
Powerful Start- the Key to Project Success, Barbara Laskowska
Powerful Start- the Key to Project Success, Barbara LaskowskaPowerful Start- the Key to Project Success, Barbara Laskowska
Powerful Start- the Key to Project Success, Barbara Laskowska
 
In-Depth Performance Testing Guide for IT Professionals
In-Depth Performance Testing Guide for IT ProfessionalsIn-Depth Performance Testing Guide for IT Professionals
In-Depth Performance Testing Guide for IT Professionals
 
What's New in Teams Calling, Meetings and Devices April 2024
What's New in Teams Calling, Meetings and Devices April 2024What's New in Teams Calling, Meetings and Devices April 2024
What's New in Teams Calling, Meetings and Devices April 2024
 
JMeter webinar - integration with InfluxDB and Grafana
JMeter webinar - integration with InfluxDB and GrafanaJMeter webinar - integration with InfluxDB and Grafana
JMeter webinar - integration with InfluxDB and Grafana
 
PLAI - Acceleration Program for Generative A.I. Startups
PLAI - Acceleration Program for Generative A.I. StartupsPLAI - Acceleration Program for Generative A.I. Startups
PLAI - Acceleration Program for Generative A.I. Startups
 
Free and Effective: Making Flows Publicly Accessible, Yumi Ibrahimzade
Free and Effective: Making Flows Publicly Accessible, Yumi IbrahimzadeFree and Effective: Making Flows Publicly Accessible, Yumi Ibrahimzade
Free and Effective: Making Flows Publicly Accessible, Yumi Ibrahimzade
 
IoT Analytics Company Presentation May 2024
IoT Analytics Company Presentation May 2024IoT Analytics Company Presentation May 2024
IoT Analytics Company Presentation May 2024
 
AI revolution and Salesforce, Jiří Karpíšek
AI revolution and Salesforce, Jiří KarpíšekAI revolution and Salesforce, Jiří Karpíšek
AI revolution and Salesforce, Jiří Karpíšek
 
Agentic RAG What it is its types applications and implementation.pdf
Agentic RAG What it is its types applications and implementation.pdfAgentic RAG What it is its types applications and implementation.pdf
Agentic RAG What it is its types applications and implementation.pdf
 
Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024
Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024
Kubernetes & AI - Beauty and the Beast !?! @KCD Istanbul 2024
 
IESVE for Early Stage Design and Planning
IESVE for Early Stage Design and PlanningIESVE for Early Stage Design and Planning
IESVE for Early Stage Design and Planning
 
UiPath Test Automation using UiPath Test Suite series, part 2
UiPath Test Automation using UiPath Test Suite series, part 2UiPath Test Automation using UiPath Test Suite series, part 2
UiPath Test Automation using UiPath Test Suite series, part 2
 
Measures in SQL (a talk at SF Distributed Systems meetup, 2024-05-22)
Measures in SQL (a talk at SF Distributed Systems meetup, 2024-05-22)Measures in SQL (a talk at SF Distributed Systems meetup, 2024-05-22)
Measures in SQL (a talk at SF Distributed Systems meetup, 2024-05-22)
 
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered QualitySoftware Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
 
"Impact of front-end architecture on development cost", Viktor Turskyi
"Impact of front-end architecture on development cost", Viktor Turskyi"Impact of front-end architecture on development cost", Viktor Turskyi
"Impact of front-end architecture on development cost", Viktor Turskyi
 
Speed Wins: From Kafka to APIs in Minutes
Speed Wins: From Kafka to APIs in MinutesSpeed Wins: From Kafka to APIs in Minutes
Speed Wins: From Kafka to APIs in Minutes
 
A Business-Centric Approach to Design System Strategy
A Business-Centric Approach to Design System StrategyA Business-Centric Approach to Design System Strategy
A Business-Centric Approach to Design System Strategy
 

Ordered TiO2 Nanotube Arrays For DSC

  • 1. University of Pittsburgh Ordered TiO2 Nanotube Arrays on TCO for Dye-sensitized Solar Cells CHENGKUN XU AND DI GAO* * gaod@pitt.edu DEPARTMENT OF CHEMICAL AND PETROLEUM ENGINEERING UNIVERSITY OF PITTSBURGH 12/2/2010 1
  • 2. Current Dye-sensitized Solar Cells (DSC) Current DSC anode structure e mesoporous film a random TiO2 nanoparticle network a disordered pore structure I- I- Consequences: TCO − − 1. Slow electron transport; I3 I3 2. Poor electrolyte filling, hampering further improvement in Dye coated TiO2 DSC performance. nanoparticles
  • 3. Vertically Ordered Nanostructures for DSC A promising solution: replace the nanoparticle film with vertically aligned nanowire or nanotube arrays. Advantages: e Vertically ordered nanostructures provide: 1. A direct pathway for electron transport, reducing the probability of electron recombination. 2. A straight channel for electrolyte filling, increasing the pore filling of solid state DSC with electrolytes .
  • 4. Challenges of Fabricating Vertically Ordered Nanostructures TiO2 nanotube arrays on titanium substrate an illumination on the platinum deposited counter-electrode side has to be used. Ti Substrate M. Paulose et al. Nanotechnol. 17 (2006) 1446–1448 about 20% loss of incident photons Ordered nanostructure must be fabricated directly on transparent conducting oxides (TCO)
  • 5. Current Ordered Nanostructures on TCO η:6.95% X. Feng et al. Nano Lett. B. Liu et al. JACS O. Varghese et al. Nat. 2008, 8, 3782 2009, 131, 3985 Nanotechnol. 2009, 4, 592. • The efficiencies: 3 to 7%, still low compared with nanoparticle-base DSC. • The cause: low surface area and thus low light absorption. • Must fabricate high surface area vertically ordered nanostructures on TCO at a low cost.
  • 6. Solution-based synthesis of TiO2 nanotube arrays directly on TCO a b c d ZnO seed crystal TiO2 underlayer 1 2 3 ITO substrate ZnO nanowire arrays Top-end closed Top-end opened TiO2 nanotube arrays TiO2 nanotube arrays Growth of ZnO nanowire arrays on TCO:or Zn2+ + 2OH- → ZnO + H 2O Deposition of TiO2 on ZnO nanowires: TiF62− + 2H 2O = TiO 2 + 6F − + 4H + Dissolution of ZnO nanowires: ZnO + 2H + = Zn 2+ + H 2O Etching of the top ends of the tubes: TiO 2 + 6F − + 4H + = TiF62− + 2H 2O
  • 7. Morphology Characterization and DSC performance 5 µm 10-11 µm long 5 µm 300-500 nm wide 5 µm 1 µm 1.6×109 wires/cm2 × Chengkun Xu and Di Gao, Chem. Mater. 2010, 22, 143–148
  • 8. DSC performance 8 60 7 Current Density (mA/cm ) 2 6 50 IPCE (%) 5 40 4 VOC: 0.810 V 2 30 3 ISC: 6.8 mA/cm FF: 0.655 20 2 η : 3.6% 10 1 0 0 0.0 0.2 0.4 0.6 0.8 1.0 400 500 600 700 Voltage (V) Wavelength (nm) • Demonstrating the success of our fabricating approach. • Higher surface area arrays required. Chengkun Xu and Di Gao, Chem. Mater. 2010, 22, 143–148
  • 9. Growth of ZnO nanowire arrays Conventional solution based method: ZnO forms simultaneously on seeded substrates and in the bulk solution. Rapid depletion of reactants Slow growth rate of wires on substrates Time consuming It is challenging to grow ZnO nanowire arrays longer than 10 µm. Chengkun Xu and Di Gao, J. Phys. Chem. C 2010, 114, 125–129
  • 10. Our approach to growing ZnO nanowire arrays: Added NH4OH reducing solution supersaturation. Added polyethyleneimine (PEI) adsorption In the bulk solution: ZnO homogeneous nucleation completely suppressed. On seeded substrates Nanowires can normally grow. Chengkun Xu and Di Gao, J. Phys. Chem. C 2010, 114, 125–129
  • 11. 10 times faster growth rate using our approach 16 14 Wire Length (µm) 12 Our approach 10 8 6 Solution bath refreshed 4 2 0 Conventional process 0 1 2 3 4 5 6 7 8 9 10 Growth Time (h) Chengkun Xu and Di Gao, J. Phys. Chem. C 2010, 114, 125–129
  • 12. Growth of long TiO2 nanotube arrays • Reduced reactant concentration • Increased solution volume to substrate area ratio • Radial growth of the wires is mass transport limited VOC: 0.820 V 14 Current Density (mA/cm ) 2 2 ISC: 12.2 mA/cm 12 FF: 0.613 η: 6.1% 10 80 70 8 60 IPCE(%) 50 6 40 30 4 20 10 2 0 400 500 600 700 Wavelength (nm) 0 0.0 0.2 0.4 0.6 0.8 Voltage (V)
  • 13. Electron recombination kinetics a 0.9 Light on (100 mW/cm ) 2 Open circuit voltage (V) Dye 0.8 CB 0.7 Light off TiO2 tube cell T iO2 particle cell 0.6 0.5 0.4 Voc 0.3 0.2 I3 I− − 0.1 Pt/TCO TiO2 0.0 0 50 100 150 200 250 300 Time (s) Electron lifetime τ n = −( k BT e)( dVoc dt ) −1 Nanotube DSC Nanoparticle DSC τn(s) ~1 ~0.1-0.2 Chengkun Xu and Di Gao, Chem. Mater. 2010, 22, 143–148
  • 14. Formation of Potential Barrier within the tube wall n-type E EF,n C Eg EV Solution 20 nm 50-100 nm Implication: allow the use of kinetically fast hole transporting materials and thus make it possible to fabricate efficient solid state DSC.
  • 15. Summary • We have developed a strategy for synthesizing vertically ordered and long TiO2 nanotube arrays directly on TCO. • The processes involve solution-based growth of ZnO nanowire arrays on TCO and subsequent aqueous conversion into TiO2 nanotube arrays. • All the synthesis steps utilize wet chemical processes, which feature low cost, low temperature, and ease in scale-up. • The approach has a potential of being further improved and opens up opportunities of fabricating efficient and economically viable dye-sensitized solar cells.