SlideShare una empresa de Scribd logo
1 de 13
Descargar para leer sin conexión
UNIVERSIDAD FERMÍN TORO
ESCUELA DE INGENIERIA
ALUMNO:
Benítez Carlos C.I: 14.585.103
Sección: SAIA-A
Profesora: José Morillo
1. Voltímetro:
Un voltímetro es aquel aparato o dispositivo que se utiliza a fin de medir, de manera directa o
indirecta, la diferencia potencial entre dos puntos de un circuito eléctrico.
Como funciona:
Para poder realizar la medición de la diferencia potencial, ambos puntos deben encontrarse de
forma paralela. En otras palabras, que estén en paralelo quiere decir que se encuentre en
derivación sobre los puntos de los cuales queremos realizar la medición. Debido a lo anterior, el
voltímetro debe contar con una resistencia interna lo más alta que sea posible, de modo que su
consumo sea bajo, y así permitir que la medición de la tensión del voltímetro se realice sin
errores. Para poder cumplir con este requerimiento, los voltímetros que basan su
funcionamiento en los efectos electromagnéticos de la corriente eléctrica, poseen unas bobinas
con hilo muy fino y de muchas espiras, a fin de que, aún contando con una corriente eléctrica de
baja intensidad, el aparato cuente con la fuerza necesaria para mover la aguja.
Tipos de Voltímetros
Analógico: Dispositivo que mide y presenta el valor medio del voltaje, mediante una aguja que
se ubica en el número o la fracción del valor presentado en un panel de indicación.
Digital: Este tipo de aparatos cuentan con características de aislamiento bastante considerables,
para lo que utilizan circuitos de una gran complejidad, en lo que respecta a su comparación con
el voltímetro tradicional.
PRECAUCION
El voltímetro debe contar con una resistencia interna lo más alta que sea posible, de modo que
su consumo sea bajo, y así permitir que la medición de la tensión del voltímetro se realice sin
errores.
Como se conecta un Voltímetro en un Circuito Eléctrico
Un voltímetro debe conectarse en paralelo con la fuente de energía, porque mide los volt, es
decir, la presión eléctrica (fuerza electromotriz, voltaje, tensión y otros sinónimos), la fuerza
que empuja a los electrones y que los hará circular si le conectas un circuito (sólo si le conectas
un circuito, si no conectas nada, habrá voltaje, pero no corriente, la fuerza empujará, pero es
como una canilla (grifo) cerrada, hay presión pero no hay corriente de agua).
2. Amperímetro:
Es un instrumento que sirve para medir la intensidad de corriente que está circulando por un
circuito eléctrico.
El amperímetro es un simple galvanómetro. Disponiendo de una gama de resistencias shunt,
podemos disponer de un amperímetro con varios rangos o intervalos de medición. Los
amperímetros tienen una resistencia interna muy pequeña, por debajo de 1 ohmio, con la
finalidad de que su presencia no disminuya la corriente a medir cuando se conecta a un circuito
eléctrico. (instrumento para detectar pequeñas cantidades de corriente) con una resistencia en
paralelo, llamada shunt.
Como Funciona:
Para efectuar la medida es necesario que la intensidad de la corriente circule por el amperímetro,
por lo que éste debe colocarse en serie, para que sea atravesado por dicha corriente. El
amperímetro debe poseer una resistencia interna lo más pequeña posible con la finalidad de
evitar una caída de tensión apreciable (al ser muy pequeña permitirá un mayor paso de
electrones para su correcta medida). Para ello, en el caso de instrumentos basados en los efectos
electromagnéticos de la corriente eléctrica, están dotados de bobinas de hilo grueso y con pocas
espiras.
Como se conecta un Amperímetro en un Circuito Eléctrico
Un amperímetro debe conectarse en serie con uno de los conductores, porque mide los amper,
que es la unidad de corriente o caudal eléctrico, que sólo circula cuando conectas un circuito a
una fuente de voltaje. Equivale a la canilla (grifo) abierta, ahora hay un caudal de agua, que
puedes medir en litros (un paquete de agua) en cada segundo, y el Amper es un paquete de
electrones (llamado culomb o coulomb) en cada segundo.
3. Multímetro:
El Multímetro es un dispositivo que sirve para medir la tensión, la intensidad de la corriente
eléctrica o la resistencia, de algún elemento o de varios elementos que conforman un circuito
eléctrico. El Multímetro también es llamado Téster y puede ser tanto analógico como digital.
Como Funciona:
Comenzamos con la medición del voltaje en una pila de 1,5 Volt, algo gastada, para ver en qué
estado se encuentra la misma. Para realizar la medición de voltajes, colocamos la llave selectora
del multímetro en el bloque “DCV” siglas correspondientes a: Direct Current Voltage, lo que
traducimos como Voltaje de Corriente Continua, puesto que la pila constituye un generador de
corriente continua.
Colocamos la punta roja en el electrodo positivo de la pila, la punta negra en el negativo, la
llave selectora en la posición “2,5“y efectuamos la medición.
Tipos de Multímetro.
El Multímetro Analógico.
El Multímetro analógico está conformado por un instrumento de bobina móvil (galvanómetro)
que está a su vez formado por un arrollamiento en forma de cuadro que puede girar alrededor de
un eje vertical que pasa por su centro; dicha bobina está situada entre los polos norte y sur de un
imán permanente en forma de herradura (en otros instrumentos el imán está en el interior de la
bobina). Al circular corriente eléctrica por la bobina, aparece un par de fuerzas que tiende a
hacer girar la bobina en sentido horario, y junto con ella también gira la aguja. La deflexión de
la aguja es proporcional a la intensidad de la corriente que circula por la bobina. Para que la
posición de la aguja se estabilice, es necesario un par de fuerzas antagónicas, que se generan por
la acción de un resorte en forma de espiral.
Es muy importante leer el manual de operación de cada multímetro en particular, pues en él, el
fabricante fija los valores máximos de corriente y tensión que puede soportar y el modo más
seguro de manejo, tanto para evitar el deterioro del instrumento como para evitar accidentes al
operario. El multímetro que se da como ejemplo en esta explicación, es genérico, es decir que
no se trata de una marca en particular, por lo tanto existen muchos otros con diferentes
posibilidades de medición.
Con un téster o multímetro analógico podemos tener una lectura observando la posición de la
aguja y realizando algunos cálculos que dependerán del parámetros a medir, del rango de
medición elegido y de la estimación del error debido tanto a la posición de la aguja en la escala
como a la precisión que el fabricante expresa en el manual de uso de cada instrumento.
1- Aguja indicadora.
2- Escala y rangos para medición de resistencia eléctrica.
3- Selector de modalidades de medición y rangos.
4- Escala y rangos para medición de diferencia de potencial o
tensión de CC.
5- Escala y rangos para medición de diferencia de potencial o
tensión de CA.
6- Borne o “jack” de conexión para la punta roja ,cuando se quiere
medir tensión, resistencia y corriente tanto en corriente alterna
como en continua.
7- Borne de conexión o “jack” negativo para la punta negra.
8- Escala y borne de conexión o “jack” para poner la punta roja si
se va a medir mA (miliamperes en CC.
9- Borne de conexión o “jack” para la punta roja cuando se elija el rango de 12 A máximo, en corriente continua.
10- Selector para medir resistencia, tensión alterna y continua y corriente o bien invertir el sentido de la tensión (la
aguja se moverá en dirección contraria).
11- Botón para ajustar a cero la resistencia.
12- Escala rango y borne de conexión para probar el estado de las baterías del multímetro.
El Multímetro Digital
Es muy importante leer el manual de operación de cada multímetro en particular, pues en él, el
fabricante fija los valores máximos de corriente y tensión que puede soportar y el modo más
seguro de manejo, tanto para evitar el deterioro del instrumento como para evitar accidentes al
operario. El multímetro que se da como ejemplo en esta explicación, es genérico, es decir que
no se trata de una marca en particular, por lo tanto existen muchos otros con diferentes
posibilidades de medición.
Con un téster o multímetro digital podemos tener una lectura directa de la magnitud que se
quiere medir (salvo error por la precisión que el fabricante expresa en su manual de uso).
El multímetro digital cuenta con una llave selectora de rango, y en lugar de una aguja que marca
la medición, posee un display digital en el cual aparece desplegado el valor medido.
Referencias:
1 Pantalla o display de cristal líquido.
2 Escala o rango para medir resistencia.
3 Llave selectora de medición.
4 Escala o rango para medir tensión en continua (puede indicarse DC
en vez de una linea continua y otra punteada).
5 Escala o rango para medir tensión en alterna (puede indicarse AC en
vez de la linea ondeada).
6 Borne o “jack” de conexión para la punta roja ,cuando se quiere
medir tensión, resistencia y frecuencia (si tuviera), tanto en corriente
alterna como en continua.
7 Borne de conexión o “jack” negativo para la punta negra.
8 Borne de conexión o “jack” para poner la punta roja si se va a medir
mA (miliamperes), tanto en alterna como en continua.
9 Borne de conexión o “jack” para la punta roja cuando se elija el
rango de 20A máximo, tanto en alterna como en continua.
10 Escala o rango para medir corriente en alterna (puede venir
indicado AC en lugar de la linea ondeada).
11 Escala o rango para medir corriente en continua (puede venir DC en
lugar de una linea continua y otra punteada).
12 Zócalo de conexión para medir capacitores o condensadores.
13 Botón de encendido y apagado.
Como se conecta un Multímetro en un Circuito Eléctrico.
Medidas de prueba de diodos
 Colocar el conmutador en la posición de medida de diodos
 Presione el botón de selección hasta que aparezca el símbolo de diodos.
 Colocar las puntas de prueba, la negra en COM y la roja en V.
 Una lectura superior a esta banda indica un diodo con fuga (Defectuoso). Una lectura de
cero, indica un diodo cortado (Defectuoso). Una indicación "OL" indica diodo abierto
(Defectuoso).
 Medir también el diodo con las puntas en sentido contrario.
 El display mostrara "OL" si el diodo es bueno. Cualquier otra medida indicara que el
diodo es resistivo o está cortado (Defectuoso).
Medidas en DC/AC de uA, mA o Amperios
 Colocar el conmutador rotativo en la función de A, mA o uA
 Colocar las puntas de prueba, la negra en COM y la roja en los orificios de mA, uA o
A., dependiendo de lo que vaya a medir.
 Al conectar esta función aparecerá en pantalla la función DC, presionando el botón de
selección una vez cambiara a AC y viceversa.
Recomendaciones para el uso del Multímetro.
• Antes de realizar cualquier medida debemos asegurarnos si las puntas de prueba están
completamente aisladas.
• Debemos verificar el correcto funcionamiento del multímetro, así como de sus escalas de
medida.
• Para efectuar medidas de voltaje debemos colocar el instrumento en paralelo a la fuente de
voltaje.
• Si deseamos medir valores de resistencia, debemos tomar la precaución de desconectar toda
fuente de voltaje que pueda dañar al instrumento; y enseguida debemos colocar el instrumento
en la escala correspondiente.
4. Osciloscopio.
Instrumento electrónico que registra los cambios de tensión producidos en circuitos eléctricos y
electrónicos y los muestra en forma gráfica en la pantalla de un tubo de rayos catódicos. Los
osciloscopios se utilizan en la industria y en los laboratorios para comprobar y ajustar el equipo
electrónico y para seguir las rápidas variaciones de las señales eléctricas, ya que son capaces de
detectar variaciones de millonésimas de segundo. Unos conversores especiales conectados al
osciloscopio pueden transformar vibraciones mecánicas, ondas sonoras y otras formas de
movimiento oscilatorio en impulsos eléctricos observables en la pantalla del tubo de rayos
catódicos como el que se observa en la siguiente figura.
El osciloscopio es un instrumento que se utiliza para obtener medidas de voltaje pico a pico
(Vpp), voltaje pico (Vp), periodo (T) y frecuencia (F).
Como Funciona:
Para proceder a utilizar el osciloscopio se deben tener en cuenta, ajuste de perillas, y la
calibración de este.
PARTES DE UN OSCILOSCOPIO
Es muy importante observa muy bien el osciloscopio antes de calibrarlo, e identificar cada una
de sus partes.
El osciloscopio cuenta con 2 canales CHA y CHB cada uno tiene un potenciómetro respectivo
llamado VOLT/DIV.
También en la parte derecha se puede observar otro potenciómetro llamado TIME/DIV este es
para los dos canales.
En la parte superior observamos varias perillas cada una con funciones diferentes entre ellas
están:
 INTENSITY: debe esta en la mitad para que la onda se vea agradable.
 POSITION:  Se puede observar dos perillas de estás, una es para el canal A y la
otra es para el canal B su función es mover la onda hacia arriba y hacia abajo.
 POSITON:  permite mover la onda hacia la derecha e izquierda
 Llave selectora permite nos permite escoger el canal en el que queremos trabajar CHA,
CHB. En la posición DUAL se pueden observar dos ondas de las canales CHA y CHB.
ADD es la suma de los valores de CHA y CHB

 Tenemos 2 llaves selectora una para el canal CHA y otra para el canal CHB. Si se
selecciona GND debe salir una línea recta. La cual siempre debe esta en toda la mitad,
sobre el eje X. AC se utiliza para analizar señales de corriente alterna. DC se utiliza
para analizar señales de corriente directa.

Calibración del Osciloscopio
Antes de realizar cualquier medición lo primero que se debe hacer es calibrar el osciloscopio
para esto se utiliza una sonda .
SONDA: es un cable que en su final se deriva en dos partes una en forma de Garfio (esta
siempre va conectada a CAL), y la otra es un caimán que va en un punto llamado GND. Y a
través de la llave selectora ubicamos el canal CHA o CHB, como se en la siguiente figura
Calibración del osciloscopio posición de la sonda
Después de conectar la sonda en el canal A (CHA) y observar la señal en la pantalla, debes
colocar la llave selectora que se encuentra en la parte izquierda en la posición GND, entonces
observaras una línea (si no la ves puedes mover la perilla posición del CHA o sino
INTENSITY). Después de observar la línea debes ubicarla en todo el centro sobre el eje X.
Como se conecta un Osciloscopio en un Circuito Eléctrico.
5. Generador de Funciones:
El generador de funciones es un equipo capaz de generar señales variables en el dominio del
tiempo para ser aplicadas posteriormente sobre el circuito bajo prueba.
Las formas de onda típicas son las triangulares, cuadradas y senoidales. También son muy
utilizadas las señales TTL que pueden ser utilizadas como señal de prueba o referencia en
circuitos digitales.
Otras aplicaciones del generador de funciones pueden ser las de calibración de equipos, rampas
de alimentación de osciloscopios, etc.
Aunque existen multitud de generadores de funciones de mayor o menor complejidad todos
incorporan ciertas funciones y controles básicos que pasamos a describir a continuación.
-1. Selector de funciones. Controla la forma de onda de la señal de salida. Como comentabamos
puede ser triangular, cuadrada o senoidal.
- 2. Selector de rango. Selecciona el rango o margen de frecuencias de trabajo de la señal de
salida. Su valor va determinado en décadas, es decir, de 1 a 10 Hz, de 10 a 100, etc.
- 3. Control de frecuencia. Regula la frecuencia de salida dentro del margen seleccionado
mediante el selector de rango.
- 4. Control de amplitud. Mando que regula la amplitud de la señal de salida.
- 5. DC offset. Regula la tensión continua de salida que se superpone a la señal variable en el
tiempo de salida.
- 6. Atenuador de 20dB. Ofrece la posibilidad de atenuar la señal de salida 20 dB (100 veces)
sobre la amplitud seleccionada con el control numero 4.
- 7. Salida 600ohm. Conector de salida que entrega la señal elegida con una impedancia de 600
ohmios.
- 8. Salida TTL. Entrega una consecución de pulsos TTL (0 - 5V) con la misma frecuencia que
la señal de salida
Como se conecta un Multímetro en un Circuito Eléctrico.
Lo primero que deberemos realizar será seleccionar el tipo de señal de salida que necesitamos
(triangular, cuadrada o senoidal).
A continuación se debe fijar la frecuencia de trabajo utilizando los selectores de rango y mando
de ajuste. Muchos generadores de funciones modernos incorporan contadores de frecuencia que
permiten un ajuste preciso, no obstante y en caso de ser necesario se pueden utilizar contadores
de frecuencia externos, osciloscopios o incluso analizadores de espectros para determinar la
frecuencia con mayor precisión.
El siguiente paso será cargar la salida y fijar la amplitud de la señal así como la tensión de de
continua de offset siempre que sea necesaria, como en el caso del ajuste de frecuencia podemos
utilizar distintos equipos de medida para ajustar el valor de amplitud. Para niveles de potencia
bajos será necesario activar el atenuador interno del generador.
Para evitar deformaciones en las señales de alta frecuencia es indispensable cuidar la carga de
salida, evitar capacidades parásitas elevadas y cuidar las características de los cables.
6. Fuente de Tensión de Corriente Continua:
Fuentes de tensión
Son los tipos más comunes de fuentes de alimentación que encontramos en
prácticamente cualquier circuito. Entre sus bornes proveen una diferencia de potencial
(o tensión) constante, por ese motivo la corriente que entregan depende del valor de la
resistencia del circuito o de la resistencia de carga que conectemos.
Por ejemplo si tenemos una fuente de tensión de 12 Volt y le conectamos una
resistencia de 2 Ohm, circularán 6 Amper. Si en cambio conectamos una resistencia de
6 Ohm, circularán 2 Amper. (Ver ley de Ohm). Pero siempre la tensión entre los bornes
de la fuente es constante.
En los circuitos una fuente de tensión se simboliza con dos líneas de distinto tamaño,
correspondiendo la mas grande al polo positivo.
Fuentes de corriente.
Las fuentes de corriente son aquellas que proveen una corriente constante al circuito o
resistencia que se les conecta. Por lo tanto si cambia el valor de la resistencia de carga,
la fuente aumenta o disminuye el potencial entre sus bornes, de tal forma de mantener
constante la corriente por esa resistencia.
Como se conecta una Fuente de Tensión en un Circuito Eléctrico.

Más contenido relacionado

La actualidad más candente

Instrumentos Utilizados En Los Laboratorios ElectróNicos
Instrumentos Utilizados En Los Laboratorios ElectróNicosInstrumentos Utilizados En Los Laboratorios ElectróNicos
Instrumentos Utilizados En Los Laboratorios ElectróNicoserika
 
Tipos de medición con el multímetro
Tipos de medición con el multímetroTipos de medición con el multímetro
Tipos de medición con el multímetroricardo
 
Presentacion instrumentos de medicion
Presentacion instrumentos de medicionPresentacion instrumentos de medicion
Presentacion instrumentos de medicionEnrique Carranza
 
Instrumentación básica en medición
Instrumentación básica en mediciónInstrumentación básica en medición
Instrumentación básica en mediciónJorge Lopez
 
Informe de multimetro
Informe de multimetroInforme de multimetro
Informe de multimetrojeferortiz
 
Multimetro nazira valencia y jeferson ortiz
Multimetro nazira valencia y jeferson ortizMultimetro nazira valencia y jeferson ortiz
Multimetro nazira valencia y jeferson ortizjeferortiz
 
Instrumentos de medición de variables eléctricas
Instrumentos de medición de variables eléctricasInstrumentos de medición de variables eléctricas
Instrumentos de medición de variables eléctricasJesthiger Cohil
 
Multimetro analogico
Multimetro analogicoMultimetro analogico
Multimetro analogicoguapito5555
 
El tester o multímetro
El tester o multímetroEl tester o multímetro
El tester o multímetroLERUAR
 
Guión Didáctico
Guión DidácticoGuión Didáctico
Guión Didácticoalmer perez
 
Instrumentos y mediciones electricos
Instrumentos y mediciones electricosInstrumentos y mediciones electricos
Instrumentos y mediciones electricosJhonás A. Vega
 

La actualidad más candente (20)

Instrumentos Utilizados En Los Laboratorios ElectróNicos
Instrumentos Utilizados En Los Laboratorios ElectróNicosInstrumentos Utilizados En Los Laboratorios ElectróNicos
Instrumentos Utilizados En Los Laboratorios ElectróNicos
 
Instrumentos de medición eléctrica
Instrumentos de medición eléctricaInstrumentos de medición eléctrica
Instrumentos de medición eléctrica
 
Tipos de medición con el multímetro
Tipos de medición con el multímetroTipos de medición con el multímetro
Tipos de medición con el multímetro
 
Manual multimetro analogico
Manual multimetro analogicoManual multimetro analogico
Manual multimetro analogico
 
Presentacion instrumentos de medicion
Presentacion instrumentos de medicionPresentacion instrumentos de medicion
Presentacion instrumentos de medicion
 
Instrumentación básica en medición
Instrumentación básica en mediciónInstrumentación básica en medición
Instrumentación básica en medición
 
Informe de multimetro
Informe de multimetroInforme de multimetro
Informe de multimetro
 
Multímetro
MultímetroMultímetro
Multímetro
 
Multimetro nazira valencia y jeferson ortiz
Multimetro nazira valencia y jeferson ortizMultimetro nazira valencia y jeferson ortiz
Multimetro nazira valencia y jeferson ortiz
 
EL VOLTIMETRO
EL VOLTIMETROEL VOLTIMETRO
EL VOLTIMETRO
 
Instrumentos de medición de variables eléctricas
Instrumentos de medición de variables eléctricasInstrumentos de medición de variables eléctricas
Instrumentos de medición de variables eléctricas
 
el Multímetro digital
el Multímetro digitalel Multímetro digital
el Multímetro digital
 
Multimetro analogico
Multimetro analogicoMultimetro analogico
Multimetro analogico
 
Multitester digital
Multitester digitalMultitester digital
Multitester digital
 
El tester o multímetro
El tester o multímetroEl tester o multímetro
El tester o multímetro
 
Guión Didáctico
Guión DidácticoGuión Didáctico
Guión Didáctico
 
Trabajo sena multimetro
Trabajo sena multimetroTrabajo sena multimetro
Trabajo sena multimetro
 
Instrumentos y mediciones electricos
Instrumentos y mediciones electricosInstrumentos y mediciones electricos
Instrumentos y mediciones electricos
 
El multimetro
El multimetroEl multimetro
El multimetro
 
Multimetro trabajo sena
Multimetro trabajo senaMultimetro trabajo sena
Multimetro trabajo sena
 

Similar a Carlos benitez pre laboratorio saia a

Instrumentos de medición eléctrica
Instrumentos de medición eléctricaInstrumentos de medición eléctrica
Instrumentos de medición eléctricaKarelina Solorzano
 
Multimetro 120824172648-phpapp01
Multimetro 120824172648-phpapp01Multimetro 120824172648-phpapp01
Multimetro 120824172648-phpapp01jeferortiz
 
MULTIMETRO para medir los niveles electricos.pptx
MULTIMETRO para medir los niveles  electricos.pptxMULTIMETRO para medir los niveles  electricos.pptx
MULTIMETRO para medir los niveles electricos.pptxjuan gonzalez
 
Acitividad 1 multimetro o tester
Acitividad 1 multimetro o testerAcitividad 1 multimetro o tester
Acitividad 1 multimetro o testereljap
 
Instrumentos de mediciones eléctricas
Instrumentos de mediciones eléctricasInstrumentos de mediciones eléctricas
Instrumentos de mediciones eléctricasnickjeorly
 
CAMPICHUELO - INSTRUMENTOS POLIMETRO, MULTIMETRO O TESTER.pptx
CAMPICHUELO - INSTRUMENTOS  POLIMETRO, MULTIMETRO O TESTER.pptxCAMPICHUELO - INSTRUMENTOS  POLIMETRO, MULTIMETRO O TESTER.pptx
CAMPICHUELO - INSTRUMENTOS POLIMETRO, MULTIMETRO O TESTER.pptxGustavo Techeira
 
Instrumentos de medición eléctrica
Instrumentos de medición eléctricaInstrumentos de medición eléctrica
Instrumentos de medición eléctricaeileem de bracho
 
Informe sobre multimetro
Informe sobre multimetroInforme sobre multimetro
Informe sobre multimetroMiguel Angel
 
Informe sobre multimetro
Informe sobre multimetroInforme sobre multimetro
Informe sobre multimetroMiguel Angel
 
Instrumentos De Medicion Electrica
Instrumentos De Medicion ElectricaInstrumentos De Medicion Electrica
Instrumentos De Medicion ElectricaELIZABETHR
 
Trabajo de sena ...... 2
Trabajo de sena ...... 2Trabajo de sena ...... 2
Trabajo de sena ...... 2castilloserna
 

Similar a Carlos benitez pre laboratorio saia a (20)

Instrumentos de medición eléctrica
Instrumentos de medición eléctricaInstrumentos de medición eléctrica
Instrumentos de medición eléctrica
 
Multimetro 120824172648-phpapp01
Multimetro 120824172648-phpapp01Multimetro 120824172648-phpapp01
Multimetro 120824172648-phpapp01
 
MULTIMETRO para medir los niveles electricos.pptx
MULTIMETRO para medir los niveles  electricos.pptxMULTIMETRO para medir los niveles  electricos.pptx
MULTIMETRO para medir los niveles electricos.pptx
 
Multimetro
MultimetroMultimetro
Multimetro
 
Practica # 1
Practica # 1 Practica # 1
Practica # 1
 
Acitividad 1 multimetro o tester
Acitividad 1 multimetro o testerAcitividad 1 multimetro o tester
Acitividad 1 multimetro o tester
 
Instrumentos de mediciones eléctricas
Instrumentos de mediciones eléctricasInstrumentos de mediciones eléctricas
Instrumentos de mediciones eléctricas
 
Voltimetro
VoltimetroVoltimetro
Voltimetro
 
Resumen de uso de multimetro
Resumen de uso de multimetroResumen de uso de multimetro
Resumen de uso de multimetro
 
equipos de medición
equipos de medición equipos de medición
equipos de medición
 
CAMPICHUELO - INSTRUMENTOS POLIMETRO, MULTIMETRO O TESTER.pptx
CAMPICHUELO - INSTRUMENTOS  POLIMETRO, MULTIMETRO O TESTER.pptxCAMPICHUELO - INSTRUMENTOS  POLIMETRO, MULTIMETRO O TESTER.pptx
CAMPICHUELO - INSTRUMENTOS POLIMETRO, MULTIMETRO O TESTER.pptx
 
Instrumentos de medición eléctrica
Instrumentos de medición eléctricaInstrumentos de medición eléctrica
Instrumentos de medición eléctrica
 
Informe sobre multimetro
Informe sobre multimetroInforme sobre multimetro
Informe sobre multimetro
 
Informe sobre multimetro
Informe sobre multimetroInforme sobre multimetro
Informe sobre multimetro
 
metrologia
metrologiametrologia
metrologia
 
Instrumentos De Medicion Electrica
Instrumentos De Medicion ElectricaInstrumentos De Medicion Electrica
Instrumentos De Medicion Electrica
 
Multimetro
MultimetroMultimetro
Multimetro
 
Tecnologia
TecnologiaTecnologia
Tecnologia
 
Taller del multimetro
Taller del multimetroTaller del multimetro
Taller del multimetro
 
Trabajo de sena ...... 2
Trabajo de sena ...... 2Trabajo de sena ...... 2
Trabajo de sena ...... 2
 

Más de fast2506

Mapa c carlos benitez
Mapa c carlos benitezMapa c carlos benitez
Mapa c carlos benitezfast2506
 
Mandala carlos benítez
Mandala carlos benítezMandala carlos benítez
Mandala carlos benítezfast2506
 
Carlos benitez
Carlos benitezCarlos benitez
Carlos benitezfast2506
 
Mandala carlos benítez
Mandala carlos benítezMandala carlos benítez
Mandala carlos benítezfast2506
 
Mapa conceptual desarrollo de soft
Mapa conceptual desarrollo de softMapa conceptual desarrollo de soft
Mapa conceptual desarrollo de softfast2506
 
Carlos BenÍtez
Carlos BenÍtezCarlos BenÍtez
Carlos BenÍtezfast2506
 
Carlos benitez
Carlos benitezCarlos benitez
Carlos benitezfast2506
 
Carlos benitez
Carlos benitezCarlos benitez
Carlos benitezfast2506
 
Formulación de proyecto carlos benitez
Formulación de proyecto carlos benitezFormulación de proyecto carlos benitez
Formulación de proyecto carlos benitezfast2506
 
Carlos benitez investigacion saia a
Carlos benitez investigacion saia aCarlos benitez investigacion saia a
Carlos benitez investigacion saia afast2506
 
Carlos benitez pre laboratorio saia a
Carlos benitez pre laboratorio saia aCarlos benitez pre laboratorio saia a
Carlos benitez pre laboratorio saia afast2506
 
Carlos benitez laboratorio saia a
Carlos benitez laboratorio saia aCarlos benitez laboratorio saia a
Carlos benitez laboratorio saia afast2506
 
Carlos benitez laboratorio
Carlos benitez laboratorio Carlos benitez laboratorio
Carlos benitez laboratorio fast2506
 
Mandala carlos benítez
Mandala carlos benítezMandala carlos benítez
Mandala carlos benítezfast2506
 
Mapa c tecnicas
Mapa c tecnicasMapa c tecnicas
Mapa c tecnicasfast2506
 
Ensayo carlos benitez saia a
Ensayo  carlos benitez saia aEnsayo  carlos benitez saia a
Ensayo carlos benitez saia afast2506
 
Carlos benitez ejercicios propuestos
Carlos benitez ejercicios propuestosCarlos benitez ejercicios propuestos
Carlos benitez ejercicios propuestosfast2506
 
Carlos benítez mapa de riesgo
Carlos benítez mapa de riesgoCarlos benítez mapa de riesgo
Carlos benítez mapa de riesgofast2506
 
Carlos benitez grafos digrafos
Carlos benitez grafos digrafosCarlos benitez grafos digrafos
Carlos benitez grafos digrafosfast2506
 

Más de fast2506 (19)

Mapa c carlos benitez
Mapa c carlos benitezMapa c carlos benitez
Mapa c carlos benitez
 
Mandala carlos benítez
Mandala carlos benítezMandala carlos benítez
Mandala carlos benítez
 
Carlos benitez
Carlos benitezCarlos benitez
Carlos benitez
 
Mandala carlos benítez
Mandala carlos benítezMandala carlos benítez
Mandala carlos benítez
 
Mapa conceptual desarrollo de soft
Mapa conceptual desarrollo de softMapa conceptual desarrollo de soft
Mapa conceptual desarrollo de soft
 
Carlos BenÍtez
Carlos BenÍtezCarlos BenÍtez
Carlos BenÍtez
 
Carlos benitez
Carlos benitezCarlos benitez
Carlos benitez
 
Carlos benitez
Carlos benitezCarlos benitez
Carlos benitez
 
Formulación de proyecto carlos benitez
Formulación de proyecto carlos benitezFormulación de proyecto carlos benitez
Formulación de proyecto carlos benitez
 
Carlos benitez investigacion saia a
Carlos benitez investigacion saia aCarlos benitez investigacion saia a
Carlos benitez investigacion saia a
 
Carlos benitez pre laboratorio saia a
Carlos benitez pre laboratorio saia aCarlos benitez pre laboratorio saia a
Carlos benitez pre laboratorio saia a
 
Carlos benitez laboratorio saia a
Carlos benitez laboratorio saia aCarlos benitez laboratorio saia a
Carlos benitez laboratorio saia a
 
Carlos benitez laboratorio
Carlos benitez laboratorio Carlos benitez laboratorio
Carlos benitez laboratorio
 
Mandala carlos benítez
Mandala carlos benítezMandala carlos benítez
Mandala carlos benítez
 
Mapa c tecnicas
Mapa c tecnicasMapa c tecnicas
Mapa c tecnicas
 
Ensayo carlos benitez saia a
Ensayo  carlos benitez saia aEnsayo  carlos benitez saia a
Ensayo carlos benitez saia a
 
Carlos benitez ejercicios propuestos
Carlos benitez ejercicios propuestosCarlos benitez ejercicios propuestos
Carlos benitez ejercicios propuestos
 
Carlos benítez mapa de riesgo
Carlos benítez mapa de riesgoCarlos benítez mapa de riesgo
Carlos benítez mapa de riesgo
 
Carlos benitez grafos digrafos
Carlos benitez grafos digrafosCarlos benitez grafos digrafos
Carlos benitez grafos digrafos
 

Carlos benitez pre laboratorio saia a

  • 1. UNIVERSIDAD FERMÍN TORO ESCUELA DE INGENIERIA ALUMNO: Benítez Carlos C.I: 14.585.103 Sección: SAIA-A Profesora: José Morillo
  • 2. 1. Voltímetro: Un voltímetro es aquel aparato o dispositivo que se utiliza a fin de medir, de manera directa o indirecta, la diferencia potencial entre dos puntos de un circuito eléctrico. Como funciona: Para poder realizar la medición de la diferencia potencial, ambos puntos deben encontrarse de forma paralela. En otras palabras, que estén en paralelo quiere decir que se encuentre en derivación sobre los puntos de los cuales queremos realizar la medición. Debido a lo anterior, el voltímetro debe contar con una resistencia interna lo más alta que sea posible, de modo que su consumo sea bajo, y así permitir que la medición de la tensión del voltímetro se realice sin errores. Para poder cumplir con este requerimiento, los voltímetros que basan su funcionamiento en los efectos electromagnéticos de la corriente eléctrica, poseen unas bobinas con hilo muy fino y de muchas espiras, a fin de que, aún contando con una corriente eléctrica de baja intensidad, el aparato cuente con la fuerza necesaria para mover la aguja. Tipos de Voltímetros Analógico: Dispositivo que mide y presenta el valor medio del voltaje, mediante una aguja que se ubica en el número o la fracción del valor presentado en un panel de indicación. Digital: Este tipo de aparatos cuentan con características de aislamiento bastante considerables, para lo que utilizan circuitos de una gran complejidad, en lo que respecta a su comparación con el voltímetro tradicional.
  • 3. PRECAUCION El voltímetro debe contar con una resistencia interna lo más alta que sea posible, de modo que su consumo sea bajo, y así permitir que la medición de la tensión del voltímetro se realice sin errores. Como se conecta un Voltímetro en un Circuito Eléctrico Un voltímetro debe conectarse en paralelo con la fuente de energía, porque mide los volt, es decir, la presión eléctrica (fuerza electromotriz, voltaje, tensión y otros sinónimos), la fuerza que empuja a los electrones y que los hará circular si le conectas un circuito (sólo si le conectas un circuito, si no conectas nada, habrá voltaje, pero no corriente, la fuerza empujará, pero es como una canilla (grifo) cerrada, hay presión pero no hay corriente de agua). 2. Amperímetro: Es un instrumento que sirve para medir la intensidad de corriente que está circulando por un circuito eléctrico. El amperímetro es un simple galvanómetro. Disponiendo de una gama de resistencias shunt, podemos disponer de un amperímetro con varios rangos o intervalos de medición. Los amperímetros tienen una resistencia interna muy pequeña, por debajo de 1 ohmio, con la finalidad de que su presencia no disminuya la corriente a medir cuando se conecta a un circuito eléctrico. (instrumento para detectar pequeñas cantidades de corriente) con una resistencia en paralelo, llamada shunt. Como Funciona: Para efectuar la medida es necesario que la intensidad de la corriente circule por el amperímetro, por lo que éste debe colocarse en serie, para que sea atravesado por dicha corriente. El amperímetro debe poseer una resistencia interna lo más pequeña posible con la finalidad de evitar una caída de tensión apreciable (al ser muy pequeña permitirá un mayor paso de electrones para su correcta medida). Para ello, en el caso de instrumentos basados en los efectos
  • 4. electromagnéticos de la corriente eléctrica, están dotados de bobinas de hilo grueso y con pocas espiras. Como se conecta un Amperímetro en un Circuito Eléctrico Un amperímetro debe conectarse en serie con uno de los conductores, porque mide los amper, que es la unidad de corriente o caudal eléctrico, que sólo circula cuando conectas un circuito a una fuente de voltaje. Equivale a la canilla (grifo) abierta, ahora hay un caudal de agua, que puedes medir en litros (un paquete de agua) en cada segundo, y el Amper es un paquete de electrones (llamado culomb o coulomb) en cada segundo. 3. Multímetro: El Multímetro es un dispositivo que sirve para medir la tensión, la intensidad de la corriente eléctrica o la resistencia, de algún elemento o de varios elementos que conforman un circuito eléctrico. El Multímetro también es llamado Téster y puede ser tanto analógico como digital. Como Funciona: Comenzamos con la medición del voltaje en una pila de 1,5 Volt, algo gastada, para ver en qué estado se encuentra la misma. Para realizar la medición de voltajes, colocamos la llave selectora del multímetro en el bloque “DCV” siglas correspondientes a: Direct Current Voltage, lo que traducimos como Voltaje de Corriente Continua, puesto que la pila constituye un generador de corriente continua. Colocamos la punta roja en el electrodo positivo de la pila, la punta negra en el negativo, la llave selectora en la posición “2,5“y efectuamos la medición. Tipos de Multímetro. El Multímetro Analógico. El Multímetro analógico está conformado por un instrumento de bobina móvil (galvanómetro) que está a su vez formado por un arrollamiento en forma de cuadro que puede girar alrededor de un eje vertical que pasa por su centro; dicha bobina está situada entre los polos norte y sur de un imán permanente en forma de herradura (en otros instrumentos el imán está en el interior de la bobina). Al circular corriente eléctrica por la bobina, aparece un par de fuerzas que tiende a hacer girar la bobina en sentido horario, y junto con ella también gira la aguja. La deflexión de la aguja es proporcional a la intensidad de la corriente que circula por la bobina. Para que la posición de la aguja se estabilice, es necesario un par de fuerzas antagónicas, que se generan por la acción de un resorte en forma de espiral.
  • 5. Es muy importante leer el manual de operación de cada multímetro en particular, pues en él, el fabricante fija los valores máximos de corriente y tensión que puede soportar y el modo más seguro de manejo, tanto para evitar el deterioro del instrumento como para evitar accidentes al operario. El multímetro que se da como ejemplo en esta explicación, es genérico, es decir que no se trata de una marca en particular, por lo tanto existen muchos otros con diferentes posibilidades de medición. Con un téster o multímetro analógico podemos tener una lectura observando la posición de la aguja y realizando algunos cálculos que dependerán del parámetros a medir, del rango de medición elegido y de la estimación del error debido tanto a la posición de la aguja en la escala como a la precisión que el fabricante expresa en el manual de uso de cada instrumento. 1- Aguja indicadora. 2- Escala y rangos para medición de resistencia eléctrica. 3- Selector de modalidades de medición y rangos. 4- Escala y rangos para medición de diferencia de potencial o tensión de CC. 5- Escala y rangos para medición de diferencia de potencial o tensión de CA. 6- Borne o “jack” de conexión para la punta roja ,cuando se quiere medir tensión, resistencia y corriente tanto en corriente alterna como en continua. 7- Borne de conexión o “jack” negativo para la punta negra. 8- Escala y borne de conexión o “jack” para poner la punta roja si se va a medir mA (miliamperes en CC. 9- Borne de conexión o “jack” para la punta roja cuando se elija el rango de 12 A máximo, en corriente continua. 10- Selector para medir resistencia, tensión alterna y continua y corriente o bien invertir el sentido de la tensión (la aguja se moverá en dirección contraria). 11- Botón para ajustar a cero la resistencia. 12- Escala rango y borne de conexión para probar el estado de las baterías del multímetro. El Multímetro Digital Es muy importante leer el manual de operación de cada multímetro en particular, pues en él, el fabricante fija los valores máximos de corriente y tensión que puede soportar y el modo más seguro de manejo, tanto para evitar el deterioro del instrumento como para evitar accidentes al operario. El multímetro que se da como ejemplo en esta explicación, es genérico, es decir que no se trata de una marca en particular, por lo tanto existen muchos otros con diferentes posibilidades de medición. Con un téster o multímetro digital podemos tener una lectura directa de la magnitud que se quiere medir (salvo error por la precisión que el fabricante expresa en su manual de uso).
  • 6. El multímetro digital cuenta con una llave selectora de rango, y en lugar de una aguja que marca la medición, posee un display digital en el cual aparece desplegado el valor medido. Referencias: 1 Pantalla o display de cristal líquido. 2 Escala o rango para medir resistencia. 3 Llave selectora de medición. 4 Escala o rango para medir tensión en continua (puede indicarse DC en vez de una linea continua y otra punteada). 5 Escala o rango para medir tensión en alterna (puede indicarse AC en vez de la linea ondeada). 6 Borne o “jack” de conexión para la punta roja ,cuando se quiere medir tensión, resistencia y frecuencia (si tuviera), tanto en corriente alterna como en continua. 7 Borne de conexión o “jack” negativo para la punta negra. 8 Borne de conexión o “jack” para poner la punta roja si se va a medir mA (miliamperes), tanto en alterna como en continua. 9 Borne de conexión o “jack” para la punta roja cuando se elija el rango de 20A máximo, tanto en alterna como en continua. 10 Escala o rango para medir corriente en alterna (puede venir indicado AC en lugar de la linea ondeada). 11 Escala o rango para medir corriente en continua (puede venir DC en lugar de una linea continua y otra punteada). 12 Zócalo de conexión para medir capacitores o condensadores. 13 Botón de encendido y apagado. Como se conecta un Multímetro en un Circuito Eléctrico. Medidas de prueba de diodos  Colocar el conmutador en la posición de medida de diodos  Presione el botón de selección hasta que aparezca el símbolo de diodos.  Colocar las puntas de prueba, la negra en COM y la roja en V.  Una lectura superior a esta banda indica un diodo con fuga (Defectuoso). Una lectura de cero, indica un diodo cortado (Defectuoso). Una indicación "OL" indica diodo abierto (Defectuoso).  Medir también el diodo con las puntas en sentido contrario.  El display mostrara "OL" si el diodo es bueno. Cualquier otra medida indicara que el diodo es resistivo o está cortado (Defectuoso). Medidas en DC/AC de uA, mA o Amperios  Colocar el conmutador rotativo en la función de A, mA o uA  Colocar las puntas de prueba, la negra en COM y la roja en los orificios de mA, uA o A., dependiendo de lo que vaya a medir.  Al conectar esta función aparecerá en pantalla la función DC, presionando el botón de selección una vez cambiara a AC y viceversa.
  • 7. Recomendaciones para el uso del Multímetro. • Antes de realizar cualquier medida debemos asegurarnos si las puntas de prueba están completamente aisladas. • Debemos verificar el correcto funcionamiento del multímetro, así como de sus escalas de medida. • Para efectuar medidas de voltaje debemos colocar el instrumento en paralelo a la fuente de voltaje. • Si deseamos medir valores de resistencia, debemos tomar la precaución de desconectar toda fuente de voltaje que pueda dañar al instrumento; y enseguida debemos colocar el instrumento en la escala correspondiente. 4. Osciloscopio. Instrumento electrónico que registra los cambios de tensión producidos en circuitos eléctricos y electrónicos y los muestra en forma gráfica en la pantalla de un tubo de rayos catódicos. Los osciloscopios se utilizan en la industria y en los laboratorios para comprobar y ajustar el equipo electrónico y para seguir las rápidas variaciones de las señales eléctricas, ya que son capaces de detectar variaciones de millonésimas de segundo. Unos conversores especiales conectados al osciloscopio pueden transformar vibraciones mecánicas, ondas sonoras y otras formas de movimiento oscilatorio en impulsos eléctricos observables en la pantalla del tubo de rayos catódicos como el que se observa en la siguiente figura. El osciloscopio es un instrumento que se utiliza para obtener medidas de voltaje pico a pico (Vpp), voltaje pico (Vp), periodo (T) y frecuencia (F).
  • 8. Como Funciona: Para proceder a utilizar el osciloscopio se deben tener en cuenta, ajuste de perillas, y la calibración de este. PARTES DE UN OSCILOSCOPIO Es muy importante observa muy bien el osciloscopio antes de calibrarlo, e identificar cada una de sus partes. El osciloscopio cuenta con 2 canales CHA y CHB cada uno tiene un potenciómetro respectivo llamado VOLT/DIV. También en la parte derecha se puede observar otro potenciómetro llamado TIME/DIV este es para los dos canales. En la parte superior observamos varias perillas cada una con funciones diferentes entre ellas están:  INTENSITY: debe esta en la mitad para que la onda se vea agradable.  POSITION:  Se puede observar dos perillas de estás, una es para el canal A y la otra es para el canal B su función es mover la onda hacia arriba y hacia abajo.  POSITON:  permite mover la onda hacia la derecha e izquierda  Llave selectora permite nos permite escoger el canal en el que queremos trabajar CHA, CHB. En la posición DUAL se pueden observar dos ondas de las canales CHA y CHB. ADD es la suma de los valores de CHA y CHB   Tenemos 2 llaves selectora una para el canal CHA y otra para el canal CHB. Si se selecciona GND debe salir una línea recta. La cual siempre debe esta en toda la mitad, sobre el eje X. AC se utiliza para analizar señales de corriente alterna. DC se utiliza para analizar señales de corriente directa.  Calibración del Osciloscopio Antes de realizar cualquier medición lo primero que se debe hacer es calibrar el osciloscopio para esto se utiliza una sonda .
  • 9. SONDA: es un cable que en su final se deriva en dos partes una en forma de Garfio (esta siempre va conectada a CAL), y la otra es un caimán que va en un punto llamado GND. Y a través de la llave selectora ubicamos el canal CHA o CHB, como se en la siguiente figura Calibración del osciloscopio posición de la sonda Después de conectar la sonda en el canal A (CHA) y observar la señal en la pantalla, debes colocar la llave selectora que se encuentra en la parte izquierda en la posición GND, entonces observaras una línea (si no la ves puedes mover la perilla posición del CHA o sino INTENSITY). Después de observar la línea debes ubicarla en todo el centro sobre el eje X. Como se conecta un Osciloscopio en un Circuito Eléctrico.
  • 10. 5. Generador de Funciones: El generador de funciones es un equipo capaz de generar señales variables en el dominio del tiempo para ser aplicadas posteriormente sobre el circuito bajo prueba. Las formas de onda típicas son las triangulares, cuadradas y senoidales. También son muy utilizadas las señales TTL que pueden ser utilizadas como señal de prueba o referencia en circuitos digitales. Otras aplicaciones del generador de funciones pueden ser las de calibración de equipos, rampas de alimentación de osciloscopios, etc. Aunque existen multitud de generadores de funciones de mayor o menor complejidad todos incorporan ciertas funciones y controles básicos que pasamos a describir a continuación. -1. Selector de funciones. Controla la forma de onda de la señal de salida. Como comentabamos puede ser triangular, cuadrada o senoidal. - 2. Selector de rango. Selecciona el rango o margen de frecuencias de trabajo de la señal de salida. Su valor va determinado en décadas, es decir, de 1 a 10 Hz, de 10 a 100, etc. - 3. Control de frecuencia. Regula la frecuencia de salida dentro del margen seleccionado mediante el selector de rango. - 4. Control de amplitud. Mando que regula la amplitud de la señal de salida. - 5. DC offset. Regula la tensión continua de salida que se superpone a la señal variable en el tiempo de salida. - 6. Atenuador de 20dB. Ofrece la posibilidad de atenuar la señal de salida 20 dB (100 veces) sobre la amplitud seleccionada con el control numero 4. - 7. Salida 600ohm. Conector de salida que entrega la señal elegida con una impedancia de 600 ohmios.
  • 11. - 8. Salida TTL. Entrega una consecución de pulsos TTL (0 - 5V) con la misma frecuencia que la señal de salida Como se conecta un Multímetro en un Circuito Eléctrico. Lo primero que deberemos realizar será seleccionar el tipo de señal de salida que necesitamos (triangular, cuadrada o senoidal). A continuación se debe fijar la frecuencia de trabajo utilizando los selectores de rango y mando de ajuste. Muchos generadores de funciones modernos incorporan contadores de frecuencia que permiten un ajuste preciso, no obstante y en caso de ser necesario se pueden utilizar contadores de frecuencia externos, osciloscopios o incluso analizadores de espectros para determinar la frecuencia con mayor precisión. El siguiente paso será cargar la salida y fijar la amplitud de la señal así como la tensión de de continua de offset siempre que sea necesaria, como en el caso del ajuste de frecuencia podemos utilizar distintos equipos de medida para ajustar el valor de amplitud. Para niveles de potencia bajos será necesario activar el atenuador interno del generador. Para evitar deformaciones en las señales de alta frecuencia es indispensable cuidar la carga de salida, evitar capacidades parásitas elevadas y cuidar las características de los cables.
  • 12. 6. Fuente de Tensión de Corriente Continua: Fuentes de tensión Son los tipos más comunes de fuentes de alimentación que encontramos en prácticamente cualquier circuito. Entre sus bornes proveen una diferencia de potencial (o tensión) constante, por ese motivo la corriente que entregan depende del valor de la resistencia del circuito o de la resistencia de carga que conectemos. Por ejemplo si tenemos una fuente de tensión de 12 Volt y le conectamos una resistencia de 2 Ohm, circularán 6 Amper. Si en cambio conectamos una resistencia de 6 Ohm, circularán 2 Amper. (Ver ley de Ohm). Pero siempre la tensión entre los bornes de la fuente es constante. En los circuitos una fuente de tensión se simboliza con dos líneas de distinto tamaño, correspondiendo la mas grande al polo positivo. Fuentes de corriente. Las fuentes de corriente son aquellas que proveen una corriente constante al circuito o resistencia que se les conecta. Por lo tanto si cambia el valor de la resistencia de carga, la fuente aumenta o disminuye el potencial entre sus bornes, de tal forma de mantener constante la corriente por esa resistencia.
  • 13. Como se conecta una Fuente de Tensión en un Circuito Eléctrico.