SlideShare una empresa de Scribd logo
1 de 8
Descargar para leer sin conexión
International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN 0976 –
6480(Print), ISSN 0976 – 6499(Online) Volume 5, Issue 4, April (2014), pp. 205-212 © IAEME
205
HYDROGEN PERMEATION BEHAVIOR AND ANNEALING IN
COMPOSITE PALLADIUM MEMBRANES AT HIGH TEMPERATURE
Abubakar Alkali*1
, Edward Gobina1
1
Robert Gordon University, School of Engineering, Riverside East, Garthdee Road, Aberdeen,
AB10 7GJ, United Kingdom.
ABSTRACT
The main purpose of this work is to investigate the hydrogen permeation behavior and also
the effect of annealing in Pd and Pd/Ag composite membranes both of 2 µm thickness prepared on α-
Al2O3 support using electroless plating method. Pd and Pd/Ag membranes were prepared in a
hydrazine based electroless plating bath. Single component hydrogen permeation tests were
conducted to investigate the hydrogen permeation behavior of the membranes and the effect of
annealing at different temperatures. The Palladium membrane displayed a H2 flux of up to 4.32E +
01 cm3
cm-2
min-1
at 723 K. The Pd/Ag membrane displayed a slightly higher H2 flux of up to 4.57E
+01 at 723 K. Annealing the membrane greatly enhanced the H2 flux to about two-fold from 4.32E
+01 cm3
cm-2
min-1
to 8.57E + 01 cm3
cm-2
min-1
for the palladium membrane and up to 8.72E +01
cm3
cm-2
min-1
for the Pd/Ag at 873 K.
Keywords: Hydrogen Flux, Electroless Plating, Palladium Membranes, Palladium/Silver
Membranes, Annealing, Activation Energy.
INTRODUCTION
Hydrogen separation and purification technologies are becoming increasingly popular as a
result of the importance of hydrogen as a clean energy carrier (1)
. Hydrogen is used in several
industrial processes such as petroleum refining, production of ammonia, production of methanol,
petrochemical industries and semi conductor industries (2)
. The demand for high purity hydrogen is
rising especially when juxtaposed with the importance of hydrogen as an alternative source of energy
in view of the current global challenges of energy insecurity and climate change. It is in the light of
these challenges that interest has spiked up in polymer electrolyte membrane fuel cell (PEMFC) due
to their environmental friendliness and economic viability3
. Moreover the development of hydrogen
fuel cell vehicles has boosted motivation in hydrogen separation and purification processes using
inorganic membranes (4)
.
INTERNATIONAL JOURNAL OF ADVANCED RESEARCH IN ENGINEERING
AND TECHNOLOGY (IJARET)
ISSN 0976 - 6480 (Print)
ISSN 0976 - 6499 (Online)
Volume 5, Issue 4, April (2014), pp. 205-212
© IAEME: www.iaeme.com/ijaret.asp
Journal Impact Factor (2014): 7.8273 (Calculated by GISI)
www.jifactor.com
IJARET
© I A E M E
International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN 0976 –
6480(Print), ISSN 0976 – 6499(Online) Volume 5, Issue 4, April (2014), pp. 205-212 © IAEME
206
It is generally acknowledged that the world is now in a transition from a fossil fuel based to a
hydrogen energy system and albeit it will take more years to complete this transition to hydrogen
based global energy system, this interim period should be used to develop or optimize technologies
for hydrogen separation and purification (5)
. Presently, steam methane reforming is the most widely
used method for hydrogen production but the method is not in tandem with the much envisaged
global clean energy future for several reasons such as high energy consumption, threat of impurities
and cost (6)
. More critically, greenhouse gases such as CO2 are produced as end products in steam
methane reforming which recycles back to the same problem of carbon emission (6)
. Palladium
membranes are the membranes of choice for hydrogen separation, purification and production due to
their infinite selectivity to hydrogen when defect free (7)
. Palladium can be used to optimize the
steam reforming process by selectively extracting high purity hydrogen from the products such that
there are no greenhouse gases such as CO and CH4
(6)
. There are several methods for the preparation
of palladium based membranes by deposition of palladium films over porous supports such as
chemical vapor deposition, electroplating, electroless plating, physical vapor deposition, magnetron
sputtering (8)
. However, electroless plating has been identified as the preferred method due to the
several advantages it has compared to other methods (8)
. Some of these advantages include easiness
of coating over any surface of any shape, low energy consumption, uniformity of coating and simple
equipment which makes it less prone to errors and complexities (9)
. Electroless plated palladium
membranes also have excellent resistance to corrosion and high mechanical stability (9)
. Several
decades back, thin palladium films were used in hydrogen separation and purification processes.
However, these thin films lack the mechanical and thermal stability to withstand harsh operating
conditions. They suffer from high cost and are prone to cracks and breaks (9)
.
To address these problems associated with thin Pd films, the concept of composite
membranes was developed in which thin, defect free palladium films are deposited over porous
support. These composites have shown to achieve higher hydrogen flux and can withstand harsh
operating conditions at low cost (8)
.
The primary objective of this work is to investigate the hydrogen permeation behavior and
the effect of annealing at higher temperature in Pd and Pd/Ag. This will provide a better
understanding on hydrogen permeation behavior in palladium and palladium-alloy membranes.
EXPERIMENTAL
In the electroless plating of Pd and Pd/Ag membranes, porous ceramic α-alumina supports of
30 nm average pore size supplied by ceramiques techniques et industrielles (CTI SA) France were
used onto which thin Pd and Pd/Ag films were deposited. The porous alumina support used for both
the Pd and Pd/Ag membranes has the specification i.d= 7 mm, o.d=10 mm, effective length= 340
mm. The same procedure was used in plating both Pd and Pd/Ag membranes only that a different
plating bath composition in a separate plating bath was used for the Pd/Ag membrane. The support
was first dried at 650
C in an oven for 2 hours to remove any moisture and calcined in air at 873 K
for 24 hours. The alumina support was then modified prior to the electroless plating through a 2 step
sensitization and activation procedure in order to seed it with Pd nuclei to create catalytic sites and
ensure a uniform deposition of the metallic layer. A 0.005 M Sn(11) solution and 0.005 M Pd(11)
solution were used as sensitization and activation solutions respectively (10)
. The support was sealed
at both ends to prevent internal deposition and immersed in the sensitization solution for 5 minutes
followed by rinsing in distilled water. The support was then immersed in the activation solution for
another 5 minutes and again rinsed in distilled water. This procedure was repeated 10 times to obtain
a more uniformly seeded support. After the sensitization and activation procedure, the seeded
support was stored overnight at room temperature.
International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN 0976 –
6480(Print), ISSN 0976 – 6499(Online) Volume 5, Issue 4, April (2014), pp. 205-212 © IAEME
207
Table 1: Composition of Pd and Pd/Ag plating bath
Pd Plating Bath Pd/Ag plating bath
PdCl2 = 2.7 g PdCl2 = 2.4 g
N2H4 = 10 ml AgNO3 = 0.3 g
NH4OH = 440 ml N2H4 = 6.5 ml
Na2EDTA = 70 g NH4OH = 350 ml
Na2EDTA = 31 g
A plating bath was prepared into which the seeded support was inserted at 328 K for 30
minutes. The composition of the Pd and Pd/Ag plating baths are shown in Table 1. Plating
commences after the addition of the hydrazine reducer into the plating bath. The seeded support laps
straight up during plating so as to avoid tilting sideways which could lead to uneven coating. After
deposition, the wet membrane was dried overnight at room temperature and a membrane of ~2 µm
was obtained for both the Pd and Pd/Ag membranes.
The membranes were then inserted into the membrane reactor in the permeation test plant and
Hydrogen was permeated through the membrane at 673 K for 2 hours to activate the Pd layer.
Hydrogen permeation in both the palladium and palladium alloy membranes was investigated at 623,
673 and 723 K using a permeation set up as shown in Fig. 1 comprising of a stainless steel shale and
tube membrane reactor module. After the permeation test at different temperatures, the effect of
annealing on hydrogen permeation was also tested by annealing the membrane at 673, 773 and 873
K for 10 hours each. After annealing at each of these temperatures, permeation test was carried out at
673 K after the membrane was allowed to cool down to 673 K. The feed pressure was controlled
through back-pressure regulators and metering valves monitored with a pressure gauge. The
temperature was measured using a thermocouple inserted in the membrane unit and monitored using
certified thermometer.
The flow rate was measured using a mass flow meter and gas separation data collected online
using a Varian HP 3800 Gas Chromatograph interfaced to a PC and equipped with a T.C.D and F.I.D
detectors in series.
Membrane characterization was carried out with a scanning electron microscopy (SEM). Fig.
3 shows the SEM micrograph of cross sectional area of a homogenous and uniformly coated metallic
palladium film over the porous ceramic alumina support.
Figure 1: Concept Schematic of a permeation test plant
International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN 0976 –
6480(Print), ISSN 0976 – 6499(Online) Volume 5, Issue 4, April (2014), pp. 205-212 © IAEME
208
Figure 2: SEM micrograph of the cross section area of the Pd layer
RESULTS AND DISCUSSION
Hydrogen flux was measured for both the Pd and Pd/Ag membrane at 723, 673 and 623 K for
transmembrane pressure difference of 0.05 to 0.40 bar. The effect of annealing was investigated at
873. 773 and 673 K for the same transmembrane pressure difference of 0.05 to 0.40 bar. Figures 3
and 4 show the H2 flux for single gas permeation at different temperatures for the Pd membrane and
the Arrhenius plot for temperature dependence on H2 permeation.
y = 66.247x + 0.6726
R2
= 0.9976
y = 61.216x + 0.1922
R2
= 0.991
y = 48.798x + 1.4751
R2
= 0.9738
0
5
10
15
20
25
30
35
40
45
50
0 0.2 0.4 0.6 0.8
723 K
673 K
623 K
Linear (723 K)
Linear (673 K)
Linear (623 K)
√P1 - √P2 (Bar)
H2Flux(cm3cm-2min-1)
Figure 3: H2 flux at different temperature for Figure 4: Arrhenius plot of temperature
the Pd membrane dependance for the Pd membrane
Fig. 3 shows the hydrogen flux for the Pd membrane at 723, 673 and 623 K. It can be
observed that the hydrogen flux is directly proportional to the difference in the downstream and
upstream hydrogen partial pressures and the H2 flux increased with increase in the feed pressure.
Pressure is the most important driving force in the permeation of hydrogen through the membrane.
The permeation of hydrogen through palladium membranes is governed by the solution-diffusion
mechanism based on the following steps (11)
: 1. External mass transfer of H2 molecules through
internal diffusion from the bulk of the gas phase onto the membrane surface on the high pressure
side. 2. Dissociative adsorption of the H2 molecules into atoms on the high pressure side. 3.
Reversible dissolution process where the H2 atoms are dissolved into the bulk palladium layer. 4.
International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN 0976 –
6480(Print), ISSN 0976 – 6499(Online) Volume 5, Issue 4, April (2014), pp. 205-212 © IAEME
209
Diffusion of the H2 atoms into the bulk palladium layer. 5. Reversible movement of the H2 atoms
from the bulk metallic layer to the membrane surface. 6. Reversible recombination desorption of the
H2 molecules at the low pressure side. 7. External mass transfer of H2 molecules on the membrane
surface at the low pressure side.
The rate of H2 permeation is therefore an interplay of the hydrogen diffusion through the
metallic bulk and the difference in the H2 concentration in the upstream and the downstream sides.
Thus, the concentration of H2 in the film is influenced by both the H2 solubility and its partial
pressure which implies that the rate of H2 permeation through the palladium membrane can be
expressed based on Fick’s first law (12)
:
J = Q (Ph
n
– Pl
n
)/L (1)
Where J = H2 flux, Q is the coefficient of H2 permeation, L is the thickness, Ph and Pl are the H2
partial pressure difference in the feed and permeate sides and n is the exponential factor indicating
the rate limiting step in hydrogen permeation through the palladium membrane. The effect of n value
is explained as follows:
1) When n = 0.5, the rate limiting step is the bulk diffusion of hydrogen.
2) When n= 1, the rate limiting step is the surface processes such as hydrogen dissociative
adsorption and/or hydrogen recombination and desorption at the permeate side.
3) When 1> n > 0.5, then both bulk diffusion and surface processes will constitute the rate
limiting steps in hydrogen permeation through the palladium membrane.
For the Pd membrane, a H2 flux of up to 4.32E + 01 cm3
cm-2
min-1
was observed at 723 K.
H2 flux increased with increasing transmembrane pressure difference for both Pd and Pd/Ag
membranes. Permeability depends on temperature and the Arrhenius equation enables the estimation
of the activation energy at different temperatures as described by the equation (12)
:
J = Ao exp (-Ea/RT) (2)
Where Ao is the exponential factor, R is the gas constant, and T is the operating temperature. The
experimental data of the H2 flux at different temperature was used to determine the activation energy
from the slope (M). In Fig 4, the activation energy was calculated as 8.03 kJmol-1
and it represents
the effect of temperature on H2 permeation. The higher the activation energy, the more the resistance
to H2 permeation (13)
.
As shown in Fig. 7 for the Pd/Ag membrane, the H2 flux was up to 4.57E+01 cm3
cm-2
min-1
at 723 K. This indicates a slightly higher H2 flux for the Pd/Ag membrane compared to the Pd
membrane despite the fact that both membranes are of the same thickness. This could be attributed to
the alloying factor in the Pd/Ag membrane which enhanced the permeation of hydrogen through the
membrane (6)
. The alloying with silver in the Pd/Ag membrane provided less resistance to
permeation by enhancing the solubility and subsequent diffusion of hydrogen through the membrane
hence the Pd/Ag membrane achieved a higher H2 flux compared to the Pd membrane (6)
. The
temperature dependence on hydrogen permeation across the membranes was also investigated at
different pressures and temperatures. A plot of Ln (M) against 1/T for the Pd/Ag membrane gave
activation energy of 12.16 kJ/mol for the Pd/Ag membranes as shown in Fig. 8. Both activation
energies for the Pd and Pd/Ag membranes are within those reported in literature.
The membranes were annealed at high temperatures in order to investigate the effect of
annealing on the membrane permeation behavior and also to activate the Pd metal and the alloy in
the Pd membrane and the Pd/Ag membrane respectively.
International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN 0976 –
6480(Print), ISSN 0976 – 6499(Online) Volume 5, Issue 4, April (2014), pp. 205-212 © IAEME
210
y = 92.512x - 3.9206
R2
= 0.9807
y = 115.28x - 5.5278
R2
= 0.9599
y = 134.29x - 2.7324
R2
= 0.9922
0
15
30
45
60
75
90
0 0.2 0.4 0.6 0.8
873 K
773 K
673 K
Linear (673 K)
Linear (673 K)
Linear (773 K)
Linear (873 K)
√P1 - √P2 (Bar)
H2Flux(cm3cm-2min-1) y = -1097.2x + 6.1604
R2
= 0.9991
4.50E+00
4.60E+00
4.70E+00
4.80E+00
4.90E+00
5.00E+00
1.00E-
03
1.10E-
03
1.20E-
03
1.30E-
03
1.40E-
03
1.50E-
03
1.60E-
03
1/T (K)
Ln(M)
n=1
Linear (n=1)
Figure 5: H2 flux at different temperature for Figure 6: Arrhenius plot for the annealed
the annealed Pd membrane Pd membrane
y = 50.952x + 1.0358
R2
= 0.9921
y = 60.755x + 1.3644
R2
= 0.9939
y = 70.484x + 2.0007
R2
= 0.9929
0
5
10
15
20
25
30
35
40
45
50
0 0.2 0.4 0.6 0.8
723 K
673 K
623 K
Linear (623 K)
Linear (673 K)
Linear (723 K)
H2Flux(cm3cm-2min-1)
√P1 - √P2 (Bar)
(Bar)
y = -1462x + 6.2781
R2
= 1
3.90E+00
4.00E+00
4.10E+00
4.20E+00
4.30E+00
1.30E-03 1.40E-03 1.50E-03 1.60E-03 1.70E-03
1/T (K)
Ln(M)
Series1
Linear
(Series1)
Figure 7: H2 flux at different temperature for Figure 8: Arrhenius plot for the Pd/Ag
the Pd/Ag membrane membrane
y = 137.58x - 1.6304
R2
= 0.9968
y = 109.27x - 2.1149
R2
= 0.9893
y = 91.315x - 2.4967
R2
= 0.9897
0
20
40
60
80
100
0 0.2 0.4 0.6 0.8
873 K
773 K
673 K
Linear (873 K)
Linear (773 K)
Linear (673 K)
√P1 -√P2 (Bar)
H2Flux(cm3cm-2min-1)
y = -1197.8x + 6.287
R2
= 0.9951
4.40E+00
4.60E+00
4.80E+00
5.00E+00
1.00E-03 1.15E-03 1.30E-03 1.45E-03 1.60E-03
1/T (K)
Ln(M)
n=1
Linear (n=1)
Figure 9: H2 flux at different temperature Figure 10: Arrhenius plot for the annealed
for the Annealed Pd/Ag Pd/Ag membrane
International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN 0976 –
6480(Print), ISSN 0976 – 6499(Online) Volume 5, Issue 4, April (2014), pp. 205-212 © IAEME
211
As shown in Fig. 5, results for the annealed Pd membrane indicate an increase in the H2 flux
of up to 8.57E + 01 cm3
cm2
min-1
at 873 K which is two-fold higher than that of the Pd membrane
prior to the annealing. In Fig 9, the annealed Pd/Ag membrane also displayed marked improvement
in the H2 flux from 4.57E +01 cm3
to 8.72E +01 cm3
cm-2
min-1
at 873 K. These results indicate that
annealing increased the hydrogen flux by two- fold for both the Pd and Pd/Ag membranes. The
increase in H2 flux for the annealed membranes is attributed to the removal of surface contaminants
and also the formation of hydride phases6
From Figs. 6, 8 and 10, the activation energies of annealed Pd, Pd/Ag and annealed Pd/Ag
were calculated as 9.12, 12.16 and 9.96 kJ/mol respectively. These activation energies are within the
values reported in literature (4, 14)
. The activation energy indicates that the effect of temperature on
hydrogen permeation was more pronounced for the palladium membrane compared to the Pd/Ag
membrane and also this effect was more significant when the membranes were annealed compared to
hydrogen permeation before the annealing.
CONCLUSION
Palladium and palladium alloy membranes prepared through the electroless plating method
show good promise in hydrogen separation and purification. In this work, results for the hydrogen
permeation behavior of a Pd and Pd/Ag membranes prepared through the electroless plating method
were presented. It was observed that hydrogen permeation increased with temperature and the
transmembrane pressure difference. The Pd/Ag alloy membrane also displayed slightly higher H2
flux compared to the Pd-only membrane. Alloying palladium with silver enhances the rate of H2
permeation compared to the Pd-only membrane. Investigations on the effect of annealing also show
that annealing both Pd and Pd/Ag membranes at higher temperatures decreased the permeation
resistance of the membrane and enhanced the H2 flux through the membranes by about two-fold.
This work provides a better understanding of the significance of alloying with silver and annealing at
high temperature in Pd membranes to achieve high purity hydrogen. Specifically, it has been shown
in this work that annealing both Pd and Pd/Ag membranes at high temperature up to 837 K or above
could enhance hydrogen permeation through the membrane by two-fold.
ACKNOWLEDGEMENT
Sincere thanks to Petroleum Technology Development Fund (P.T.D.F) Nigeria for funding
this research.
REFERENCES
1. Lu, G. Q., Diniz da Costa, J.C., Duke, M., Giessler, S., Socolow, R., Williams, R.H. &
Kreutz, T. (2007). Inorganic membranes for hydrogen production and purification: A critical
review and perspective. Journal of colloid and interface science, 314: 589-603
2. Nowotny, J., Sorrell, C.C., Sheppard, L.R. & Bak, T. (2005). Solar hydrogen:
Environmentally safe fuel for the future. International Journal of hydrogen energy, 30:
521-544.
3. Balamurali K.R.N., Choi, J., Harold, P.M. (2006). Electroless plating and permeation features
of Pd and Pd/Ag hollow fiber composite membranes. Journal of Membrane Science 288:
67 – 84.
4. Chee, C. & Gobina, E. (2010). Ultra-thin palladium technologies enable future commercial
deployment of PEM fuel cell systems. Membrane technology, Vol. 2010, Issue 3, 6-13.
International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN 0976 –
6480(Print), ISSN 0976 – 6499(Online) Volume 5, Issue 4, April (2014), pp. 205-212 © IAEME
212
5. Feroz, E. H., Raab, R.L., Ulleberg, G, T. & Alsharif, K. (2009). Global warming and
environmental production efficiency ranking of the Kyoto protocol nations. Journal of
environmental management, 90: 1178-1183.
6. Pizzi, D., Worth, R., Baschetti, M, G., Satti, G, C. & Noda K-I. (2008). Hydrogen
permeability of a 2.5 µm palladium-silver membranes deposited on ceramic supports, Journal
of membrane science, 325: 446-453.
7. Wang, L., Yoshiie, R. & Uemiya, S. (2007). Fabrication of novel Pd-Ag-Ru/Al2O3 ternary
alloy composite membrane with remarkably enhanced hydrogen permeability. Journal of
membrane science, 306: 1-7.
8. Yun, S. & Oyama, T.S. (2011). Correlations in palladium membranes for hydrogen
separation: A review. Journal of membrane science, 375 (1-2): 28-45.
9. David, E. & Kopac, J. (2010). Development of palladium/ceramic membranes for hydrogen
separation. International journal of hydrogen energy, 36: 4498-4506.
10. Cheng, Y.S., Pena, M.A., Fierro, J.L., Hui, D.C.W. & Yeung, K.L. (2002). Performance of
alumina, zeolite, palladium, Pd-Ag alloy membranes for hydrogen separation from towngas
mixture. Journal of Membrane Science 204: 329-340.
11. Gabito, J. & Tsouris, C. (2008). Hydrogen transport in composite inorganic membranes.
Journal of membrane science 312: 132-142.
12. Wu, L-Q, Xu, N. & Shi, J. (2000). Preparations of a palladium composite membrane by an
improved electroless plating technique. Ind. Eng. Chem. 39: 342-384.
13. Lee, H-J., Suda, H. & Haraya, K. (2005). Gas permeation properties in a composite
mesoporous alumina ceramic membrane. Korean Journal of Chemical Engineering. 22(5),
721-728.
14. Zeng, G. Shi, L., Liu, Y., Zhang, Y. & Sun, Y. (2014). A simple approach to uniform Pd/Ag
alloy membranes: Comparative study of conventional and silver – controlled co-plating.
International Journal of Hydrogen Energy. 1-10.
15. B. Chirsabesan and M.Vijay, “Membrane Assisted Electro Chemical Degradation for
Quinoline Yellow, Eosin B and Rose Bengal Dyes Degradation”, International Journal of
Design and Manufacturing Technology (IJDMT), Volume 4, Issue 2, 2013, pp. 21 - 41,
ISSN Print: 0976 – 6995, ISSN Online: 0976 – 7002.

Más contenido relacionado

La actualidad más candente

Study the co gas sensing performance and heat transfer efficiency of nano-cu ...
Study the co gas sensing performance and heat transfer efficiency of nano-cu ...Study the co gas sensing performance and heat transfer efficiency of nano-cu ...
Study the co gas sensing performance and heat transfer efficiency of nano-cu ...mahmood hameed
 
IRJET- Effect of Nano Titanium Dioxide and M-Sand in Self Curing Concrete
IRJET- Effect of Nano Titanium Dioxide and M-Sand in Self Curing ConcreteIRJET- Effect of Nano Titanium Dioxide and M-Sand in Self Curing Concrete
IRJET- Effect of Nano Titanium Dioxide and M-Sand in Self Curing ConcreteIRJET Journal
 
STUDY ON BEHAVIOR OF ALKALI ACTIVATED FLYASH BASED GEOPOLYMER CONCRETE
STUDY ON BEHAVIOR OF ALKALI ACTIVATED FLYASH BASED GEOPOLYMER CONCRETESTUDY ON BEHAVIOR OF ALKALI ACTIVATED FLYASH BASED GEOPOLYMER CONCRETE
STUDY ON BEHAVIOR OF ALKALI ACTIVATED FLYASH BASED GEOPOLYMER CONCRETEIAEME Publication
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentIJERD Editor
 
Effect of AL2O3 Nanoparticles on the Rheological Properties of Water Based Mud
Effect of AL2O3 Nanoparticles on the Rheological Properties of Water Based MudEffect of AL2O3 Nanoparticles on the Rheological Properties of Water Based Mud
Effect of AL2O3 Nanoparticles on the Rheological Properties of Water Based MudEditor IJCATR
 
Influence of Urea on Concrete
Influence of Urea on ConcreteInfluence of Urea on Concrete
Influence of Urea on Concreteijtsrd
 
Experimental Study of using Pond Ash as Partial Replacement for Fine Aggregat...
Experimental Study of using Pond Ash as Partial Replacement for Fine Aggregat...Experimental Study of using Pond Ash as Partial Replacement for Fine Aggregat...
Experimental Study of using Pond Ash as Partial Replacement for Fine Aggregat...YogeshIJTSRD
 
Optimization of alkali activation of ground granulated slag with mining tails
Optimization of alkali activation of ground granulated slag with mining tailsOptimization of alkali activation of ground granulated slag with mining tails
Optimization of alkali activation of ground granulated slag with mining tailseSAT Publishing House
 
Influence of alkaline substances (carbonates and bicarbonates of sodium) in w...
Influence of alkaline substances (carbonates and bicarbonates of sodium) in w...Influence of alkaline substances (carbonates and bicarbonates of sodium) in w...
Influence of alkaline substances (carbonates and bicarbonates of sodium) in w...eSAT Publishing House
 
Mechanical Properties of Concrete with Marine Sand as Partial Replacement of ...
Mechanical Properties of Concrete with Marine Sand as Partial Replacement of ...Mechanical Properties of Concrete with Marine Sand as Partial Replacement of ...
Mechanical Properties of Concrete with Marine Sand as Partial Replacement of ...IJERA Editor
 
PROC 2076 Assignment Report, Pipeline
PROC 2076 Assignment Report, PipelinePROC 2076 Assignment Report, Pipeline
PROC 2076 Assignment Report, PipelineSyafiq Dan
 
Effect of Steel Fiber on Alkali activated Fly Ash Concrete
Effect of Steel Fiber on Alkali activated Fly Ash ConcreteEffect of Steel Fiber on Alkali activated Fly Ash Concrete
Effect of Steel Fiber on Alkali activated Fly Ash ConcreteIJERA Editor
 
Study on Strength of Fly Ash Based Geopolymer Concrete Under Heat Curing
Study on Strength of Fly Ash Based Geopolymer Concrete Under Heat CuringStudy on Strength of Fly Ash Based Geopolymer Concrete Under Heat Curing
Study on Strength of Fly Ash Based Geopolymer Concrete Under Heat Curingijsrd.com
 
Comparison of fatigue parameters of alkali activated and ordinary portland ce...
Comparison of fatigue parameters of alkali activated and ordinary portland ce...Comparison of fatigue parameters of alkali activated and ordinary portland ce...
Comparison of fatigue parameters of alkali activated and ordinary portland ce...eSAT Publishing House
 
Utilisation of Granulated Marble in Geopolymer Concrete
Utilisation of Granulated Marble in Geopolymer ConcreteUtilisation of Granulated Marble in Geopolymer Concrete
Utilisation of Granulated Marble in Geopolymer ConcreteIRJET Journal
 

La actualidad más candente (18)

Study the co gas sensing performance and heat transfer efficiency of nano-cu ...
Study the co gas sensing performance and heat transfer efficiency of nano-cu ...Study the co gas sensing performance and heat transfer efficiency of nano-cu ...
Study the co gas sensing performance and heat transfer efficiency of nano-cu ...
 
20120140505005 2-3-4-5
20120140505005 2-3-4-520120140505005 2-3-4-5
20120140505005 2-3-4-5
 
20120140505005 2-3-4-5-6-7
20120140505005 2-3-4-5-6-720120140505005 2-3-4-5-6-7
20120140505005 2-3-4-5-6-7
 
IRJET- Effect of Nano Titanium Dioxide and M-Sand in Self Curing Concrete
IRJET- Effect of Nano Titanium Dioxide and M-Sand in Self Curing ConcreteIRJET- Effect of Nano Titanium Dioxide and M-Sand in Self Curing Concrete
IRJET- Effect of Nano Titanium Dioxide and M-Sand in Self Curing Concrete
 
STUDY ON BEHAVIOR OF ALKALI ACTIVATED FLYASH BASED GEOPOLYMER CONCRETE
STUDY ON BEHAVIOR OF ALKALI ACTIVATED FLYASH BASED GEOPOLYMER CONCRETESTUDY ON BEHAVIOR OF ALKALI ACTIVATED FLYASH BASED GEOPOLYMER CONCRETE
STUDY ON BEHAVIOR OF ALKALI ACTIVATED FLYASH BASED GEOPOLYMER CONCRETE
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and Development
 
Effect of AL2O3 Nanoparticles on the Rheological Properties of Water Based Mud
Effect of AL2O3 Nanoparticles on the Rheological Properties of Water Based MudEffect of AL2O3 Nanoparticles on the Rheological Properties of Water Based Mud
Effect of AL2O3 Nanoparticles on the Rheological Properties of Water Based Mud
 
Influence of Urea on Concrete
Influence of Urea on ConcreteInfluence of Urea on Concrete
Influence of Urea on Concrete
 
Experimental Study of using Pond Ash as Partial Replacement for Fine Aggregat...
Experimental Study of using Pond Ash as Partial Replacement for Fine Aggregat...Experimental Study of using Pond Ash as Partial Replacement for Fine Aggregat...
Experimental Study of using Pond Ash as Partial Replacement for Fine Aggregat...
 
Optimization of alkali activation of ground granulated slag with mining tails
Optimization of alkali activation of ground granulated slag with mining tailsOptimization of alkali activation of ground granulated slag with mining tails
Optimization of alkali activation of ground granulated slag with mining tails
 
Influence of alkaline substances (carbonates and bicarbonates of sodium) in w...
Influence of alkaline substances (carbonates and bicarbonates of sodium) in w...Influence of alkaline substances (carbonates and bicarbonates of sodium) in w...
Influence of alkaline substances (carbonates and bicarbonates of sodium) in w...
 
Mechanical Properties of Concrete with Marine Sand as Partial Replacement of ...
Mechanical Properties of Concrete with Marine Sand as Partial Replacement of ...Mechanical Properties of Concrete with Marine Sand as Partial Replacement of ...
Mechanical Properties of Concrete with Marine Sand as Partial Replacement of ...
 
PROC 2076 Assignment Report, Pipeline
PROC 2076 Assignment Report, PipelinePROC 2076 Assignment Report, Pipeline
PROC 2076 Assignment Report, Pipeline
 
Effect of Steel Fiber on Alkali activated Fly Ash Concrete
Effect of Steel Fiber on Alkali activated Fly Ash ConcreteEffect of Steel Fiber on Alkali activated Fly Ash Concrete
Effect of Steel Fiber on Alkali activated Fly Ash Concrete
 
Study on Strength of Fly Ash Based Geopolymer Concrete Under Heat Curing
Study on Strength of Fly Ash Based Geopolymer Concrete Under Heat CuringStudy on Strength of Fly Ash Based Geopolymer Concrete Under Heat Curing
Study on Strength of Fly Ash Based Geopolymer Concrete Under Heat Curing
 
Comparison of fatigue parameters of alkali activated and ordinary portland ce...
Comparison of fatigue parameters of alkali activated and ordinary portland ce...Comparison of fatigue parameters of alkali activated and ordinary portland ce...
Comparison of fatigue parameters of alkali activated and ordinary portland ce...
 
Ijetr021135
Ijetr021135Ijetr021135
Ijetr021135
 
Utilisation of Granulated Marble in Geopolymer Concrete
Utilisation of Granulated Marble in Geopolymer ConcreteUtilisation of Granulated Marble in Geopolymer Concrete
Utilisation of Granulated Marble in Geopolymer Concrete
 

Destacado (20)

30120140504020
3012014050402030120140504020
30120140504020
 
10120140504009
1012014050400910120140504009
10120140504009
 
40220140504006
4022014050400640220140504006
40220140504006
 
40220140504005
4022014050400540220140504005
40220140504005
 
20120140504020
2012014050402020120140504020
20120140504020
 
50120130406028 2
50120130406028 250120130406028 2
50120130406028 2
 
50120130406030 2
50120130406030 250120130406030 2
50120130406030 2
 
40120140501016
4012014050101640120140501016
40120140501016
 
20320140501011
2032014050101120320140501011
20320140501011
 
40120140501008
4012014050100840120140501008
40120140501008
 
40120140501009
4012014050100940120140501009
40120140501009
 
30120140501012 2
30120140501012 230120140501012 2
30120140501012 2
 
20320140501007 2
20320140501007 220320140501007 2
20320140501007 2
 
30120140504019
3012014050401930120140504019
30120140504019
 
20304050607084
2030405060708420304050607084
20304050607084
 
082512 us supreme court response (HAITIAN CREOLE)
082512   us supreme court response (HAITIAN CREOLE)082512   us supreme court response (HAITIAN CREOLE)
082512 us supreme court response (HAITIAN CREOLE)
 
George zimmerman & ebola crisis (bosnian)
George zimmerman & ebola crisis (bosnian)George zimmerman & ebola crisis (bosnian)
George zimmerman & ebola crisis (bosnian)
 
El Docente y la Evolución de las Tic.
El Docente y la Evolución de las Tic.El Docente y la Evolución de las Tic.
El Docente y la Evolución de las Tic.
 
4 Sessions Junio 2015: Xamarin & Cortana
4 Sessions Junio 2015: Xamarin & Cortana4 Sessions Junio 2015: Xamarin & Cortana
4 Sessions Junio 2015: Xamarin & Cortana
 
Proyecto de ley que sanciona con cárcel los bloqueos de caminos
Proyecto de ley que sanciona con cárcel los bloqueos de caminosProyecto de ley que sanciona con cárcel los bloqueos de caminos
Proyecto de ley que sanciona con cárcel los bloqueos de caminos
 

Similar a 20120140504022 2

SYNGAS PRODUCTION BY DRY REFORMING OF METHANE OVER CO-PRECIPITATED CATALYSTS
SYNGAS PRODUCTION BY DRY REFORMING OF METHANE OVER CO-PRECIPITATED CATALYSTSSYNGAS PRODUCTION BY DRY REFORMING OF METHANE OVER CO-PRECIPITATED CATALYSTS
SYNGAS PRODUCTION BY DRY REFORMING OF METHANE OVER CO-PRECIPITATED CATALYSTSIAEME Publication
 
art%3A10.1007%2Fs40789-016-0124-3
art%3A10.1007%2Fs40789-016-0124-3art%3A10.1007%2Fs40789-016-0124-3
art%3A10.1007%2Fs40789-016-0124-3Oloye Olawale
 
IRJET- Study on Strength Characteristics of Eco-Friendly Geopolymer Concrete ...
IRJET- Study on Strength Characteristics of Eco-Friendly Geopolymer Concrete ...IRJET- Study on Strength Characteristics of Eco-Friendly Geopolymer Concrete ...
IRJET- Study on Strength Characteristics of Eco-Friendly Geopolymer Concrete ...IRJET Journal
 
High performance solid-oxide fuel cell-Opening windows to low temperature app...
High performance solid-oxide fuel cell-Opening windows to low temperature app...High performance solid-oxide fuel cell-Opening windows to low temperature app...
High performance solid-oxide fuel cell-Opening windows to low temperature app...Ye Zhang-Steenwinkel
 
IRJET- Production and Analysis of Composite Construction Materials with Admix...
IRJET- Production and Analysis of Composite Construction Materials with Admix...IRJET- Production and Analysis of Composite Construction Materials with Admix...
IRJET- Production and Analysis of Composite Construction Materials with Admix...IRJET Journal
 
Robust Polymer Nanocomposite Membranes Incorporating Discrete TiO2 Nanotubes ...
Robust Polymer Nanocomposite Membranes Incorporating Discrete TiO2 Nanotubes ...Robust Polymer Nanocomposite Membranes Incorporating Discrete TiO2 Nanotubes ...
Robust Polymer Nanocomposite Membranes Incorporating Discrete TiO2 Nanotubes ...Pawan Kumar
 
Robust Polymer Nanocomposite Membranes Incorporating Discrete TiO2 Nanotubes ...
Robust Polymer Nanocomposite Membranes Incorporating Discrete TiO2 Nanotubes ...Robust Polymer Nanocomposite Membranes Incorporating Discrete TiO2 Nanotubes ...
Robust Polymer Nanocomposite Membranes Incorporating Discrete TiO2 Nanotubes ...Pawan Kumar
 
Robust Polymer Nanocomposite Membranes Incorporating Discrete TiO2 Nanotubes ...
Robust Polymer Nanocomposite Membranes Incorporating Discrete TiO2 Nanotubes ...Robust Polymer Nanocomposite Membranes Incorporating Discrete TiO2 Nanotubes ...
Robust Polymer Nanocomposite Membranes Incorporating Discrete TiO2 Nanotubes ...Pawan Kumar
 
A Comparison Study Between Two Hydrogen Sensors
A Comparison Study Between Two Hydrogen SensorsA Comparison Study Between Two Hydrogen Sensors
A Comparison Study Between Two Hydrogen Sensorsijtsrd
 
Investigation Of Hydrogen Production By Using Composite Membrane (Nafion/Zro2...
Investigation Of Hydrogen Production By Using Composite Membrane (Nafion/Zro2...Investigation Of Hydrogen Production By Using Composite Membrane (Nafion/Zro2...
Investigation Of Hydrogen Production By Using Composite Membrane (Nafion/Zro2...IJERA Editor
 
IRJET- Permeability of Geopolymer Concrete with and without Geopolymer Paint ...
IRJET- Permeability of Geopolymer Concrete with and without Geopolymer Paint ...IRJET- Permeability of Geopolymer Concrete with and without Geopolymer Paint ...
IRJET- Permeability of Geopolymer Concrete with and without Geopolymer Paint ...IRJET Journal
 
2007 Electrochimica Acta 2
2007 Electrochimica Acta 22007 Electrochimica Acta 2
2007 Electrochimica Acta 2Alexis B. B
 
research paper on Geopolymer concrete
research paper on Geopolymer concreteresearch paper on Geopolymer concrete
research paper on Geopolymer concreteArka Samanta
 
ACS Publication_Sprowl
ACS Publication_SprowlACS Publication_Sprowl
ACS Publication_SprowlWilliam Sprowl
 

Similar a 20120140504022 2 (20)

Ijaret 06 10_020
Ijaret 06 10_020Ijaret 06 10_020
Ijaret 06 10_020
 
SYNGAS PRODUCTION BY DRY REFORMING OF METHANE OVER CO-PRECIPITATED CATALYSTS
SYNGAS PRODUCTION BY DRY REFORMING OF METHANE OVER CO-PRECIPITATED CATALYSTSSYNGAS PRODUCTION BY DRY REFORMING OF METHANE OVER CO-PRECIPITATED CATALYSTS
SYNGAS PRODUCTION BY DRY REFORMING OF METHANE OVER CO-PRECIPITATED CATALYSTS
 
art%3A10.1007%2Fs40789-016-0124-3
art%3A10.1007%2Fs40789-016-0124-3art%3A10.1007%2Fs40789-016-0124-3
art%3A10.1007%2Fs40789-016-0124-3
 
IRJET- Study on Strength Characteristics of Eco-Friendly Geopolymer Concrete ...
IRJET- Study on Strength Characteristics of Eco-Friendly Geopolymer Concrete ...IRJET- Study on Strength Characteristics of Eco-Friendly Geopolymer Concrete ...
IRJET- Study on Strength Characteristics of Eco-Friendly Geopolymer Concrete ...
 
High performance solid-oxide fuel cell-Opening windows to low temperature app...
High performance solid-oxide fuel cell-Opening windows to low temperature app...High performance solid-oxide fuel cell-Opening windows to low temperature app...
High performance solid-oxide fuel cell-Opening windows to low temperature app...
 
IRJET- Production and Analysis of Composite Construction Materials with Admix...
IRJET- Production and Analysis of Composite Construction Materials with Admix...IRJET- Production and Analysis of Composite Construction Materials with Admix...
IRJET- Production and Analysis of Composite Construction Materials with Admix...
 
Robust Polymer Nanocomposite Membranes Incorporating Discrete TiO2 Nanotubes ...
Robust Polymer Nanocomposite Membranes Incorporating Discrete TiO2 Nanotubes ...Robust Polymer Nanocomposite Membranes Incorporating Discrete TiO2 Nanotubes ...
Robust Polymer Nanocomposite Membranes Incorporating Discrete TiO2 Nanotubes ...
 
Robust Polymer Nanocomposite Membranes Incorporating Discrete TiO2 Nanotubes ...
Robust Polymer Nanocomposite Membranes Incorporating Discrete TiO2 Nanotubes ...Robust Polymer Nanocomposite Membranes Incorporating Discrete TiO2 Nanotubes ...
Robust Polymer Nanocomposite Membranes Incorporating Discrete TiO2 Nanotubes ...
 
Robust Polymer Nanocomposite Membranes Incorporating Discrete TiO2 Nanotubes ...
Robust Polymer Nanocomposite Membranes Incorporating Discrete TiO2 Nanotubes ...Robust Polymer Nanocomposite Membranes Incorporating Discrete TiO2 Nanotubes ...
Robust Polymer Nanocomposite Membranes Incorporating Discrete TiO2 Nanotubes ...
 
A Comparison Study Between Two Hydrogen Sensors
A Comparison Study Between Two Hydrogen SensorsA Comparison Study Between Two Hydrogen Sensors
A Comparison Study Between Two Hydrogen Sensors
 
Investigation Of Hydrogen Production By Using Composite Membrane (Nafion/Zro2...
Investigation Of Hydrogen Production By Using Composite Membrane (Nafion/Zro2...Investigation Of Hydrogen Production By Using Composite Membrane (Nafion/Zro2...
Investigation Of Hydrogen Production By Using Composite Membrane (Nafion/Zro2...
 
At 162
At 162At 162
At 162
 
ABSTRACT
ABSTRACTABSTRACT
ABSTRACT
 
IRJET- Permeability of Geopolymer Concrete with and without Geopolymer Paint ...
IRJET- Permeability of Geopolymer Concrete with and without Geopolymer Paint ...IRJET- Permeability of Geopolymer Concrete with and without Geopolymer Paint ...
IRJET- Permeability of Geopolymer Concrete with and without Geopolymer Paint ...
 
99 sakshi
99 sakshi99 sakshi
99 sakshi
 
20320140504003
2032014050400320320140504003
20320140504003
 
2007 Electrochimica Acta 2
2007 Electrochimica Acta 22007 Electrochimica Acta 2
2007 Electrochimica Acta 2
 
Ga3610941103
Ga3610941103Ga3610941103
Ga3610941103
 
research paper on Geopolymer concrete
research paper on Geopolymer concreteresearch paper on Geopolymer concrete
research paper on Geopolymer concrete
 
ACS Publication_Sprowl
ACS Publication_SprowlACS Publication_Sprowl
ACS Publication_Sprowl
 

Más de IAEME Publication

IAEME_Publication_Call_for_Paper_September_2022.pdf
IAEME_Publication_Call_for_Paper_September_2022.pdfIAEME_Publication_Call_for_Paper_September_2022.pdf
IAEME_Publication_Call_for_Paper_September_2022.pdfIAEME Publication
 
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...IAEME Publication
 
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURSA STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURSIAEME Publication
 
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURSBROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURSIAEME Publication
 
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONS
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONSDETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONS
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONSIAEME Publication
 
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONS
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONSANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONS
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONSIAEME Publication
 
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINO
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINOVOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINO
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINOIAEME Publication
 
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...IAEME Publication
 
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMY
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMYVISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMY
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMYIAEME Publication
 
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...IAEME Publication
 
GANDHI ON NON-VIOLENT POLICE
GANDHI ON NON-VIOLENT POLICEGANDHI ON NON-VIOLENT POLICE
GANDHI ON NON-VIOLENT POLICEIAEME Publication
 
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...IAEME Publication
 
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...IAEME Publication
 
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...IAEME Publication
 
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...IAEME Publication
 
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...IAEME Publication
 
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...IAEME Publication
 
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...IAEME Publication
 
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...IAEME Publication
 
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENT
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENTA MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENT
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENTIAEME Publication
 

Más de IAEME Publication (20)

IAEME_Publication_Call_for_Paper_September_2022.pdf
IAEME_Publication_Call_for_Paper_September_2022.pdfIAEME_Publication_Call_for_Paper_September_2022.pdf
IAEME_Publication_Call_for_Paper_September_2022.pdf
 
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...
 
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURSA STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
 
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURSBROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
 
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONS
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONSDETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONS
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONS
 
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONS
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONSANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONS
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONS
 
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINO
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINOVOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINO
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINO
 
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...
 
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMY
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMYVISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMY
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMY
 
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...
 
GANDHI ON NON-VIOLENT POLICE
GANDHI ON NON-VIOLENT POLICEGANDHI ON NON-VIOLENT POLICE
GANDHI ON NON-VIOLENT POLICE
 
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...
 
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...
 
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...
 
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...
 
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...
 
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...
 
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
 
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...
 
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENT
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENTA MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENT
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENT
 

Último

Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...Neo4j
 
Factors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptxFactors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptxKatpro Technologies
 
Slack Application Development 101 Slides
Slack Application Development 101 SlidesSlack Application Development 101 Slides
Slack Application Development 101 Slidespraypatel2
 
Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityPrincipled Technologies
 
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfThe Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfEnterprise Knowledge
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonAnna Loughnan Colquhoun
 
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...apidays
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Drew Madelung
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdfhans926745
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking MenDelhi Call girls
 
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure serviceWhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure servicePooja Nehwal
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...Martijn de Jong
 
Breaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountBreaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountPuma Security, LLC
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘RTylerCroy
 
Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...
Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...
Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...gurkirankumar98700
 
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEarley Information Science
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking MenDelhi Call girls
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024The Digital Insurer
 
Developing An App To Navigate The Roads of Brazil
Developing An App To Navigate The Roads of BrazilDeveloping An App To Navigate The Roads of Brazil
Developing An App To Navigate The Roads of BrazilV3cube
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptxHampshireHUG
 

Último (20)

Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
 
Factors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptxFactors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptx
 
Slack Application Development 101 Slides
Slack Application Development 101 SlidesSlack Application Development 101 Slides
Slack Application Development 101 Slides
 
Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivity
 
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfThe Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt Robison
 
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men
 
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure serviceWhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...
 
Breaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountBreaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path Mount
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘
 
Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...
Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...
Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...
 
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024
 
Developing An App To Navigate The Roads of Brazil
Developing An App To Navigate The Roads of BrazilDeveloping An App To Navigate The Roads of Brazil
Developing An App To Navigate The Roads of Brazil
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
 

20120140504022 2

  • 1. International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN 0976 – 6480(Print), ISSN 0976 – 6499(Online) Volume 5, Issue 4, April (2014), pp. 205-212 © IAEME 205 HYDROGEN PERMEATION BEHAVIOR AND ANNEALING IN COMPOSITE PALLADIUM MEMBRANES AT HIGH TEMPERATURE Abubakar Alkali*1 , Edward Gobina1 1 Robert Gordon University, School of Engineering, Riverside East, Garthdee Road, Aberdeen, AB10 7GJ, United Kingdom. ABSTRACT The main purpose of this work is to investigate the hydrogen permeation behavior and also the effect of annealing in Pd and Pd/Ag composite membranes both of 2 µm thickness prepared on α- Al2O3 support using electroless plating method. Pd and Pd/Ag membranes were prepared in a hydrazine based electroless plating bath. Single component hydrogen permeation tests were conducted to investigate the hydrogen permeation behavior of the membranes and the effect of annealing at different temperatures. The Palladium membrane displayed a H2 flux of up to 4.32E + 01 cm3 cm-2 min-1 at 723 K. The Pd/Ag membrane displayed a slightly higher H2 flux of up to 4.57E +01 at 723 K. Annealing the membrane greatly enhanced the H2 flux to about two-fold from 4.32E +01 cm3 cm-2 min-1 to 8.57E + 01 cm3 cm-2 min-1 for the palladium membrane and up to 8.72E +01 cm3 cm-2 min-1 for the Pd/Ag at 873 K. Keywords: Hydrogen Flux, Electroless Plating, Palladium Membranes, Palladium/Silver Membranes, Annealing, Activation Energy. INTRODUCTION Hydrogen separation and purification technologies are becoming increasingly popular as a result of the importance of hydrogen as a clean energy carrier (1) . Hydrogen is used in several industrial processes such as petroleum refining, production of ammonia, production of methanol, petrochemical industries and semi conductor industries (2) . The demand for high purity hydrogen is rising especially when juxtaposed with the importance of hydrogen as an alternative source of energy in view of the current global challenges of energy insecurity and climate change. It is in the light of these challenges that interest has spiked up in polymer electrolyte membrane fuel cell (PEMFC) due to their environmental friendliness and economic viability3 . Moreover the development of hydrogen fuel cell vehicles has boosted motivation in hydrogen separation and purification processes using inorganic membranes (4) . INTERNATIONAL JOURNAL OF ADVANCED RESEARCH IN ENGINEERING AND TECHNOLOGY (IJARET) ISSN 0976 - 6480 (Print) ISSN 0976 - 6499 (Online) Volume 5, Issue 4, April (2014), pp. 205-212 © IAEME: www.iaeme.com/ijaret.asp Journal Impact Factor (2014): 7.8273 (Calculated by GISI) www.jifactor.com IJARET © I A E M E
  • 2. International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN 0976 – 6480(Print), ISSN 0976 – 6499(Online) Volume 5, Issue 4, April (2014), pp. 205-212 © IAEME 206 It is generally acknowledged that the world is now in a transition from a fossil fuel based to a hydrogen energy system and albeit it will take more years to complete this transition to hydrogen based global energy system, this interim period should be used to develop or optimize technologies for hydrogen separation and purification (5) . Presently, steam methane reforming is the most widely used method for hydrogen production but the method is not in tandem with the much envisaged global clean energy future for several reasons such as high energy consumption, threat of impurities and cost (6) . More critically, greenhouse gases such as CO2 are produced as end products in steam methane reforming which recycles back to the same problem of carbon emission (6) . Palladium membranes are the membranes of choice for hydrogen separation, purification and production due to their infinite selectivity to hydrogen when defect free (7) . Palladium can be used to optimize the steam reforming process by selectively extracting high purity hydrogen from the products such that there are no greenhouse gases such as CO and CH4 (6) . There are several methods for the preparation of palladium based membranes by deposition of palladium films over porous supports such as chemical vapor deposition, electroplating, electroless plating, physical vapor deposition, magnetron sputtering (8) . However, electroless plating has been identified as the preferred method due to the several advantages it has compared to other methods (8) . Some of these advantages include easiness of coating over any surface of any shape, low energy consumption, uniformity of coating and simple equipment which makes it less prone to errors and complexities (9) . Electroless plated palladium membranes also have excellent resistance to corrosion and high mechanical stability (9) . Several decades back, thin palladium films were used in hydrogen separation and purification processes. However, these thin films lack the mechanical and thermal stability to withstand harsh operating conditions. They suffer from high cost and are prone to cracks and breaks (9) . To address these problems associated with thin Pd films, the concept of composite membranes was developed in which thin, defect free palladium films are deposited over porous support. These composites have shown to achieve higher hydrogen flux and can withstand harsh operating conditions at low cost (8) . The primary objective of this work is to investigate the hydrogen permeation behavior and the effect of annealing at higher temperature in Pd and Pd/Ag. This will provide a better understanding on hydrogen permeation behavior in palladium and palladium-alloy membranes. EXPERIMENTAL In the electroless plating of Pd and Pd/Ag membranes, porous ceramic α-alumina supports of 30 nm average pore size supplied by ceramiques techniques et industrielles (CTI SA) France were used onto which thin Pd and Pd/Ag films were deposited. The porous alumina support used for both the Pd and Pd/Ag membranes has the specification i.d= 7 mm, o.d=10 mm, effective length= 340 mm. The same procedure was used in plating both Pd and Pd/Ag membranes only that a different plating bath composition in a separate plating bath was used for the Pd/Ag membrane. The support was first dried at 650 C in an oven for 2 hours to remove any moisture and calcined in air at 873 K for 24 hours. The alumina support was then modified prior to the electroless plating through a 2 step sensitization and activation procedure in order to seed it with Pd nuclei to create catalytic sites and ensure a uniform deposition of the metallic layer. A 0.005 M Sn(11) solution and 0.005 M Pd(11) solution were used as sensitization and activation solutions respectively (10) . The support was sealed at both ends to prevent internal deposition and immersed in the sensitization solution for 5 minutes followed by rinsing in distilled water. The support was then immersed in the activation solution for another 5 minutes and again rinsed in distilled water. This procedure was repeated 10 times to obtain a more uniformly seeded support. After the sensitization and activation procedure, the seeded support was stored overnight at room temperature.
  • 3. International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN 0976 – 6480(Print), ISSN 0976 – 6499(Online) Volume 5, Issue 4, April (2014), pp. 205-212 © IAEME 207 Table 1: Composition of Pd and Pd/Ag plating bath Pd Plating Bath Pd/Ag plating bath PdCl2 = 2.7 g PdCl2 = 2.4 g N2H4 = 10 ml AgNO3 = 0.3 g NH4OH = 440 ml N2H4 = 6.5 ml Na2EDTA = 70 g NH4OH = 350 ml Na2EDTA = 31 g A plating bath was prepared into which the seeded support was inserted at 328 K for 30 minutes. The composition of the Pd and Pd/Ag plating baths are shown in Table 1. Plating commences after the addition of the hydrazine reducer into the plating bath. The seeded support laps straight up during plating so as to avoid tilting sideways which could lead to uneven coating. After deposition, the wet membrane was dried overnight at room temperature and a membrane of ~2 µm was obtained for both the Pd and Pd/Ag membranes. The membranes were then inserted into the membrane reactor in the permeation test plant and Hydrogen was permeated through the membrane at 673 K for 2 hours to activate the Pd layer. Hydrogen permeation in both the palladium and palladium alloy membranes was investigated at 623, 673 and 723 K using a permeation set up as shown in Fig. 1 comprising of a stainless steel shale and tube membrane reactor module. After the permeation test at different temperatures, the effect of annealing on hydrogen permeation was also tested by annealing the membrane at 673, 773 and 873 K for 10 hours each. After annealing at each of these temperatures, permeation test was carried out at 673 K after the membrane was allowed to cool down to 673 K. The feed pressure was controlled through back-pressure regulators and metering valves monitored with a pressure gauge. The temperature was measured using a thermocouple inserted in the membrane unit and monitored using certified thermometer. The flow rate was measured using a mass flow meter and gas separation data collected online using a Varian HP 3800 Gas Chromatograph interfaced to a PC and equipped with a T.C.D and F.I.D detectors in series. Membrane characterization was carried out with a scanning electron microscopy (SEM). Fig. 3 shows the SEM micrograph of cross sectional area of a homogenous and uniformly coated metallic palladium film over the porous ceramic alumina support. Figure 1: Concept Schematic of a permeation test plant
  • 4. International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN 0976 – 6480(Print), ISSN 0976 – 6499(Online) Volume 5, Issue 4, April (2014), pp. 205-212 © IAEME 208 Figure 2: SEM micrograph of the cross section area of the Pd layer RESULTS AND DISCUSSION Hydrogen flux was measured for both the Pd and Pd/Ag membrane at 723, 673 and 623 K for transmembrane pressure difference of 0.05 to 0.40 bar. The effect of annealing was investigated at 873. 773 and 673 K for the same transmembrane pressure difference of 0.05 to 0.40 bar. Figures 3 and 4 show the H2 flux for single gas permeation at different temperatures for the Pd membrane and the Arrhenius plot for temperature dependence on H2 permeation. y = 66.247x + 0.6726 R2 = 0.9976 y = 61.216x + 0.1922 R2 = 0.991 y = 48.798x + 1.4751 R2 = 0.9738 0 5 10 15 20 25 30 35 40 45 50 0 0.2 0.4 0.6 0.8 723 K 673 K 623 K Linear (723 K) Linear (673 K) Linear (623 K) √P1 - √P2 (Bar) H2Flux(cm3cm-2min-1) Figure 3: H2 flux at different temperature for Figure 4: Arrhenius plot of temperature the Pd membrane dependance for the Pd membrane Fig. 3 shows the hydrogen flux for the Pd membrane at 723, 673 and 623 K. It can be observed that the hydrogen flux is directly proportional to the difference in the downstream and upstream hydrogen partial pressures and the H2 flux increased with increase in the feed pressure. Pressure is the most important driving force in the permeation of hydrogen through the membrane. The permeation of hydrogen through palladium membranes is governed by the solution-diffusion mechanism based on the following steps (11) : 1. External mass transfer of H2 molecules through internal diffusion from the bulk of the gas phase onto the membrane surface on the high pressure side. 2. Dissociative adsorption of the H2 molecules into atoms on the high pressure side. 3. Reversible dissolution process where the H2 atoms are dissolved into the bulk palladium layer. 4.
  • 5. International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN 0976 – 6480(Print), ISSN 0976 – 6499(Online) Volume 5, Issue 4, April (2014), pp. 205-212 © IAEME 209 Diffusion of the H2 atoms into the bulk palladium layer. 5. Reversible movement of the H2 atoms from the bulk metallic layer to the membrane surface. 6. Reversible recombination desorption of the H2 molecules at the low pressure side. 7. External mass transfer of H2 molecules on the membrane surface at the low pressure side. The rate of H2 permeation is therefore an interplay of the hydrogen diffusion through the metallic bulk and the difference in the H2 concentration in the upstream and the downstream sides. Thus, the concentration of H2 in the film is influenced by both the H2 solubility and its partial pressure which implies that the rate of H2 permeation through the palladium membrane can be expressed based on Fick’s first law (12) : J = Q (Ph n – Pl n )/L (1) Where J = H2 flux, Q is the coefficient of H2 permeation, L is the thickness, Ph and Pl are the H2 partial pressure difference in the feed and permeate sides and n is the exponential factor indicating the rate limiting step in hydrogen permeation through the palladium membrane. The effect of n value is explained as follows: 1) When n = 0.5, the rate limiting step is the bulk diffusion of hydrogen. 2) When n= 1, the rate limiting step is the surface processes such as hydrogen dissociative adsorption and/or hydrogen recombination and desorption at the permeate side. 3) When 1> n > 0.5, then both bulk diffusion and surface processes will constitute the rate limiting steps in hydrogen permeation through the palladium membrane. For the Pd membrane, a H2 flux of up to 4.32E + 01 cm3 cm-2 min-1 was observed at 723 K. H2 flux increased with increasing transmembrane pressure difference for both Pd and Pd/Ag membranes. Permeability depends on temperature and the Arrhenius equation enables the estimation of the activation energy at different temperatures as described by the equation (12) : J = Ao exp (-Ea/RT) (2) Where Ao is the exponential factor, R is the gas constant, and T is the operating temperature. The experimental data of the H2 flux at different temperature was used to determine the activation energy from the slope (M). In Fig 4, the activation energy was calculated as 8.03 kJmol-1 and it represents the effect of temperature on H2 permeation. The higher the activation energy, the more the resistance to H2 permeation (13) . As shown in Fig. 7 for the Pd/Ag membrane, the H2 flux was up to 4.57E+01 cm3 cm-2 min-1 at 723 K. This indicates a slightly higher H2 flux for the Pd/Ag membrane compared to the Pd membrane despite the fact that both membranes are of the same thickness. This could be attributed to the alloying factor in the Pd/Ag membrane which enhanced the permeation of hydrogen through the membrane (6) . The alloying with silver in the Pd/Ag membrane provided less resistance to permeation by enhancing the solubility and subsequent diffusion of hydrogen through the membrane hence the Pd/Ag membrane achieved a higher H2 flux compared to the Pd membrane (6) . The temperature dependence on hydrogen permeation across the membranes was also investigated at different pressures and temperatures. A plot of Ln (M) against 1/T for the Pd/Ag membrane gave activation energy of 12.16 kJ/mol for the Pd/Ag membranes as shown in Fig. 8. Both activation energies for the Pd and Pd/Ag membranes are within those reported in literature. The membranes were annealed at high temperatures in order to investigate the effect of annealing on the membrane permeation behavior and also to activate the Pd metal and the alloy in the Pd membrane and the Pd/Ag membrane respectively.
  • 6. International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN 0976 – 6480(Print), ISSN 0976 – 6499(Online) Volume 5, Issue 4, April (2014), pp. 205-212 © IAEME 210 y = 92.512x - 3.9206 R2 = 0.9807 y = 115.28x - 5.5278 R2 = 0.9599 y = 134.29x - 2.7324 R2 = 0.9922 0 15 30 45 60 75 90 0 0.2 0.4 0.6 0.8 873 K 773 K 673 K Linear (673 K) Linear (673 K) Linear (773 K) Linear (873 K) √P1 - √P2 (Bar) H2Flux(cm3cm-2min-1) y = -1097.2x + 6.1604 R2 = 0.9991 4.50E+00 4.60E+00 4.70E+00 4.80E+00 4.90E+00 5.00E+00 1.00E- 03 1.10E- 03 1.20E- 03 1.30E- 03 1.40E- 03 1.50E- 03 1.60E- 03 1/T (K) Ln(M) n=1 Linear (n=1) Figure 5: H2 flux at different temperature for Figure 6: Arrhenius plot for the annealed the annealed Pd membrane Pd membrane y = 50.952x + 1.0358 R2 = 0.9921 y = 60.755x + 1.3644 R2 = 0.9939 y = 70.484x + 2.0007 R2 = 0.9929 0 5 10 15 20 25 30 35 40 45 50 0 0.2 0.4 0.6 0.8 723 K 673 K 623 K Linear (623 K) Linear (673 K) Linear (723 K) H2Flux(cm3cm-2min-1) √P1 - √P2 (Bar) (Bar) y = -1462x + 6.2781 R2 = 1 3.90E+00 4.00E+00 4.10E+00 4.20E+00 4.30E+00 1.30E-03 1.40E-03 1.50E-03 1.60E-03 1.70E-03 1/T (K) Ln(M) Series1 Linear (Series1) Figure 7: H2 flux at different temperature for Figure 8: Arrhenius plot for the Pd/Ag the Pd/Ag membrane membrane y = 137.58x - 1.6304 R2 = 0.9968 y = 109.27x - 2.1149 R2 = 0.9893 y = 91.315x - 2.4967 R2 = 0.9897 0 20 40 60 80 100 0 0.2 0.4 0.6 0.8 873 K 773 K 673 K Linear (873 K) Linear (773 K) Linear (673 K) √P1 -√P2 (Bar) H2Flux(cm3cm-2min-1) y = -1197.8x + 6.287 R2 = 0.9951 4.40E+00 4.60E+00 4.80E+00 5.00E+00 1.00E-03 1.15E-03 1.30E-03 1.45E-03 1.60E-03 1/T (K) Ln(M) n=1 Linear (n=1) Figure 9: H2 flux at different temperature Figure 10: Arrhenius plot for the annealed for the Annealed Pd/Ag Pd/Ag membrane
  • 7. International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN 0976 – 6480(Print), ISSN 0976 – 6499(Online) Volume 5, Issue 4, April (2014), pp. 205-212 © IAEME 211 As shown in Fig. 5, results for the annealed Pd membrane indicate an increase in the H2 flux of up to 8.57E + 01 cm3 cm2 min-1 at 873 K which is two-fold higher than that of the Pd membrane prior to the annealing. In Fig 9, the annealed Pd/Ag membrane also displayed marked improvement in the H2 flux from 4.57E +01 cm3 to 8.72E +01 cm3 cm-2 min-1 at 873 K. These results indicate that annealing increased the hydrogen flux by two- fold for both the Pd and Pd/Ag membranes. The increase in H2 flux for the annealed membranes is attributed to the removal of surface contaminants and also the formation of hydride phases6 From Figs. 6, 8 and 10, the activation energies of annealed Pd, Pd/Ag and annealed Pd/Ag were calculated as 9.12, 12.16 and 9.96 kJ/mol respectively. These activation energies are within the values reported in literature (4, 14) . The activation energy indicates that the effect of temperature on hydrogen permeation was more pronounced for the palladium membrane compared to the Pd/Ag membrane and also this effect was more significant when the membranes were annealed compared to hydrogen permeation before the annealing. CONCLUSION Palladium and palladium alloy membranes prepared through the electroless plating method show good promise in hydrogen separation and purification. In this work, results for the hydrogen permeation behavior of a Pd and Pd/Ag membranes prepared through the electroless plating method were presented. It was observed that hydrogen permeation increased with temperature and the transmembrane pressure difference. The Pd/Ag alloy membrane also displayed slightly higher H2 flux compared to the Pd-only membrane. Alloying palladium with silver enhances the rate of H2 permeation compared to the Pd-only membrane. Investigations on the effect of annealing also show that annealing both Pd and Pd/Ag membranes at higher temperatures decreased the permeation resistance of the membrane and enhanced the H2 flux through the membranes by about two-fold. This work provides a better understanding of the significance of alloying with silver and annealing at high temperature in Pd membranes to achieve high purity hydrogen. Specifically, it has been shown in this work that annealing both Pd and Pd/Ag membranes at high temperature up to 837 K or above could enhance hydrogen permeation through the membrane by two-fold. ACKNOWLEDGEMENT Sincere thanks to Petroleum Technology Development Fund (P.T.D.F) Nigeria for funding this research. REFERENCES 1. Lu, G. Q., Diniz da Costa, J.C., Duke, M., Giessler, S., Socolow, R., Williams, R.H. & Kreutz, T. (2007). Inorganic membranes for hydrogen production and purification: A critical review and perspective. Journal of colloid and interface science, 314: 589-603 2. Nowotny, J., Sorrell, C.C., Sheppard, L.R. & Bak, T. (2005). Solar hydrogen: Environmentally safe fuel for the future. International Journal of hydrogen energy, 30: 521-544. 3. Balamurali K.R.N., Choi, J., Harold, P.M. (2006). Electroless plating and permeation features of Pd and Pd/Ag hollow fiber composite membranes. Journal of Membrane Science 288: 67 – 84. 4. Chee, C. & Gobina, E. (2010). Ultra-thin palladium technologies enable future commercial deployment of PEM fuel cell systems. Membrane technology, Vol. 2010, Issue 3, 6-13.
  • 8. International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN 0976 – 6480(Print), ISSN 0976 – 6499(Online) Volume 5, Issue 4, April (2014), pp. 205-212 © IAEME 212 5. Feroz, E. H., Raab, R.L., Ulleberg, G, T. & Alsharif, K. (2009). Global warming and environmental production efficiency ranking of the Kyoto protocol nations. Journal of environmental management, 90: 1178-1183. 6. Pizzi, D., Worth, R., Baschetti, M, G., Satti, G, C. & Noda K-I. (2008). Hydrogen permeability of a 2.5 µm palladium-silver membranes deposited on ceramic supports, Journal of membrane science, 325: 446-453. 7. Wang, L., Yoshiie, R. & Uemiya, S. (2007). Fabrication of novel Pd-Ag-Ru/Al2O3 ternary alloy composite membrane with remarkably enhanced hydrogen permeability. Journal of membrane science, 306: 1-7. 8. Yun, S. & Oyama, T.S. (2011). Correlations in palladium membranes for hydrogen separation: A review. Journal of membrane science, 375 (1-2): 28-45. 9. David, E. & Kopac, J. (2010). Development of palladium/ceramic membranes for hydrogen separation. International journal of hydrogen energy, 36: 4498-4506. 10. Cheng, Y.S., Pena, M.A., Fierro, J.L., Hui, D.C.W. & Yeung, K.L. (2002). Performance of alumina, zeolite, palladium, Pd-Ag alloy membranes for hydrogen separation from towngas mixture. Journal of Membrane Science 204: 329-340. 11. Gabito, J. & Tsouris, C. (2008). Hydrogen transport in composite inorganic membranes. Journal of membrane science 312: 132-142. 12. Wu, L-Q, Xu, N. & Shi, J. (2000). Preparations of a palladium composite membrane by an improved electroless plating technique. Ind. Eng. Chem. 39: 342-384. 13. Lee, H-J., Suda, H. & Haraya, K. (2005). Gas permeation properties in a composite mesoporous alumina ceramic membrane. Korean Journal of Chemical Engineering. 22(5), 721-728. 14. Zeng, G. Shi, L., Liu, Y., Zhang, Y. & Sun, Y. (2014). A simple approach to uniform Pd/Ag alloy membranes: Comparative study of conventional and silver – controlled co-plating. International Journal of Hydrogen Energy. 1-10. 15. B. Chirsabesan and M.Vijay, “Membrane Assisted Electro Chemical Degradation for Quinoline Yellow, Eosin B and Rose Bengal Dyes Degradation”, International Journal of Design and Manufacturing Technology (IJDMT), Volume 4, Issue 2, 2013, pp. 21 - 41, ISSN Print: 0976 – 6995, ISSN Online: 0976 – 7002.