SlideShare una empresa de Scribd logo
1 de 7
Descargar para leer sin conexión
International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 5, No. 1, January 2014

MICROSTRIP COUPLER DESIGN USING BAT
ALGORITHM
EzgiDeniz Ulker1 and Sadik Ulker2
1

Department of Computer Engineering, Girne American University, Mersin 10, Turkey
2
Department of Electrical and Electronics Engineering, Girne American University,
Mersin 10, Turkey

ABSTRACT
Evolutionary and swarm algorithms have found many applications in design problems since todays
computing power enables these algorithms to find solutions to complicated design problems very fast.
Newly proposed hybridalgorithm, bat algorithm, has been applied for the design of microwave microstrip
couplers for the first time. Simulation results indicate that the bat algorithm is a very fast algorithm and it
produces very reliable results.

KEYWORDS
Metaheuristic Algorithms, Bat Algorithm, Microstrip Coupler Design

1. INTRODUCTION
With the use of computers and high computing power nowadays, evolutionary and swarm
algorithms have found applications in optimization problems and design problems. Some of these
algorithms are genetic algorithms proposed by Holland [1], particle swarm optimization
algorithm developed by Kennedy and Eberhart [2], immune algorithm proposed by Farmer et.al.
[3] and Harmony Search Algorithm proposed by Geem, Kim and Logonathan [4]. These
algorithms all can be considered artificial intelligence concepts and most of them are derived
from nature and biological systems. Applications of these methods have found a great interest in
engineering design such as in microwave circuit design [5]. Multi-objective optimization
problems is of more interest and these methods are applied, as an example in parameter
estimation of induction motors [6], in the design of low noise amplifiers [7] and in broadband
microwave absorbers [8].A new hybrid method, bat algorithm, was proposed by Yang as a
powerful tool which combines variety of these methods namely particle swarm optimization and
harmony search algorithms [9]. In this paper, the aim is to test this algorithm on a microwave
design problem. In order to achieve this aim, design of a microwave microstrip coupler is
considered. For the performance, the items of accuracy and speed are considered as means of
performance metrics. In the next section, the main steps of the bat algorithm are explained. In the
problem definition and results sections, the microstrip coupler design problem is described and
the obtained results are presented. Lastly, the conclusions section gives the concluding remarks of
the paper.

DOI : 10.5121/ijaia.2014.5110

127
International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 5, No. 1, January 2014

2. ALGORITHM
Bat Algorithm is derived through the echolocation behaviour of bats. Bats are very good at
finding the prey and they can distinguish very small prey and obstacles even in the dark. They can
also detect the distance of the prey, type of the prey and the moving speed of the prey using the
echolocation behaviour [9]. The algorithm mimics the same process of how bats can find and
detect the food source with the help of echolocation. It starts by defining a purpose function f(x)
which needs to be optimized. We create some possible candidates which form the bat population
that will be used in the objective function to calculate their fitness values. Bats move randomly
for finding the food source. In bat algorithm, variables in the search space such as velocity vi,
position xi, frequency f, rate r, and loudness A0 should be updated in the iteration process. As a
result of updating certain variables the new bat population is created. Fitness value of each bat in
the new population is calculated then sorted according to the fitness values. After certain
evaluations, the fitness value that is closest to the optimal value of the objective function is the
optimal solution of our problem. We can list the steps of the algorithm as follows.
Step 1: Generate a set of bat population, velocity vi, position xi, frequency f, rate r, and loudness
A0 .
Step 2: Calculate the fitness value of each bat in the population.
Step 3: Sort the bat population according to fitness values of candidates.
Step 4: Update variables for bats flying randomly. Therefore new bat population is created with
using the updated variables vi, xi, f, r and A0.
Step 5: Calculate the fitness value of each bat in the new bat population, and rank them.
Step 6: Create and replace the predefined number of new random bats into the population.
Step 7: Repeat Steps 4-6 while the stopping criterion is not met.
Bat algorithm consists of similar steps with the other algorithms such as initialization, generation
of new candidates in population by flying randomly, local and global search. New solutions are
generated by moving virtual bats according to following expressions
݂௜ = ݂௠௜௡ + (݂
௠௔௫ − ݂
௠௜௡ )ߚ ,
ܸ௜௧ାଵ = ܸ௜௧ + (ܺ௜௧ − ܾ݁‫݂)ݐݏ‬௜ ,
ܺ௜௧ାଵ = ܺ௜௧ + ܸ ௧ାଵ ,

(1)
(2)
(3)

whereβ is a random number in between (0, 1) and best is the best solution in population. fmin
andfmax show the frequency limits and adjusted to 0 and 100, respectively. Bat algorithm uses
exploitation to focus the search around the current best candidate. This is called random walk in
algorithm. It modifies the current best solution and done by the following expression
ܺ௡௘௪ = ܺ௢௟ௗ + ߝ‫ܣ‬௧ ,

(4)

where ε is a random number in between (0, 1) and At is the average loudness of all bats at this
time t. The loudness Aiand the rate riof pulse emission are updated in the iteration process
according to following expressions

128
International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 5, No. 1, January 2014

‫ܣ‬௧ାଵ = α‫ܣ‬௧ ,
௜
௜
‫ݎ‬௜௧ାଵ = ‫ݎ‬௜଴ ሾ1 − exp	(−ߛ‫)ݐ‬ሿ ,

(5)
(6)

where α and γ are constants in between (0, 1) and γ >0, respectively.

3. PROBLEM DEFINITION
Microstrip couplers are part of many microwave circuits and components and their design is of
interest. Researchers in the past used the geometry of the lines to develop a model for the even
and odd mode impedances of the line and hence calculate the coupling coefficient of the
microstrip line accordingly [10-12]. The theoretical foundations and the models predict very close
proximity to the real experimental results that are obtained, however the complexity of equations
make the design a difficult task unless an optimizing tool in a CAD program is used. In this case
we will use these equations in an algorithm and then the obtained results will be used in a CAD
program to observe whether the algorithm has found correct dimension values for the desired
coupling. We can consider the drawing in Figure 1 as a simple microwave microstrip coupler
with the unknowns indicated [13].

Figure 1.Microstrip Coupler [13]

In this figure, two microstrip lines of width w are separated by spacings on a grounded dielectric
with thickness H. Electromagnetic coupling occurs between two microstrip lines and the proper
values w, s and H need to be optimized for desired coupling. In order to test the algorithm, the
equations are established in a manner to obtain the odd and even mode impedances (Zooand Zoe)
using the ratios ‘whse’ and ‘whso’ for the microstrip line using the equations proposed by
Akhtarzad[12] as given below

 2h − g + 1 
cosh −1 
 g +1  ,

π


 2h − g − 1 
2
4
w/ H 
−1 
whso = cosh −1 
 g − 1  + π (1 + ε r ) cosh 1 + 2 s / H  ,

π


2



whse =

2

(7)
(8)

129
International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 5, No. 1, January 2014

1

g = cosh  π (s / H ) ,
2

1


h = cosh π (w / H ) + π ( s / H )  ,
2



(9)
(10)

where equation 8 is valid for dielectric constant (εr) materials with values less than 6. Ratios
whseand whso can be used to determine Zoo and Zoe as explained by Akhtarzad et.al. [12]and
hence the coupling coefficient, C, which can be simply obtained by using the following
expression

C=

Z oe − Z oo
.
Z oe + Z oo

(11)

4. RESULTS
For test purposes we set the desired coupling coefficient to be 0.2. The substrate with dielectric
constant being 3.9 was considered for the microstrip coupler. In a random manner we created 20
‘bats’ which held the values of W (width), H (height) and S (spacing) that we can obtain W/H and
S/H which inherently fixed whse and whso values and hence even and odd mode impedances
were calculated for each ‘bat’. The algorithm continued to find suitable values of width(W),
height (H) and spacing (S). A limitation for Zoo and Zoe impedance values of being greater than
20 and less than 75 were also set in order to ensure realistic design values.
Some of the results were observed with the number of iterations that required to reach the
optimum solution. These are shown in Table 1. It was noted that the algorithm found optimum
solutions extremely fast. Most of the time, even in less than 20 iterations the approximate answer
was within the 0.01 error margin to the real answer, and with a little bit of increase in iterations
we observed the result to be obtainedin 0.000001 error margin. Sample graphs showing the
iteration convergence are shown in Figure 2 and Figure 3. Therefore when the performance
metrics of speed and accuracy are considered, as it can be observed in the graphs, both of them
are satisfied in a good manner.
Table 1. Results obtained using Bat Algorithm.

Trials
Trial 1
Trial 2
Trial 3
Trial 4
Trial 5
Trial 6
Trial 7
Trial 8
Trial 9
Trial 10

W
7.9
11.2
13.2
4.1
17.2
9.04
6.8
6.3
6.5
6.6

S
1.7
3.6
4.5
0.7
1.2
1.4
2.2
1.4
1.9
0.9

H
4.3
7.6
9.3
2.07
5.6
4.2
4.7
3.5
4.2
3.0

whse
3.9
3.3
3.2
4.2
6.3
4.5
3.2
3.9
3.4
4.7

whso
6.7
5.7
5.6
7.2
10.3
7.6
5.6
6.6
6.0
7.9

Zoe
64.8
73.2
74.8
61.2
45.
58.5
74.2
65.2
71.0
56.8

Zoo
43.2
48.7
49.7
40.8
30.2
39.0
49.4
43.5
47.3
37.9

Coupling
0.2
0.2
0.2
0.1999
0.2
0.1999
0.2
0.1999
0.2
0.1999

iteration
7
99
6
96
15
102
46
106
36
15

The graphs indicate convergence to optimum answers very fast. In about 10 iterations desired
coupling is obtained and in 20 iterations optimum design parameters are obtained.

130
International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 5, No. 1, January 2014
0.005
0.0045
0.004
0.0035
Fitness

0.003

0.0025
0.002

0.0015
0.001
0.0005
0
0

5

10

15

20

25

30

Number of Iterations

Figure 2.Convergence Graph on an independent run I

0.0016
0.0014
0.0012
Fitness

0.001
0.0008
0.0006
0.0004
0.0002
0
0

5

10
15
20
Number of Iterations

25

30

Figure 3. Convergence Graph on an independent run II

The reason for such good results is highly related with the fact the algorithm is very powerful
because the algorithm uses the best of both worlds for particle swarm optimization and harmony
search. Also another determining factor is the fact that there are many solutions to the problem,
and we can see these different results in Table 1. When we consider the speed of the algorithm it
seems that it is very powerful.
The results that were obtained should be tested and verified using microwave design simulators.
This was done to make sure that the obtained values from algorithm were in fact the real design
values that give the desired coupling. The verification of these data was done using a microwave
simulator PUFF [14]and Sonnet microwave simulator [15], and example graph is shown in Figure
4. The figure shows the graph for the Trial 8 in Table 1. The design frequency for this problem
was set to 5 GHz which was the frequency for achieving desired coupling. A smooth curve
peaking at a value of 0.2 at 5 GHz was observed. The results obtained by the algorithm used in
simulator indicated that they can actually be the proper design values for microwave couplers.

131
International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 5, No. 1, January 2014

Coupling Coefficient

0.24
0.2

0.16
0.12
0.08
0.04
3

4

5

6

7

Frequency (GHz)

Figure 4. Coupling Coefficient and Frequency

5. CONCLUSIONS
In this work, the newly created bat algorithm was tested to see if it can be a possible candidate
algorithm for microwave simulators in terms of speed of convergence. The algorithm was written
as a program and with many different runs it produced different results. However, the results were
all optimum results and the results were all found in less than 20 iterations. The example problem
was microstrip coupler design equations, which can be considered as complicated functions that
cannot be solved easily. The algorithm produced the dimensions for design.The obtained
dimensions further were tested with microwave simulators. Simulations showed that the
algorithm worked very well and the estimated dimensions by the algorithm were the proper
wanted design values. The algorithm, although it seems little bit more elaborate than most of the
other evolutionary algorithms, can easily be applied to the problems and good optimal design
valuescan be obtained in a fast manner while designing microwave circuits.

REFERENCES
[1]
[2]
[3]
[4]
[5]
[6]

[7]
[8]

[9]

J. H. Holland, ‘Adaptation in Natural and Artificial Systems’, University of Michigan Press, Ann
Arbour, 1975.
J. Kennedy, R. Eberhart, ‘Particle Swarm Optimization,’ Proceedings of IEEE International
Conference on Neural Networks, Piscataway NJ, 1995, pp. 1942-1948.
J. D. Farmer, N. Packard andA. Perelson, ‘The immune system adaptation and machine learning,’
Physica D, 1986, vol. 2, pp. 187-204.
Z. W. Geem, J. H. Kim and G. V. Loganathan, ‘A new heuristic optimization algorithm: Harmony
Search’, Simulation, 2001, 76, pp. 60-68.
E. Deniz, S.Ulker, “Clonal Selection Algorithm Application to Simple Microwave Matching
Network”, Microwave and Optical Technology Letters, 2011, vol.53, pp. 991-993.
V. P. Sakthivel, R. Bhuvaneswari and S. Subramanian, ‘Multi-objective parameter estimation of
induction motor using particle swarm’, Engineering Applications on Artificial Intelligence, 2010,
vol.23, pp.302-312.
S. Ulker, ‘Design of Low Noise Amplifiers using PSO’, International Journal of Artificial
Intellligence and Applications, 2012, vol.3, no.4, pp.99-136.
D. S. Weile, E. Michielssen and D. E. Goldberg, ‘Genetic Algorithm Design of Pareto Optimal
Broadband obserbers’, IEEE Transactions on Electromagnetic Compatibility, 1996, vol.38, no.3,
pp.518-525.
X. S. Yang, ‘A New Metaheuristic Bat-Inspired Algorithm’, Nature Inspired Cooperative Strategies
for Optimization, 2010, Studies in Computational Intelligence, Springer Berlin, pp. 65-74.

132
International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 5, No. 1, January 2014
[10] T.G. Bryant, J. A. Weiss, ‘Parameters of microstrip transmission lines and of coupled pairs of
microstrip lines,’ IEEE Transactions of Microwave Theory and Techniques,1968, pp. 1021-1027.
[11] S. V. Judd, I. Whiteley, R. J. Clowes and D. C. Rickard, ‘An analytical method for calculating
microstrip transmission line parameters’, IEEE Transactions of Microwave Theory and Techniques,
1970, pp. 78-87.
[12] S. Akhtarzad, T. R. Rowbotham and P.B. Jones, ‘The design of coupled microstrip lines,’ IEEE
Transactions of Microwave Theory and Techniques, 1975, pp. 486-492.
[13] S. Ulker, ‘Particle Swarm Optimization Application to Microwave Circuits,’ Microwave and Optical
Technology Letters, 2008, vol. 50, no. 5, pp. 1333-1336.
[14] S. W. Wedge, R. C. Compton , D. B. Rutledge and A. Gerstlauer, ‘Puff: Computer aided design for
microwave integrated circuits’, 1998, version 2.1, California Institute of Technology, Pasadena, CA.
[15] Sonnet Software URL: www.sonnetsoftware.com

Authors
EzgiDenizUlker
received the B.Sc., M.Sc., and PhD degree in computer engineering from Girne American
University, Girne, Cyprus, in 2008, 2010 and 2013 respectively. She worked as a
teaching assistant in Girne American University between 2008-2010. She worked as a
lecturer in Girne American University from 2010 till 2013. She has been working as an
Assistant Professor in Girne American University since December 2013. Her research
interests include optimization techniques and studying different algorithms and their
applications to solve different optimization and design problems. She authored and coauthored technical publications in the areas of optimization and metaheuristic algorithms. She is a member
of IEEE and IEEE Computer Society.

SadikUlker
received the B.Sc., M.E. and Ph.D. degree in electrical engineering from University of
Virginia, Charlottesville, VA, USA, in 1996, 1999, and 2002 respectively. He worked in
the UVA Microwaves and Semiconductor Devices Laboratory between 1996-2001 as a
research assistant. Later he worked in UVA Microwaves Lab as a Research Associate for
one year. He joined Girne American University, Girne, Cyprus in September 2002. He
was a member of electrical and electronics engineering department as an Assistant
Professor until 2009. In 2009 he was promoted to Associate Professor status and in 2013
he was promoted to Professor status in the Electrical and Electronics Engineering Department. He has also
been the vice-rector of the Girne American University responsible from academic affairs since April 2009.
His research interests include Microwave Active Circuits, Microwave Measurement Techniques, Numerical
Methods, and Metaheuristic Algorithms and their applications to design problems. He has authored and coauthored technical publications in the areas of submillimeter wavelength measurements and particle swarm
optimization technique. He is a member of IEEE and Eta Kappa Nu. He is also the recipient of Louis T.
Rader Chairpersons award in 2001.

133

Más contenido relacionado

La actualidad más candente

Bat Algorithm for Multi-objective Optimisation
Bat Algorithm for Multi-objective OptimisationBat Algorithm for Multi-objective Optimisation
Bat Algorithm for Multi-objective OptimisationXin-She Yang
 
nature inspired algorithms
nature inspired algorithmsnature inspired algorithms
nature inspired algorithmsGaurav Goel
 
Improved Firefly Algorithm for Unconstrained Optimization Problems
Improved Firefly Algorithm for Unconstrained Optimization ProblemsImproved Firefly Algorithm for Unconstrained Optimization Problems
Improved Firefly Algorithm for Unconstrained Optimization ProblemsEditor IJCATR
 
Artificial bee colony with fcm for data clustering
Artificial bee colony with fcm for data clusteringArtificial bee colony with fcm for data clustering
Artificial bee colony with fcm for data clusteringAlie Banyuripan
 
Multiobjective Firefly Algorithm for Continuous Optimization
Multiobjective Firefly Algorithm for Continuous Optimization Multiobjective Firefly Algorithm for Continuous Optimization
Multiobjective Firefly Algorithm for Continuous Optimization Xin-She Yang
 
Application of particle swarm optimization to microwave tapered microstrip lines
Application of particle swarm optimization to microwave tapered microstrip linesApplication of particle swarm optimization to microwave tapered microstrip lines
Application of particle swarm optimization to microwave tapered microstrip linescseij
 
Bat Algorithm is Better Than Intermittent Search Strategy
Bat Algorithm is Better Than Intermittent Search StrategyBat Algorithm is Better Than Intermittent Search Strategy
Bat Algorithm is Better Than Intermittent Search StrategyXin-She Yang
 
Bat algorithm for Topology Optimization in Microelectronic Applications
Bat algorithm for Topology Optimization in Microelectronic ApplicationsBat algorithm for Topology Optimization in Microelectronic Applications
Bat algorithm for Topology Optimization in Microelectronic ApplicationsXin-She Yang
 
GENETIC ALGORITHM FOR FUNCTION APPROXIMATION: AN EXPERIMENTAL INVESTIGATION
GENETIC ALGORITHM FOR FUNCTION APPROXIMATION: AN EXPERIMENTAL INVESTIGATIONGENETIC ALGORITHM FOR FUNCTION APPROXIMATION: AN EXPERIMENTAL INVESTIGATION
GENETIC ALGORITHM FOR FUNCTION APPROXIMATION: AN EXPERIMENTAL INVESTIGATIONijaia
 
A MODIFIED VORTEX SEARCH ALGORITHM FOR NUMERICAL FUNCTION OPTIMIZATION
A MODIFIED VORTEX SEARCH ALGORITHM FOR NUMERICAL FUNCTION OPTIMIZATIONA MODIFIED VORTEX SEARCH ALGORITHM FOR NUMERICAL FUNCTION OPTIMIZATION
A MODIFIED VORTEX SEARCH ALGORITHM FOR NUMERICAL FUNCTION OPTIMIZATIONijaia
 
Simulation of Single and Multilayer of Artificial Neural Network using Verilog
Simulation of Single and Multilayer of Artificial Neural Network using VerilogSimulation of Single and Multilayer of Artificial Neural Network using Verilog
Simulation of Single and Multilayer of Artificial Neural Network using Verilogijsrd.com
 
EVOLUTIONARY COMPUTING TECHNIQUES FOR SOFTWARE EFFORT ESTIMATION
EVOLUTIONARY COMPUTING TECHNIQUES FOR SOFTWARE EFFORT ESTIMATIONEVOLUTIONARY COMPUTING TECHNIQUES FOR SOFTWARE EFFORT ESTIMATION
EVOLUTIONARY COMPUTING TECHNIQUES FOR SOFTWARE EFFORT ESTIMATIONijcsit
 
Multi objective predictive control a solution using metaheuristics
Multi objective predictive control  a solution using metaheuristicsMulti objective predictive control  a solution using metaheuristics
Multi objective predictive control a solution using metaheuristicsijcsit
 
Improving Performance of Back propagation Learning Algorithm
Improving Performance of Back propagation Learning AlgorithmImproving Performance of Back propagation Learning Algorithm
Improving Performance of Back propagation Learning Algorithmijsrd.com
 
Accelerated Particle Swarm Optimization and Support Vector Machine for Busine...
Accelerated Particle Swarm Optimization and Support Vector Machine for Busine...Accelerated Particle Swarm Optimization and Support Vector Machine for Busine...
Accelerated Particle Swarm Optimization and Support Vector Machine for Busine...Xin-She Yang
 
Investigation on the Pattern Synthesis of Subarray Weights for Low EMI Applic...
Investigation on the Pattern Synthesis of Subarray Weights for Low EMI Applic...Investigation on the Pattern Synthesis of Subarray Weights for Low EMI Applic...
Investigation on the Pattern Synthesis of Subarray Weights for Low EMI Applic...IOSRJECE
 
Solving np hard problem using artificial bee colony algorithm
Solving np hard problem using artificial bee colony algorithmSolving np hard problem using artificial bee colony algorithm
Solving np hard problem using artificial bee colony algorithmIAEME Publication
 

La actualidad más candente (18)

Bat Algorithm for Multi-objective Optimisation
Bat Algorithm for Multi-objective OptimisationBat Algorithm for Multi-objective Optimisation
Bat Algorithm for Multi-objective Optimisation
 
nature inspired algorithms
nature inspired algorithmsnature inspired algorithms
nature inspired algorithms
 
Improved Firefly Algorithm for Unconstrained Optimization Problems
Improved Firefly Algorithm for Unconstrained Optimization ProblemsImproved Firefly Algorithm for Unconstrained Optimization Problems
Improved Firefly Algorithm for Unconstrained Optimization Problems
 
Artificial bee colony with fcm for data clustering
Artificial bee colony with fcm for data clusteringArtificial bee colony with fcm for data clustering
Artificial bee colony with fcm for data clustering
 
Multiobjective Firefly Algorithm for Continuous Optimization
Multiobjective Firefly Algorithm for Continuous Optimization Multiobjective Firefly Algorithm for Continuous Optimization
Multiobjective Firefly Algorithm for Continuous Optimization
 
Application of particle swarm optimization to microwave tapered microstrip lines
Application of particle swarm optimization to microwave tapered microstrip linesApplication of particle swarm optimization to microwave tapered microstrip lines
Application of particle swarm optimization to microwave tapered microstrip lines
 
Bat Algorithm is Better Than Intermittent Search Strategy
Bat Algorithm is Better Than Intermittent Search StrategyBat Algorithm is Better Than Intermittent Search Strategy
Bat Algorithm is Better Than Intermittent Search Strategy
 
Bat algorithm for Topology Optimization in Microelectronic Applications
Bat algorithm for Topology Optimization in Microelectronic ApplicationsBat algorithm for Topology Optimization in Microelectronic Applications
Bat algorithm for Topology Optimization in Microelectronic Applications
 
GENETIC ALGORITHM FOR FUNCTION APPROXIMATION: AN EXPERIMENTAL INVESTIGATION
GENETIC ALGORITHM FOR FUNCTION APPROXIMATION: AN EXPERIMENTAL INVESTIGATIONGENETIC ALGORITHM FOR FUNCTION APPROXIMATION: AN EXPERIMENTAL INVESTIGATION
GENETIC ALGORITHM FOR FUNCTION APPROXIMATION: AN EXPERIMENTAL INVESTIGATION
 
A MODIFIED VORTEX SEARCH ALGORITHM FOR NUMERICAL FUNCTION OPTIMIZATION
A MODIFIED VORTEX SEARCH ALGORITHM FOR NUMERICAL FUNCTION OPTIMIZATIONA MODIFIED VORTEX SEARCH ALGORITHM FOR NUMERICAL FUNCTION OPTIMIZATION
A MODIFIED VORTEX SEARCH ALGORITHM FOR NUMERICAL FUNCTION OPTIMIZATION
 
Simulation of Single and Multilayer of Artificial Neural Network using Verilog
Simulation of Single and Multilayer of Artificial Neural Network using VerilogSimulation of Single and Multilayer of Artificial Neural Network using Verilog
Simulation of Single and Multilayer of Artificial Neural Network using Verilog
 
J1802048185
J1802048185J1802048185
J1802048185
 
EVOLUTIONARY COMPUTING TECHNIQUES FOR SOFTWARE EFFORT ESTIMATION
EVOLUTIONARY COMPUTING TECHNIQUES FOR SOFTWARE EFFORT ESTIMATIONEVOLUTIONARY COMPUTING TECHNIQUES FOR SOFTWARE EFFORT ESTIMATION
EVOLUTIONARY COMPUTING TECHNIQUES FOR SOFTWARE EFFORT ESTIMATION
 
Multi objective predictive control a solution using metaheuristics
Multi objective predictive control  a solution using metaheuristicsMulti objective predictive control  a solution using metaheuristics
Multi objective predictive control a solution using metaheuristics
 
Improving Performance of Back propagation Learning Algorithm
Improving Performance of Back propagation Learning AlgorithmImproving Performance of Back propagation Learning Algorithm
Improving Performance of Back propagation Learning Algorithm
 
Accelerated Particle Swarm Optimization and Support Vector Machine for Busine...
Accelerated Particle Swarm Optimization and Support Vector Machine for Busine...Accelerated Particle Swarm Optimization and Support Vector Machine for Busine...
Accelerated Particle Swarm Optimization and Support Vector Machine for Busine...
 
Investigation on the Pattern Synthesis of Subarray Weights for Low EMI Applic...
Investigation on the Pattern Synthesis of Subarray Weights for Low EMI Applic...Investigation on the Pattern Synthesis of Subarray Weights for Low EMI Applic...
Investigation on the Pattern Synthesis of Subarray Weights for Low EMI Applic...
 
Solving np hard problem using artificial bee colony algorithm
Solving np hard problem using artificial bee colony algorithmSolving np hard problem using artificial bee colony algorithm
Solving np hard problem using artificial bee colony algorithm
 

Destacado

Coupler Pdf 8.10.09
Coupler Pdf 8.10.09Coupler Pdf 8.10.09
Coupler Pdf 8.10.09coupler_LA
 
Microwave- directional coupler paramets & applications
Microwave- directional coupler paramets & applicationsMicrowave- directional coupler paramets & applications
Microwave- directional coupler paramets & applicationsJETISH
 
Microwave engineering full
Microwave engineering fullMicrowave engineering full
Microwave engineering fulllieulieuw
 
Equal Split Wilkinson Power Divider - Project Report
Equal Split Wilkinson Power Divider - Project ReportEqual Split Wilkinson Power Divider - Project Report
Equal Split Wilkinson Power Divider - Project ReportBhanwar Singh Meena
 
Microwave engineering basics
Microwave engineering basicsMicrowave engineering basics
Microwave engineering basicsAJAL A J
 
Directional couplers ppt for microwave engineering
Directional couplers  ppt for microwave engineeringDirectional couplers  ppt for microwave engineering
Directional couplers ppt for microwave engineeringDivya Shree
 
Lecture notes microwaves
Lecture notes   microwavesLecture notes   microwaves
Lecture notes microwavesSarah Krystelle
 

Destacado (10)

Rebar coupler
Rebar couplerRebar coupler
Rebar coupler
 
Coupler Pdf 8.10.09
Coupler Pdf 8.10.09Coupler Pdf 8.10.09
Coupler Pdf 8.10.09
 
180 hybrid-coupler
180 hybrid-coupler180 hybrid-coupler
180 hybrid-coupler
 
Microwave Coupler
Microwave CouplerMicrowave Coupler
Microwave Coupler
 
Microwave- directional coupler paramets & applications
Microwave- directional coupler paramets & applicationsMicrowave- directional coupler paramets & applications
Microwave- directional coupler paramets & applications
 
Microwave engineering full
Microwave engineering fullMicrowave engineering full
Microwave engineering full
 
Equal Split Wilkinson Power Divider - Project Report
Equal Split Wilkinson Power Divider - Project ReportEqual Split Wilkinson Power Divider - Project Report
Equal Split Wilkinson Power Divider - Project Report
 
Microwave engineering basics
Microwave engineering basicsMicrowave engineering basics
Microwave engineering basics
 
Directional couplers ppt for microwave engineering
Directional couplers  ppt for microwave engineeringDirectional couplers  ppt for microwave engineering
Directional couplers ppt for microwave engineering
 
Lecture notes microwaves
Lecture notes   microwavesLecture notes   microwaves
Lecture notes microwaves
 

Similar a Microstrip coupler design using bat

An Algorithm For Vector Quantizer Design
An Algorithm For Vector Quantizer DesignAn Algorithm For Vector Quantizer Design
An Algorithm For Vector Quantizer DesignAngie Miller
 
APPLICATION OF PARTICLE SWARM OPTIMIZATION TO MICROWAVE TAPERED MICROSTRIP LINES
APPLICATION OF PARTICLE SWARM OPTIMIZATION TO MICROWAVE TAPERED MICROSTRIP LINESAPPLICATION OF PARTICLE SWARM OPTIMIZATION TO MICROWAVE TAPERED MICROSTRIP LINES
APPLICATION OF PARTICLE SWARM OPTIMIZATION TO MICROWAVE TAPERED MICROSTRIP LINEScseij
 
An optimal design of current conveyors using a hybrid-based metaheuristic alg...
An optimal design of current conveyors using a hybrid-based metaheuristic alg...An optimal design of current conveyors using a hybrid-based metaheuristic alg...
An optimal design of current conveyors using a hybrid-based metaheuristic alg...IJECEIAES
 
COMPARING THE CUCKOO ALGORITHM WITH OTHER ALGORITHMS FOR ESTIMATING TWO GLSD ...
COMPARING THE CUCKOO ALGORITHM WITH OTHER ALGORITHMS FOR ESTIMATING TWO GLSD ...COMPARING THE CUCKOO ALGORITHM WITH OTHER ALGORITHMS FOR ESTIMATING TWO GLSD ...
COMPARING THE CUCKOO ALGORITHM WITH OTHER ALGORITHMS FOR ESTIMATING TWO GLSD ...csandit
 
Capacitor Placement Using Bat Algorithm for Maximum Annual Savings in Radial ...
Capacitor Placement Using Bat Algorithm for Maximum Annual Savings in Radial ...Capacitor Placement Using Bat Algorithm for Maximum Annual Savings in Radial ...
Capacitor Placement Using Bat Algorithm for Maximum Annual Savings in Radial ...IJERA Editor
 
Radio-frequency circular integrated inductors sizing optimization using bio-...
Radio-frequency circular integrated inductors sizing  optimization using bio-...Radio-frequency circular integrated inductors sizing  optimization using bio-...
Radio-frequency circular integrated inductors sizing optimization using bio-...IJECEIAES
 
PATTERN SYNTHESIS OF NON-UNIFORM AMPLITUDE EQUALLY SPACED MICROSTRIP ARRAY AN...
PATTERN SYNTHESIS OF NON-UNIFORM AMPLITUDE EQUALLY SPACED MICROSTRIP ARRAY AN...PATTERN SYNTHESIS OF NON-UNIFORM AMPLITUDE EQUALLY SPACED MICROSTRIP ARRAY AN...
PATTERN SYNTHESIS OF NON-UNIFORM AMPLITUDE EQUALLY SPACED MICROSTRIP ARRAY AN...IAEME Publication
 
THE RESEARCH OF QUANTUM PHASE ESTIMATION ALGORITHM
THE RESEARCH OF QUANTUM PHASE ESTIMATION ALGORITHMTHE RESEARCH OF QUANTUM PHASE ESTIMATION ALGORITHM
THE RESEARCH OF QUANTUM PHASE ESTIMATION ALGORITHMIJCSEA Journal
 
Coverage performance analysis of genetic ALOGRATHIM controlled smart antenna ...
Coverage performance analysis of genetic ALOGRATHIM controlled smart antenna ...Coverage performance analysis of genetic ALOGRATHIM controlled smart antenna ...
Coverage performance analysis of genetic ALOGRATHIM controlled smart antenna ...marwaeng
 
Iterative Determinant Method for Solving Eigenvalue Problems
Iterative Determinant Method for Solving Eigenvalue ProblemsIterative Determinant Method for Solving Eigenvalue Problems
Iterative Determinant Method for Solving Eigenvalue Problemsijceronline
 
A genetic algorithm to solve the
A genetic algorithm to solve theA genetic algorithm to solve the
A genetic algorithm to solve theIJCNCJournal
 
Cost Optimized Design Technique for Pseudo-Random Numbers in Cellular Automata
Cost Optimized Design Technique for Pseudo-Random Numbers in Cellular AutomataCost Optimized Design Technique for Pseudo-Random Numbers in Cellular Automata
Cost Optimized Design Technique for Pseudo-Random Numbers in Cellular Automataijait
 
Economic Load Dispatch Problem with Valve – Point Effect Using a Binary Bat A...
Economic Load Dispatch Problem with Valve – Point Effect Using a Binary Bat A...Economic Load Dispatch Problem with Valve – Point Effect Using a Binary Bat A...
Economic Load Dispatch Problem with Valve – Point Effect Using a Binary Bat A...IDES Editor
 
Autotuning of pid controller for robot arm and magnet levitation plant
Autotuning of pid controller for robot arm and magnet levitation plantAutotuning of pid controller for robot arm and magnet levitation plant
Autotuning of pid controller for robot arm and magnet levitation planteSAT Journals
 
A Solution to Optimal Power Flow Problem using Artificial Bee Colony Algorith...
A Solution to Optimal Power Flow Problem using Artificial Bee Colony Algorith...A Solution to Optimal Power Flow Problem using Artificial Bee Colony Algorith...
A Solution to Optimal Power Flow Problem using Artificial Bee Colony Algorith...IOSR Journals
 
IGARSS2011_ABC Optimized SOM.ppt
IGARSS2011_ABC Optimized SOM.pptIGARSS2011_ABC Optimized SOM.ppt
IGARSS2011_ABC Optimized SOM.pptgrssieee
 
FPGA Implementation of A New Chien Search Block for Reed-Solomon Codes RS (25...
FPGA Implementation of A New Chien Search Block for Reed-Solomon Codes RS (25...FPGA Implementation of A New Chien Search Block for Reed-Solomon Codes RS (25...
FPGA Implementation of A New Chien Search Block for Reed-Solomon Codes RS (25...IJERA Editor
 

Similar a Microstrip coupler design using bat (20)

An Algorithm For Vector Quantizer Design
An Algorithm For Vector Quantizer DesignAn Algorithm For Vector Quantizer Design
An Algorithm For Vector Quantizer Design
 
APPLICATION OF PARTICLE SWARM OPTIMIZATION TO MICROWAVE TAPERED MICROSTRIP LINES
APPLICATION OF PARTICLE SWARM OPTIMIZATION TO MICROWAVE TAPERED MICROSTRIP LINESAPPLICATION OF PARTICLE SWARM OPTIMIZATION TO MICROWAVE TAPERED MICROSTRIP LINES
APPLICATION OF PARTICLE SWARM OPTIMIZATION TO MICROWAVE TAPERED MICROSTRIP LINES
 
Gy3312241229
Gy3312241229Gy3312241229
Gy3312241229
 
40120130406008
4012013040600840120130406008
40120130406008
 
An optimal design of current conveyors using a hybrid-based metaheuristic alg...
An optimal design of current conveyors using a hybrid-based metaheuristic alg...An optimal design of current conveyors using a hybrid-based metaheuristic alg...
An optimal design of current conveyors using a hybrid-based metaheuristic alg...
 
COMPARING THE CUCKOO ALGORITHM WITH OTHER ALGORITHMS FOR ESTIMATING TWO GLSD ...
COMPARING THE CUCKOO ALGORITHM WITH OTHER ALGORITHMS FOR ESTIMATING TWO GLSD ...COMPARING THE CUCKOO ALGORITHM WITH OTHER ALGORITHMS FOR ESTIMATING TWO GLSD ...
COMPARING THE CUCKOO ALGORITHM WITH OTHER ALGORITHMS FOR ESTIMATING TWO GLSD ...
 
Capacitor Placement Using Bat Algorithm for Maximum Annual Savings in Radial ...
Capacitor Placement Using Bat Algorithm for Maximum Annual Savings in Radial ...Capacitor Placement Using Bat Algorithm for Maximum Annual Savings in Radial ...
Capacitor Placement Using Bat Algorithm for Maximum Annual Savings in Radial ...
 
Radio-frequency circular integrated inductors sizing optimization using bio-...
Radio-frequency circular integrated inductors sizing  optimization using bio-...Radio-frequency circular integrated inductors sizing  optimization using bio-...
Radio-frequency circular integrated inductors sizing optimization using bio-...
 
PATTERN SYNTHESIS OF NON-UNIFORM AMPLITUDE EQUALLY SPACED MICROSTRIP ARRAY AN...
PATTERN SYNTHESIS OF NON-UNIFORM AMPLITUDE EQUALLY SPACED MICROSTRIP ARRAY AN...PATTERN SYNTHESIS OF NON-UNIFORM AMPLITUDE EQUALLY SPACED MICROSTRIP ARRAY AN...
PATTERN SYNTHESIS OF NON-UNIFORM AMPLITUDE EQUALLY SPACED MICROSTRIP ARRAY AN...
 
THE RESEARCH OF QUANTUM PHASE ESTIMATION ALGORITHM
THE RESEARCH OF QUANTUM PHASE ESTIMATION ALGORITHMTHE RESEARCH OF QUANTUM PHASE ESTIMATION ALGORITHM
THE RESEARCH OF QUANTUM PHASE ESTIMATION ALGORITHM
 
Coverage performance analysis of genetic ALOGRATHIM controlled smart antenna ...
Coverage performance analysis of genetic ALOGRATHIM controlled smart antenna ...Coverage performance analysis of genetic ALOGRATHIM controlled smart antenna ...
Coverage performance analysis of genetic ALOGRATHIM controlled smart antenna ...
 
Iterative Determinant Method for Solving Eigenvalue Problems
Iterative Determinant Method for Solving Eigenvalue ProblemsIterative Determinant Method for Solving Eigenvalue Problems
Iterative Determinant Method for Solving Eigenvalue Problems
 
A genetic algorithm to solve the
A genetic algorithm to solve theA genetic algorithm to solve the
A genetic algorithm to solve the
 
Cost Optimized Design Technique for Pseudo-Random Numbers in Cellular Automata
Cost Optimized Design Technique for Pseudo-Random Numbers in Cellular AutomataCost Optimized Design Technique for Pseudo-Random Numbers in Cellular Automata
Cost Optimized Design Technique for Pseudo-Random Numbers in Cellular Automata
 
Economic Load Dispatch Problem with Valve – Point Effect Using a Binary Bat A...
Economic Load Dispatch Problem with Valve – Point Effect Using a Binary Bat A...Economic Load Dispatch Problem with Valve – Point Effect Using a Binary Bat A...
Economic Load Dispatch Problem with Valve – Point Effect Using a Binary Bat A...
 
E021052327
E021052327E021052327
E021052327
 
Autotuning of pid controller for robot arm and magnet levitation plant
Autotuning of pid controller for robot arm and magnet levitation plantAutotuning of pid controller for robot arm and magnet levitation plant
Autotuning of pid controller for robot arm and magnet levitation plant
 
A Solution to Optimal Power Flow Problem using Artificial Bee Colony Algorith...
A Solution to Optimal Power Flow Problem using Artificial Bee Colony Algorith...A Solution to Optimal Power Flow Problem using Artificial Bee Colony Algorith...
A Solution to Optimal Power Flow Problem using Artificial Bee Colony Algorith...
 
IGARSS2011_ABC Optimized SOM.ppt
IGARSS2011_ABC Optimized SOM.pptIGARSS2011_ABC Optimized SOM.ppt
IGARSS2011_ABC Optimized SOM.ppt
 
FPGA Implementation of A New Chien Search Block for Reed-Solomon Codes RS (25...
FPGA Implementation of A New Chien Search Block for Reed-Solomon Codes RS (25...FPGA Implementation of A New Chien Search Block for Reed-Solomon Codes RS (25...
FPGA Implementation of A New Chien Search Block for Reed-Solomon Codes RS (25...
 

Último

Artificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsArtificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsJoaquim Jorge
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)Gabriella Davis
 
Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)wesley chun
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Scriptwesley chun
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024The Digital Insurer
 
Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CVKhem
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking MenDelhi Call girls
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking MenDelhi Call girls
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processorsdebabhi2
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024The Digital Insurer
 
A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024Results
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Drew Madelung
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdfhans926745
 
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfThe Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfEnterprise Knowledge
 
What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?Antenna Manufacturer Coco
 
Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slidevu2urc
 
GenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationGenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationMichael W. Hawkins
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024Rafal Los
 
Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityPrincipled Technologies
 
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Igalia
 

Último (20)

Artificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsArtificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and Myths
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)
 
Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Script
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
 
Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CV
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processors
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024
 
A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf
 
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfThe Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
 
What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?
 
Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slide
 
GenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationGenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day Presentation
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024
 
Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivity
 
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
 

Microstrip coupler design using bat

  • 1. International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 5, No. 1, January 2014 MICROSTRIP COUPLER DESIGN USING BAT ALGORITHM EzgiDeniz Ulker1 and Sadik Ulker2 1 Department of Computer Engineering, Girne American University, Mersin 10, Turkey 2 Department of Electrical and Electronics Engineering, Girne American University, Mersin 10, Turkey ABSTRACT Evolutionary and swarm algorithms have found many applications in design problems since todays computing power enables these algorithms to find solutions to complicated design problems very fast. Newly proposed hybridalgorithm, bat algorithm, has been applied for the design of microwave microstrip couplers for the first time. Simulation results indicate that the bat algorithm is a very fast algorithm and it produces very reliable results. KEYWORDS Metaheuristic Algorithms, Bat Algorithm, Microstrip Coupler Design 1. INTRODUCTION With the use of computers and high computing power nowadays, evolutionary and swarm algorithms have found applications in optimization problems and design problems. Some of these algorithms are genetic algorithms proposed by Holland [1], particle swarm optimization algorithm developed by Kennedy and Eberhart [2], immune algorithm proposed by Farmer et.al. [3] and Harmony Search Algorithm proposed by Geem, Kim and Logonathan [4]. These algorithms all can be considered artificial intelligence concepts and most of them are derived from nature and biological systems. Applications of these methods have found a great interest in engineering design such as in microwave circuit design [5]. Multi-objective optimization problems is of more interest and these methods are applied, as an example in parameter estimation of induction motors [6], in the design of low noise amplifiers [7] and in broadband microwave absorbers [8].A new hybrid method, bat algorithm, was proposed by Yang as a powerful tool which combines variety of these methods namely particle swarm optimization and harmony search algorithms [9]. In this paper, the aim is to test this algorithm on a microwave design problem. In order to achieve this aim, design of a microwave microstrip coupler is considered. For the performance, the items of accuracy and speed are considered as means of performance metrics. In the next section, the main steps of the bat algorithm are explained. In the problem definition and results sections, the microstrip coupler design problem is described and the obtained results are presented. Lastly, the conclusions section gives the concluding remarks of the paper. DOI : 10.5121/ijaia.2014.5110 127
  • 2. International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 5, No. 1, January 2014 2. ALGORITHM Bat Algorithm is derived through the echolocation behaviour of bats. Bats are very good at finding the prey and they can distinguish very small prey and obstacles even in the dark. They can also detect the distance of the prey, type of the prey and the moving speed of the prey using the echolocation behaviour [9]. The algorithm mimics the same process of how bats can find and detect the food source with the help of echolocation. It starts by defining a purpose function f(x) which needs to be optimized. We create some possible candidates which form the bat population that will be used in the objective function to calculate their fitness values. Bats move randomly for finding the food source. In bat algorithm, variables in the search space such as velocity vi, position xi, frequency f, rate r, and loudness A0 should be updated in the iteration process. As a result of updating certain variables the new bat population is created. Fitness value of each bat in the new population is calculated then sorted according to the fitness values. After certain evaluations, the fitness value that is closest to the optimal value of the objective function is the optimal solution of our problem. We can list the steps of the algorithm as follows. Step 1: Generate a set of bat population, velocity vi, position xi, frequency f, rate r, and loudness A0 . Step 2: Calculate the fitness value of each bat in the population. Step 3: Sort the bat population according to fitness values of candidates. Step 4: Update variables for bats flying randomly. Therefore new bat population is created with using the updated variables vi, xi, f, r and A0. Step 5: Calculate the fitness value of each bat in the new bat population, and rank them. Step 6: Create and replace the predefined number of new random bats into the population. Step 7: Repeat Steps 4-6 while the stopping criterion is not met. Bat algorithm consists of similar steps with the other algorithms such as initialization, generation of new candidates in population by flying randomly, local and global search. New solutions are generated by moving virtual bats according to following expressions ݂௜ = ݂௠௜௡ + (݂ ௠௔௫ − ݂ ௠௜௡ )ߚ , ܸ௜௧ାଵ = ܸ௜௧ + (ܺ௜௧ − ܾ݁‫݂)ݐݏ‬௜ , ܺ௜௧ାଵ = ܺ௜௧ + ܸ ௧ାଵ , (1) (2) (3) whereβ is a random number in between (0, 1) and best is the best solution in population. fmin andfmax show the frequency limits and adjusted to 0 and 100, respectively. Bat algorithm uses exploitation to focus the search around the current best candidate. This is called random walk in algorithm. It modifies the current best solution and done by the following expression ܺ௡௘௪ = ܺ௢௟ௗ + ߝ‫ܣ‬௧ , (4) where ε is a random number in between (0, 1) and At is the average loudness of all bats at this time t. The loudness Aiand the rate riof pulse emission are updated in the iteration process according to following expressions 128
  • 3. International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 5, No. 1, January 2014 ‫ܣ‬௧ାଵ = α‫ܣ‬௧ , ௜ ௜ ‫ݎ‬௜௧ାଵ = ‫ݎ‬௜଴ ሾ1 − exp (−ߛ‫)ݐ‬ሿ , (5) (6) where α and γ are constants in between (0, 1) and γ >0, respectively. 3. PROBLEM DEFINITION Microstrip couplers are part of many microwave circuits and components and their design is of interest. Researchers in the past used the geometry of the lines to develop a model for the even and odd mode impedances of the line and hence calculate the coupling coefficient of the microstrip line accordingly [10-12]. The theoretical foundations and the models predict very close proximity to the real experimental results that are obtained, however the complexity of equations make the design a difficult task unless an optimizing tool in a CAD program is used. In this case we will use these equations in an algorithm and then the obtained results will be used in a CAD program to observe whether the algorithm has found correct dimension values for the desired coupling. We can consider the drawing in Figure 1 as a simple microwave microstrip coupler with the unknowns indicated [13]. Figure 1.Microstrip Coupler [13] In this figure, two microstrip lines of width w are separated by spacings on a grounded dielectric with thickness H. Electromagnetic coupling occurs between two microstrip lines and the proper values w, s and H need to be optimized for desired coupling. In order to test the algorithm, the equations are established in a manner to obtain the odd and even mode impedances (Zooand Zoe) using the ratios ‘whse’ and ‘whso’ for the microstrip line using the equations proposed by Akhtarzad[12] as given below  2h − g + 1  cosh −1   g +1  ,  π    2h − g − 1  2 4 w/ H  −1  whso = cosh −1   g − 1  + π (1 + ε r ) cosh 1 + 2 s / H  ,  π   2   whse = 2 (7) (8) 129
  • 4. International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 5, No. 1, January 2014 1  g = cosh  π (s / H ) , 2  1   h = cosh π (w / H ) + π ( s / H )  , 2   (9) (10) where equation 8 is valid for dielectric constant (εr) materials with values less than 6. Ratios whseand whso can be used to determine Zoo and Zoe as explained by Akhtarzad et.al. [12]and hence the coupling coefficient, C, which can be simply obtained by using the following expression C= Z oe − Z oo . Z oe + Z oo (11) 4. RESULTS For test purposes we set the desired coupling coefficient to be 0.2. The substrate with dielectric constant being 3.9 was considered for the microstrip coupler. In a random manner we created 20 ‘bats’ which held the values of W (width), H (height) and S (spacing) that we can obtain W/H and S/H which inherently fixed whse and whso values and hence even and odd mode impedances were calculated for each ‘bat’. The algorithm continued to find suitable values of width(W), height (H) and spacing (S). A limitation for Zoo and Zoe impedance values of being greater than 20 and less than 75 were also set in order to ensure realistic design values. Some of the results were observed with the number of iterations that required to reach the optimum solution. These are shown in Table 1. It was noted that the algorithm found optimum solutions extremely fast. Most of the time, even in less than 20 iterations the approximate answer was within the 0.01 error margin to the real answer, and with a little bit of increase in iterations we observed the result to be obtainedin 0.000001 error margin. Sample graphs showing the iteration convergence are shown in Figure 2 and Figure 3. Therefore when the performance metrics of speed and accuracy are considered, as it can be observed in the graphs, both of them are satisfied in a good manner. Table 1. Results obtained using Bat Algorithm. Trials Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10 W 7.9 11.2 13.2 4.1 17.2 9.04 6.8 6.3 6.5 6.6 S 1.7 3.6 4.5 0.7 1.2 1.4 2.2 1.4 1.9 0.9 H 4.3 7.6 9.3 2.07 5.6 4.2 4.7 3.5 4.2 3.0 whse 3.9 3.3 3.2 4.2 6.3 4.5 3.2 3.9 3.4 4.7 whso 6.7 5.7 5.6 7.2 10.3 7.6 5.6 6.6 6.0 7.9 Zoe 64.8 73.2 74.8 61.2 45. 58.5 74.2 65.2 71.0 56.8 Zoo 43.2 48.7 49.7 40.8 30.2 39.0 49.4 43.5 47.3 37.9 Coupling 0.2 0.2 0.2 0.1999 0.2 0.1999 0.2 0.1999 0.2 0.1999 iteration 7 99 6 96 15 102 46 106 36 15 The graphs indicate convergence to optimum answers very fast. In about 10 iterations desired coupling is obtained and in 20 iterations optimum design parameters are obtained. 130
  • 5. International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 5, No. 1, January 2014 0.005 0.0045 0.004 0.0035 Fitness 0.003 0.0025 0.002 0.0015 0.001 0.0005 0 0 5 10 15 20 25 30 Number of Iterations Figure 2.Convergence Graph on an independent run I 0.0016 0.0014 0.0012 Fitness 0.001 0.0008 0.0006 0.0004 0.0002 0 0 5 10 15 20 Number of Iterations 25 30 Figure 3. Convergence Graph on an independent run II The reason for such good results is highly related with the fact the algorithm is very powerful because the algorithm uses the best of both worlds for particle swarm optimization and harmony search. Also another determining factor is the fact that there are many solutions to the problem, and we can see these different results in Table 1. When we consider the speed of the algorithm it seems that it is very powerful. The results that were obtained should be tested and verified using microwave design simulators. This was done to make sure that the obtained values from algorithm were in fact the real design values that give the desired coupling. The verification of these data was done using a microwave simulator PUFF [14]and Sonnet microwave simulator [15], and example graph is shown in Figure 4. The figure shows the graph for the Trial 8 in Table 1. The design frequency for this problem was set to 5 GHz which was the frequency for achieving desired coupling. A smooth curve peaking at a value of 0.2 at 5 GHz was observed. The results obtained by the algorithm used in simulator indicated that they can actually be the proper design values for microwave couplers. 131
  • 6. International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 5, No. 1, January 2014 Coupling Coefficient 0.24 0.2 0.16 0.12 0.08 0.04 3 4 5 6 7 Frequency (GHz) Figure 4. Coupling Coefficient and Frequency 5. CONCLUSIONS In this work, the newly created bat algorithm was tested to see if it can be a possible candidate algorithm for microwave simulators in terms of speed of convergence. The algorithm was written as a program and with many different runs it produced different results. However, the results were all optimum results and the results were all found in less than 20 iterations. The example problem was microstrip coupler design equations, which can be considered as complicated functions that cannot be solved easily. The algorithm produced the dimensions for design.The obtained dimensions further were tested with microwave simulators. Simulations showed that the algorithm worked very well and the estimated dimensions by the algorithm were the proper wanted design values. The algorithm, although it seems little bit more elaborate than most of the other evolutionary algorithms, can easily be applied to the problems and good optimal design valuescan be obtained in a fast manner while designing microwave circuits. REFERENCES [1] [2] [3] [4] [5] [6] [7] [8] [9] J. H. Holland, ‘Adaptation in Natural and Artificial Systems’, University of Michigan Press, Ann Arbour, 1975. J. Kennedy, R. Eberhart, ‘Particle Swarm Optimization,’ Proceedings of IEEE International Conference on Neural Networks, Piscataway NJ, 1995, pp. 1942-1948. J. D. Farmer, N. Packard andA. Perelson, ‘The immune system adaptation and machine learning,’ Physica D, 1986, vol. 2, pp. 187-204. Z. W. Geem, J. H. Kim and G. V. Loganathan, ‘A new heuristic optimization algorithm: Harmony Search’, Simulation, 2001, 76, pp. 60-68. E. Deniz, S.Ulker, “Clonal Selection Algorithm Application to Simple Microwave Matching Network”, Microwave and Optical Technology Letters, 2011, vol.53, pp. 991-993. V. P. Sakthivel, R. Bhuvaneswari and S. Subramanian, ‘Multi-objective parameter estimation of induction motor using particle swarm’, Engineering Applications on Artificial Intelligence, 2010, vol.23, pp.302-312. S. Ulker, ‘Design of Low Noise Amplifiers using PSO’, International Journal of Artificial Intellligence and Applications, 2012, vol.3, no.4, pp.99-136. D. S. Weile, E. Michielssen and D. E. Goldberg, ‘Genetic Algorithm Design of Pareto Optimal Broadband obserbers’, IEEE Transactions on Electromagnetic Compatibility, 1996, vol.38, no.3, pp.518-525. X. S. Yang, ‘A New Metaheuristic Bat-Inspired Algorithm’, Nature Inspired Cooperative Strategies for Optimization, 2010, Studies in Computational Intelligence, Springer Berlin, pp. 65-74. 132
  • 7. International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 5, No. 1, January 2014 [10] T.G. Bryant, J. A. Weiss, ‘Parameters of microstrip transmission lines and of coupled pairs of microstrip lines,’ IEEE Transactions of Microwave Theory and Techniques,1968, pp. 1021-1027. [11] S. V. Judd, I. Whiteley, R. J. Clowes and D. C. Rickard, ‘An analytical method for calculating microstrip transmission line parameters’, IEEE Transactions of Microwave Theory and Techniques, 1970, pp. 78-87. [12] S. Akhtarzad, T. R. Rowbotham and P.B. Jones, ‘The design of coupled microstrip lines,’ IEEE Transactions of Microwave Theory and Techniques, 1975, pp. 486-492. [13] S. Ulker, ‘Particle Swarm Optimization Application to Microwave Circuits,’ Microwave and Optical Technology Letters, 2008, vol. 50, no. 5, pp. 1333-1336. [14] S. W. Wedge, R. C. Compton , D. B. Rutledge and A. Gerstlauer, ‘Puff: Computer aided design for microwave integrated circuits’, 1998, version 2.1, California Institute of Technology, Pasadena, CA. [15] Sonnet Software URL: www.sonnetsoftware.com Authors EzgiDenizUlker received the B.Sc., M.Sc., and PhD degree in computer engineering from Girne American University, Girne, Cyprus, in 2008, 2010 and 2013 respectively. She worked as a teaching assistant in Girne American University between 2008-2010. She worked as a lecturer in Girne American University from 2010 till 2013. She has been working as an Assistant Professor in Girne American University since December 2013. Her research interests include optimization techniques and studying different algorithms and their applications to solve different optimization and design problems. She authored and coauthored technical publications in the areas of optimization and metaheuristic algorithms. She is a member of IEEE and IEEE Computer Society. SadikUlker received the B.Sc., M.E. and Ph.D. degree in electrical engineering from University of Virginia, Charlottesville, VA, USA, in 1996, 1999, and 2002 respectively. He worked in the UVA Microwaves and Semiconductor Devices Laboratory between 1996-2001 as a research assistant. Later he worked in UVA Microwaves Lab as a Research Associate for one year. He joined Girne American University, Girne, Cyprus in September 2002. He was a member of electrical and electronics engineering department as an Assistant Professor until 2009. In 2009 he was promoted to Associate Professor status and in 2013 he was promoted to Professor status in the Electrical and Electronics Engineering Department. He has also been the vice-rector of the Girne American University responsible from academic affairs since April 2009. His research interests include Microwave Active Circuits, Microwave Measurement Techniques, Numerical Methods, and Metaheuristic Algorithms and their applications to design problems. He has authored and coauthored technical publications in the areas of submillimeter wavelength measurements and particle swarm optimization technique. He is a member of IEEE and Eta Kappa Nu. He is also the recipient of Louis T. Rader Chairpersons award in 2001. 133