SlideShare una empresa de Scribd logo
1 de 18
Presentation on:double integral
 
0 2
sin(y) cos(x) 1 dy dx
 
 
  
y
y 2
0
cos(y) ycos(x) y dx


 
     
0
2 3 3 cos(x d) x

    
0
2x 3 x 3 sin(x)

      
2
2 3   
R
Let f(x,y) sin(y) cos(x) 1 and let R be the region in the xy-plane bounded
by x 0,x ,y 2 ,and y . Calculate f(x,y) dA :
  
        
is a function that sweeps out
vertical area cross sections f
2 3 3 cos(x)
rom x 0 to x .
   
  
If we integrate these area cross sections,
we accumulate the volume of the solid:
 
2 0
sin(y) cos(x) 1 dx dy
 
 
  
x
x 0
2
xsin(y) sin(x) x dy



 
    
2
sin(y dy)

 
  

 
      2
y cos(y)
2
2 3   
R R R
Calculate f(x,y) dA by computing f(x,y) dy dx instead of f(x,y) dx dy.  
is a function that sweeps out
horizontal area cross sections from y 2
to y . If we integrate these area cross
sections, we accumulate the volume of the solid:
sin(y)
  
 
  
d b
c a
1) Set up f(x,y) dx dy.
d d
x b
x a
c c
2) Hold y constant and
integrate with respect to x:
F(x,y) dy F(b,y) F(a,y) dy


        
R
Let z f(x,y) be a surface and let R be the rectangular region in the
xy-plane bounded by a x b and c y d. Calculate f(x,y) dA :

    
d
c
3) F(b,y) F(a,y) is a function of y
that measures the area of horizontal
cross sections between y c and y d.
So we can integrate these area cross
sections to get our volume:
F(b,y) F(a,y) dy

 
  
b d
a c
1) Set up f(x,y) dy dx.
b b
x d
x c
a a
2) Hold x constant and
integrate with respect to y:
G(x,y) dx G(x,d) G(x,c) dx


        
b
a
3) G(x,d) G(x,c) is a function of x
that measures the area of vertical
cross sections between x a and x b.
So we can integrate these area cross
sections to get our volume:
G(x,d) G(x,c) dx

 
  
 
3 4
3 4
2sin(xy) 1 dx dy
 
 
x 43
3 x 4
2cos(xy)
x dy
y

 
 
   
 

3
3
2cos(4y) 2cos( 4y)
4 ( 4) dy
y y
    
          
    

3
3
8 dy

 
y 3
y 3
8y


   
48 
R
Let f(x,y) 2sin(xy) 1 and let R be the region in the xy-plane bounded by
x 4,x 4,y 3,and y 3. Calculate f(x,y) dA :
 
      
How did this end up negative??
2 2
2
R
Let f(x,y) x y 3 and let R be the region in the xy-plane bounded above by
y x 4 and below by y 5. Calculate f(x,y) dA :
  
     
2
y3 3
2
3 y 5
x 4
y
yx 3y dx
3
 
 
 
   
 

6
2 4
3
3
x
90 10x 3x dx
3
 
  
 
  
R
f(x,y) dA
 
highright
left lowy (x)
y (x)x
2 2
x
x y 3 dy dx    2
high
y (x) x 4  
low
y (x) 5 
left
x 3  right
x 3
 
2
2 2
3
5
4
3
x
x y 3 dy dx

 

   
6
2 4 x
90 10x 3x is a function that sweeps
3
out vertical area cross sections from 3 to 3.
  

6
2 4
If we integrate these cross sections given by
x
90 10x 3x from x 3 to x 3,
3
we accumulate the volume of the solid:
     
2 2
2
R
Let f(x,y) x y 3 and let R be the region in the xy-plane bounded above by
y x 4 and below by y 5. Calculate f(x,y) dA :
  
     
6
2 4
3
3
x
90 10x 3x dx
3
 
  
 
  
7
3 5
3
3
10 3 x
21
90x x x
3 5 
 
  
 
  
15516
35

R
Calculate f(x,y) dA again, but change the order of integration :
4 yx4
5 y
3
2
4x
x
y x 3x dy
3

 

 
    
 

2
4
5
26 4 y 2
y 4 y 2y 4 dyy
3 3
 
 


   

 

R
f(x,y) dA
 
ht ighop
bottom lowx (y)
x (y)y
y
2 2
x y 3 dx dy   
high
x (y) 4 y 
low
x (y) 4 y  
top
y 4
 2 2
44
4
y
5 y
x y 3 dx dy
 


   
2
26 4 y 2
y 4 y 2y 4 y is a function
3 3
that sweeps out horizontal area cross sections
from y 5 to y 4.

   
  
bottom
y 5 
2
26 4 y 2
y 4 y 2y 4 y is a function
3 3
that sweeps out horizontal area cross sections
from y 5 to y 4.

   
  
2 2
2
R
Let f(x,y) x y 3 and let R be the region in the xy-plane bounded above by
y x 4 and below by y 5. Calculate f(x,y) dA :
  
     
2
4
5
26 4 y 2
y 4 y 2y 4 dyy
3 3
 
 


   

 

 
4
3/2 2
5
4
(4 y) 15y 41y 261
105 
 
    
 

15516
35

   
 






      
2
5 4 y
2 2 2
4 yx3 44
3
2
5
x y 3 dy dx and x y 3 dx dy compute
the exact same thing!!!
high
x (y) 4 y 
low
x (y) 4 y  
top
y 4
bottom
y 5 
2
high
y (x) x 4  
low
y (x) 5 
left
x 3  right
x 3
We have changed the order of integration. This works whenever
we can bound the curve with top/bottom bounding functions
or left/right bounding functions.
right high
left low
x y (x)
x y (x)
1) Set up f(x,y) dy dx 
right right
high
low
left left
x x
y y (x)
high lowy y (x)
x x
2) Hold x constant and
integrate with respect to y:
F(x,y) dx F(x,y (x)) F(x,y (x)) dx


        
R
Let z f(x,y) be a surface and let R be the non-rectangular region in the
xy-plane bounded by y f(x) on top and y g(x) on bottom. Calculate f(x,y) dA :

  
high low
left right
high
3) F(x,y (x)) F(x,y (x)) is a function
of x that measures the area of vertical
cross sections between x x and x x .
So we can integrate these area cross
sections to get our volume:
F(x,y (x)) F(x
  
 

right
left
x
low
x
,y (x)) dx 
 
Likewise for the order
integration being reversed.
Old Way:
    2
Let R be the region in the xy-plane from Example 4 and 5 that is bounded above
by y x 4 and below by y 5. Find the area of R.
    
   
3
2
3
x 4 5 dx
R
New Way:
 

  
3
2
3
x 9 dx

 
   
 
3
3
3
x
9x
3
 36
 
 
  
2
3 x 4
3 5
1 dy dx
R
1 dA
 


   
23
y x 4
y 5
3
y dx
    
    
3
2
3
x 4 5 dx
 R
R
Claim: For a region R, Area 1 dA
It works!!!
The two intervals determine the region of integration R on the iterated integral
    
high
low
t
R t
x' n x((t)
n m
dA dtm x(t),y(t t),
x y
y() '(t)t) y
  
   
  
 
low high
Let R be a region in the xy-plane whose boundary is parameterized
by (x(t),y(t)) for . Then the following formula hot :t st ld 
Main Idea: You can compute a double integral
as a single integral, as long as you have
a reasonable parameterization of th boundary
cu
e
rve.
low high
Main Rule: For this formula to hold:
1) Your parameterization must be counterclockwise.
2) Your must bring you around the
boundary curve exactly ONCE.
3) Your must be a sibound mple
t
c
t
l
t
oary sedcu curve.rve
 
22
R
Example 6 : Let f(x,y) y xy 9 and let R by the region in the xy-plane
yx
whose boundary is described by the ellipse 1.
3 4
Find f(x,y) dx dy :
  
  
   
   

   Let x(t),y(t) 3cos(t),4sin(t) tfor 0 2  
    
high
lowR
t
t
m x(t x'),y(t
n m
Gauss-Green: dx dy dt
x
n x(t),y(t y( '
y
() tt) ))
  
   
  
 
 
x
0
Set f(s,y)n ,y dsx    
x
0
y sy 9 ds  
x
2
0
s y
sy 9s
2
 
   
 2
x y
xy 9x
2
 
   y'(t)x'(t) 3sin(tFurther, , ,4co )) .s(t
    
high
low
t
t
n x(t),y(t y'(x'(t t)Plug in : dm x(t), t)t )y( ) 
  2
n x(t),y(t) 12sin(t)cos(t) 18cos (t)sin(t) 27S to cos( ) 
22
Example 6 : Let f(x,y) y xy 9 and let R by the region in the xy-plane
yx
whose boundary is described by the ellipse 1.
3 4
  
  
   
   
    
high
low
t
t
x' n x
Plug into Gaus
(t),y(t y'(t(t) )m x(t),y(t
s-Green :
) dt) 
  2
2
0
12sin(t)cos(t) 18cos (t)sin d(t) 27co( 3si s(t) t(4cos(t)t )n( ))0

  
 
2
2 3 2
0
48cos (t)sin(t) 72cos (t)sin(t) 108cos (t) dt

  
 
  2
low high
n x(t),y(t) 12sin(t)cos(t) 18cos (t)sin(t)
[t ,t ] [0
y'(t) 4cos(t)
x'(t) 3si
m x(t),y(t) 0
,2 ]
27cos(t)
n(t)
 


k 1 k 1
b
k
a
k 1 k 1
b
k
a
2
(
c
(a)
(
sin (b) sin a)
Hint: sin (t) os(t)dt
k 1 k 1
cos (b) cos
and cos in(t)dt
k 1 k 1
1 cos(2t)
and cos (t)
t)
2
s
 
 
 
 

 
 




108 
 The integral of an integral
 Another Method for finding
• Volume
• Mass density
• Centers of mass
• Joint probability
• Expected value
 Fibuni’s Theorem states that if f is continuous on a plane
region R
Integrate with respect to x
first then y when you have a
region R that is bounded on
the left and right by two
functions of y:
Integrate with respect to y
first then x when you have a
region R that is bounded on
the top and bottom by two
functions of x:
Use Gauss-Green when
you have a region R whose
boundary you can
parameterize with a single
function of t, (x(t),y(t)) for
tlow ≤ t ≤ thigh.
 
right high
left low
x y (x)
x y (x)
f(x,y) dy dx  
high
low
t
t
n x(t),y(t) y'(t) dt
 low high
t t t
(x(t),y(t))
R
 
hightop
bottom low
x (y)y
y x (y)
f(x,y) dy dx
high
y (x)
Rlow
x (y)
high
x (y)
R

Más contenido relacionado

La actualidad más candente

Homogeneous Linear Differential Equations
 Homogeneous Linear Differential Equations Homogeneous Linear Differential Equations
Homogeneous Linear Differential EquationsAMINULISLAM439
 
Finding the area under a curve using integration
Finding the area under a curve using integrationFinding the area under a curve using integration
Finding the area under a curve using integrationChristopher Chibangu
 
Lesson 11: Limits and Continuity
Lesson 11: Limits and ContinuityLesson 11: Limits and Continuity
Lesson 11: Limits and ContinuityMatthew Leingang
 
Bisection theorem proof and convergence analysis
Bisection theorem proof and convergence analysisBisection theorem proof and convergence analysis
Bisection theorem proof and convergence analysisHamza Nawaz
 
Gaussian elimination method & homogeneous linear equation
Gaussian elimination method & homogeneous linear equationGaussian elimination method & homogeneous linear equation
Gaussian elimination method & homogeneous linear equationStudent
 
Completing the square
Completing the squareCompleting the square
Completing the squareRon Eick
 
Integrals by Trigonometric Substitution
Integrals by Trigonometric SubstitutionIntegrals by Trigonometric Substitution
Integrals by Trigonometric SubstitutionPablo Antuna
 
Higher Order Differential Equation
Higher Order Differential EquationHigher Order Differential Equation
Higher Order Differential EquationShrey Patel
 
Double Integral Powerpoint
Double Integral PowerpointDouble Integral Powerpoint
Double Integral Powerpointoaishnosaj
 
Simpson’s one third and weddle's rule
Simpson’s one third and weddle's ruleSimpson’s one third and weddle's rule
Simpson’s one third and weddle's rulezahid6
 
Double integration in polar form with change in variable (harsh gupta)
Double integration in polar form with change in variable (harsh gupta)Double integration in polar form with change in variable (harsh gupta)
Double integration in polar form with change in variable (harsh gupta)Harsh Gupta
 
Hyperbolic functions dfs
Hyperbolic functions dfsHyperbolic functions dfs
Hyperbolic functions dfsFarhana Shaheen
 
Linear transformations and matrices
Linear transformations and matricesLinear transformations and matrices
Linear transformations and matricesEasyStudy3
 
Laplace transform and its application
Laplace transform and its applicationLaplace transform and its application
Laplace transform and its applicationmayur1347
 
Changing the subject of a formula (roots and powers)
Changing the subject of a formula (roots and powers)Changing the subject of a formula (roots and powers)
Changing the subject of a formula (roots and powers)Alona Hall
 

La actualidad más candente (20)

Homogeneous Linear Differential Equations
 Homogeneous Linear Differential Equations Homogeneous Linear Differential Equations
Homogeneous Linear Differential Equations
 
Finding the area under a curve using integration
Finding the area under a curve using integrationFinding the area under a curve using integration
Finding the area under a curve using integration
 
Lesson 11: Limits and Continuity
Lesson 11: Limits and ContinuityLesson 11: Limits and Continuity
Lesson 11: Limits and Continuity
 
Bisection theorem proof and convergence analysis
Bisection theorem proof and convergence analysisBisection theorem proof and convergence analysis
Bisection theorem proof and convergence analysis
 
Gaussian elimination method & homogeneous linear equation
Gaussian elimination method & homogeneous linear equationGaussian elimination method & homogeneous linear equation
Gaussian elimination method & homogeneous linear equation
 
Completing the square
Completing the squareCompleting the square
Completing the square
 
Integrals by Trigonometric Substitution
Integrals by Trigonometric SubstitutionIntegrals by Trigonometric Substitution
Integrals by Trigonometric Substitution
 
Linear and non linear equation
Linear and non linear equationLinear and non linear equation
Linear and non linear equation
 
Higher Order Differential Equation
Higher Order Differential EquationHigher Order Differential Equation
Higher Order Differential Equation
 
Power series
Power seriesPower series
Power series
 
Double Integral Powerpoint
Double Integral PowerpointDouble Integral Powerpoint
Double Integral Powerpoint
 
Simpson’s one third and weddle's rule
Simpson’s one third and weddle's ruleSimpson’s one third and weddle's rule
Simpson’s one third and weddle's rule
 
Double integration in polar form with change in variable (harsh gupta)
Double integration in polar form with change in variable (harsh gupta)Double integration in polar form with change in variable (harsh gupta)
Double integration in polar form with change in variable (harsh gupta)
 
Hyperbolic functions dfs
Hyperbolic functions dfsHyperbolic functions dfs
Hyperbolic functions dfs
 
Linear transformations and matrices
Linear transformations and matricesLinear transformations and matrices
Linear transformations and matrices
 
FPDE presentation
FPDE presentationFPDE presentation
FPDE presentation
 
Laplace transform and its application
Laplace transform and its applicationLaplace transform and its application
Laplace transform and its application
 
Sequence and series
Sequence and seriesSequence and series
Sequence and series
 
Changing the subject of a formula (roots and powers)
Changing the subject of a formula (roots and powers)Changing the subject of a formula (roots and powers)
Changing the subject of a formula (roots and powers)
 
Laplace transform
Laplace transformLaplace transform
Laplace transform
 

Destacado

Multi variable integral
Multi variable integralMulti variable integral
Multi variable integralJ M
 
Multiple integrals
Multiple integralsMultiple integrals
Multiple integralsTarun Gehlot
 
B.tech ii unit-2 material beta gamma function
B.tech ii unit-2 material beta gamma functionB.tech ii unit-2 material beta gamma function
B.tech ii unit-2 material beta gamma functionRai University
 
Btech_II_ engineering mathematics_unit3
Btech_II_ engineering mathematics_unit3Btech_II_ engineering mathematics_unit3
Btech_II_ engineering mathematics_unit3Rai University
 
4. solving inequalities
4. solving inequalities4. solving inequalities
4. solving inequalitiesMedhaKetkar
 
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICSRai University
 
Direct Variation
Direct VariationDirect Variation
Direct Variationswartzje
 
Chapter 2 : EQUATIONS AND INEQUALITIES
Chapter 2 : EQUATIONS AND INEQUALITIESChapter 2 : EQUATIONS AND INEQUALITIES
Chapter 2 : EQUATIONS AND INEQUALITIESNurul Ainn
 
Applications of Integrations
Applications of IntegrationsApplications of Integrations
Applications of Integrationsitutor
 
INTEGRALES DOBLES
INTEGRALES DOBLESINTEGRALES DOBLES
INTEGRALES DOBLESclaualemana
 
Integrales multiples
Integrales multiplesIntegrales multiples
Integrales multiplesEms Es
 
Integral Calculus
Integral CalculusIntegral Calculus
Integral Calculusitutor
 
Integrals and its applications
Integrals  and  its applicationsIntegrals  and  its applications
Integrals and its applicationsPoojith Chowdhary
 

Destacado (20)

Multi variable integral
Multi variable integralMulti variable integral
Multi variable integral
 
Multiple integrals
Multiple integralsMultiple integrals
Multiple integrals
 
B.tech ii unit-2 material beta gamma function
B.tech ii unit-2 material beta gamma functionB.tech ii unit-2 material beta gamma function
B.tech ii unit-2 material beta gamma function
 
Btech_II_ engineering mathematics_unit3
Btech_II_ engineering mathematics_unit3Btech_II_ engineering mathematics_unit3
Btech_II_ engineering mathematics_unit3
 
1523 double integrals
1523 double integrals1523 double integrals
1523 double integrals
 
Integrales dobles
Integrales  doblesIntegrales  dobles
Integrales dobles
 
4. solving inequalities
4. solving inequalities4. solving inequalities
4. solving inequalities
 
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
 
Direct Variation
Direct VariationDirect Variation
Direct Variation
 
Integrales Dobles
Integrales DoblesIntegrales Dobles
Integrales Dobles
 
Chapter 2 : EQUATIONS AND INEQUALITIES
Chapter 2 : EQUATIONS AND INEQUALITIESChapter 2 : EQUATIONS AND INEQUALITIES
Chapter 2 : EQUATIONS AND INEQUALITIES
 
Inequalities
InequalitiesInequalities
Inequalities
 
Applications of Integrations
Applications of IntegrationsApplications of Integrations
Applications of Integrations
 
INTEGRALES DOBLES
INTEGRALES DOBLESINTEGRALES DOBLES
INTEGRALES DOBLES
 
Integrales multiples
Integrales multiplesIntegrales multiples
Integrales multiples
 
Integration Ppt
Integration PptIntegration Ppt
Integration Ppt
 
Integrales multiples
Integrales multiplesIntegrales multiples
Integrales multiples
 
Integral calculus
Integral calculusIntegral calculus
Integral calculus
 
Integral Calculus
Integral CalculusIntegral Calculus
Integral Calculus
 
Integrals and its applications
Integrals  and  its applicationsIntegrals  and  its applications
Integrals and its applications
 

Similar a Maths-double integrals

double integral.pptx
double integral.pptxdouble integral.pptx
double integral.pptxssuser521537
 
25 surface area
25 surface area25 surface area
25 surface areamath267
 
Notes up to_ch7_sec3
Notes up to_ch7_sec3Notes up to_ch7_sec3
Notes up to_ch7_sec3neenos
 
Double_Integral.pdf
Double_Integral.pdfDouble_Integral.pdf
Double_Integral.pdfd00a7ece
 
Areas of bounded regions
Areas of bounded regionsAreas of bounded regions
Areas of bounded regionsHimani Asija
 
The chain rule
The chain ruleThe chain rule
The chain ruleJ M
 
DOUBLE INTEGRALS PPT GTU CALCULUS (2110014)
DOUBLE INTEGRALS PPT GTU CALCULUS (2110014) DOUBLE INTEGRALS PPT GTU CALCULUS (2110014)
DOUBLE INTEGRALS PPT GTU CALCULUS (2110014) Panchal Anand
 
7.1 area between curves
7.1 area between curves7.1 area between curves
7.1 area between curvesdicosmo178
 
7.1 area between curves
7.1 area between curves7.1 area between curves
7.1 area between curvesdicosmo178
 
exponential functions and their graphs.ppt
exponential functions and their graphs.pptexponential functions and their graphs.ppt
exponential functions and their graphs.pptTonetSalagoCantere
 
22 double integrals
22 double integrals22 double integrals
22 double integralsmath267
 
FINAL PROJECT, MATH 251, FALL 2015[The project is Due Mond.docx
FINAL PROJECT, MATH 251, FALL 2015[The project is Due Mond.docxFINAL PROJECT, MATH 251, FALL 2015[The project is Due Mond.docx
FINAL PROJECT, MATH 251, FALL 2015[The project is Due Mond.docxvoversbyobersby
 
Y11+gdc+maximize+your+use+of+the++ev+2
Y11+gdc+maximize+your+use+of+the++ev+2Y11+gdc+maximize+your+use+of+the++ev+2
Y11+gdc+maximize+your+use+of+the++ev+2estelav
 
Mathematics 3.pdf civil engineering concrete
Mathematics 3.pdf civil engineering concreteMathematics 3.pdf civil engineering concrete
Mathematics 3.pdf civil engineering concretemocr84810
 

Similar a Maths-double integrals (20)

double integral.pptx
double integral.pptxdouble integral.pptx
double integral.pptx
 
25 surface area
25 surface area25 surface area
25 surface area
 
Notes up to_ch7_sec3
Notes up to_ch7_sec3Notes up to_ch7_sec3
Notes up to_ch7_sec3
 
Notes up to_ch7_sec3
Notes up to_ch7_sec3Notes up to_ch7_sec3
Notes up to_ch7_sec3
 
0 calc7-1
0 calc7-10 calc7-1
0 calc7-1
 
Double_Integral.pdf
Double_Integral.pdfDouble_Integral.pdf
Double_Integral.pdf
 
multiple intrigral lit
multiple intrigral litmultiple intrigral lit
multiple intrigral lit
 
Areas of bounded regions
Areas of bounded regionsAreas of bounded regions
Areas of bounded regions
 
The chain rule
The chain ruleThe chain rule
The chain rule
 
Double integration
Double integrationDouble integration
Double integration
 
DOUBLE INTEGRALS PPT GTU CALCULUS (2110014)
DOUBLE INTEGRALS PPT GTU CALCULUS (2110014) DOUBLE INTEGRALS PPT GTU CALCULUS (2110014)
DOUBLE INTEGRALS PPT GTU CALCULUS (2110014)
 
7.1 area between curves
7.1 area between curves7.1 area between curves
7.1 area between curves
 
7.1 area between curves
7.1 area between curves7.1 area between curves
7.1 area between curves
 
exponential functions and their graphs.ppt
exponential functions and their graphs.pptexponential functions and their graphs.ppt
exponential functions and their graphs.ppt
 
22 double integrals
22 double integrals22 double integrals
22 double integrals
 
Tcu12 crc multi
Tcu12 crc multiTcu12 crc multi
Tcu12 crc multi
 
FINAL PROJECT, MATH 251, FALL 2015[The project is Due Mond.docx
FINAL PROJECT, MATH 251, FALL 2015[The project is Due Mond.docxFINAL PROJECT, MATH 251, FALL 2015[The project is Due Mond.docx
FINAL PROJECT, MATH 251, FALL 2015[The project is Due Mond.docx
 
Y11+gdc+maximize+your+use+of+the++ev+2
Y11+gdc+maximize+your+use+of+the++ev+2Y11+gdc+maximize+your+use+of+the++ev+2
Y11+gdc+maximize+your+use+of+the++ev+2
 
Mathematics 3.pdf civil engineering concrete
Mathematics 3.pdf civil engineering concreteMathematics 3.pdf civil engineering concrete
Mathematics 3.pdf civil engineering concrete
 
Multiple ppt
Multiple pptMultiple ppt
Multiple ppt
 

Más de mihir jain

Schering bridge
Schering bridge Schering bridge
Schering bridge mihir jain
 
signal & system inverse z-transform
signal & system inverse z-transformsignal & system inverse z-transform
signal & system inverse z-transformmihir jain
 
Types of system
Types of system Types of system
Types of system mihir jain
 
euler's theorem
euler's theoremeuler's theorem
euler's theoremmihir jain
 
inverse z-transform ppt
inverse z-transform pptinverse z-transform ppt
inverse z-transform pptmihir jain
 
Ct signal operations
Ct signal operationsCt signal operations
Ct signal operationsmihir jain
 
KARNAUGH MAP(K-MAP)
KARNAUGH MAP(K-MAP)KARNAUGH MAP(K-MAP)
KARNAUGH MAP(K-MAP)mihir jain
 
SIGNAL OPERATIONS
SIGNAL OPERATIONSSIGNAL OPERATIONS
SIGNAL OPERATIONSmihir jain
 
SPECIAL PURPOSE DIODE
SPECIAL PURPOSE DIODESPECIAL PURPOSE DIODE
SPECIAL PURPOSE DIODEmihir jain
 
2 port network
2 port network2 port network
2 port networkmihir jain
 
Advance engineering mathematics
Advance engineering mathematicsAdvance engineering mathematics
Advance engineering mathematicsmihir jain
 

Más de mihir jain (14)

Schering bridge
Schering bridge Schering bridge
Schering bridge
 
signal & system inverse z-transform
signal & system inverse z-transformsignal & system inverse z-transform
signal & system inverse z-transform
 
Types of system
Types of system Types of system
Types of system
 
Pump theory
Pump theory Pump theory
Pump theory
 
euler's theorem
euler's theoremeuler's theorem
euler's theorem
 
Ozone layer
Ozone layer Ozone layer
Ozone layer
 
inverse z-transform ppt
inverse z-transform pptinverse z-transform ppt
inverse z-transform ppt
 
Ch1
Ch1Ch1
Ch1
 
Ct signal operations
Ct signal operationsCt signal operations
Ct signal operations
 
KARNAUGH MAP(K-MAP)
KARNAUGH MAP(K-MAP)KARNAUGH MAP(K-MAP)
KARNAUGH MAP(K-MAP)
 
SIGNAL OPERATIONS
SIGNAL OPERATIONSSIGNAL OPERATIONS
SIGNAL OPERATIONS
 
SPECIAL PURPOSE DIODE
SPECIAL PURPOSE DIODESPECIAL PURPOSE DIODE
SPECIAL PURPOSE DIODE
 
2 port network
2 port network2 port network
2 port network
 
Advance engineering mathematics
Advance engineering mathematicsAdvance engineering mathematics
Advance engineering mathematics
 

Último

Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girlsssuser7cb4ff
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...VICTOR MAESTRE RAMIREZ
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024hassan khalil
 
An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...Chandu841456
 
Introduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECHIntroduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECHC Sai Kiran
 
Electronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfElectronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfme23b1001
 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AIabhishek36461
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.eptoze12
 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfAsst.prof M.Gokilavani
 
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)Dr SOUNDIRARAJ N
 
Arduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptArduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptSAURABHKUMAR892774
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile servicerehmti665
 
Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxPoojaBan
 
Work Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvWork Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvLewisJB
 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidNikhilNagaraju
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxJoão Esperancinha
 
Effects of rheological properties on mixing
Effects of rheological properties on mixingEffects of rheological properties on mixing
Effects of rheological properties on mixingviprabot1
 

Último (20)

Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girls
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...
 
young call girls in Green Park🔝 9953056974 🔝 escort Service
young call girls in Green Park🔝 9953056974 🔝 escort Serviceyoung call girls in Green Park🔝 9953056974 🔝 escort Service
young call girls in Green Park🔝 9953056974 🔝 escort Service
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024
 
An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...
 
Introduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECHIntroduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECH
 
Electronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfElectronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdf
 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AI
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.
 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
 
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
 
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
 
Arduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptArduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.ppt
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile service
 
Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptx
 
Work Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvWork Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvv
 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfid
 
Design and analysis of solar grass cutter.pdf
Design and analysis of solar grass cutter.pdfDesign and analysis of solar grass cutter.pdf
Design and analysis of solar grass cutter.pdf
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
 
Effects of rheological properties on mixing
Effects of rheological properties on mixingEffects of rheological properties on mixing
Effects of rheological properties on mixing
 

Maths-double integrals

  • 2.   0 2 sin(y) cos(x) 1 dy dx        y y 2 0 cos(y) ycos(x) y dx           0 2 3 3 cos(x d) x       0 2x 3 x 3 sin(x)         2 2 3    R Let f(x,y) sin(y) cos(x) 1 and let R be the region in the xy-plane bounded by x 0,x ,y 2 ,and y . Calculate f(x,y) dA :             is a function that sweeps out vertical area cross sections f 2 3 3 cos(x) rom x 0 to x .        If we integrate these area cross sections, we accumulate the volume of the solid:
  • 3.   2 0 sin(y) cos(x) 1 dx dy        x x 0 2 xsin(y) sin(x) x dy           2 sin(y dy)                2 y cos(y) 2 2 3    R R R Calculate f(x,y) dA by computing f(x,y) dy dx instead of f(x,y) dx dy.   is a function that sweeps out horizontal area cross sections from y 2 to y . If we integrate these area cross sections, we accumulate the volume of the solid: sin(y)        
  • 4. d b c a 1) Set up f(x,y) dx dy. d d x b x a c c 2) Hold y constant and integrate with respect to x: F(x,y) dy F(b,y) F(a,y) dy            R Let z f(x,y) be a surface and let R be the rectangular region in the xy-plane bounded by a x b and c y d. Calculate f(x,y) dA :       d c 3) F(b,y) F(a,y) is a function of y that measures the area of horizontal cross sections between y c and y d. So we can integrate these area cross sections to get our volume: F(b,y) F(a,y) dy       b d a c 1) Set up f(x,y) dy dx. b b x d x c a a 2) Hold x constant and integrate with respect to y: G(x,y) dx G(x,d) G(x,c) dx            b a 3) G(x,d) G(x,c) is a function of x that measures the area of vertical cross sections between x a and x b. So we can integrate these area cross sections to get our volume: G(x,d) G(x,c) dx      
  • 5.   3 4 3 4 2sin(xy) 1 dx dy     x 43 3 x 4 2cos(xy) x dy y             3 3 2cos(4y) 2cos( 4y) 4 ( 4) dy y y                       3 3 8 dy    y 3 y 3 8y       48  R Let f(x,y) 2sin(xy) 1 and let R be the region in the xy-plane bounded by x 4,x 4,y 3,and y 3. Calculate f(x,y) dA :          How did this end up negative??
  • 6. 2 2 2 R Let f(x,y) x y 3 and let R be the region in the xy-plane bounded above by y x 4 and below by y 5. Calculate f(x,y) dA :          2 y3 3 2 3 y 5 x 4 y yx 3y dx 3              6 2 4 3 3 x 90 10x 3x dx 3           R f(x,y) dA   highright left lowy (x) y (x)x 2 2 x x y 3 dy dx    2 high y (x) x 4   low y (x) 5  left x 3  right x 3   2 2 2 3 5 4 3 x x y 3 dy dx         6 2 4 x 90 10x 3x is a function that sweeps 3 out vertical area cross sections from 3 to 3.    
  • 7. 6 2 4 If we integrate these cross sections given by x 90 10x 3x from x 3 to x 3, 3 we accumulate the volume of the solid:       2 2 2 R Let f(x,y) x y 3 and let R be the region in the xy-plane bounded above by y x 4 and below by y 5. Calculate f(x,y) dA :          6 2 4 3 3 x 90 10x 3x dx 3           7 3 5 3 3 10 3 x 21 90x x x 3 5            15516 35 
  • 8. R Calculate f(x,y) dA again, but change the order of integration : 4 yx4 5 y 3 2 4x x y x 3x dy 3               2 4 5 26 4 y 2 y 4 y 2y 4 dyy 3 3               R f(x,y) dA   ht ighop bottom lowx (y) x (y)y y 2 2 x y 3 dx dy    high x (y) 4 y  low x (y) 4 y   top y 4  2 2 44 4 y 5 y x y 3 dx dy         2 26 4 y 2 y 4 y 2y 4 y is a function 3 3 that sweeps out horizontal area cross sections from y 5 to y 4.         bottom y 5 
  • 9. 2 26 4 y 2 y 4 y 2y 4 y is a function 3 3 that sweeps out horizontal area cross sections from y 5 to y 4.         2 2 2 R Let f(x,y) x y 3 and let R be the region in the xy-plane bounded above by y x 4 and below by y 5. Calculate f(x,y) dA :          2 4 5 26 4 y 2 y 4 y 2y 4 dyy 3 3                 4 3/2 2 5 4 (4 y) 15y 41y 261 105            15516 35 
  • 10.                    2 5 4 y 2 2 2 4 yx3 44 3 2 5 x y 3 dy dx and x y 3 dx dy compute the exact same thing!!! high x (y) 4 y  low x (y) 4 y   top y 4 bottom y 5  2 high y (x) x 4   low y (x) 5  left x 3  right x 3 We have changed the order of integration. This works whenever we can bound the curve with top/bottom bounding functions or left/right bounding functions.
  • 11. right high left low x y (x) x y (x) 1) Set up f(x,y) dy dx  right right high low left left x x y y (x) high lowy y (x) x x 2) Hold x constant and integrate with respect to y: F(x,y) dx F(x,y (x)) F(x,y (x)) dx            R Let z f(x,y) be a surface and let R be the non-rectangular region in the xy-plane bounded by y f(x) on top and y g(x) on bottom. Calculate f(x,y) dA :     high low left right high 3) F(x,y (x)) F(x,y (x)) is a function of x that measures the area of vertical cross sections between x x and x x . So we can integrate these area cross sections to get our volume: F(x,y (x)) F(x       right left x low x ,y (x)) dx    Likewise for the order integration being reversed.
  • 12. Old Way:     2 Let R be the region in the xy-plane from Example 4 and 5 that is bounded above by y x 4 and below by y 5. Find the area of R.          3 2 3 x 4 5 dx R New Way:       3 2 3 x 9 dx          3 3 3 x 9x 3  36        2 3 x 4 3 5 1 dy dx R 1 dA         23 y x 4 y 5 3 y dx           3 2 3 x 4 5 dx  R R Claim: For a region R, Area 1 dA It works!!!
  • 13. The two intervals determine the region of integration R on the iterated integral
  • 14.      high low t R t x' n x((t) n m dA dtm x(t),y(t t), x y y() '(t)t) y             low high Let R be a region in the xy-plane whose boundary is parameterized by (x(t),y(t)) for . Then the following formula hot :t st ld  Main Idea: You can compute a double integral as a single integral, as long as you have a reasonable parameterization of th boundary cu e rve. low high Main Rule: For this formula to hold: 1) Your parameterization must be counterclockwise. 2) Your must bring you around the boundary curve exactly ONCE. 3) Your must be a sibound mple t c t l t oary sedcu curve.rve  
  • 15. 22 R Example 6 : Let f(x,y) y xy 9 and let R by the region in the xy-plane yx whose boundary is described by the ellipse 1. 3 4 Find f(x,y) dx dy :                   Let x(t),y(t) 3cos(t),4sin(t) tfor 0 2        high lowR t t m x(t x'),y(t n m Gauss-Green: dx dy dt x n x(t),y(t y( ' y () tt) ))               x 0 Set f(s,y)n ,y dsx     x 0 y sy 9 ds   x 2 0 s y sy 9s 2        2 x y xy 9x 2      y'(t)x'(t) 3sin(tFurther, , ,4co )) .s(t      high low t t n x(t),y(t y'(x'(t t)Plug in : dm x(t), t)t )y( )    2 n x(t),y(t) 12sin(t)cos(t) 18cos (t)sin(t) 27S to cos( ) 
  • 16. 22 Example 6 : Let f(x,y) y xy 9 and let R by the region in the xy-plane yx whose boundary is described by the ellipse 1. 3 4                    high low t t x' n x Plug into Gaus (t),y(t y'(t(t) )m x(t),y(t s-Green : ) dt)    2 2 0 12sin(t)cos(t) 18cos (t)sin d(t) 27co( 3si s(t) t(4cos(t)t )n( ))0       2 2 3 2 0 48cos (t)sin(t) 72cos (t)sin(t) 108cos (t) dt         2 low high n x(t),y(t) 12sin(t)cos(t) 18cos (t)sin(t) [t ,t ] [0 y'(t) 4cos(t) x'(t) 3si m x(t),y(t) 0 ,2 ] 27cos(t) n(t)     k 1 k 1 b k a k 1 k 1 b k a 2 ( c (a) ( sin (b) sin a) Hint: sin (t) os(t)dt k 1 k 1 cos (b) cos and cos in(t)dt k 1 k 1 1 cos(2t) and cos (t) t) 2 s                  108 
  • 17.  The integral of an integral  Another Method for finding • Volume • Mass density • Centers of mass • Joint probability • Expected value  Fibuni’s Theorem states that if f is continuous on a plane region R
  • 18. Integrate with respect to x first then y when you have a region R that is bounded on the left and right by two functions of y: Integrate with respect to y first then x when you have a region R that is bounded on the top and bottom by two functions of x: Use Gauss-Green when you have a region R whose boundary you can parameterize with a single function of t, (x(t),y(t)) for tlow ≤ t ≤ thigh.   right high left low x y (x) x y (x) f(x,y) dy dx   high low t t n x(t),y(t) y'(t) dt  low high t t t (x(t),y(t)) R   hightop bottom low x (y)y y x (y) f(x,y) dy dx high y (x) Rlow x (y) high x (y) R