SlideShare una empresa de Scribd logo
1 de 7
Descargar para leer sin conexión
Pearls and Pitfalls of MR Diffusion
                                             in Clinical Neurology

Dr.	
  Alberto	
  Bizzi	
  
Neuroradiology	
  Unit	
  
Fondazione	
  IRCCS	
  Istituto	
  Neurologico	
  Carlo	
  Besta	
  
Milan,	
  Italy	
  
Email:	
  alberto_bizzi@fastwebnet.it	
  




          Diffusion	
   Tensor	
   Imaging	
   (DTI)(1)	
   measures	
   the	
   effects	
   of	
   tissue	
  
microstructure	
   on	
   the	
   random	
   walks	
   (brownian	
   motion)	
   of	
   water	
   molecules	
   in	
  
the	
   brain.	
   In	
   tissues	
   with	
   an	
   orderly	
   oriented	
   microstructure,	
   such	
   as	
   the	
  
cerebral	
  white	
  matter,	
  the	
  measured	
  diffusivity	
  of	
  water	
  varies	
  with	
  the	
  tissue’s	
  
orientation	
   (anisotropic	
   diffusion).	
   Water	
   diffuses	
   fastest	
   along	
   the	
   principal	
  
direction	
   of	
   the	
   fibers,	
   and	
   slowest	
   along	
   the	
   cross-­‐sectional	
   plane.	
   The	
   DTI	
  
model	
   provides	
   the	
   required	
   information	
   to	
   construct	
   a	
   diffusion	
   ellipsoid	
   in	
  
each	
   voxel	
   of	
   an	
   imaging	
   volume.	
   DTI	
   measures	
   the	
   diffusivities	
   of	
   water	
  
molecules	
   along	
   the	
   three	
   orthogonal	
   axes	
   of	
   the	
   ellipsoid	
   (eigenvalues)	
   and	
  
their	
   average	
   (mean	
   diffusivity).	
   Fractional	
   anisotropy	
   is	
   a	
   measure	
   of	
  
eccentricity	
  of	
  the	
  displacement	
  of	
  water	
  molecules.	
  In	
  the	
  healthy	
  human	
  brain	
  
probably	
  the	
  most	
  relevant	
  factor	
  affecting	
  fractional	
  anisotropy	
  is	
  the	
  intravoxel	
  
orientation	
  coherence	
  of	
  white	
  matter	
  fibers(2).	
  
          There	
   are	
   three	
   main	
   imaging	
   output	
   of	
   DTI	
   MR	
   imaging:	
   quantitative	
  
parametric	
  maps	
  displayed	
  in	
  gray	
  scale	
  (i.e.	
  fractional	
  anisotropy	
  maps),	
  color	
  
maps	
   showing	
   the	
   principal	
   orientation	
   of	
   diffusion	
   for	
   each	
   voxel	
   and	
   3	
  
dimensional	
  maps	
  showing	
  virtual	
  dissection	
  of	
  tracts	
  with	
  streamline	
  tracking	
  
methods.	
  
          In	
   the	
   interest	
   of	
   time	
   in	
   the	
   oral	
   presentation	
   we’ll	
   focus	
   on	
   diffusion	
  
MR	
   Tractography	
   and	
   its	
   clinical	
   application	
   in	
   brain	
   tumors,	
   stroke,	
   multiple	
  
sclerosis,	
   prion	
   disorders	
   and	
   neurodegenerative	
   diseases	
   (Alzheimer,	
  
Amyotrophic	
  Lateral	
  Sclerosis).	
  The	
  aim	
  of	
  MR	
  Tractography	
  or	
  fiber	
  tracking	
  is	
  
to	
   infer	
   the	
   three-­‐dimensional	
   trajectories	
   of	
   white	
   matter	
   bundles	
   by	
   piecing	
  
together	
   discrete	
   estimates	
   of	
   the	
   underlying	
   continuous	
   fiber	
   orientation	
   field	
  
measured	
  non-­‐invasively	
  with	
  DTI	
  data(3,	
  4).	
  	
  
           Fiber	
   tracking	
   algorithms	
   can	
   be	
   broadly	
   classified	
   into	
   two	
   types:	
  
deterministic	
  and	
  probabilistic.	
  Few	
  DTI	
  Tractography	
  atlases	
  for	
  virtual	
  in	
  vivo	
  
dissection	
   of	
   the	
   principal	
   human	
   white	
   matter	
   tracts	
   using	
   a	
   deterministic	
  
approach	
   have	
   been	
   recently	
   published(5-­‐7).	
   Few	
   limitations	
   of	
   fiber	
   tracking	
  
performed	
   with	
   the	
   deterministic	
   approach	
   motivated	
   the	
   development	
   of	
  
probabilistic	
  tracking	
  algorithms(5).	
  It	
  is	
  very	
  important	
  to	
  understand	
  well	
  the	
  
inherent	
   limitations	
   of	
   all	
   methods	
   of	
   DTI-­‐based	
   virtual	
   dissections	
   and	
  
measurements.	
  One	
  important	
  limitation	
  is	
  that	
  in	
  each	
  voxel	
  the	
  eigen	
  vector	
  is	
  
the	
  average	
  of	
  the	
  orientation	
  of	
  all	
  bundles	
  included	
  in	
  the	
  voxel.	
  In	
  volumes	
  of	
  
white	
   matter	
   with	
   many	
   crossing	
   bundles,	
   as	
   in	
   the	
   frontal	
   and	
   parietal	
  
paraventricular	
   white	
   matter,	
   fractional	
   anisotropy	
   is	
   low	
   and	
   the	
   degree	
   of	
  
uncertainty	
  in	
  the	
  estimation	
  of	
  bundle	
  orientation	
  increases.	
  
An	
   attempt	
   to	
   overcome	
   the	
   limitation	
   of	
   crossing	
   fibers	
   has	
   been	
   addressed	
  
with	
  the	
  development	
  of	
  more	
  sophisticated	
  imaging	
  acquisition	
  schemes	
  using	
  
high	
  angular	
  resolution	
  diffusion	
  imaging	
  (HARDI)(6).	
  
           It	
   is	
   important	
   to	
   emphasize	
   that,	
   given	
   the	
   relative	
   size	
   differences	
  
between	
   the	
   individual	
   axons	
   (1–5	
   micron)	
   and	
   voxels	
   (2–3	
   mm)	
   size,	
   it	
   is	
  
possible	
  to	
  observe	
  white	
  matter	
  anatomy	
  only	
  from	
  a	
  macroscopic	
  point	
  of	
  view	
  
with	
   MR	
   Tractography.	
   Notwithstanding,	
   the	
   anatomic	
   detail	
   provided	
   by	
   MR	
  
Tractography	
  with	
  10-­‐15	
  min	
  of	
  MR	
  acquisition	
  is	
  unparalleled.	
  
           Encouraging	
  results	
  with	
  DTI	
  have	
  been	
  reported	
  in	
  several	
  neurological	
  
disorders:	
   brain	
   tumors,	
   stroke,	
   multiple	
   sclerosis,	
   amyotrophic	
   lateral	
   sclerosis,	
  
Alzheimer	
   disease	
   and	
   other	
   dementias.	
   In	
   the	
   interest	
   of	
   time	
   we’ll	
   focus	
   on	
   the	
  
application	
   that	
   is	
   probably	
   closer	
   to	
   become	
   of	
   clinical	
   use:	
   diffusion	
   MR	
  
Tractography	
  in	
  presurgical	
  planning.	
  
           The	
   integration	
   of	
   functional	
   data	
   acquired	
   with	
   fMRI	
   and	
   MEG	
   into	
   the	
  
navigational	
  data	
  sets	
  has	
  improved	
  quick	
  identification	
  of	
  eloquent	
  cortex	
  with	
  
intraoperative	
   ESM	
   in	
   the	
   operating	
   room.	
   To	
   avoid	
   postoperative	
   neurological	
  
deficits,	
   however,	
   it	
   is	
   also	
   necessary	
   to	
   preserve	
   the	
   white	
   matter	
   tracts	
  
connecting	
  eloquent	
  cortex.	
  
Diffusion	
   MR	
   Tractography	
  has	
  recently	
  emerged	
  as	
  potentially	
  valuable	
  
clinical	
   tool	
   for	
   presurgical	
   planning(7-­‐9)	
   and	
   intraoperative	
   imaging-­‐guided	
  
navigation	
   in	
   the	
   operating	
   room(10).	
   Diffusion	
   MR	
   Tractography	
   can	
   provide	
  
the	
   neurosurgeon	
   with	
   additional	
   information	
   about	
   brain	
   anatomy,	
   pathology	
  
and	
  architecture	
  that	
  conventional	
  MRI	
  methods	
  cannot.	
  
           	
  




                                                                                                                                    	
  
Fig.	
   1	
   -­‐	
   Directionally	
   encoded	
   color	
   maps	
   in	
   a	
   65	
   years	
   old	
   male	
   with	
  
glioblastoma	
  multiforme	
  in	
  the	
  left	
  dorsolateral	
  prefrontal	
  region.	
  The	
  mass	
  has	
  
infiltrated	
   the	
   superior	
   longitudinal	
   fasciculus,	
   including	
   the	
   arcuate	
   fasciculus	
  
(displayed	
  in	
  green,	
  see	
  cursor).	
  
	
  

           The	
   directionally	
   encoded	
   color	
   maps,	
   with	
   hues	
   reflecting	
   tensor	
  
orientation	
   and	
   intensity	
   weighted	
   by	
   fractional	
   anisotropy,	
   provides	
   an	
  
aesthetic	
   and	
   informative	
   synthesis	
   of	
   tissue	
   microstructure	
   and	
   architecture.	
  
The	
   color	
   maps	
   are	
   a	
   promising	
   tool	
   for	
   delineation	
   of	
   tumor	
   extent	
   and	
  
infiltration.	
  DTI	
  color	
  maps	
  indicate	
  whether	
  a	
  mass	
  is	
  displacing,	
  infiltrating	
  or	
  
destroying	
   the	
   main	
   white	
   matter	
   tracts(11).	
   MR	
   Tractography	
   can	
   be	
   used	
   to	
  
virtually	
   dissect	
   functionally	
   critical	
   white	
   matter	
   tracts,	
   such	
   as	
   the	
  
corticospinal	
   tract	
   and	
   the	
   arcuate	
   fasciculus	
   (AF),	
   enabling	
   the	
   neurosurgeon	
   to	
  
identify	
  and	
  preserve	
  the	
  tract	
  during	
  resection(12).	
  
           It	
  has	
  been	
  shown	
  that	
  acquisition	
  of	
  DTI	
  color	
  maps	
  is	
  feasible	
  also	
  in	
  the	
  
operating	
  room	
  with	
  intraoperative	
  1.5	
  Tesla	
  MR	
  scanners.	
  Intraoperative	
  DTI	
  
can	
   depict	
   shifting	
   of	
   major	
   white	
   matter	
   tracts	
   that	
   may	
   occur	
   during	
   surgical	
  
removal	
  of	
  the	
  mass.	
  It	
  has	
  been	
  shown	
  that	
  shifting	
  of	
  brain	
  structures	
  may	
  be	
  
unpredictable,	
   therefore	
   intraoperative	
   updating	
   of	
   the	
   navigation	
   system	
   is	
  
strongly	
  recommended(10).	
  
           	
  




                                                                                                                                   	
  
Fig.	
  2	
  –	
  Streamlines	
  of	
  the	
  three	
  segments	
  of	
  the	
  left	
  arcuate	
  fasciculus	
  (AF:	
  long	
  
segment	
   in	
   red,	
   anterior	
   in	
   green,	
   posterior	
   in	
   yellow)	
   are	
   displied	
   on	
   the	
  
diffusion-­‐weighted	
   image	
   at	
   the	
   level	
   of	
   a	
   mass	
   in	
   the	
   left	
   posterior	
   mesial	
  
temporal	
  lobe.	
  
In	
   this	
   70	
   years-­‐old	
   male	
   with	
   glioblastoma	
   multiforme,	
   MR	
   Tractography	
   was	
  
essential	
   to	
   demonstrate	
   that	
   the	
   mass	
   had	
   not	
   destroyed	
   but	
   only	
   displaced	
   the	
  
AF	
   posteriorly	
   and	
   laterally.	
   	
   Streamlines	
   of	
   the	
   AF	
   confirmed	
   that	
   most	
   of	
   the	
  
fasciculus	
  was	
  intact.	
  
              	
  

           Three	
   dimensional	
   objects	
   of	
   preoperative	
   virtually	
   dissected	
   tracts	
   can	
  
be	
   reliably	
   integrated	
   into	
   a	
   standard	
   neuronavigation	
   system,	
   allowing	
   for	
  
intraoperative	
   visualization	
   and	
   localization	
   of	
   the	
   main	
   tracts(13).	
   MR	
  
Tractography	
   may	
   show	
   the	
   relationship	
   of	
   the	
   mass	
   to	
   the	
   virtually	
   dissected	
  
AF.	
   Virtual	
   dissection	
   of	
   the	
   three	
   segments	
   of	
   the	
   AF	
   may	
   show	
   whether	
   the	
  
mass	
   has	
   partially	
   interrupted	
   or	
   only	
   displaced	
   each	
   of	
   the	
   three	
   segments	
   of	
  
the	
  AF.	
  Display	
  of	
  MR	
  Tractography	
  results	
  may	
  also	
  be	
  useful	
  in	
  the	
  operating	
  
room	
   when	
   the	
   neurosurgeon	
   is	
   approaching	
   an	
   important	
   bundle	
   and	
   he	
   wants	
  
to	
   reinforce	
   his	
   anatomical	
   orientation	
   in	
   the	
   operating	
   field	
   and	
   consider	
  
whether	
   to	
   use	
   subcortical	
   ESM	
   to	
   test	
   the	
   functional	
   relevance	
   of	
   a	
   specific	
  
tract(14).	
  
           	
  




                                                                                                                                     	
  

Fig.	
  3	
  –	
  Streamlines	
  of	
  the	
  left	
  inferior	
  frontal	
  occipital	
  fasciculus	
  (IFOF)	
  and	
  fMRI	
  
(sentence	
   comprehension	
   task)	
   are	
   overlaid	
   on	
   FLAIR	
   images,	
   neuronavigator-­‐
ready	
  for	
  guiding	
  surgery	
  in	
  the	
  operating	
  room.	
  
In	
   this	
   62	
   years-­‐old	
   woman	
   with	
   fibrillary	
   astrocytoma	
   in	
   the	
   left	
   temporal	
   pole,	
  
MR	
   Tractography	
   demonstrated	
   that	
   the	
   mass	
   had	
   partially	
   interrupted	
   the	
  
uncinate	
  fasciculus	
  (UF,	
  not	
  shown),	
  while	
  the	
  IFOF	
  (in	
  pink)	
  appears	
  intact.	
  Note	
  
the	
  close	
  relationship	
  of	
  the	
  left	
  IFOF	
  with	
  the	
  hyperintense	
  mass	
  in	
  the	
  temporal	
  
pole.	
  
                	
  

           Modern	
   cognitive	
   models	
   of	
   language	
   have	
   shown	
   that	
   there	
   is	
   a	
   lot	
   of	
  
redundancy	
   in	
   the	
   language	
   network.	
   It	
   is	
   of	
   paramount	
   importance	
   to	
   identify	
  
those	
  bundles	
  that	
  if	
  severed	
  may	
  cause	
  permanent	
  language	
  deficits.	
  Definition	
  
of	
   which	
   bundles	
   are	
   functionally	
   eloquent	
   and	
   have	
   to	
   be	
   absolutely	
   spared	
  
during	
  resection	
  remains	
  an	
  important	
  issue.	
  
           There	
  is	
  a	
  long	
  list	
  of	
  important	
  limitations(15).	
  Few	
  are	
  inherent	
  to	
  the	
  
DTI	
   and	
   the	
   MR	
   Tractography	
   technology	
   and	
   they	
   must	
   be	
   well	
   understood	
  
before	
   the	
   results	
   of	
   presurgical	
   MR	
   Tractography	
   dissections	
   can	
   be	
   safely	
  
exported	
   to	
   the	
   operating	
   room.	
   It	
   is	
   not	
   yet	
   established	
   whether	
   resection	
   of	
  
fibers	
   apparently	
   infiltrated	
   by	
   the	
   tumor	
   that	
   appear	
   to	
   be	
   interrupted	
   or	
  
destroyed	
  on	
  diffusion	
  MR	
  Tractography	
  will	
  result	
  in	
  permanent	
  postoperative	
  
neurologic	
   deficits(15).	
   Nevertheless,	
   it	
   should	
   be	
   established	
   whether	
   resection	
  
of	
  fibers	
  that	
  on	
  MR	
  Tractography	
  appear	
  to	
  be	
  interrupted	
  within	
  the	
  tumor	
  will	
  
cause	
   permanent	
   postoperative	
   deficits.	
   On	
   the	
   contrary,	
   it	
   has	
   been	
   shown	
  
many	
   times	
   that	
   severing	
   of	
   the	
   pyramidal	
   tract	
   will	
   cause	
   hemiplegia.	
   	
   Whether	
  
severing	
  of	
  one	
  of	
  the	
  many	
  language	
  connections	
  will	
  cause	
  aphasia	
  is	
  currently	
  
a	
  controversial	
  issue(16).	
  
	
  
           In	
  conclusion,	
  diffusion	
  MR	
  Tractography	
  has	
  emerged	
  as	
  a	
  valuable	
  tool	
  
in	
   the	
   evaluation	
   of	
   motor	
   and	
   language	
   pathways	
   both	
   in	
   healthy	
   individuals	
  
and	
   in	
   patients	
   with	
   neurological	
   disorders.	
   In	
   healthy	
   subjects	
   they	
   are	
  
contributing	
  to	
  refine	
  current	
  cognitive	
  and	
  anatomic	
  models.	
  Not	
  only	
  they	
  have	
  
confirmed	
  several	
  theories	
  about	
  language	
  processing,	
  but	
  they	
  have	
  also	
  raised	
  
unexpected	
   important	
   questions.	
   In	
   patients	
   with	
   brain	
   tumors	
   they	
   have	
  
obtained	
  recognition	
  as	
  valuable	
  presurgical	
  clinical	
  tools	
  in	
  the	
  determination	
  of	
  
hemispheric	
  dominance	
  and	
  in	
  the	
  selection	
  of	
  candidates	
  who	
  may	
  benefit	
  from	
  
awake	
  craniotomy.	
  
	
  
References	
  
	
  
1.	
      Basser	
  PJ,	
  Mattiello	
  J,	
  LeBihan	
  D.	
  MR	
  diffusion	
  tensor	
  spectroscopy	
  and	
  imaging.	
  Biophys	
  
          J	
  1994;	
  66:259-­‐267.	
  
2.	
      Pierpaoli	
  C,	
  Jezzard	
  P,	
  Basser	
  PJ,	
  Barnett	
  A,	
  Di	
  Chiro	
  G.	
  Diffusion	
  tensor	
  MR	
  imaging	
  of	
  
          the	
  human	
  brain.	
  Radiology	
  1996;	
  201:637-­‐648.	
  
3.	
      Conturo	
  TE,	
  Lori	
  NF,	
  Cull	
  TS,	
  et	
  al.	
  Tracking	
  neuronal	
  fiber	
  pathways	
  in	
  the	
  living	
  human	
  
          brain.	
  Proc	
  Natl	
  Acad	
  Sci	
  U	
  S	
  A	
  1999;	
  96:10422-­‐10427.	
  
4.	
      Mori	
  S,	
  Crain	
  BJ,	
  Chacko	
  VP,	
  van	
  Zijl	
  PC.	
  Three-­‐dimensional	
  tracking	
  of	
  axonal	
  projections	
  
          in	
  the	
  brain	
  by	
  magnetic	
  resonance	
  imaging.	
  Ann	
  Neurol	
  1999;	
  45:265-­‐269.	
  
5.	
      Jones	
  DK.	
  Studying	
  connections	
  in	
  the	
  living	
  human	
  brain	
  with	
  diffusion	
  MRI.	
  Cortex	
  
          2008;	
  44:936-­‐952.	
  
6.	
      Seunarine	
  KK,	
  Alexander	
  DC.	
  Multiple	
  Fibers:	
  Beyond	
  the	
  Diffusion	
  Tensor.	
  In:	
  Johansen-­‐
          Berg	
  H,	
  Behrens	
  TE,	
  eds.	
  Diffusion	
  MRI:	
  From	
  Quantitative	
  Measurement	
  to	
  in	
  Vivo	
  
          Neuroanatomy.	
  Oxford,	
  U.K.:	
  Elsevier,	
  2009;	
  55-­‐72.	
  
7.	
      Clark	
  CA,	
  Barrick	
  TR,	
  Murphy	
  MM,	
  Bell	
  BA.	
  White	
  matter	
  fiber	
  tracking	
  in	
  patients	
  with	
  
          space-­‐occupying	
  lesions	
  of	
  the	
  brain:	
  a	
  new	
  technique	
  for	
  neurosurgical	
  planning?	
  
          Neuroimage	
  2003;	
  20:1601-­‐1608.	
  
8.	
      Field	
  AS,	
  Alexander	
  AL,	
  Wu	
  YC,	
  Hasan	
  KM,	
  Witwer	
  B,	
  Badie	
  B.	
  Diffusion	
  tensor	
  
          eigenvector	
  directional	
  color	
  imaging	
  patterns	
  in	
  the	
  evaluation	
  of	
  cerebral	
  white	
  matter	
  
          tracts	
  altered	
  by	
  tumor.	
  J	
  Magn	
  Reson	
  Imaging	
  2004;	
  20:555-­‐562.	
  
9.	
      Mori	
  S,	
  Frederiksen	
  K,	
  van	
  Zijl	
  PC,	
  et	
  al.	
  Brain	
  white	
  matter	
  anatomy	
  of	
  tumor	
  patients	
  
          evaluated	
  with	
  diffusion	
  tensor	
  imaging.	
  Ann	
  Neurol	
  2002;	
  51:377-­‐380.	
  
10.	
     Nimsky	
  C,	
  Ganslandt	
  O,	
  Hastreiter	
  P,	
  et	
  al.	
  Intraoperative	
  diffusion-­‐tensor	
  MR	
  imaging:	
  
          shifting	
  of	
  white	
  matter	
  tracts	
  during	
  neurosurgical	
  procedures-­‐-­‐initial	
  experience.	
  
          Radiology	
  2005;	
  234:218-­‐225.	
  
11.	
     Jellison	
  BJ,	
  Field	
  AS,	
  Medow	
  J,	
  Lazar	
  M,	
  Salamat	
  MS,	
  Alexander	
  AL.	
  Diffusion	
  tensor	
  
          imaging	
  of	
  cerebral	
  white	
  matter:	
  a	
  pictorial	
  review	
  of	
  physics,	
  fiber	
  tract	
  anatomy,	
  and	
  
          tumor	
  imaging	
  patterns.	
  AJNR	
  Am	
  J	
  Neuroradiol	
  2004;	
  25:356-­‐369.	
  
12.	
     Laundre	
  BJ,	
  Jellison	
  BJ,	
  Badie	
  B,	
  Alexander	
  AL,	
  Field	
  AS.	
  Diffusion	
  tensor	
  imaging	
  of	
  the	
  
          corticospinal	
  tract	
  before	
  and	
  after	
  mass	
  resection	
  as	
  correlated	
  with	
  clinical	
  motor	
  
          findings:	
  preliminary	
  data.	
  AJNR	
  Am	
  J	
  Neuroradiol	
  2005;	
  26:791-­‐796.	
  
13.	
     Nimsky	
  C,	
  Ganslandt	
  O,	
  Fahlbusch	
  R.	
  Implementation	
  of	
  fiber	
  tract	
  navigation.	
  
          Neurosurgery	
  2006;	
  58:ONS-­‐292-­‐304.	
  
14.	
     Bello	
  L,	
  Gambini	
  A,	
  Castellano	
  A,	
  et	
  al.	
  Motor	
  and	
  language	
  DTI	
  Fiber	
  Tracking	
  combined	
  
          with	
  intraoperative	
  subcortical	
  mapping	
  for	
  surgical	
  removal	
  of	
  gliomas.	
  Neuroimage	
  
          2008;	
  39:369-­‐382.	
  
15.	
     Bizzi	
  A.	
  Presurgical	
  Mapping	
  of	
  Verbal	
  Language	
  in	
  Brain	
  Tumors	
  with	
  Functional	
  MR	
  
          Imaging	
  and	
  MR	
  Tractography.	
  In:	
  Pia	
  Sundgren	
  M,	
  ed.	
  Advanced	
  Imaging	
  Techniques	
  in	
  
          Brain	
  Tumors:	
  Elsevier,	
  2009;	
  573-­‐596.	
  
16.	
     Bello	
  L,	
  Gallucci	
  M,	
  Fava	
  M,	
  et	
  al.	
  Intraoperative	
  subcortical	
  language	
  tract	
  mapping	
  
          guides	
  surgical	
  removal	
  of	
  gliomas	
  involving	
  speech	
  areas.	
  Neurosurgery	
  2007;	
  60:67-­‐
          82.	
  
	
  
	
  

Más contenido relacionado

La actualidad más candente

Diagnosis of Rectal Cancer through Images
Diagnosis of Rectal Cancer through ImagesDiagnosis of Rectal Cancer through Images
Diagnosis of Rectal Cancer through Images
Eswar Publications
 
Brain Tumor Segmentation and Volume Estimation from T1-Contrasted and T2 MRIs
Brain Tumor Segmentation and Volume Estimation from T1-Contrasted and T2 MRIsBrain Tumor Segmentation and Volume Estimation from T1-Contrasted and T2 MRIs
Brain Tumor Segmentation and Volume Estimation from T1-Contrasted and T2 MRIs
CSCJournals
 
Neuroimaging in psychiatry
Neuroimaging in psychiatryNeuroimaging in psychiatry
Neuroimaging in psychiatry
Santanu Ghosh
 
Automatic Segmentation of the Lumen of the Carotid Artery in Ultrasound B-mod...
Automatic Segmentation of the Lumen of the Carotid Artery in Ultrasound B-mod...Automatic Segmentation of the Lumen of the Carotid Artery in Ultrasound B-mod...
Automatic Segmentation of the Lumen of the Carotid Artery in Ultrasound B-mod...
Associate Professor in VSB Coimbatore
 

La actualidad más candente (20)

A Hybrid Data Analysis And Mesh Refinement Paradigm For Conformal Voxel
A Hybrid Data Analysis And Mesh Refinement Paradigm For Conformal VoxelA Hybrid Data Analysis And Mesh Refinement Paradigm For Conformal Voxel
A Hybrid Data Analysis And Mesh Refinement Paradigm For Conformal Voxel
 
Short case...Dysembryoplastic neuroepithelial tumor
Short case...Dysembryoplastic neuroepithelial tumorShort case...Dysembryoplastic neuroepithelial tumor
Short case...Dysembryoplastic neuroepithelial tumor
 
Present 2
Present 2Present 2
Present 2
 
Proton magnetic resonance spectroscopy
Proton magnetic resonance spectroscopyProton magnetic resonance spectroscopy
Proton magnetic resonance spectroscopy
 
B017520718
B017520718B017520718
B017520718
 
SWI for radiation technologists
SWI for radiation technologistsSWI for radiation technologists
SWI for radiation technologists
 
2017 BDSRA Autti, U. Roine, T. Roine, Aberg, Tokola, Balk, Hakkarainen, Manne...
2017 BDSRA Autti, U. Roine, T. Roine, Aberg, Tokola, Balk, Hakkarainen, Manne...2017 BDSRA Autti, U. Roine, T. Roine, Aberg, Tokola, Balk, Hakkarainen, Manne...
2017 BDSRA Autti, U. Roine, T. Roine, Aberg, Tokola, Balk, Hakkarainen, Manne...
 
Fully Automatic Method for 3D T1-Weighted Brain Magnetic Resonance Images Seg...
Fully Automatic Method for 3D T1-Weighted Brain Magnetic Resonance Images Seg...Fully Automatic Method for 3D T1-Weighted Brain Magnetic Resonance Images Seg...
Fully Automatic Method for 3D T1-Weighted Brain Magnetic Resonance Images Seg...
 
20
2020
20
 
HIGH RESOLUTION MRI BRAIN IMAGE SEGMENTATION TECHNIQUE USING HOLDER EXPONENT
HIGH RESOLUTION MRI BRAIN IMAGE SEGMENTATION TECHNIQUE USING HOLDER EXPONENTHIGH RESOLUTION MRI BRAIN IMAGE SEGMENTATION TECHNIQUE USING HOLDER EXPONENT
HIGH RESOLUTION MRI BRAIN IMAGE SEGMENTATION TECHNIQUE USING HOLDER EXPONENT
 
Diagnosis of Rectal Cancer through Images
Diagnosis of Rectal Cancer through ImagesDiagnosis of Rectal Cancer through Images
Diagnosis of Rectal Cancer through Images
 
Tummor
TummorTummor
Tummor
 
Brain Tumor Segmentation and Volume Estimation from T1-Contrasted and T2 MRIs
Brain Tumor Segmentation and Volume Estimation from T1-Contrasted and T2 MRIsBrain Tumor Segmentation and Volume Estimation from T1-Contrasted and T2 MRIs
Brain Tumor Segmentation and Volume Estimation from T1-Contrasted and T2 MRIs
 
Neuroimaging in psychiatry
Neuroimaging in psychiatryNeuroimaging in psychiatry
Neuroimaging in psychiatry
 
Magnetic resonance (mr) spectroscopy
Magnetic resonance (mr) spectroscopyMagnetic resonance (mr) spectroscopy
Magnetic resonance (mr) spectroscopy
 
Emerging MRI and metabolic neuroimaging techniques in mild traumatic brain in...
Emerging MRI and metabolic neuroimaging techniques in mild traumatic brain in...Emerging MRI and metabolic neuroimaging techniques in mild traumatic brain in...
Emerging MRI and metabolic neuroimaging techniques in mild traumatic brain in...
 
Cancer cell segmentation and detection using nc ratio
Cancer cell segmentation and detection using nc ratioCancer cell segmentation and detection using nc ratio
Cancer cell segmentation and detection using nc ratio
 
MRS
MRS MRS
MRS
 
Automatic Segmentation of the Lumen of the Carotid Artery in Ultrasound B-mod...
Automatic Segmentation of the Lumen of the Carotid Artery in Ultrasound B-mod...Automatic Segmentation of the Lumen of the Carotid Artery in Ultrasound B-mod...
Automatic Segmentation of the Lumen of the Carotid Artery in Ultrasound B-mod...
 
Contrast enhanced ultrasound
Contrast enhanced ultrasoundContrast enhanced ultrasound
Contrast enhanced ultrasound
 

Destacado (8)

Angie bornachera
Angie bornacheraAngie bornachera
Angie bornachera
 
The sporting-knee-practical-issues2894
The sporting-knee-practical-issues2894The sporting-knee-practical-issues2894
The sporting-knee-practical-issues2894
 
Factuurdag 2011 - Optimalisatie van uw papieren en elektronische documentenst...
Factuurdag 2011 - Optimalisatie van uw papieren en elektronische documentenst...Factuurdag 2011 - Optimalisatie van uw papieren en elektronische documentenst...
Factuurdag 2011 - Optimalisatie van uw papieren en elektronische documentenst...
 
Tdd16aug11v2
Tdd16aug11v2Tdd16aug11v2
Tdd16aug11v2
 
Factuurdag 2011 - Klantencase: Binnenkomende facturen digitaliseren en verwerken
Factuurdag 2011 - Klantencase: Binnenkomende facturen digitaliseren en verwerkenFactuurdag 2011 - Klantencase: Binnenkomende facturen digitaliseren en verwerken
Factuurdag 2011 - Klantencase: Binnenkomende facturen digitaliseren en verwerken
 
Factuurdag 2011 - Elektronische documentuitwisseling, waar staan we vandaag?
Factuurdag 2011 - Elektronische documentuitwisseling, waar staan we vandaag?Factuurdag 2011 - Elektronische documentuitwisseling, waar staan we vandaag?
Factuurdag 2011 - Elektronische documentuitwisseling, waar staan we vandaag?
 
Pearling stroke segmentation with crusted pearl strings
Pearling stroke segmentation with crusted pearl stringsPearling stroke segmentation with crusted pearl strings
Pearling stroke segmentation with crusted pearl strings
 
Tutorial 2 foro ed modo
Tutorial 2 foro ed modoTutorial 2 foro ed modo
Tutorial 2 foro ed modo
 

Similar a Invited bizzi

Presentation1.pptx, diffusion tensor imaging of white matter tract in cerebra...
Presentation1.pptx, diffusion tensor imaging of white matter tract in cerebra...Presentation1.pptx, diffusion tensor imaging of white matter tract in cerebra...
Presentation1.pptx, diffusion tensor imaging of white matter tract in cerebra...
Abdellah Nazeer
 
Atlas of peripheral nerve ultrasound
Atlas of peripheral nerve ultrasoundAtlas of peripheral nerve ultrasound
Atlas of peripheral nerve ultrasound
Springer
 
Diffusion-Tenso-WPS Office.pptx
Diffusion-Tenso-WPS Office.pptxDiffusion-Tenso-WPS Office.pptx
Diffusion-Tenso-WPS Office.pptx
PranaviSagar1
 

Similar a Invited bizzi (20)

Presentation1.pptx, diffusion tensor imaging of white matter tract in cerebra...
Presentation1.pptx, diffusion tensor imaging of white matter tract in cerebra...Presentation1.pptx, diffusion tensor imaging of white matter tract in cerebra...
Presentation1.pptx, diffusion tensor imaging of white matter tract in cerebra...
 
Spinal cord tractography
Spinal cord tractographySpinal cord tractography
Spinal cord tractography
 
Focal Cortical Dysplasia Lesion Analysis with Complex Diffusion Approach
Focal Cortical Dysplasia Lesion Analysis with Complex Diffusion ApproachFocal Cortical Dysplasia Lesion Analysis with Complex Diffusion Approach
Focal Cortical Dysplasia Lesion Analysis with Complex Diffusion Approach
 
White paper "SMI – a new technique for the analysis of the microvascular tree...
White paper "SMI – a new technique for the analysis of the microvascular tree...White paper "SMI – a new technique for the analysis of the microvascular tree...
White paper "SMI – a new technique for the analysis of the microvascular tree...
 
Diffusion tensor imaging in Neurology
Diffusion tensor imaging in NeurologyDiffusion tensor imaging in Neurology
Diffusion tensor imaging in Neurology
 
Atlas of peripheral nerve ultrasound
Atlas of peripheral nerve ultrasoundAtlas of peripheral nerve ultrasound
Atlas of peripheral nerve ultrasound
 
Segmentation and Labelling of Human Spine MR Images Using Fuzzy Clustering
Segmentation and Labelling of Human Spine MR Images Using Fuzzy Clustering  Segmentation and Labelling of Human Spine MR Images Using Fuzzy Clustering
Segmentation and Labelling of Human Spine MR Images Using Fuzzy Clustering
 
SEGMENTATION AND LABELLING OF HUMAN SPINE MR IMAGES USING FUZZY CLUSTERING
SEGMENTATION AND LABELLING OF HUMAN SPINE MR IMAGES USING FUZZY CLUSTERINGSEGMENTATION AND LABELLING OF HUMAN SPINE MR IMAGES USING FUZZY CLUSTERING
SEGMENTATION AND LABELLING OF HUMAN SPINE MR IMAGES USING FUZZY CLUSTERING
 
approach to radiology of spinal cord.pptx
approach to radiology of spinal cord.pptxapproach to radiology of spinal cord.pptx
approach to radiology of spinal cord.pptx
 
Case record...Spinal metastasis
Case record...Spinal metastasisCase record...Spinal metastasis
Case record...Spinal metastasis
 
Segmentation of Diffusion Tensor Brain Tumor Images using Fuzzy C-Means Clust...
Segmentation of Diffusion Tensor Brain Tumor Images using Fuzzy C-Means Clust...Segmentation of Diffusion Tensor Brain Tumor Images using Fuzzy C-Means Clust...
Segmentation of Diffusion Tensor Brain Tumor Images using Fuzzy C-Means Clust...
 
Ultrasound Elastography
Ultrasound ElastographyUltrasound Elastography
Ultrasound Elastography
 
Lumbar disk 3D modeling from limited number of MRI axial slices
Lumbar disk 3D modeling from limited number  of MRI axial slices Lumbar disk 3D modeling from limited number  of MRI axial slices
Lumbar disk 3D modeling from limited number of MRI axial slices
 
M1803047782
M1803047782M1803047782
M1803047782
 
Diffusion-Tenso-WPS Office.pptx
Diffusion-Tenso-WPS Office.pptxDiffusion-Tenso-WPS Office.pptx
Diffusion-Tenso-WPS Office.pptx
 
Segmentation and Classification of Brain MRI Images Using Improved Logismos-B...
Segmentation and Classification of Brain MRI Images Using Improved Logismos-B...Segmentation and Classification of Brain MRI Images Using Improved Logismos-B...
Segmentation and Classification of Brain MRI Images Using Improved Logismos-B...
 
Oncology imaging
Oncology imagingOncology imaging
Oncology imaging
 
diagnostics-12-00961.pdf
diagnostics-12-00961.pdfdiagnostics-12-00961.pdf
diagnostics-12-00961.pdf
 
Introduction to Magnetic resonance imaging (mri)
Introduction to Magnetic resonance imaging (mri)Introduction to Magnetic resonance imaging (mri)
Introduction to Magnetic resonance imaging (mri)
 
Advances in neuro-imaging
Advances in neuro-imaging Advances in neuro-imaging
Advances in neuro-imaging
 

Último

Último (20)

💎VVIP Kolkata Call Girls Parganas🩱7001035870🩱Independent Girl ( Ac Rooms Avai...
💎VVIP Kolkata Call Girls Parganas🩱7001035870🩱Independent Girl ( Ac Rooms Avai...💎VVIP Kolkata Call Girls Parganas🩱7001035870🩱Independent Girl ( Ac Rooms Avai...
💎VVIP Kolkata Call Girls Parganas🩱7001035870🩱Independent Girl ( Ac Rooms Avai...
 
The Most Attractive Hyderabad Call Girls Kothapet 𖠋 6297143586 𖠋 Will You Mis...
The Most Attractive Hyderabad Call Girls Kothapet 𖠋 6297143586 𖠋 Will You Mis...The Most Attractive Hyderabad Call Girls Kothapet 𖠋 6297143586 𖠋 Will You Mis...
The Most Attractive Hyderabad Call Girls Kothapet 𖠋 6297143586 𖠋 Will You Mis...
 
Call Girls Haridwar Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Haridwar Just Call 8250077686 Top Class Call Girl Service AvailableCall Girls Haridwar Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Haridwar Just Call 8250077686 Top Class Call Girl Service Available
 
Call Girls Bareilly Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Bareilly Just Call 8250077686 Top Class Call Girl Service AvailableCall Girls Bareilly Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Bareilly Just Call 8250077686 Top Class Call Girl Service Available
 
Top Quality Call Girl Service Kalyanpur 6378878445 Available Call Girls Any Time
Top Quality Call Girl Service Kalyanpur 6378878445 Available Call Girls Any TimeTop Quality Call Girl Service Kalyanpur 6378878445 Available Call Girls Any Time
Top Quality Call Girl Service Kalyanpur 6378878445 Available Call Girls Any Time
 
♛VVIP Hyderabad Call Girls Chintalkunta🖕7001035870🖕Riya Kappor Top Call Girl ...
♛VVIP Hyderabad Call Girls Chintalkunta🖕7001035870🖕Riya Kappor Top Call Girl ...♛VVIP Hyderabad Call Girls Chintalkunta🖕7001035870🖕Riya Kappor Top Call Girl ...
♛VVIP Hyderabad Call Girls Chintalkunta🖕7001035870🖕Riya Kappor Top Call Girl ...
 
Call Girls Dehradun Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Dehradun Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Dehradun Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Dehradun Just Call 9907093804 Top Class Call Girl Service Available
 
Best Rate (Patna ) Call Girls Patna ⟟ 8617370543 ⟟ High Class Call Girl In 5 ...
Best Rate (Patna ) Call Girls Patna ⟟ 8617370543 ⟟ High Class Call Girl In 5 ...Best Rate (Patna ) Call Girls Patna ⟟ 8617370543 ⟟ High Class Call Girl In 5 ...
Best Rate (Patna ) Call Girls Patna ⟟ 8617370543 ⟟ High Class Call Girl In 5 ...
 
Call Girls Cuttack Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Cuttack Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Cuttack Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Cuttack Just Call 9907093804 Top Class Call Girl Service Available
 
Call Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore Escorts
Call Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore EscortsCall Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore Escorts
Call Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore Escorts
 
Call Girls Faridabad Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Faridabad Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Faridabad Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Faridabad Just Call 9907093804 Top Class Call Girl Service Available
 
Book Paid Powai Call Girls Mumbai 𖠋 9930245274 𖠋Low Budget Full Independent H...
Book Paid Powai Call Girls Mumbai 𖠋 9930245274 𖠋Low Budget Full Independent H...Book Paid Powai Call Girls Mumbai 𖠋 9930245274 𖠋Low Budget Full Independent H...
Book Paid Powai Call Girls Mumbai 𖠋 9930245274 𖠋Low Budget Full Independent H...
 
Top Rated Bangalore Call Girls Mg Road ⟟ 9332606886 ⟟ Call Me For Genuine S...
Top Rated Bangalore Call Girls Mg Road ⟟   9332606886 ⟟ Call Me For Genuine S...Top Rated Bangalore Call Girls Mg Road ⟟   9332606886 ⟟ Call Me For Genuine S...
Top Rated Bangalore Call Girls Mg Road ⟟ 9332606886 ⟟ Call Me For Genuine S...
 
All Time Service Available Call Girls Marine Drive 📳 9820252231 For 18+ VIP C...
All Time Service Available Call Girls Marine Drive 📳 9820252231 For 18+ VIP C...All Time Service Available Call Girls Marine Drive 📳 9820252231 For 18+ VIP C...
All Time Service Available Call Girls Marine Drive 📳 9820252231 For 18+ VIP C...
 
Bangalore Call Girls Nelamangala Number 9332606886 Meetin With Bangalore Esc...
Bangalore Call Girls Nelamangala Number 9332606886  Meetin With Bangalore Esc...Bangalore Call Girls Nelamangala Number 9332606886  Meetin With Bangalore Esc...
Bangalore Call Girls Nelamangala Number 9332606886 Meetin With Bangalore Esc...
 
Top Rated Hyderabad Call Girls Erragadda ⟟ 6297143586 ⟟ Call Me For Genuine ...
Top Rated  Hyderabad Call Girls Erragadda ⟟ 6297143586 ⟟ Call Me For Genuine ...Top Rated  Hyderabad Call Girls Erragadda ⟟ 6297143586 ⟟ Call Me For Genuine ...
Top Rated Hyderabad Call Girls Erragadda ⟟ 6297143586 ⟟ Call Me For Genuine ...
 
Call Girls Gwalior Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Gwalior Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Gwalior Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Gwalior Just Call 9907093804 Top Class Call Girl Service Available
 
Night 7k to 12k Navi Mumbai Call Girl Photo 👉 BOOK NOW 9833363713 👈 ♀️ night ...
Night 7k to 12k Navi Mumbai Call Girl Photo 👉 BOOK NOW 9833363713 👈 ♀️ night ...Night 7k to 12k Navi Mumbai Call Girl Photo 👉 BOOK NOW 9833363713 👈 ♀️ night ...
Night 7k to 12k Navi Mumbai Call Girl Photo 👉 BOOK NOW 9833363713 👈 ♀️ night ...
 
Call Girls Jabalpur Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Jabalpur Just Call 8250077686 Top Class Call Girl Service AvailableCall Girls Jabalpur Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Jabalpur Just Call 8250077686 Top Class Call Girl Service Available
 
Call Girls Siliguri Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Siliguri Just Call 8250077686 Top Class Call Girl Service AvailableCall Girls Siliguri Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Siliguri Just Call 8250077686 Top Class Call Girl Service Available
 

Invited bizzi

  • 1. Pearls and Pitfalls of MR Diffusion in Clinical Neurology Dr.  Alberto  Bizzi   Neuroradiology  Unit   Fondazione  IRCCS  Istituto  Neurologico  Carlo  Besta   Milan,  Italy   Email:  alberto_bizzi@fastwebnet.it   Diffusion   Tensor   Imaging   (DTI)(1)   measures   the   effects   of   tissue   microstructure   on   the   random   walks   (brownian   motion)   of   water   molecules   in   the   brain.   In   tissues   with   an   orderly   oriented   microstructure,   such   as   the   cerebral  white  matter,  the  measured  diffusivity  of  water  varies  with  the  tissue’s   orientation   (anisotropic   diffusion).   Water   diffuses   fastest   along   the   principal   direction   of   the   fibers,   and   slowest   along   the   cross-­‐sectional   plane.   The   DTI   model   provides   the   required   information   to   construct   a   diffusion   ellipsoid   in   each   voxel   of   an   imaging   volume.   DTI   measures   the   diffusivities   of   water   molecules   along   the   three   orthogonal   axes   of   the   ellipsoid   (eigenvalues)   and   their   average   (mean   diffusivity).   Fractional   anisotropy   is   a   measure   of   eccentricity  of  the  displacement  of  water  molecules.  In  the  healthy  human  brain   probably  the  most  relevant  factor  affecting  fractional  anisotropy  is  the  intravoxel   orientation  coherence  of  white  matter  fibers(2).   There   are   three   main   imaging   output   of   DTI   MR   imaging:   quantitative   parametric  maps  displayed  in  gray  scale  (i.e.  fractional  anisotropy  maps),  color   maps   showing   the   principal   orientation   of   diffusion   for   each   voxel   and   3   dimensional  maps  showing  virtual  dissection  of  tracts  with  streamline  tracking   methods.   In   the   interest   of   time   in   the   oral   presentation   we’ll   focus   on   diffusion   MR   Tractography   and   its   clinical   application   in   brain   tumors,   stroke,   multiple   sclerosis,   prion   disorders   and   neurodegenerative   diseases   (Alzheimer,   Amyotrophic  Lateral  Sclerosis).  The  aim  of  MR  Tractography  or  fiber  tracking  is   to   infer   the   three-­‐dimensional   trajectories   of   white   matter   bundles   by   piecing  
  • 2. together   discrete   estimates   of   the   underlying   continuous   fiber   orientation   field   measured  non-­‐invasively  with  DTI  data(3,  4).     Fiber   tracking   algorithms   can   be   broadly   classified   into   two   types:   deterministic  and  probabilistic.  Few  DTI  Tractography  atlases  for  virtual  in  vivo   dissection   of   the   principal   human   white   matter   tracts   using   a   deterministic   approach   have   been   recently   published(5-­‐7).   Few   limitations   of   fiber   tracking   performed   with   the   deterministic   approach   motivated   the   development   of   probabilistic  tracking  algorithms(5).  It  is  very  important  to  understand  well  the   inherent   limitations   of   all   methods   of   DTI-­‐based   virtual   dissections   and   measurements.  One  important  limitation  is  that  in  each  voxel  the  eigen  vector  is   the  average  of  the  orientation  of  all  bundles  included  in  the  voxel.  In  volumes  of   white   matter   with   many   crossing   bundles,   as   in   the   frontal   and   parietal   paraventricular   white   matter,   fractional   anisotropy   is   low   and   the   degree   of   uncertainty  in  the  estimation  of  bundle  orientation  increases.   An   attempt   to   overcome   the   limitation   of   crossing   fibers   has   been   addressed   with  the  development  of  more  sophisticated  imaging  acquisition  schemes  using   high  angular  resolution  diffusion  imaging  (HARDI)(6).   It   is   important   to   emphasize   that,   given   the   relative   size   differences   between   the   individual   axons   (1–5   micron)   and   voxels   (2–3   mm)   size,   it   is   possible  to  observe  white  matter  anatomy  only  from  a  macroscopic  point  of  view   with   MR   Tractography.   Notwithstanding,   the   anatomic   detail   provided   by   MR   Tractography  with  10-­‐15  min  of  MR  acquisition  is  unparalleled.   Encouraging  results  with  DTI  have  been  reported  in  several  neurological   disorders:   brain   tumors,   stroke,   multiple   sclerosis,   amyotrophic   lateral   sclerosis,   Alzheimer   disease   and   other   dementias.   In   the   interest   of   time   we’ll   focus   on   the   application   that   is   probably   closer   to   become   of   clinical   use:   diffusion   MR   Tractography  in  presurgical  planning.   The   integration   of   functional   data   acquired   with   fMRI   and   MEG   into   the   navigational  data  sets  has  improved  quick  identification  of  eloquent  cortex  with   intraoperative   ESM   in   the   operating   room.   To   avoid   postoperative   neurological   deficits,   however,   it   is   also   necessary   to   preserve   the   white   matter   tracts   connecting  eloquent  cortex.  
  • 3. Diffusion   MR   Tractography  has  recently  emerged  as  potentially  valuable   clinical   tool   for   presurgical   planning(7-­‐9)   and   intraoperative   imaging-­‐guided   navigation   in   the   operating   room(10).   Diffusion   MR   Tractography   can   provide   the   neurosurgeon   with   additional   information   about   brain   anatomy,   pathology   and  architecture  that  conventional  MRI  methods  cannot.       Fig.   1   -­‐   Directionally   encoded   color   maps   in   a   65   years   old   male   with   glioblastoma  multiforme  in  the  left  dorsolateral  prefrontal  region.  The  mass  has   infiltrated   the   superior   longitudinal   fasciculus,   including   the   arcuate   fasciculus   (displayed  in  green,  see  cursor).     The   directionally   encoded   color   maps,   with   hues   reflecting   tensor   orientation   and   intensity   weighted   by   fractional   anisotropy,   provides   an   aesthetic   and   informative   synthesis   of   tissue   microstructure   and   architecture.   The   color   maps   are   a   promising   tool   for   delineation   of   tumor   extent   and   infiltration.  DTI  color  maps  indicate  whether  a  mass  is  displacing,  infiltrating  or   destroying   the   main   white   matter   tracts(11).   MR   Tractography   can   be   used   to   virtually   dissect   functionally   critical   white   matter   tracts,   such   as   the   corticospinal   tract   and   the   arcuate   fasciculus   (AF),   enabling   the   neurosurgeon   to   identify  and  preserve  the  tract  during  resection(12).   It  has  been  shown  that  acquisition  of  DTI  color  maps  is  feasible  also  in  the   operating  room  with  intraoperative  1.5  Tesla  MR  scanners.  Intraoperative  DTI   can   depict   shifting   of   major   white   matter   tracts   that   may   occur   during   surgical   removal  of  the  mass.  It  has  been  shown  that  shifting  of  brain  structures  may  be  
  • 4. unpredictable,   therefore   intraoperative   updating   of   the   navigation   system   is   strongly  recommended(10).       Fig.  2  –  Streamlines  of  the  three  segments  of  the  left  arcuate  fasciculus  (AF:  long   segment   in   red,   anterior   in   green,   posterior   in   yellow)   are   displied   on   the   diffusion-­‐weighted   image   at   the   level   of   a   mass   in   the   left   posterior   mesial   temporal  lobe.   In   this   70   years-­‐old   male   with   glioblastoma   multiforme,   MR   Tractography   was   essential   to   demonstrate   that   the   mass   had   not   destroyed   but   only   displaced   the   AF   posteriorly   and   laterally.     Streamlines   of   the   AF   confirmed   that   most   of   the   fasciculus  was  intact.     Three   dimensional   objects   of   preoperative   virtually   dissected   tracts   can   be   reliably   integrated   into   a   standard   neuronavigation   system,   allowing   for   intraoperative   visualization   and   localization   of   the   main   tracts(13).   MR   Tractography   may   show   the   relationship   of   the   mass   to   the   virtually   dissected   AF.   Virtual   dissection   of   the   three   segments   of   the   AF   may   show   whether   the   mass   has   partially   interrupted   or   only   displaced   each   of   the   three   segments   of   the  AF.  Display  of  MR  Tractography  results  may  also  be  useful  in  the  operating   room   when   the   neurosurgeon   is   approaching   an   important   bundle   and   he   wants   to   reinforce   his   anatomical   orientation   in   the   operating   field   and   consider  
  • 5. whether   to   use   subcortical   ESM   to   test   the   functional   relevance   of   a   specific   tract(14).       Fig.  3  –  Streamlines  of  the  left  inferior  frontal  occipital  fasciculus  (IFOF)  and  fMRI   (sentence   comprehension   task)   are   overlaid   on   FLAIR   images,   neuronavigator-­‐ ready  for  guiding  surgery  in  the  operating  room.   In   this   62   years-­‐old   woman   with   fibrillary   astrocytoma   in   the   left   temporal   pole,   MR   Tractography   demonstrated   that   the   mass   had   partially   interrupted   the   uncinate  fasciculus  (UF,  not  shown),  while  the  IFOF  (in  pink)  appears  intact.  Note   the  close  relationship  of  the  left  IFOF  with  the  hyperintense  mass  in  the  temporal   pole.     Modern   cognitive   models   of   language   have   shown   that   there   is   a   lot   of   redundancy   in   the   language   network.   It   is   of   paramount   importance   to   identify   those  bundles  that  if  severed  may  cause  permanent  language  deficits.  Definition   of   which   bundles   are   functionally   eloquent   and   have   to   be   absolutely   spared   during  resection  remains  an  important  issue.   There  is  a  long  list  of  important  limitations(15).  Few  are  inherent  to  the   DTI   and   the   MR   Tractography   technology   and   they   must   be   well   understood  
  • 6. before   the   results   of   presurgical   MR   Tractography   dissections   can   be   safely   exported   to   the   operating   room.   It   is   not   yet   established   whether   resection   of   fibers   apparently   infiltrated   by   the   tumor   that   appear   to   be   interrupted   or   destroyed  on  diffusion  MR  Tractography  will  result  in  permanent  postoperative   neurologic   deficits(15).   Nevertheless,   it   should   be   established   whether   resection   of  fibers  that  on  MR  Tractography  appear  to  be  interrupted  within  the  tumor  will   cause   permanent   postoperative   deficits.   On   the   contrary,   it   has   been   shown   many   times   that   severing   of   the   pyramidal   tract   will   cause   hemiplegia.     Whether   severing  of  one  of  the  many  language  connections  will  cause  aphasia  is  currently   a  controversial  issue(16).     In  conclusion,  diffusion  MR  Tractography  has  emerged  as  a  valuable  tool   in   the   evaluation   of   motor   and   language   pathways   both   in   healthy   individuals   and   in   patients   with   neurological   disorders.   In   healthy   subjects   they   are   contributing  to  refine  current  cognitive  and  anatomic  models.  Not  only  they  have   confirmed  several  theories  about  language  processing,  but  they  have  also  raised   unexpected   important   questions.   In   patients   with   brain   tumors   they   have   obtained  recognition  as  valuable  presurgical  clinical  tools  in  the  determination  of   hemispheric  dominance  and  in  the  selection  of  candidates  who  may  benefit  from   awake  craniotomy.    
  • 7. References     1.   Basser  PJ,  Mattiello  J,  LeBihan  D.  MR  diffusion  tensor  spectroscopy  and  imaging.  Biophys   J  1994;  66:259-­‐267.   2.   Pierpaoli  C,  Jezzard  P,  Basser  PJ,  Barnett  A,  Di  Chiro  G.  Diffusion  tensor  MR  imaging  of   the  human  brain.  Radiology  1996;  201:637-­‐648.   3.   Conturo  TE,  Lori  NF,  Cull  TS,  et  al.  Tracking  neuronal  fiber  pathways  in  the  living  human   brain.  Proc  Natl  Acad  Sci  U  S  A  1999;  96:10422-­‐10427.   4.   Mori  S,  Crain  BJ,  Chacko  VP,  van  Zijl  PC.  Three-­‐dimensional  tracking  of  axonal  projections   in  the  brain  by  magnetic  resonance  imaging.  Ann  Neurol  1999;  45:265-­‐269.   5.   Jones  DK.  Studying  connections  in  the  living  human  brain  with  diffusion  MRI.  Cortex   2008;  44:936-­‐952.   6.   Seunarine  KK,  Alexander  DC.  Multiple  Fibers:  Beyond  the  Diffusion  Tensor.  In:  Johansen-­‐ Berg  H,  Behrens  TE,  eds.  Diffusion  MRI:  From  Quantitative  Measurement  to  in  Vivo   Neuroanatomy.  Oxford,  U.K.:  Elsevier,  2009;  55-­‐72.   7.   Clark  CA,  Barrick  TR,  Murphy  MM,  Bell  BA.  White  matter  fiber  tracking  in  patients  with   space-­‐occupying  lesions  of  the  brain:  a  new  technique  for  neurosurgical  planning?   Neuroimage  2003;  20:1601-­‐1608.   8.   Field  AS,  Alexander  AL,  Wu  YC,  Hasan  KM,  Witwer  B,  Badie  B.  Diffusion  tensor   eigenvector  directional  color  imaging  patterns  in  the  evaluation  of  cerebral  white  matter   tracts  altered  by  tumor.  J  Magn  Reson  Imaging  2004;  20:555-­‐562.   9.   Mori  S,  Frederiksen  K,  van  Zijl  PC,  et  al.  Brain  white  matter  anatomy  of  tumor  patients   evaluated  with  diffusion  tensor  imaging.  Ann  Neurol  2002;  51:377-­‐380.   10.   Nimsky  C,  Ganslandt  O,  Hastreiter  P,  et  al.  Intraoperative  diffusion-­‐tensor  MR  imaging:   shifting  of  white  matter  tracts  during  neurosurgical  procedures-­‐-­‐initial  experience.   Radiology  2005;  234:218-­‐225.   11.   Jellison  BJ,  Field  AS,  Medow  J,  Lazar  M,  Salamat  MS,  Alexander  AL.  Diffusion  tensor   imaging  of  cerebral  white  matter:  a  pictorial  review  of  physics,  fiber  tract  anatomy,  and   tumor  imaging  patterns.  AJNR  Am  J  Neuroradiol  2004;  25:356-­‐369.   12.   Laundre  BJ,  Jellison  BJ,  Badie  B,  Alexander  AL,  Field  AS.  Diffusion  tensor  imaging  of  the   corticospinal  tract  before  and  after  mass  resection  as  correlated  with  clinical  motor   findings:  preliminary  data.  AJNR  Am  J  Neuroradiol  2005;  26:791-­‐796.   13.   Nimsky  C,  Ganslandt  O,  Fahlbusch  R.  Implementation  of  fiber  tract  navigation.   Neurosurgery  2006;  58:ONS-­‐292-­‐304.   14.   Bello  L,  Gambini  A,  Castellano  A,  et  al.  Motor  and  language  DTI  Fiber  Tracking  combined   with  intraoperative  subcortical  mapping  for  surgical  removal  of  gliomas.  Neuroimage   2008;  39:369-­‐382.   15.   Bizzi  A.  Presurgical  Mapping  of  Verbal  Language  in  Brain  Tumors  with  Functional  MR   Imaging  and  MR  Tractography.  In:  Pia  Sundgren  M,  ed.  Advanced  Imaging  Techniques  in   Brain  Tumors:  Elsevier,  2009;  573-­‐596.   16.   Bello  L,  Gallucci  M,  Fava  M,  et  al.  Intraoperative  subcortical  language  tract  mapping   guides  surgical  removal  of  gliomas  involving  speech  areas.  Neurosurgery  2007;  60:67-­‐ 82.