SlideShare una empresa de Scribd logo
1 de 25
1
Ácido-Base
2
Características
ÁCIDOS:
Tienen sabor agrio.
Son corrosivos para la
piel.
Enrojecen ciertos
colorantes vegetales.
Disuelven sustancias
Atacan a los metales
desprendiendo H2.
Pierden sus propiedades al
reaccionar con bases.
BASES:
Tiene sabor amargo.
Suaves al tacto pero
corrosivos con la piel.
Dan color azul a ciertos
colorantes vegetales.
Precipitan sustancias
disueltas por ácidos.
Disuelven grasas.
Pierden sus propiedades al
reaccionar con ácidos.
3
TEORIAS: Arrhenius
Publica en 1887 su teoría de
“disociación iónica”.
* Hay sustancias (electrolitos) que en disolución
acuosa se disocian en cationes y aniones.
ÁCIDO: Sustancia que en disolución
acuosa disocia cationes H+.
BASE: Sustancia que en disolución acuosa
disocia aniones OH–.
4
Disociación
ÁCIDOS:
AH (en disolución acuosa)  A– + H+
Ejemplos:
* HCl (en disolución acuosa)  Cl– + H+
* H2SO4 (en disolución acuosa) SO4
2– + 2 H+
BASES:
BOH (en disolución acuosa)  B + + OH–
Ejemplo:
* NaOH (en disolución acuosa)  Na+ + OH–
5
Neutralización
Se produce al reaccionar un ácido con una
base por formación de agua:
H+ + OH– — H2O
El anión que se disoció del ácido y el catión
que se disoció de la base quedan en
disolución inalterados (sal disociada):
NaOH +HCl — H2O + NaCl (Na+ + Cl–)
6
Teoría de Brönsted-Lowry.
ÁCIDOS:
“Sustancia que en disolución cede H+”.
BASES:
“Sustancia que en disolución acepta H+”.
7
Par Ácido/base conjugado
Siempre que una sustancia se comporta como
ácido (cede H+) hay otra que se comporta
como base (captura dichos H+).
Cuando un ácido pierde H+ se convierte en su
“base conjugada” y cuando una base captura
H+ se convierte en su “ácido conjugado”.
ÁCIDO (HA) BASE CONJ. (A–)
– H+
+ H+
BASE (B) ÁC. CONJ. (HB+)
+ H+
– H+
8
Ejemplo de par Ácido/base
conjugado
Disociación de un ácido:
HCl (g) + H2O (l)  H3O+(ac) + Cl– (ac)
En este caso el H2O actúa como base y el
HCl al perder el H+ se transforma en Cl–
(base conjugada)
Disociación de una base:
NH3 (g) + H2O (l)  NH4
+ + OH–
En este caso el H2O actúa como ácido pues
cede H+ al NH3 que se transforma en NH4
+
(ácido conjugado)
9
Teoría de Lewis ( )
ÁCIDOS:
“Sustancia que contiene al menos un átomo
capaz de aceptar un par de electrones y
formar un enlace covalente coordinado”.
BASES:
“Sustancia que contiene al menos un átomo
capaz de aportar un par de electrones para
formar un enlace covalente coordinado”.
TEORÍA DE BRÖNSTED-LOWRY
ÁCIDO BASE ÁCIDO BASE
H2S + H2O H3O+ + SH-
HS- + OH- H2O + S2-
HCl + NH3 NH4
+ + Cl-
H2O + OH- H2O + OH-
H+(A-) + H2O H3O+ + (A-)
EL AGUA ES ANFIPRÓTICA
TEORÍA DE BRÖNSTED-LOWRY
HCl + OH- Cl- + H2O
ÁCIDO
FUERTE
BASE
FUERTE
BASE
CONJUGADA
DÉBIL
ÁCIDO
CONJUGADO
DÉBIL
Un ácido fuerte se disocia completamente
en sus iones
HA H+ + A-
12
Equilibrio de ionización del agua.
La experiencia demuestra que el agua tiene
conductividad eléctrica lo que indica que está
parcialmente disociado en iones:
2 H2O (l) H3O+(ac) + OH– (ac)
H3O+ · OH–
Kc = ——————
H2O2
Como H2O es constante por tratarse de un
líquido, llamaremos Kw = Kc · H2O2
conocido como “producto iónico del agua”

 [ ]×[ ]
-
w 3
K H O OH
13
Tipos de disoluciones
Ácidas: H3O+ > 10–7 M  pH < 7
Básicas: H3O+ < 10–7 M  pH > 7
Neutras: H3O+ = 10–7 M  pH = 7
En todos los casos: Kw = H3O+ · OH–
luego si H3O+ aumenta (disociación de un
ácido), entonces OH– debe disminuir
14
Gráfica de pH en sustancias
comunes
ÁCIDO BÁSICO
14
1 2 3 4 6 8 9 10 11 12 13
5 7
Zumo de
limón Cerveza
Leche
Sangre
Agua mar
Amoniaco
Agua destilada
15
Ácidos fuertes: se disocian
completamente
HCl+ H2O →H3O++ Cl-
Bases fuertes se disocian
completamente
NaOH → Na++ OH-
16
Ácidos débiles NO se disocian
completamente
Ka
HAc+ H2O → H3O+ +Ac-
Ka = [H3O+] [Ac-]
[HAc]
17
Bases débiles NO se disocian
completamente
NH3+ H2O = NH4OH
NH4+ + OH-
Kb= NH4+ + OH-
[NH4OH
18
Concepto de pOH.
A veces se usa este otro concepto, casi
idéntico al de pH:
Como Kw = H3O+ · OH– = 10–14 M2
Aplicando logaritmos y cambiando el signo
tendríamos:
pH + pOH = 14
para una temperatura de 25ºC.
pOH log [OH ]

 
19
Electrolitos fuertes y débiles
Electrolitos fuertes: ()
Están totalmente disociados
* Ejemplos: HCl (ac)  Cl– + H+
NaOH (ac)  Na+ + OH–
Electrolitos débiles: ()
Están disociados parcialmente
* Ejemplos: CH3–COOH (ac)  CH3–COO– + H+
NH3 (ac)+ H2O  NH4
+ + OH–
20
Tipos de hidrólisis.
Según procedan el catión y el anión de un
ácido o una base fuerte o débil, las sales se
clasifican en:
Sales procedentes de ácido fuerte y base fuerte.
* Ejemplo: NaCl
Sales procedentes de ácido débil y base fuerte.
* Ejemplo: NaCN
Sales procedentes de ácido fuerte y base débil.
* Ejemplo: NH4Cl
Sales procedentes de ácido débil y base débil.
* Ejemplo: NH4CN
21
Sales procedentes de ácido
fuerte y base débil.
Ejemplo: NH4Cl
SE PRODUCE HIDRÓLISIS ÁCIDA ya
que el NH4
+ es un ácido relativamente
fuerte y reacciona con agua mientras que el
Cl– es una base débil y no lo hace de forma
significativa:
NH4
+ + H2O  NH3 + H3O+
lo que provoca que el pH < 7 (dis. ácida).
22
Disoluciones
amortiguadoras (tampón)
Son capaces de mantener el pH después de
añadir pequeñas cantidades tanto de ácido
como de base. Están formadas por:
Disoluciones de ácido débil + sal de dicho
ácido débil con catión neutro:
* Ejemplo: ácido acético + acetato de sodio.
Disoluciones de base débil + sal de dicha
base débil con anión neutro:
* Ejemplo: amoniaco y cloruro de amonio.
23
Algunos indicadores de pH
Indicador
Color forma
ácida
Color forma
básica
Zona de
viraje (pH)
Violeta de
metilo
Amarillo Violeta 0-2
Rojo Congo Azul Rojo 3-5
Rojo de
metilo
Rojo Amarillo 4-6
Tornasol Rojo Azul 6-8
Fenolftaleína Incoloro Rosa 8-10
24
Valoraciones ácido-base
Valorar es medir la
concentración de un
determinado ácido o
base a partir del
análisis volumétrico
de la base o ácido
utilizado en la
reacción de
neutralización.
25
Valoraciones ácido-base
Vácido x [ácido] x a = Vbase x [base] x b

Más contenido relacionado

Similar a Presentación sobre ácidos y bases - Química

Teoria de acido base
Teoria de acido baseTeoria de acido base
Teoria de acido baseAbraham Rayon
 
Teoria de acido base
Teoria de acido baseTeoria de acido base
Teoria de acido baseAbraham Rayon
 
2q 06 acidos bases
2q 06 acidos bases2q 06 acidos bases
2q 06 acidos basesCAL28
 
Valoraciones en sistemas complejos ácido – base.ppt
Valoraciones en sistemas complejos ácido – base.pptValoraciones en sistemas complejos ácido – base.ppt
Valoraciones en sistemas complejos ácido – base.pptKarlaMassielMartinez
 
ACIDO BASE QUIMICA ORGÁNICA PARA EDUCACIÓN Y QUÍMICA PURA(8).pdf
ACIDO BASE QUIMICA ORGÁNICA  PARA EDUCACIÓN Y QUÍMICA PURA(8).pdfACIDO BASE QUIMICA ORGÁNICA  PARA EDUCACIÓN Y QUÍMICA PURA(8).pdf
ACIDO BASE QUIMICA ORGÁNICA PARA EDUCACIÓN Y QUÍMICA PURA(8).pdfnoaedel775
 
ACIDO BASE QUIMICA INORGÁNICA y universitarios (8).pdf
ACIDO BASE QUIMICA INORGÁNICA y universitarios (8).pdfACIDO BASE QUIMICA INORGÁNICA y universitarios (8).pdf
ACIDO BASE QUIMICA INORGÁNICA y universitarios (8).pdfnoaedel775
 
1 clase equilibrio_acido-base_qui_123
1 clase equilibrio_acido-base_qui_1231 clase equilibrio_acido-base_qui_123
1 clase equilibrio_acido-base_qui_123yanny
 
Equilibrio ionico
Equilibrio ionicoEquilibrio ionico
Equilibrio ionicoarelyxx
 

Similar a Presentación sobre ácidos y bases - Química (20)

Laboratorio
LaboratorioLaboratorio
Laboratorio
 
Ácido base
Ácido baseÁcido base
Ácido base
 
Tema 8 resumen
Tema 8 resumenTema 8 resumen
Tema 8 resumen
 
Tema 8 resumen
Tema 8 resumenTema 8 resumen
Tema 8 resumen
 
Acido base
Acido baseAcido base
Acido base
 
Teoria de acido base
Teoria de acido baseTeoria de acido base
Teoria de acido base
 
Teoria de acido base
Teoria de acido baseTeoria de acido base
Teoria de acido base
 
Acidos y bases corregido
Acidos y bases corregidoAcidos y bases corregido
Acidos y bases corregido
 
2q 06 acidos bases
2q 06 acidos bases2q 06 acidos bases
2q 06 acidos bases
 
Valoraciones en sistemas complejos ácido – base.ppt
Valoraciones en sistemas complejos ácido – base.pptValoraciones en sistemas complejos ácido – base.ppt
Valoraciones en sistemas complejos ácido – base.ppt
 
Acido - Base
Acido - BaseAcido - Base
Acido - Base
 
04ácido base
04ácido base04ácido base
04ácido base
 
Acidos y bases
Acidos y basesAcidos y bases
Acidos y bases
 
Teoria de acido base
Teoria de acido baseTeoria de acido base
Teoria de acido base
 
04AcidoBase.pdf
04AcidoBase.pdf04AcidoBase.pdf
04AcidoBase.pdf
 
ACIDO BASE QUIMICA ORGÁNICA PARA EDUCACIÓN Y QUÍMICA PURA(8).pdf
ACIDO BASE QUIMICA ORGÁNICA  PARA EDUCACIÓN Y QUÍMICA PURA(8).pdfACIDO BASE QUIMICA ORGÁNICA  PARA EDUCACIÓN Y QUÍMICA PURA(8).pdf
ACIDO BASE QUIMICA ORGÁNICA PARA EDUCACIÓN Y QUÍMICA PURA(8).pdf
 
ACIDO BASE QUIMICA INORGÁNICA y universitarios (8).pdf
ACIDO BASE QUIMICA INORGÁNICA y universitarios (8).pdfACIDO BASE QUIMICA INORGÁNICA y universitarios (8).pdf
ACIDO BASE QUIMICA INORGÁNICA y universitarios (8).pdf
 
1 clase equilibrio_acido-base_qui_123
1 clase equilibrio_acido-base_qui_1231 clase equilibrio_acido-base_qui_123
1 clase equilibrio_acido-base_qui_123
 
04 acidobase 2
04 acidobase 204 acidobase 2
04 acidobase 2
 
Equilibrio ionico
Equilibrio ionicoEquilibrio ionico
Equilibrio ionico
 

Último

Fracking: amenaza para el clima en México.pdf
Fracking: amenaza para el clima en México.pdfFracking: amenaza para el clima en México.pdf
Fracking: amenaza para el clima en México.pdfSUSMAI
 
Agenda socioamebiental 2024: diagnósticos y propuestas.pdf
Agenda socioamebiental 2024: diagnósticos y propuestas.pdfAgenda socioamebiental 2024: diagnósticos y propuestas.pdf
Agenda socioamebiental 2024: diagnósticos y propuestas.pdfSUSMAI
 
picaduras de insectos. enfermedades transmitidas por vector
picaduras de insectos. enfermedades transmitidas por vectorpicaduras de insectos. enfermedades transmitidas por vector
picaduras de insectos. enfermedades transmitidas por vectorDamiiHernandez
 
Revista de volcanes de Él Salvador (1).pdf
Revista de volcanes de Él Salvador  (1).pdfRevista de volcanes de Él Salvador  (1).pdf
Revista de volcanes de Él Salvador (1).pdfaddriana1616
 
Cuadro-comparativo-de-los-Modelos-Atomicos-6 (1).pptx
Cuadro-comparativo-de-los-Modelos-Atomicos-6 (1).pptxCuadro-comparativo-de-los-Modelos-Atomicos-6 (1).pptx
Cuadro-comparativo-de-los-Modelos-Atomicos-6 (1).pptxMarcoSanchez652945
 
La perdida de la biodiversidad y su importancia.pptx
La perdida de la biodiversidad y su importancia.pptxLa perdida de la biodiversidad y su importancia.pptx
La perdida de la biodiversidad y su importancia.pptxBrendaPalomaresSalas
 
Conceptos de las Normas ISO 14000 y 14001
Conceptos de las Normas ISO 14000 y 14001Conceptos de las Normas ISO 14000 y 14001
Conceptos de las Normas ISO 14000 y 14001Nicolle932479
 
Hidrocarburos no convencionales en México.pdf
Hidrocarburos no convencionales en México.pdfHidrocarburos no convencionales en México.pdf
Hidrocarburos no convencionales en México.pdfSUSMAI
 
Estimación de consumo de agua en México por el fracking.pdf
Estimación de consumo de agua en México por el fracking.pdfEstimación de consumo de agua en México por el fracking.pdf
Estimación de consumo de agua en México por el fracking.pdfSUSMAI
 
TECNOLOGÍA de la MADERA y propiedades.pptx
TECNOLOGÍA de la MADERA y propiedades.pptxTECNOLOGÍA de la MADERA y propiedades.pptx
TECNOLOGÍA de la MADERA y propiedades.pptxCeciliaRacca1
 
ELABORAMOS NUESTRO DÍPTICO CON ACCIONES PRÁCTICAS PARA MITIGAR EL CALENTAMIEN...
ELABORAMOS NUESTRO DÍPTICO CON ACCIONES PRÁCTICAS PARA MITIGAR EL CALENTAMIEN...ELABORAMOS NUESTRO DÍPTICO CON ACCIONES PRÁCTICAS PARA MITIGAR EL CALENTAMIEN...
ELABORAMOS NUESTRO DÍPTICO CON ACCIONES PRÁCTICAS PARA MITIGAR EL CALENTAMIEN...carlos abel rodriguez saldaña
 
Guia para el cuidado de plantas de 0 a experto..pdf
Guia para el cuidado de plantas de 0 a experto..pdfGuia para el cuidado de plantas de 0 a experto..pdf
Guia para el cuidado de plantas de 0 a experto..pdfGenioViral
 
Impactos al desarrollo fetal por proximidad a pozos de gas natural_230523FINA...
Impactos al desarrollo fetal por proximidad a pozos de gas natural_230523FINA...Impactos al desarrollo fetal por proximidad a pozos de gas natural_230523FINA...
Impactos al desarrollo fetal por proximidad a pozos de gas natural_230523FINA...SUSMAI
 

Último (14)

Fracking: amenaza para el clima en México.pdf
Fracking: amenaza para el clima en México.pdfFracking: amenaza para el clima en México.pdf
Fracking: amenaza para el clima en México.pdf
 
Agenda socioamebiental 2024: diagnósticos y propuestas.pdf
Agenda socioamebiental 2024: diagnósticos y propuestas.pdfAgenda socioamebiental 2024: diagnósticos y propuestas.pdf
Agenda socioamebiental 2024: diagnósticos y propuestas.pdf
 
picaduras de insectos. enfermedades transmitidas por vector
picaduras de insectos. enfermedades transmitidas por vectorpicaduras de insectos. enfermedades transmitidas por vector
picaduras de insectos. enfermedades transmitidas por vector
 
Revista de volcanes de Él Salvador (1).pdf
Revista de volcanes de Él Salvador  (1).pdfRevista de volcanes de Él Salvador  (1).pdf
Revista de volcanes de Él Salvador (1).pdf
 
Cuadro-comparativo-de-los-Modelos-Atomicos-6 (1).pptx
Cuadro-comparativo-de-los-Modelos-Atomicos-6 (1).pptxCuadro-comparativo-de-los-Modelos-Atomicos-6 (1).pptx
Cuadro-comparativo-de-los-Modelos-Atomicos-6 (1).pptx
 
La perdida de la biodiversidad y su importancia.pptx
La perdida de la biodiversidad y su importancia.pptxLa perdida de la biodiversidad y su importancia.pptx
La perdida de la biodiversidad y su importancia.pptx
 
Conceptos de las Normas ISO 14000 y 14001
Conceptos de las Normas ISO 14000 y 14001Conceptos de las Normas ISO 14000 y 14001
Conceptos de las Normas ISO 14000 y 14001
 
Hidrocarburos no convencionales en México.pdf
Hidrocarburos no convencionales en México.pdfHidrocarburos no convencionales en México.pdf
Hidrocarburos no convencionales en México.pdf
 
Introducción sintética a las Enfermedades de las Plantas
Introducción sintética a las Enfermedades de las PlantasIntroducción sintética a las Enfermedades de las Plantas
Introducción sintética a las Enfermedades de las Plantas
 
Estimación de consumo de agua en México por el fracking.pdf
Estimación de consumo de agua en México por el fracking.pdfEstimación de consumo de agua en México por el fracking.pdf
Estimación de consumo de agua en México por el fracking.pdf
 
TECNOLOGÍA de la MADERA y propiedades.pptx
TECNOLOGÍA de la MADERA y propiedades.pptxTECNOLOGÍA de la MADERA y propiedades.pptx
TECNOLOGÍA de la MADERA y propiedades.pptx
 
ELABORAMOS NUESTRO DÍPTICO CON ACCIONES PRÁCTICAS PARA MITIGAR EL CALENTAMIEN...
ELABORAMOS NUESTRO DÍPTICO CON ACCIONES PRÁCTICAS PARA MITIGAR EL CALENTAMIEN...ELABORAMOS NUESTRO DÍPTICO CON ACCIONES PRÁCTICAS PARA MITIGAR EL CALENTAMIEN...
ELABORAMOS NUESTRO DÍPTICO CON ACCIONES PRÁCTICAS PARA MITIGAR EL CALENTAMIEN...
 
Guia para el cuidado de plantas de 0 a experto..pdf
Guia para el cuidado de plantas de 0 a experto..pdfGuia para el cuidado de plantas de 0 a experto..pdf
Guia para el cuidado de plantas de 0 a experto..pdf
 
Impactos al desarrollo fetal por proximidad a pozos de gas natural_230523FINA...
Impactos al desarrollo fetal por proximidad a pozos de gas natural_230523FINA...Impactos al desarrollo fetal por proximidad a pozos de gas natural_230523FINA...
Impactos al desarrollo fetal por proximidad a pozos de gas natural_230523FINA...
 

Presentación sobre ácidos y bases - Química

  • 2. 2 Características ÁCIDOS: Tienen sabor agrio. Son corrosivos para la piel. Enrojecen ciertos colorantes vegetales. Disuelven sustancias Atacan a los metales desprendiendo H2. Pierden sus propiedades al reaccionar con bases. BASES: Tiene sabor amargo. Suaves al tacto pero corrosivos con la piel. Dan color azul a ciertos colorantes vegetales. Precipitan sustancias disueltas por ácidos. Disuelven grasas. Pierden sus propiedades al reaccionar con ácidos.
  • 3. 3 TEORIAS: Arrhenius Publica en 1887 su teoría de “disociación iónica”. * Hay sustancias (electrolitos) que en disolución acuosa se disocian en cationes y aniones. ÁCIDO: Sustancia que en disolución acuosa disocia cationes H+. BASE: Sustancia que en disolución acuosa disocia aniones OH–.
  • 4. 4 Disociación ÁCIDOS: AH (en disolución acuosa)  A– + H+ Ejemplos: * HCl (en disolución acuosa)  Cl– + H+ * H2SO4 (en disolución acuosa) SO4 2– + 2 H+ BASES: BOH (en disolución acuosa)  B + + OH– Ejemplo: * NaOH (en disolución acuosa)  Na+ + OH–
  • 5. 5 Neutralización Se produce al reaccionar un ácido con una base por formación de agua: H+ + OH– — H2O El anión que se disoció del ácido y el catión que se disoció de la base quedan en disolución inalterados (sal disociada): NaOH +HCl — H2O + NaCl (Na+ + Cl–)
  • 6. 6 Teoría de Brönsted-Lowry. ÁCIDOS: “Sustancia que en disolución cede H+”. BASES: “Sustancia que en disolución acepta H+”.
  • 7. 7 Par Ácido/base conjugado Siempre que una sustancia se comporta como ácido (cede H+) hay otra que se comporta como base (captura dichos H+). Cuando un ácido pierde H+ se convierte en su “base conjugada” y cuando una base captura H+ se convierte en su “ácido conjugado”. ÁCIDO (HA) BASE CONJ. (A–) – H+ + H+ BASE (B) ÁC. CONJ. (HB+) + H+ – H+
  • 8. 8 Ejemplo de par Ácido/base conjugado Disociación de un ácido: HCl (g) + H2O (l)  H3O+(ac) + Cl– (ac) En este caso el H2O actúa como base y el HCl al perder el H+ se transforma en Cl– (base conjugada) Disociación de una base: NH3 (g) + H2O (l)  NH4 + + OH– En este caso el H2O actúa como ácido pues cede H+ al NH3 que se transforma en NH4 + (ácido conjugado)
  • 9. 9 Teoría de Lewis ( ) ÁCIDOS: “Sustancia que contiene al menos un átomo capaz de aceptar un par de electrones y formar un enlace covalente coordinado”. BASES: “Sustancia que contiene al menos un átomo capaz de aportar un par de electrones para formar un enlace covalente coordinado”.
  • 10. TEORÍA DE BRÖNSTED-LOWRY ÁCIDO BASE ÁCIDO BASE H2S + H2O H3O+ + SH- HS- + OH- H2O + S2- HCl + NH3 NH4 + + Cl- H2O + OH- H2O + OH- H+(A-) + H2O H3O+ + (A-) EL AGUA ES ANFIPRÓTICA
  • 11. TEORÍA DE BRÖNSTED-LOWRY HCl + OH- Cl- + H2O ÁCIDO FUERTE BASE FUERTE BASE CONJUGADA DÉBIL ÁCIDO CONJUGADO DÉBIL Un ácido fuerte se disocia completamente en sus iones HA H+ + A-
  • 12. 12 Equilibrio de ionización del agua. La experiencia demuestra que el agua tiene conductividad eléctrica lo que indica que está parcialmente disociado en iones: 2 H2O (l) H3O+(ac) + OH– (ac) H3O+ · OH– Kc = —————— H2O2 Como H2O es constante por tratarse de un líquido, llamaremos Kw = Kc · H2O2 conocido como “producto iónico del agua”   [ ]×[ ] - w 3 K H O OH
  • 13. 13 Tipos de disoluciones Ácidas: H3O+ > 10–7 M  pH < 7 Básicas: H3O+ < 10–7 M  pH > 7 Neutras: H3O+ = 10–7 M  pH = 7 En todos los casos: Kw = H3O+ · OH– luego si H3O+ aumenta (disociación de un ácido), entonces OH– debe disminuir
  • 14. 14 Gráfica de pH en sustancias comunes ÁCIDO BÁSICO 14 1 2 3 4 6 8 9 10 11 12 13 5 7 Zumo de limón Cerveza Leche Sangre Agua mar Amoniaco Agua destilada
  • 15. 15 Ácidos fuertes: se disocian completamente HCl+ H2O →H3O++ Cl- Bases fuertes se disocian completamente NaOH → Na++ OH-
  • 16. 16 Ácidos débiles NO se disocian completamente Ka HAc+ H2O → H3O+ +Ac- Ka = [H3O+] [Ac-] [HAc]
  • 17. 17 Bases débiles NO se disocian completamente NH3+ H2O = NH4OH NH4+ + OH- Kb= NH4+ + OH- [NH4OH
  • 18. 18 Concepto de pOH. A veces se usa este otro concepto, casi idéntico al de pH: Como Kw = H3O+ · OH– = 10–14 M2 Aplicando logaritmos y cambiando el signo tendríamos: pH + pOH = 14 para una temperatura de 25ºC. pOH log [OH ]   
  • 19. 19 Electrolitos fuertes y débiles Electrolitos fuertes: () Están totalmente disociados * Ejemplos: HCl (ac)  Cl– + H+ NaOH (ac)  Na+ + OH– Electrolitos débiles: () Están disociados parcialmente * Ejemplos: CH3–COOH (ac)  CH3–COO– + H+ NH3 (ac)+ H2O  NH4 + + OH–
  • 20. 20 Tipos de hidrólisis. Según procedan el catión y el anión de un ácido o una base fuerte o débil, las sales se clasifican en: Sales procedentes de ácido fuerte y base fuerte. * Ejemplo: NaCl Sales procedentes de ácido débil y base fuerte. * Ejemplo: NaCN Sales procedentes de ácido fuerte y base débil. * Ejemplo: NH4Cl Sales procedentes de ácido débil y base débil. * Ejemplo: NH4CN
  • 21. 21 Sales procedentes de ácido fuerte y base débil. Ejemplo: NH4Cl SE PRODUCE HIDRÓLISIS ÁCIDA ya que el NH4 + es un ácido relativamente fuerte y reacciona con agua mientras que el Cl– es una base débil y no lo hace de forma significativa: NH4 + + H2O  NH3 + H3O+ lo que provoca que el pH < 7 (dis. ácida).
  • 22. 22 Disoluciones amortiguadoras (tampón) Son capaces de mantener el pH después de añadir pequeñas cantidades tanto de ácido como de base. Están formadas por: Disoluciones de ácido débil + sal de dicho ácido débil con catión neutro: * Ejemplo: ácido acético + acetato de sodio. Disoluciones de base débil + sal de dicha base débil con anión neutro: * Ejemplo: amoniaco y cloruro de amonio.
  • 23. 23 Algunos indicadores de pH Indicador Color forma ácida Color forma básica Zona de viraje (pH) Violeta de metilo Amarillo Violeta 0-2 Rojo Congo Azul Rojo 3-5 Rojo de metilo Rojo Amarillo 4-6 Tornasol Rojo Azul 6-8 Fenolftaleína Incoloro Rosa 8-10
  • 24. 24 Valoraciones ácido-base Valorar es medir la concentración de un determinado ácido o base a partir del análisis volumétrico de la base o ácido utilizado en la reacción de neutralización.
  • 25. 25 Valoraciones ácido-base Vácido x [ácido] x a = Vbase x [base] x b