SlideShare una empresa de Scribd logo
1 de 51
Tutorial on s, p, d, f, successive ionization
and electronic configuration.

Prepared by
Lawrence Kok
http://lawrencekok.blogspot.com
Periodic Table of elements – divided into s, p, d, f blocks

s block
• s orbitals partially fill

d block
• d orbitals partially filled
• transition elements

f block
• f orbital partially fill

p block
• p orbital partially fill
s block elements
• s orbitals partially fill

1

H
He

p block elements
• p orbital partially fill

5

1s2
n = 2 period 2

B

[He] 2s2 2p1

6

1s1

2

Periodic Table – s, p d, f blocks elements

C

[He] 2s2 2p2

7

N

[He] 2s2 2p3

3

Li

[He] 2s1

8

O

[He] 2s2 2p4

4

Be

[He] 2s2

9

F

[He] 2s2 2p5

10

Ne

[He] 2s2 2p6

13

Al

[Ne] 3s2 3p1

3s1

11

Na

[Ne]

12

Mg

[Ne] 3s2

14
20

K
Ca

[Ne] 3s2 3p2

[Ar]

15

P

[Ne] 3s2 3p3

[Ar]

4s2

16

S

[Ne] 3s2 3p4

17

19

Si

4s1

CI

[Ne] 3s2 3p5

18

Ar

[Ne] 3s2 3p6

d block elements
• d orbitals partially fill
• transition elements

21

Sc

[Ar] 4s2 3d1

22

Ti

[Ar] 4s2 3d2

23

V

[Ar] 4s2 3d13

24

Cr

[Ar] 4s1 3d5

25

Mn

[Ar] 4s2 3d5

26

Fe

[Ar] 4s2 3d6

27

Co

[Ar] 4s2 3d7

28

Ni

[Ar] 4s2 3d8

29

Cu

[Ar] 4s1 3d10

30

Zn

[Ar] 4s2 3d10

f block elements
• f orbitals partially fill
s block elements
• s orbitals partially fill

1

H
He

p block elements
• p orbital partially fill

5

1s2
n = 2 period 2

B

[He] 2s2 2p1

6

1s1

2

Periodic Table – s, p d, f blocks elements

C

[He] 2s2 2p2

7

N

[He] 2s2 2p3

3

Li

[He] 2s1

8

O

[He] 2s2 2p4

4

Be

[He] 2s2

9

F

[He] 2s2 2p5

10

Ne

[He] 2s2 2p6

13

Al

[Ne] 3s2 3p1

3s1

11

Na

[Ne]

12

Mg

[Ne] 3s2

14
20

K
Ca

[Ne] 3s2 3p2

[Ar]

15

P

[Ne] 3s2 3p3

[Ar]

4s2

16

S

[Ne] 3s2 3p4

17

19

Si

4s1

CI

[Ne] 3s2 3p5

18

Ar

[Ne] 3s2 3p6

d block elements
• d orbitals partially fill
• transition elements

21

Sc

[Ar] 4s2 3d1

22

Ti

[Ar] 4s2 3d2

23

V

[Ar] 4s2 3d13

24

Cr

[Ar] 4s1 3d5

25

Mn

[Ar] 4s2 3d5

26

Fe

[Ar] 4s2 3d6

27

Co

[Ar] 4s2 3d7

28

Ni

[Ar] 4s2 3d8

29

Cu

[Ar] 4s1 3d10

30

Zn

[Ar] 4s2 3d10

f block elements
• f orbitals partially fill

Video on electron configuration

Click here electron structure

Click here video on s,p,d,f notation

Click here video s,p,d,f blocks,
Periodic Table – s, p d, f blocks elements
Electron structure
Chromium d block (Period 4)

Electron structure
Germanium p block, Gp 4 (Period 4)

Electron structure
Iodine p block, Gp 7 (Period 5)

1s2 2s2 2p6 3s2 3p6 4s1 3d5
[Ar] 4s1 3d5

1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p2
[Ar] 4s2 3d10 4p2

1s2 2s2 2p6 3s2 3p6 3d104s2 4p6 5s2 4d10 5p5
[Kr] 5s2 4d10 5p5

d block – d partially filled

Electron structure
Cadmium d block (Period 5)

1s2 2s2 2p6 3s2 3p6 3d104s2 4p6 5s2 4d10
[Kr] 5s2 4d10
d block – d partially filled

Gp 4 -4 valence electron

Electron structure
Mercury d block (Period 6)

1s2 2s2 2p6 3s2 3p6 3d104s2 4p6 5s2 4d10 5p6 6s2 4f14 5d10
[Xe] 6s2 4f14 5d10
d block – d partially filled

Gp 7 - 7 valence electron

Electron structure
Lead p block, Gp 4 (Period 6)

1s2 2s2 2p6 3s2 3p6 3d104s2 4p6 5s2 4d10 5p6 6s2 4f14 5d106p2
[Xe] 6s2 4f14 5d10 6p2
Gp 4 -4 valence electron
Electron filled according to 3 Principles
1

Aufbau Principle
• electron occupy orbitals of lower energy first
• building up, construction from bottom up

4Be

High energy

- 1s2 2s2

5B

- 1s2 2s2 2p1

2p

2p

2s

2s
Click here to view simulation

1s

1s
lower energy
Electron filled according to 3 Principles
1

Aufbau Principle
• electron occupy orbitals of lower energy first
• building up, construction from bottom up

4Be

High energy

- 1s2 2s2

5B

- 1s2 2s2 2p1

2p

2p

2s

2s
Click here to view simulation

1s

1s
lower energy

2

Hund’s Principle
• electron occupy orbitals singly first before pairing up
7N

High energy

- 1s2 2s2 2p3

8O

- 1s2 2s2 2p4

2p
2s
1s
3

Click here to view simulation
lower energy
Electron filled according to 3 Principles
1

Aufbau Principle
• electron occupy orbitals of lower energy first
• building up, construction from bottom up

4Be

High energy

- 1s2 2s2

5B

- 1s2 2s2 2p1

2p

2p

2s

2s
Click here to view simulation

1s

1s
lower energy

2

Hund’s Principle
• electron occupy orbitals singly first before pairing up
7N

High energy

- 1s2 2s2 2p3

8O

- 1s2 2s2 2p4

2p
2s

Click here to view simulation

1s
3

lower energy

Pauli Exclusion Principle
• each orbital occupy by 2 electron opposite spin
4Be

- 1s2 2s2

High energy

10Ne

- 1s2 2s2 2p6

Click here to view simulation
lower energy
Electron Notation
Atom
s, p, d, f notation
Complete configuration

10

Ne

1s2 2s2 2p6

11

Na

1s2 2s2 2p6 3s1

12

Mg

1s2 2s2 2p6 3s2

13

Al

1s2 2s2 2p6 3s2 3p1

14

Si

1s2 2s2 2p6 3s2 3p2

15

P

1s2 2s2 2p6 3s2 3p3

16

S

1s2 2s2 2p6 3s2 3p4

17

CI

1s2 2s2 2p6 3s2 3p5

18

Ar

1s2 2s2 2p6 3s2 3p6

19

K

1s2 2s2 2p6 3s2 3p6 4s1

20

Ca

1s2 2s2 2p6 3s2 3p6 4s2

21

Sc

1s2 2s2 2p6 3s2 3p6 4s2 3d1

22

Ti

1s2 2s2 2p6 3s2 3p6 4s2 3d2

23

V

1s2 2s2 2p6 3s2 3p6 4s2 3d3

24

Cr

1s2 2s2 2p6 3s2 3p6 4s1 3d5

25

Mn

1s2 2s2 2p6 3s2 3p6 4s2 3d5

26

Fe

1s2 2s2 2p6 3s2 3p6 4s2 3d6

27

Co

1s2 2s2 2p6 3s2 3p6 4s2 3d7

28

Ni

1s2 2s2 2p6 3s2 3p6 4s2 3d8

29

Cu

1s2 2s2 2p6 3s2 3p6 4s1 3d10

30

Zn

1s2 2s2 2p6 3s2 3p6 4s2 3d10
Electron Notation
Atom
s, p, d, f notation
Complete configuration

Noble gas notation
Condensed configuration

10

Ne

1s2 2s2 2p6

10

Ne

[Ne]

11

Na

1s2 2s2 2p6 3s1

11

Na

[Ne] 3s1

12

Mg

1s2 2s2 2p6 3s2

12

Mg

[Ne] 3s2

13

Al

1s2 2s2 2p6 3s2 3p1

13

Al

[Ne] 3s2 3p1

14

Si

1s2 2s2 2p6 3s2 3p2

14

Si

[Ne] 3s2 3p2

15

P

1s2 2s2 2p6 3s2 3p3

15

P

[Ne] 3s2 3p3

16

S

1s2 2s2 2p6 3s2 3p4

16

S

[Ne] 3s2 3p4

17

CI

1s2 2s2 2p6 3s2 3p5

17

CI

[Ne] 3s2 3p5

18

Ar

1s2 2s2 2p6 3s2 3p6

18

Ar

[Ar]

19

K

1s2 2s2 2p6 3s2 3p6 4s1

19

K

[Ar] 4s1

20

Ca

1s2 2s2 2p6 3s2 3p6 4s2

20

Ca

[Ar] 4s2

21

Sc

1s2 2s2 2p6 3s2 3p6 4s2 3d1

21

Sc

[Ar] 4s2 3d1

22

Ti

1s2 2s2 2p6 3s2 3p6 4s2 3d2

22

Ti

[Ar] 4s2 3d2

23

V

1s2 2s2 2p6 3s2 3p6 4s2 3d3

23

V

[Ar] 4s2 3d3

24

Cr

1s2 2s2 2p6 3s2 3p6 4s1 3d5

24

Cr

[Ar] 4s1 3d5

25

Mn

1s2 2s2 2p6 3s2 3p6 4s2 3d5

25

Mn

[Ar] 4s2 3d5

26

Fe

1s2 2s2 2p6 3s2 3p6 4s2 3d6

26

Fe

[Ar] 4s2 3d6

27

Co

1s2 2s2 2p6 3s2 3p6 4s2 3d7

27

Co

[Ar] 4s2 3d7

28

Ni

1s2 2s2 2p6 3s2 3p6 4s2 3d8

28

Ni

[Ar] 4s2 3d8

29

Cu

1s2 2s2 2p6 3s2 3p6 4s1 3d10

29

Cu

[Ar] 4s1 3d10

30

Zn

1s2 2s2 2p6 3s2 3p6 4s2 3d10

30

Zn

[Ar] 4s2 3d10

[Ne]

[Ar]
Electron Notation
Atom

Positive/Negative Ion

s, p, d, f notation
Complete configuration

Noble gas notation
Condensed configuration

Noble gas notation
Complete configuration

10

Ne

1s2 2s2 2p6

10

Ne

[Ne]

10

Ne

1s2 2s2 2p6 /[Ne]

11

Na

1s2 2s2 2p6 3s1

11

Na

[Ne] 3s1

11

Na+

1s2 2s2 2p6 / [Ne]

12

Mg

1s2 2s2 2p6 3s2

12

Mg

[Ne] 3s2

12

Mg2+

1s2 2s2 2p6 / [Ne]

13

Al

1s2 2s2 2p6 3s2 3p1

13

Al

[Ne] 3s2 3p1

13

Al3+

1s2 2s2 2p6 / [Ne]

14

Si

1s2 2s2 2p6 3s2 3p2

14

Si

[Ne] 3s2 3p2

14

Si4+

1s2 2s2 2p6 / [Ne]

15

P

1s2 2s2 2p6 3s2 3p3

15

P

[Ne] 3s2 3p3

15

P3-

1s2 2s2 2p6 3s2 3p6 /[Ar]

16

S

1s2 2s2 2p6 3s2 3p4

16

S

[Ne] 3s2 3p4

16

S2-

1s2 2s2 2p6 3s2 3p6 /[Ar]

17

CI

1s2 2s2 2p6 3s2 3p5

17

CI

[Ne] 3s2 3p5

17

CI-

1s2 2s2 2p6 3s2 3p6/ [Ar]

18

Ar

1s2 2s2 2p6 3s2 3p6

18

Ar

[Ar]

19

[Ne]

18

Ar

[Ar]

K

[Ar]

4s1

19

K+

1s2 2s2 2p6 3s2 3p6 /[Ar]

20

Ca

[Ar] 4s2

20

Ca2+

1s2 2s2 2p6 3s2 3p6 / [Ar]

21

Sc

[Ar] 4s2 3d1

22

Ti

[Ar] 4s2 3d2

1s2 2s2 2p6 3s2 3p6 4s2 3d3

23

V

[Ar] 4s2 3d3

Cr

1s2 2s2 2p6 3s2 3p6 4s1 3d5

24

Cr

[Ar] 4s1 3d5

25

Mn

1s2 2s2 2p6 3s2 3p6 4s2 3d5

25

Mn

[Ar] 4s2 3d5

26

Fe

1s2 2s2 2p6 3s2 3p6 4s2 3d6

26

Fe

[Ar] 4s2 3d6

27

Co

1s2 2s2 2p6 3s2 3p6 4s2 3d7

27

Co

[Ar] 4s2 3d7

28

Ni

1s2 2s2 2p6 3s2 3p6 4s2 3d8

28

Ni

[Ar] 4s2 3d8

29

Cu

1s2 2s2 2p6 3s2 3p6 4s1 3d10

29

Cu

[Ar] 4s1 3d10

30

Zn

1s2 2s2 2p6 3s2 3p6 4s2 3d10

30

Zn

[Ar] 4s2 3d10

K

1s2

2s2

2p6

3s2

3p6 4s1

19

20

Ca

1s2 2s2 2p6 3s2 3p6 4s2

21

Sc

1s2 2s2 2p6 3s2 3p6 4s2 3d1

22

Ti

1s2 2s2 2p6 3s2 3p6 4s2 3d2

23

V

24

[Ar]
Electron configuration

5

B

1s2 2s2 2p1

6

C

1s2 2s2 2p2

7

N

1s2 2s2 2p3

8

O

1s2 2s2 2p4

9

F

1s2 2s2 2p5

10

Ne

1s2 2s2 2p6

11

Na

1s2 2s2 2p6 3s1

12

Mg

1s2 2s2 2p6 3s2

13

Al

1s2 2s2 2p6 3s2 3p1

14

Si

1s2

15

P

1s2 2s2 2p6 3s2 3p3

16

S

1s2 2s2 2p6 3s2 3p4

17

CI

1s2 2s2 2p6 3s2 3p5

18

Ar

1s2 2s2 2p6 3s2 3p6

19

K

1s2 2s2 2p6 3s2 3p6 4s1

20

Ca

1s2 2s2 2p6 3s2 3p6 4s2

21

Sc

1s2 2s2 2p6 3s2 3p6 4s2 3d1

22

Ti

1s2 2s2 2p6 3s2 3p6 4s2 3d2

23

V

1s2 2s2 2p6 3s2 3p6 4s2 3d3

24

Cr

1s2 2s2 2p6 3s2 3p6 4s1 3d5

25

Mn

1s2 2s2 2p6 3s2 3p6 4s2 3d5

26

Fe

1s2 2s2 2p6 3s2 3p6 4s2 3d6

27

Co

1s2 2s2 2p6 3s2 3p6 4s2 3d7

28

Ni

1s2 2s2 2p6 3s2 3p6 4s2 3d8

29

Cu

1s2 2s2 2p6 3s2 3p6 4s1 3d10

30

Zn

1s2 2s2 2p6 3s2 3p6 4s2 3d10

Electron occupy 4s first then 3d

Energy level and sublevels

2s2

2p6

4s energy level lower than 3d

3s2

4s
3p
3p2

3s
18Ar

– 1s2 2s2 2p6 3s2 3p6
2p
2s
1s

3d
Electron configuration

5

B

1s2 2s2 2p1

6

C

1s2 2s2 2p2

7

N

1s2 2s2 2p3

8

O

1s2 2s2 2p4

9

F

1s2 2s2 2p5

10

Ne

1s2 2s2 2p6

11

Na

1s2 2s2 2p6 3s1

12

Mg

1s2 2s2 2p6 3s2

13

Al

1s2 2s2 2p6 3s2 3p1

14

Si

1s2

15

P

1s2 2s2 2p6 3s2 3p3

16

S

1s2 2s2 2p6 3s2 3p4

17

CI

1s2

18

Ar

1s2 2s2 2p6 3s2 3p6

19

K

1s2

20

Ca

1s2 2s2 2p6 3s2 3p6 4s2

21

Sc

1s2 2s2 2p6 3s2 3p6 4s2 3d1

22

Ti

1s2 2s2 2p6 3s2 3p6 4s2 3d2

23

V

1s2 2s2 2p6 3s2 3p6 4s2 3d3

24

Cr

1s2 2s2 2p6 3s2 3p6 4s1 3d5

25

Mn

1s2 2s2 2p6 3s2 3p6 4s2 3d5

26

Fe

1s2 2s2 2p6 3s2 3p6 4s2 3d6

27

Co

1s2 2s2 2p6 3s2 3p6 4s2 3d7

28

Ni

1s2 2s2 2p6 3s2 3p6 4s2 3d8

29

Cu

1s2 2s2 2p6 3s2 3p6 4s1 3d10

30

Zn

1s2 2s2 2p6 3s2 3p6 4s2 3d10

Electron occupy 4s first then 3d

Energy level and sublevels

2s2

2s2

2s2

2p6

2p6

2p6

4s energy level lower than 3d

3s2

3s2

3s2

4s

3d

3p
3p2

3s
18Ar

– 1s2 2s2 2p6 3s2 3p6
2p
2s

3p5

3p6 4s1

Electrons fill 4s first

3d
4s

1s
3p
19K

– 1s2 2s2 2p6 3s2 3p6 4s1

3s
2p

2s

1s
Electron configuration

5

B

1s2 2s2 2p1

6

C

1s2 2s2 2p2

7

N

1s2 2s2 2p3

8

O

1s2 2s2 2p4

9

F

1s2 2s2 2p5

10

Ne

1s2 2s2 2p6

11

Na

1s2 2s2 2p6 3s1

12

Mg

1s2 2s2 2p6 3s2

13

Al

1s2 2s2 2p6 3s2 3p1

14

Si

1s2

15

P

1s2 2s2 2p6 3s2 3p3

16

S

1s2 2s2 2p6 3s2 3p4

17

CI

1s2

18

Ar

1s2 2s2 2p6 3s2 3p6

19

K

1s2

20

Ca

1s2 2s2 2p6 3s2 3p6 4s2

21

Sc

1s2 2s2 2p6 3s2 3p6 4s2 3d1

22

Ti

1s2 2s2 2p6 3s2 3p6 4s2 3d2

23

V

1s2 2s2 2p6 3s2 3p6 4s2 3d3

24

Cr

1s2 2s2 2p6 3s2 3p6 4s1 3d5

25

Mn

1s2 2s2 2p6 3s2 3p6 4s2 3d5

26

Fe

1s2 2s2 2p6 3s2 3p6 4s2 3d6

27

Co

1s2 2s2 2p6 3s2 3p6 4s2 3d7

28

Ni

1s2 2s2 2p6 3s2 3p6 4s2 3d8

29

Cu

1s2 2s2 2p6 3s2 3p6 4s1 3d10

30

Zn

Electron occupy 4s first then 3d

Energy level and sublevels

1s2 2s2 2p6 3s2 3p6 4s2 3d10

2s2

2s2

2s2

2p6

2p6

2p6

4s energy level lower than 3d

3s2

3s2

3s2

4s

3d

3p
3p2

3s
18Ar

– 1s2 2s2 2p6 3s2 3p6
2p
2s

3p5

3p6 4s1

Electrons fill 4s first

3d
4s

1s
3p
19K

– 1s2 2s2 2p6 3s2 3p6 4s1

3s
4s then 3d is fill

2p
3d

2s

4s

1s
21Sc

3p
3s

– 1s2 2s2 2p6 3s2 3p6 4s2 3d1
2p

2s
1s
d block

Exception to d block elements
4s energy level lower than 3d

3d

4s
3p
Electron configuration d block

21

Sc

1s2 2s2 2p6 3s2 3p6 4s2 3d1

22

Ti
V

1s2 2s2 2p6 3s2 3p6 4s2 3d3

24

Cr

1s2 2s2 2p6 3s2 3p6 4s1 3d5

25

Mn

1s2 2s2 2p6 3s2 3p6 4s2 3d5

26

Fe

1s2 2s2 2p6 3s2 3p6 4s2 3d6

27

Co

1s2 2s2 2p6 3s2 3p6 4s2 3d7

28

Ni

1s2 2s2 2p6 3s2 3p6 4s2 3d8

29

Cu

1s2 2s2 2p6 3s2 3p6 4s1 3d10

30

Zn

1s2 2s2 2p6 3s2 3p6 4s2 3d10

21Sc

– 1s2 2s2 2p6 3s2 3p6 4s2 3d1

2p

1s2 2s2 2p6 3s2 3p6 4s2 3d2

23

3s
2s
1s

4s energy level lower than 3d
d block

Exception to d block elements
4s energy level lower than 3d

3d

4s
3p
Electron configuration d block

21

Sc

1s2 2s2 2p6 3s2 3p6 4s2 3d1

22

Ti
V

24

Cr

25

Mn

1s2 2s2 2p6 3s2 3p6 4s2 3d5

26

Fe

1s2 2s2 2p6 3s2 3p6 4s2 3d6

27

Co
Ni

1s2 2s2 2p6 3s2 3p6 4s2 3d8

29

Cu

1s2 2s2 2p6 3s2 3p6 4s1 3d10

30

Zn

1s2 2s2 2p6 3s2 3p6 4s2 3d10

2s2

2p6

3s2

3p6 4s1

3d5

4s energy level lower than 3d

2p

1s2 2s2 2p6 3s2 3p6 4s2 3d7

28

– 1s2 2s2 2p6 3s2 3p6 4s2 3d1

1s2 2s2 2p6 3s2 3p6 4s2 3d3

1s2

21Sc

1s2 2s2 2p6 3s2 3p6 4s2 3d2

23

3s
2s
1s
24Cr

– 1s2 2s2 2p6 3s2 3p6 4s13d5

24Cr

– 1s2 2s2 2p6 3s2 3p6 4s2 3d4

3d

✔
✗

4s
3p
3s
2p
2s

1s

Half fill energetically more stable
d block

Exception to d block elements
4s energy level lower than 3d

3d

4s
3p
Electron configuration d block

21

Sc

1s2 2s2 2p6 3s2 3p6 4s2 3d1

22

Ti
V

24

Cr

25

Mn

1s2 2s2 2p6 3s2 3p6 4s2 3d5

26

Fe

1s2 2s2 2p6 3s2 3p6 4s2 3d6

27

Co
Ni

1s2 2s2 2p6 3s2 3p6 4s2 3d8

29

Cu

1s2 2s2 2p6 3s2 3p6 4s1 3d10

30

Zn

1s2 2s2 2p6 3s2 3p6 4s2 3d10

2s2

2p6

3s2

3p6 4s1

3d5

4s energy level lower than 3d

2p

1s2 2s2 2p6 3s2 3p6 4s2 3d7

28

– 1s2 2s2 2p6 3s2 3p6 4s2 3d1

1s2 2s2 2p6 3s2 3p6 4s2 3d3

1s2

21Sc

1s2 2s2 2p6 3s2 3p6 4s2 3d2

23

3s
2s
1s
24Cr

– 1s2 2s2 2p6 3s2 3p6 4s13d5

24Cr

– 1s2 2s2 2p6 3s2 3p6 4s2 3d4

3d

✔
✗

4s
3p
3s

Half fill energetically more stable

2p
2s

1s

29Cu

29Cu

–1s2 2s2 2p6 3s2 3p6 4s1 3d10
–1s2 2s2 2p6 3s2 3p6 4s2 3d9

✔
✗

4s
3p
3s

Half fill energetically more stable

2p
2s
1s

3d
d block

Exception to d block elements
4s energy level lower than 3d

Electron configuration d block

Noble gas notation
Condensed configuration

Positive Ions

21

Sc

1s2 2s2 2p6 3s2 3p6 4s2 3d1

21

Sc

[Ar] 3d1 4s2

21

Sc3+

[Ar]

22

Ti

1s2 2s2 2p6 3s2 3p6 4s2 3d2

22

Ti

[Ar] 3d2 4s2

22

Ti4+

[Ar]

23

V

1s2 2s2 2p6 3s2 3p6 4s2 3d3

23

V

[Ar] 3d3 4s2

23

V3+

[Ar] 3d2

24

Cr

1s2 2s2 2p6 3s2 3p6 4s1 3d5

24

Cr

[Ar] 3d5 4s1

24

Cr3+

[Ar] 3d3

25

Mn

1s2 2s2 2p6 3s2 3p6 4s2 3d5

25

Mn

[Ar] 3d5 4s2

25

Mn2+

[Ar] 3d5

26

Fe

1s2 2s2 2p6 3s2 3p6 4s2 3d6

26

Fe

[Ar] 3d6 4s2

26

Fe2+

[Ar] 3d6

27

Co

1s2 2s2 2p6 3s2 3p6 4s2 3d7

27

Co

[Ar] 3d7 4s2

27

Co2+

[Ar] 3d7

28

Ni

1s2 2s2 2p6 3s2 3p6 4s2 3d8

28

Ni

[Ar] 3d8 4s2

28

Ni2+

[Ar] 3d8

29

Cu

1s2 2s2 2p6 3s2 3p6 4s1 3d10

29

Cu

[Ar] 3d10 4s1

29

Cu2+

[Ar] 3d9

30

Zn

1s2 2s2 2p6 3s2 3p6 4s2 3d10

30

Zn

[Ar] 3d10 4s2

30

Zn2+

[Ar] 3d10

Electrons lost from
4s then 3d
d block

Exception to d block elements
4s energy level lower than 3d

Electron configuration d block

Noble gas notation
Condensed configuration

Positive Ions

21

Sc

1s2 2s2 2p6 3s2 3p6 4s2 3d1

21

Sc

[Ar] 3d1 4s2

21

Sc3+

[Ar]

22

Ti

1s2 2s2 2p6 3s2 3p6 4s2 3d2

22

Ti

[Ar] 3d2 4s2

22

Ti4+

[Ar]

23

V

1s2 2s2 2p6 3s2 3p6 4s2 3d3

23

V

[Ar] 3d3 4s2

23

V3+

[Ar] 3d2

24

Cr

1s2 2s2 2p6 3s2 3p6 4s1 3d5

24

Cr

[Ar] 3d5 4s1

24

Cr3+

[Ar] 3d3

25

Mn

1s2 2s2 2p6 3s2 3p6 4s2 3d5

25

Mn

[Ar] 3d5 4s2

25

Mn2+

[Ar] 3d5

26

Fe

1s2 2s2 2p6 3s2 3p6 4s2 3d6

26

Fe

[Ar] 3d6 4s2

26

Fe2+

[Ar] 3d6

27

Co

1s2 2s2 2p6 3s2 3p6 4s2 3d7

27

Co

[Ar] 3d7 4s2

27

Co2+

[Ar] 3d7

28

Ni

1s2 2s2 2p6 3s2 3p6 4s2 3d8

28

Ni

[Ar] 3d8 4s2

28

Ni2+

[Ar] 3d8

29

Cu

1s2 2s2 2p6 3s2 3p6 4s1 3d10

29

Cu

[Ar] 3d10 4s1

29

Cu2+

[Ar] 3d9

30

Zn

1s2 2s2 2p6 3s2 3p6 4s2 3d10

30

Zn

[Ar] 3d10 4s2

30

Zn2+

[Ar] 3d10

Why electron fill 4s first?
1

4s fill first – 4s2
4s – greater penetration/closer to nucleus
4s – lower in energy

3d

4s
20Ca

– [Ar] 4s2 3d0

Electrons lost from
4s then 3d
d block

Exception to d block elements
4s energy level lower than 3d

Noble gas notation
Condensed configuration

Electron configuration d block

Positive Ions

21

Sc

1s2 2s2 2p6 3s2 3p6 4s2 3d1

21

Sc

[Ar] 3d1 4s2

21

Sc3+

[Ar]

22

Ti

1s2 2s2 2p6 3s2 3p6 4s2 3d2

22

Ti

[Ar] 3d2 4s2

22

Ti4+

[Ar]

23

V

1s2 2s2 2p6 3s2 3p6 4s2 3d3

23

V

[Ar] 3d3 4s2

23

V3+

[Ar] 3d2

24

Cr

1s2 2s2 2p6 3s2 3p6 4s1 3d5

24

Cr

[Ar] 3d5 4s1

24

Cr3+

[Ar] 3d3

25

Mn

1s2 2s2 2p6 3s2 3p6 4s2 3d5

25

Mn

[Ar] 3d5 4s2

25

Mn2+

[Ar] 3d5

26

Fe

1s2 2s2 2p6 3s2 3p6 4s2 3d6

26

Fe

[Ar] 3d6 4s2

26

Fe2+

[Ar] 3d6

27

Co

1s2 2s2 2p6 3s2 3p6 4s2 3d7

27

Co

[Ar] 3d7 4s2

27

Co2+

[Ar] 3d7

28

Ni

1s2 2s2 2p6 3s2 3p6 4s2 3d8

28

Ni

[Ar] 3d8 4s2

28

Ni2+

[Ar] 3d8

29

Cu

1s2 2s2 2p6 3s2 3p6 4s1 3d10

29

Cu

[Ar] 3d10 4s1

29

Cu2+

[Ar] 3d9

30

Zn

1s2 2s2 2p6 3s2 3p6 4s2 3d10

30

Zn

[Ar] 3d10 4s2

30

Zn2+

[Ar] 3d10

Why electron fill 4s first?
1

4s fill first – 4s2
4s – greater penetration/closer to nucleus
4s – lower in energy

3d

2

3d – filled
3d – higher energy

3d

4s
20Ca

4s

– [Ar] 4s2 3d0

21Sc

– [Ar] 4s2 3d1

Electrons lost from
4s then 3d
d block

Exception to d block elements
4s energy level lower than 3d

Noble gas notation
Condensed configuration

Electron configuration d block

Positive Ions

21

Sc

1s2 2s2 2p6 3s2 3p6 4s2 3d1

21

Sc

[Ar] 3d1 4s2

21

Sc3+

[Ar]

22

Ti

1s2 2s2 2p6 3s2 3p6 4s2 3d2

22

Ti

[Ar] 3d2 4s2

22

Ti4+

[Ar]

23

V

1s2 2s2 2p6 3s2 3p6 4s2 3d3

23

V

[Ar] 3d3 4s2

23

V3+

[Ar] 3d2

24

Cr

1s2 2s2 2p6 3s2 3p6 4s1 3d5

24

Cr

[Ar] 3d5 4s1

24

Cr3+

[Ar] 3d3

25

Mn

1s2 2s2 2p6 3s2 3p6 4s2 3d5

25

Mn

[Ar] 3d5 4s2

25

Mn2+

[Ar] 3d5

26

Fe

1s2 2s2 2p6 3s2 3p6 4s2 3d6

26

Fe

[Ar] 3d6 4s2

26

Fe2+

[Ar] 3d6

27

Co

1s2 2s2 2p6 3s2 3p6 4s2 3d7

27

Co

[Ar] 3d7 4s2

27

Co2+

[Ar] 3d7

28

Ni

1s2 2s2 2p6 3s2 3p6 4s2 3d8

28

Ni

[Ar] 3d8 4s2

28

Ni2+

[Ar] 3d8

29

Cu

1s2 2s2 2p6 3s2 3p6 4s1 3d10

29

Cu

[Ar] 3d10 4s1

29

Cu2+

[Ar] 3d9

30

Zn

1s2 2s2 2p6 3s2 3p6 4s2 3d10

30

Zn

[Ar] 3d10 4s2

30

Zn2+

[Ar] 3d10

Why electron fill 4s first?
1

Why electrons lost from 4s first

4s fill first – 4s2
4s – greater penetration/closer to nucleus
4s – lower in energy

3d

2

3d – filled
3d – higher energy

3

3d once filled
3d e attracted by increasing nuclear charge
3d orbitals lower in energy - shield 4s e

3d

4s

4s
20Ca

4s

– [Ar] 4s2 3d0

Electrons lost from
4s then 3d

21Sc

– [Ar] 4s2 3d1

3d
21Sc

– [Ar] 3d2 4s2
d block

Exception to d block elements
4s energy level lower than 3d

Noble gas notation
Condensed configuration

Electron configuration d block

Positive Ions

21

Sc

1s2 2s2 2p6 3s2 3p6 4s2 3d1

21

Sc

[Ar] 3d1 4s2

21

Sc3+

[Ar]

22

Ti

1s2 2s2 2p6 3s2 3p6 4s2 3d2

22

Ti

[Ar] 3d2 4s2

22

Ti4+

[Ar]

23

V

1s2 2s2 2p6 3s2 3p6 4s2 3d3

23

V

[Ar] 3d3 4s2

23

V3+

[Ar] 3d2

24

Cr

1s2 2s2 2p6 3s2 3p6 4s1 3d5

24

Cr

[Ar] 3d5 4s1

24

Cr3+

[Ar] 3d3

25

Mn

1s2 2s2 2p6 3s2 3p6 4s2 3d5

25

Mn

[Ar] 3d5 4s2

25

Mn2+

[Ar] 3d5

26

Fe

1s2 2s2 2p6 3s2 3p6 4s2 3d6

26

Fe

[Ar] 3d6 4s2

26

Fe2+

[Ar] 3d6

27

Co

1s2 2s2 2p6 3s2 3p6 4s2 3d7

27

Co

[Ar] 3d7 4s2

27

Co2+

[Ar] 3d7

28

Ni

1s2 2s2 2p6 3s2 3p6 4s2 3d8

28

Ni

[Ar] 3d8 4s2

28

Ni2+

[Ar] 3d8

29

Cu

1s2 2s2 2p6 3s2 3p6 4s1 3d10

29

Cu

[Ar] 3d10 4s1

29

Cu2+

[Ar] 3d9

30

Zn

1s2 2s2 2p6 3s2 3p6 4s2 3d10

30

Zn

[Ar] 3d10 4s2

30

Zn2+

[Ar] 3d10

Why electron fill 4s first?
1

Why electrons lost from 4s first

4s fill first – 4s2
4s – greater penetration/closer to nucleus
4s – lower in energy

3d

2

3d – filled
3d – higher energy

3

4

4s – higher in energy
4s – e lost first

4s

4s

4s

– [Ar] 4s2 3d0

4S – FIRST IN – FIRST OUT

3d once filled
3d e attracted by increasing nuclear charge
3d orbitals lower in energy - shield 4s e

3d

20Ca

Electrons lost from
4s then 3d

21Sc

– [Ar] 4s2 3d1

3d

3d
21Sc

– [Ar] 3d2 4s2

lose 2 electron

21Sc2+ –

[Ar] 3d2 4s0
d block

d block elements and ions
4s energy level lower than 3d

Electron configuration d block
Electron lost from 4s then 3d

21

Sc

22

Ti

[Ar] 3d2 4s2

23

V
Cr

25

Mn

[Ar] 3d5 4s2

26

Fe

[Ar] 3d6 4s2

27

Co

[Ar] 3d7 4s2

28

Ni

[Ar] 3d8 4s2

29

Cu

[Ar] 3d10 4s1

30

Zn

[Ar] 3d10 4s2

lose 3 e

3d

3d

4s

4s
lose 2 e

3d

3d

[Ar]

V3+

[Ar] 3d2

24

Cr3+

[Ar] 3d3

Mn2+

[Ar] 3d5

26

4s

Ti4+

25

4s

[Ar]

Fe2+

[Ar] 3d6

27

[Ar] 3d5 4s1

3d

Sc3+

23

3d

21
22

lose 3 e

[Ar] 3d3 4s2

24

4s

4s

[Ar] 3d1 4s2

Positive Ions

Co2+

[Ar] 3d7

28

Ni2+

[Ar] 3d8

29

Cu2+

[Ar] 3d9

30

Zn2+

[Ar] 3d10
d block

d block elements and ions
4s energy level lower than 3d

Electron configuration d block
Electron lost from 4s then 3d

21

Sc

22

Ti

[Ar] 3d2 4s2

23

V
Cr

25

Mn

[Ar] 3d5 4s2

26

Fe

[Ar] 3d6 4s2

27

Co

28

Ni

[Ar] 3d8 4s2

29

Cu

[Ar] 3d10 4s1

30

Zn

[Ar] 3d10 4s2

3d

3d

4s

4s
lose 2 e

3d

3d

V3+

[Ar] 3d2

24

Cr3+

[Ar] 3d3

Mn2+

[Ar] 3d5

Fe2+

[Ar] 3d6

Co2+

[Ar] 3d7

28

Ni2+

[Ar] 3d8

29

Cu2+

[Ar] 3d9

30

[Ar] 3d7 4s2

lose 3 e

[Ar]

26

4s

Ti4+

25

4s

[Ar]

27

[Ar] 3d5 4s1

3d

Sc3+

23

3d

21
22

lose 3 e

[Ar] 3d3 4s2

24

4s

4s

[Ar] 3d1 4s2

Positive Ions

Zn2+

[Ar] 3d10

Video on Ionization energy

Click here to view IE

Click here to view IE

Click here to view IE
Ionization energy (IE)
1st Ionization energy
Min energy to remove 1 mole e from
1 mole of element in gaseous state
M(g)  M+ (g) + e

2nd Ionization energy
Min energy to remove 1 mole e from
1 mole of +1 ion to form +2 ion
M+(g)  M2+ (g) + e

Ionization energy

Why IE increases across the period?
Why IE decreases down a group ?
Ionization energy (IE)
1st Ionization energy
Min energy to remove 1 mole e from
1 mole of element in gaseous state
M(g)  M+ (g) + e

2nd Ionization energy
Min energy to remove 1 mole e from
1 mole of +1 ion to form +2 ion
M+(g)  M2+ (g) + e

Ionization energy

Factors affecting ionization energy

1

Distance from nucleus
electron

Distance near to nucleus – IE High 
Distance far away nucleus – IE Low 

Distance near
Strong electrostatic forces
attraction bet nucleus and e
IE – High 

Why IE increases across the period?
Why IE decreases down a group ?
Why IE increases across the period?
Why IE decreases down a group ?

Ionization energy (IE)
1st Ionization energy
Min energy to remove 1 mole e from
1 mole of element in gaseous state
M(g)  M+ (g) + e

2nd Ionization energy
Min energy to remove 1 mole e from
1 mole of +1 ion to form +2 ion
M+(g)  M2+ (g) + e

Ionization energy

Factors affecting ionization energy

1

2

Distance from nucleus

Nuclear charge

electron

+3

+4

+5

+6

Nuclear charge increase

Distance near to nucleus – IE High 
Distance far away nucleus – IE Low 

Nuclear charge high (more proton) – IE High 
Nuclear charge low  (less proton) – IE Low 

+6

Distance near

Nuclear charge 

Strong electrostatic forces
attraction bet nucleus and e

Strong electrostatic forces
attraction bet nucleus and e

IE – High 

IE – High 
Why IE increases across the period?
Why IE decreases down a group ?

Ionization energy (IE)
1st Ionization energy
Min energy to remove 1 mole e from
1 mole of element in gaseous state
M(g)  M+ (g) + e

2nd Ionization energy
Min energy to remove 1 mole e from
1 mole of +1 ion to form +2 ion
M+(g)  M2+ (g) + e

Ionization energy

Factors affecting ionization energy

1

2

Distance from nucleus

3

Nuclear charge

electron

+3

+4

+5

+6

Effective Nuclear Charge (ENC)/(Zeff)
• Screening effect/shielding
• Effective nuclear charge (ENC)/(Zeff)
(Zeff) = Nuclear charge (Z) – shielding effect
• Net positive charge felt by valence electrons.

Nuclear charge increase

Distance near to nucleus – IE High 
Distance far away nucleus – IE Low 

Nuclear charge high (more proton) – IE High 
Nuclear charge low  (less proton) – IE Low 

+6

Inner electron – shield valence e from positive charge
Distance near

Nuclear charge 
Higher electron/electron repulsion

Strong electrostatic forces
attraction bet nucleus and e

Strong electrostatic forces
attraction bet nucleus and e

Easier valence e to leave

IE – High 

IE – High 

IE – Low 
IE drop from Be to B and N to O

Ionization Energy- Period 2

Why IE increases across the period 2?
IE increases across period 2
Nuclear charge increase 
Strong electrostatic forces
attraction bet nucleus and e

IE – High 

Li

Be

B

C

N

O

F

Ne

2p
2s
1s
1s2 2s1

1s2 2s2

1s2 2s2 2p1

1s2 2s2 2p2

1s2 2s2 2p3

1s2 2s2 2p4

1s2 2s2 2p5

1s2 2s2 2p6
IE drop from Be to B and N to O

Ionization Energy- Period 2

Why IE increases across the period 2?
IE increases across period 2
Nuclear charge increase 
Strong electrostatic forces
attraction bet nucleus and e

IE – High 

Li

Be

B

C

N

O

F

Ne

2p
2s
1s
1s2 2s1

1s2 2s2

1s2 2s2 2p1

1s2 2s2 2p2

IE drop  from Be to B

Electron in p sublevel of B
– further away from nucleus

Weak electrostatic force attraction
between nucleus and electron

IE - Low 
period 2

1s2 2s2 2p3

1s2 2s2 2p4

1s2 2s2 2p5

1s2 2s2 2p6
IE drop from Be to B and N to O

Ionization Energy- Period 2

Why IE increases across the period 2?
IE increases across period 2
Nuclear charge increase 
Strong electrostatic forces
attraction bet nucleus and e

IE – High 

Li

Be

B

C

N

O

F

Ne

2p
2s
1s
1s2 2s1

1s2 2s2

1s2 2s2 2p1

1s2 2s2 2p2

IE drop  from Be to B

1s2 2s2 2p3

1s2 2s2 2p4

IE drop  from N to O

Electron in p sublevel of B
– further away from nucleus

2 electrons in same p orbital
- Greater e/e repulsion

Weak electrostatic force attraction
between nucleus and electron

Easier to remove e
IE - Low 

IE - Low 
period 2

1s2 2s2 2p5

1s2 2s2 2p6
IE drop from Mg to AI and P to S

Ionization Energy- Period 3

Why IE increases across the period 3?
IE increases across period 3
Nuclear charge increase 
Strong electrostatic forces
attraction bet nucleus and e

IE – High 

Na

Mg

AI

Si

P

S

CI

Ar

3p

3s
[Ne] 3s1

[Ne] 3s2

[Ne] 3s2 3p1

[Ne] 3s2 3p2

[Ne] 3s2 3p3

[Ne] 3s2 3p4

[Ne] 3s2 3p5

[Ne] 3s2 3p6
IE drop from Mg to AI and P to S

Ionization Energy- Period 3

Why IE increases across the period 3?
IE increases across period 3
Nuclear charge increase 
Strong electrostatic forces
attraction bet nucleus and e

IE – High 

Na

Mg

AI

Si

P

S

CI

Ar

3p

3s
[Ne] 3s1

[Ne] 3s2

[Ne] 3s2 3p1

[Ne] 3s2 3p2

IE drop  from Mg to AI

Electron in p sublevel of AI
– further away from nucleus
Weak electrostatic force attraction
between nucleus and electron

IE - Low 
Period 3

[Ne] 3s2 3p3

[Ne] 3s2 3p4

[Ne] 3s2 3p5

[Ne] 3s2 3p6
IE drop from Mg to AI and P to S

Ionization Energy- Period 3

Why IE increases across the period 3?
IE increases across period 3
Nuclear charge increase 
Strong electrostatic forces
attraction bet nucleus and e

IE – High 

Na

Mg

AI

Si

P

S

CI

Ar

3p

3s
[Ne] 3s1

[Ne] 3s2

[Ne] 3s2 3p1

[Ne] 3s2 3p2

IE drop  from Mg to AI

[Ne] 3s2 3p3

[Ne] 3s2 3p4

IE drop  from P to S

Electron in p sublevel of AI
– further away from nucleus

2 electrons in same p orbital
- Greater e/e repulsion

Weak electrostatic force attraction
between nucleus and electron

Easier to remove e
IE - Low 

IE - Low 
Period 3

[Ne] 3s2 3p5

[Ne] 3s2 3p6
IE for Period 2 and 3

Ionization Energy- Period 2 and 3

Why IE period 3 lower than 2?
Period 3 – 3 shells/energy level

period 2
Period 3

Valence e further from nucleus

High shielding effect – more inner e

Weaker electrostatic forces
attraction bet nucleus and e
IE – Lower 
period 2
Li

Be

B

C

N

O

F

Ne

2p
2s
1s
1s2 2s1

1s2 2s2

1s2 2s2 2p1

1s2 2s2 2p2

1s2 2s2 2p3

1s2 2s2 2p4

1s2 2s2 2p5

1s2 2s2 2p6

Period 3
Na

Mg

AI

Si

P

S

[Ne] 3s2 3p1

[Ne] 3s2 3p2

[Ne] 3s2 3p3

[Ne] 3s2 3p4

CI

Ar

3p
3s
2p
2s
1s
[Ne] 3s1

[Ne] 3s2

[Ne] 3s2 3p5

[Ne] 3s2 3p6
IE for Period 2 and 3

Ionization Energy- Period 2 and 3

Why IE period 3 lower than 2?
Period 3 – 3 shells/energy level

period 2
Period 3

Valence e further from nucleus

High shielding effect – more inner e

Weaker electrostatic forces
attraction bet nucleus and e
IE – Lower 
period 2
Li

Be

B

C

N

O

F

Ne

2p
2s
1s
1s2 2s1

1s2 2s2

1s2 2s2 2p1

1s2 2s2 2p2

1s2 2s2 2p3

1s2 2s2 2p4

1s2 2s2 2p5

1s2 2s2 2p6

Period 3
Na

Mg

AI

Si

P

S

[Ne] 3s2 3p1

[Ne] 3s2 3p2

[Ne] 3s2 3p3

[Ne] 3s2 3p4

CI

Ar

3rd level

3p
3s
2p
2s
1s
[Ne] 3s1

[Ne] 3s2

[Ne] 3s2 3p5

[Ne] 3s2 3p6
IE for Ne and Ar

Ionization Energy- Period 2 and 3

Why Ne and Ar have HIGH IE ?
Full electron configuration, 2.8/2.8.8

neon
argon

Most energetically stable structure
Difficult to lose electron

IE – High 
period 2
Li

Be

B

C

N

O

F

Ne

2p
2s
1s
1s2 2s1

1s2 2s2

1s2 2s2 2p1

1s2 2s2 2p2

1s2 2s2 2p3

1s2 2s2 2p4

1s2 2s2 2p5

1s2 2s2 2p6

Period 3
Na

Mg

AI

Si

P

S

[Ne] 3s2 3p1

[Ne] 3s2 3p2

[Ne] 3s2 3p3

[Ne] 3s2 3p4

CI

Ar

3p

3s
2p
2s
1s
[Ne] 3s1

[Ne] 3s2

[Ne] 3s2 3p5

[Ne] 3s2 3p6
Successive Ionization Energy (IE) for Mg ( 2.8.2)
1st Ionization energy
Min energy to remove 1 mole e from
1 mole of element in gaseous state
M(g)  M+(g) + e

2nd Ionization energy
Min energy to remove 1 mole e from
1 mole of +1 ion to form +2 ion
M+(g)  M2+(g) + e

Mg
3rd energy
level

1st + 2nd electron
3s
2p

2nd energy
level

3rd to 8th electron

9th to 10th electron
2s

1st energy
level

11th to 12th electron
1s

1s2 2s2 2p6 3s2

Successive Ionization Energy (IE) for magnesium
Successive Ionization Energy (IE) for Mg ( 2.8.2)

Successive Ionization Energy (IE) for magnesium

1st Ionization energy
Min energy to remove 1 mole e from
1 mole of element in gaseous state
M(g)  M+(g) + e
1

2nd Ionization energy
Min energy to remove 1 mole e from
1 mole of +1 ion to form +2 ion
M+(g)  M2+(g) + e

Mg
3rd energy
level

1st + 2nd electron
3s
2p

2nd energy
level

3rd to 8th electron

9th to 10th electron
2s

1st energy
level

11th to 12th electron
1s

1s2 2s2 2p6 3s2
1

Successive (IE) Mg (2.8.2) show
• IE increase when e removed

•
•

Ion become increasingly more positive as more e are removed
Electron-electron repulsion decrease as more e removed

High electrostatic
forces attraction

IE – High 
Successive Ionization Energy (IE) for Mg ( 2.8.2)

Successive Ionization Energy (IE) for magnesium

1st Ionization energy
Min energy to remove 1 mole e from
1 mole of element in gaseous state
M(g)  M+(g) + e
1

2nd Ionization energy
Min energy to remove 1 mole e from
1 mole of +1 ion to form +2 ion
M+(g)  M2+(g) + e

2

Mg
3rd energy
level

1st + 2nd electron
3s
2p

2nd energy
level

3rd to 8th electron

9th to 10th electron
2s

1st energy
level

11th to 12th electron
1s

1s2 2s2 2p6 3s2
1

Successive (IE) Mg (2.8.2) show
• IE increase when e removed

2

Successive (IE) Mg (2.8.2) show
• High jump in 2nd to 3rd IE
• High jump in 10th to 11th IE

•
•

Ion become increasingly more positive as more e are removed
Electron-electron repulsion decrease as more e removed

High jump in IE – presence of new inner shell

High electrostatic
forces attraction

Electron nearer to nucleus –
High electrostatic forces attraction

IE – High 

IE – High 
Successive Ionization Energy (IE) for Mg ( 2.8.2)

Successive Ionization Energy (IE) for magnesium

1st Ionization energy
Min energy to remove 1 mole e from
1 mole of element in gaseous state
M(g)  M+(g) + e
1

2nd Ionization energy
Min energy to remove 1 mole e from
1 mole of +1 ion to form +2 ion
M+(g)  M2+(g) + e

2

Mg

3

3rd energy
level

1st + 2nd electron
3s
2p

2nd energy
level

3rd to 8th electron

9th to 10th electron
2s

1st energy
level

11th to 12th electron
1s

1s2 2s2 2p6 3s2
1

Successive (IE) Mg (2.8.2) show
• IE increase when e removed

2

Successive (IE) Mg (2.8.2) show
• High jump in 2nd to 3rd IE
• High jump in 10th to 11th IE

3

Successive (IE) Mg (2.8.2) show
• Presence of 3 energy level

•
•

Ion become increasingly more positive as more e are removed
Electron-electron repulsion decrease as more e removed

High jump in IE – presence of new inner shell

1st + 2nd e – outmost shell
(3rd level)

High electrostatic
forces attraction

Electron nearer to nucleus –
High electrostatic forces attraction

3rd to 10th e – 2nd shell
(2nd level)

IE – High 

IE – High 

11th to 12th e – innermost shell
(1st level)
Successive Ionization Energy (IE) for Mg ( 2.8.2)

Successive Ionization Energy (IE) for magnesium

1st Ionization energy
Min energy to remove 1 mole e from
1 mole of element in gaseous state
M(g)  M+(g) + e

4

2s and 2p

2nd Ionization energy
Min energy to remove 1 mole e from
1 mole of +1 ion to form +2 ion
M+(g)  M2+(g) + e

Mg
3rd energy
level

1st + 2nd electron
3s
2p

2nd energy
level

3rd to 8th electron

9th to 10th electron
2s

1st energy
level

11th to 12th electron
1s

1s2 2s2 2p6 3s2
4

Successive (IE) Mg (2.8.2) show
• Presence of sublevel, 2s + 2p

•

Slow gradual increase in IE from 3rd to 10th e

3rd to 8th e in 2p orbital

9th to 10th e inner 2s orbital
Successive Ionization Energy (IE) for Mg ( 2.8.2)

Successive Ionization Energy (IE) for magnesium

1st Ionization energy
Min energy to remove 1 mole e from
1 mole of element in gaseous state
M(g)  M+(g) + e

5

4

2s and 2p

2nd Ionization energy
Min energy to remove 1 mole e from
1 mole of +1 ion to form +2 ion
M+(g)  M2+(g) + e

Mg
3rd energy
level

1st + 2nd electron
3s
2p

2nd energy
level

3rd to 8th electron

9th to 10th electron
2s

1st energy
level

11th to 12th electron
1s

1s2 2s2 2p6 3s2
4

Successive (IE) Mg (2.8.2) show
• Presence of sublevel, 2s + 2p

5

Successive (IE) Mg (2.8.2) show
• Succesive IE increasing

•

Slow gradual increase in IE from 3rd to 10th e

Species form increase in proton/e ratio by losing e

3rd to 8th e in 2p orbital

9th to 10th e inner 2s orbital

Species becomes more positively charged

IE – High 
Successive Ionization Energy (IE) for Mg ( 2.8.2)
1st Ionization energy
Min energy to remove 1 mole e from
1 mole of element in gaseous state
M(g)  M+(g) + e

Successive Ionization Energy (IE) for magnesium

5
6
4

2s and 2p

2nd Ionization energy
Min energy to remove 1 mole e from
1 mole of +1 ion to form +2 ion
M+(g)  M2+(g) + e

Mg
3rd energy
level

1st + 2nd electron
3s
2p

2nd energy
level

3rd to 8th electron

9th to 10th electron
2s

1st energy
level

11th to 12th electron
1s

1s2 2s2 2p6 3s2
•

Slow gradual increase in IE from 3rd to 10th e

4

Successive (IE) Mg (2.8.2) show
• Presence of sublevel, 2s + 2p

5

Successive (IE) Mg (2.8.2) show
• Succesive IE increasing

Species form increase in proton/e ratio by losing e

6

Successive (IE) Mg (2.8.2) show
• More difficult to lose e

M(g)  M+(g) + e

M+  M2++ e

3rd to 8th e in 2p orbital

9th to 10th e inner 2s orbital

Species becomes more positively charged

M2+ M3++ e

More energy need to lose e

IE – High 

IE – High 
IB Questions on IE

s block elements
• s orbitals partially fill

1

H
He

5

1s2
n = 2 period 2

B

[He] 2s2 2p1

6

1s1

2

p block elements
• p orbital partially fill

C

[He] 2s2 2p2

7

N

[He] 2s2 2p3

3

Li

[He] 2s1

8

O

[He] 2s2 2p4

4

Be

[He] 2s2

9

F

[He] 2s2 2p5

10

Ne

[He] 2s2 2p6

13

Al

[Ne] 3s2 3p1

14

Si

[Ne] 3s2 3p2

15

P

[Ne] 3s2 3p3

16

S

[Ne] 3s2 3p4

17

CI

[Ne] 3s2 3p5

18

Ar

[Ne] 3s2 3p6

3s1

11

Na

[Ne]

12

Mg

[Ne] 3s2

19
20

1

K
Ca

[Ar]

4s1

[Ar]

1s2 2s2 2p6 3s2 3p6 3d104s2 4p6 5s2 4d10 5p6 6s2 4f14 5d106p2
[Xe] 6s2 4f14 5d10 6p2

4s2

Identify position elements P, Q, R, S and T
Electron configuration :
P – 3s2 3p6
Q – 4s2 4p5
R – 3s2 3p6 4s2
S – 1s2 2s2 2p6 3s2 3p6 3d3 4s2
T – 1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6

2

Write electron configuration for X, Y and Z
Element

Group

Period

X

2

3

Y

15

2

Z

18

3

3

Write electron structure for ions:

•
•
•
•
•
•

O - 1s2 2s2 2p4
O2- V - 1s2 2s2 2p6 3s2 3p6 4s2 3d3
V3+ Cu - 1s2 2s2 2p6 3s2 3p6 4s2 3d9
Cu2+ -
IB Questions on IE

s block elements
• s orbitals partially fill

1

H
He

5

1s2
n = 2 period 2

B

[He] 2s2 2p1

6

1s1

2

p block elements
• p orbital partially fill

C

[He] 2s2 2p2

7

N

[He] 2s2 2p3

3

Li

[He] 2s1

8

O

[He] 2s2 2p4

4

Be

[He] 2s2

9

F

[He] 2s2 2p5

10

Ne

[He] 2s2 2p6

13

Al

[Ne] 3s2 3p1

14

Si

[Ne] 3s2 3p2

15

P

[Ne] 3s2 3p3

16

S

[Ne] 3s2 3p4

17

CI

[Ne] 3s2 3p5

18

Ar

[Ne] 3s2 3p6

3s1

11

Na

[Ne]

12

Mg

[Ne] 3s2

19

K

20

1

Ca

[Ar]
[Ar]

1s2 2s2 2p6 3s2 3p6 3d104s2 4p6 5s2 4d10 5p6 6s2 4f14 5d106p2
[Xe] 6s2 4f14 5d10 6p2

4s1
4s2

Identify position elements P, Q, R, S and T
Electron configuration :
P – 3s2 3p6
Q – 4s2 4p5
R – 3s2 3p6 4s2
S – 1s2 2s2 2p6 3s2 3p6 3d3 4s2
T – 1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6

Answer

Element

2

Write electron configuration for X, Y and Z
Element

Group

Period

X

2

3

Y

15

2

Z

18

3

Answer

Grou
p

Period

Classification

P

8/18

3

Noble gas

Q

7/17

4

p block

R

2

4

s block

S

5

4

d block

T

8/18

4

Noble gas

X – 1s2 2s2 2p6 3s2
Y – 1s2 2s2 2p3
Z – 1s2 2s2 2p6 3s2 3p6

3

Write electron structure for ions:

•
•
•
•
•
•

O - 1s2 2s2 2p4
O2- V - 1s2 2s2 2p6 3s2 3p6 4s2 3d3
V3+ Cu - 1s2 2s2 2p6 3s2 3p6 4s2 3d9
Cu2+ -

Answer

Write electron structure for ions:

•
•
•
•
•
•

O - 1s2 2s2 2p4
O2- -1s2 2s2 2p6
V - 1s2 2s2 2p6 3s2 3p6 4s2 3d3
V 3+ - 1s2 2s2 2p6 3s2 3p6 4s0 3d2
Cu - 1s2 2s2 2p6 3s2 3p6 4s2 3d9
Cu 2+ - 1s2 2s2 2p6 3s23p6 4s0 3d9
IB Questions on IE

s block elements
• s orbitals partially fill

1

H
He

5

1s2
n = 2 period 2

B

[He] 2s2 2p1

6

1s1

2

p block elements
• p orbital partially fill

C

[He] 2s2 2p2

7

N

[He] 2s2 2p3

3

Li

[He] 2s1

8

O

[He] 2s2 2p4

4

Be

[He] 2s2

9

F

[He] 2s2 2p5

10

Ne

[He] 2s2 2p6

13

Al

[Ne] 3s2 3p1

14

Si

[Ne] 3s2 3p2

15

P

[Ne] 3s2 3p3

16

S

[Ne] 3s2 3p4

17

CI

[Ne] 3s2 3p5

18

Ar

[Ne] 3s2 3p6

3s1

11

Na

[Ne]

12

Mg

[Ne] 3s2

19
20

4

K
Ca

[Ar]
[Ar]

1s2 2s2 2p6 3s2 3p6 3d104s2 4p6 5s2 4d10 5p6 6s2 4f14 5d106p2
[Xe] 6s2 4f14 5d10 6p2

4s1
4s2

Successive IE of X is shown below
Predict the group and arrange in order of increasing proton number
Element

1st IE

2nd IE

3rd IE

4th IE

P

746

1423

7689

10456

Q

920

1768

14578

21343

R

587

1134

4890

6453

S

542

1045

4121

5412

5

Successive IE of X is shown below
Determine electron structure of X

Successive IE
(kJ/mol)

1314

3302

5436

7436

10647

13768

71564

84736
IB Questions on IE

s block elements
• s orbitals partially fill

1

H
He

5

1s2
n = 2 period 2

B

[He] 2s2 2p1

6

1s1

2

p block elements
• p orbital partially fill

C

[He] 2s2 2p2

7

N

[He] 2s2 2p3

3

Li

[He] 2s1

8

O

[He] 2s2 2p4

4

Be

[He] 2s2

9

F

[He] 2s2 2p5

10

Ne

[He] 2s2 2p6

13

Al

[Ne] 3s2 3p1

14

Si

[Ne] 3s2 3p2

15

P

[Ne] 3s2 3p3

16

S

[Ne] 3s2 3p4

17

CI

[Ne] 3s2 3p5

18

Ar

[Ne] 3s2 3p6

3s1

11

Na

[Ne]

12

Mg

[Ne] 3s2

19
20

4

K
Ca

[Ar]
[Ar]

1s2 2s2 2p6 3s2 3p6 3d104s2 4p6 5s2 4d10 5p6 6s2 4f14 5d106p2
[Xe] 6s2 4f14 5d10 6p2

4s1
4s2

Successive IE of X is shown below
Predict the group and arrange in order of increasing proton number
Element

1st IE

2nd IE

3rd IE

4th IE

P

746

1423

7689

10456

Q

920

1768

14578

21343

R

587

1134

4890

6453

S

542

1045

4121

5412

Answer
All in Gp 2 – 2 valence electron
Order increasing proton number Q, P, R, S
ReasonGp 2, cause 1st and 2nd IE low
Q – Highest IE (less shell/energy level)
S – Lowest IE (more shell/energy level)

5

Successive IE of X is shown below
Determine electron structure of X

Successive IE
(kJ/mol)

1314

3302

5436

Answer:
X = 6 outermost electron, Gp 6, 2.6
Reason - 1st IE to 6th IE are low.

7436

10647

13768

71564

84736
IB Questions on IE
6

Successive IE of sodium is shown below:
State full electron structure and explain how the successive IE
are related to Its electron configuration.

8

Successive IE for 4 element shown below
a) Which element form charge +1
b) Predict C in periodic table
c) Which element requires least amt energy to
charge a gaseous ion which carry charge +3
d) Which element belong to same group?
Element

1st IE

2nd IE

3rd IE

4th IE

A

423

3021

4657

5867

B

754

1431

7741

10432

C

557

1814

2735

11843

D

597

1104

4942

6342

7

Successive IE of magnesium is shown below:
Explain the large increase in 10th and 11th IE and the general trend of
Increasing successive IE for Mg.
IB Questions on IE
6

Successive IE of sodium is shown below:
State full electron structure and explain how the successive IE
are related to Its electron configuration.

7

Successive IE of magnesium is shown below:
Explain the large increase in 10th and 11th IE and the general trend of
Increasing successive IE for Mg.

11th electron

10th electron

Answer:
1s2 2s2 2p6 3s1
Reason:
• 1st electron easiest to remove, or 1st e in outmost shell/n= 3 energy level
• Large increase in IE bet 1st and 2nd as 2nd electron located in inner level, n=2
• Next 8 electrons more difficult to remove as the ion now is positively charged
• Large increase in IE between 9th and 10th , two innermost electron 10th/11th
in n=1 (close to nucleus)
8

Successive IE for 4 element shown below
a) Which element form charge +1
b) Predict C in periodic table
c) Which element requires least amt energy to
charge a gaseous ion which carry charge +3
d) Which element belong to same group?
Element

1st IE

2nd IE

3rd IE

4th IE

A

423

3021

4657

5867

B

754

1431

7741

10432

C

557

1814

2735

11843

D

597

1104

4942

6342

Answer:
Reason:
• 10th electron comes from 2nd energy level, (n=2) and 11th electron from n=1
• Electron in 1st energy level (n=1) closer to nucleus/ not shielded by inner electrons
• Successive IE high as it is more difficult to remove e from a positively charged ion.

Answer:
A – Gp 1, B - Gp 2, C – Gp 3, D – Gp 2
a) A- Gp 1 – lose 1 electron foming +1
b) C – Gp 3
c) Total IE = 1st IE + 2nd IE + 3rd IE
A = 8101
B= 9926
C = 5106
D = 6643
C requires least – Gp 3 – lose 3 e easily
d) B and D
Acknowledgements
Thanks to source of pictures and video used in this presentation
http://crescentok.com/staff/jaskew/isr/tigerchem/econfig/electron4.htm
http://pureinfotech.com/wp-content/uploads/2012/09/periodicTable_20120926101018.png

Thanks to Creative Commons for excellent contribution on licenses
http://creativecommons.org/licenses/

Prepared by Lawrence Kok
Check out more video tutorials from my site and hope you enjoy this tutorial
http://lawrencekok.blogspot.com

Más contenido relacionado

La actualidad más candente

2.6.1 oxidation numbers
2.6.1 oxidation  numbers2.6.1 oxidation  numbers
2.6.1 oxidation numbersMartin Brown
 
Ap chemistry review
Ap chemistry reviewAp chemistry review
Ap chemistry reviewalesa00
 
Introduction to electrochemistry by t. hara
Introduction to electrochemistry by t. haraIntroduction to electrochemistry by t. hara
Introduction to electrochemistry by t. haraToru Hara
 
2016 Topic 2: Electron Configuration
2016  Topic 2: Electron Configuration2016  Topic 2: Electron Configuration
2016 Topic 2: Electron ConfigurationDavid Young
 
Electron configuration
Electron configurationElectron configuration
Electron configurationKamal Metwalli
 
Coordination chemistry - introduction
Coordination chemistry - introductionCoordination chemistry - introduction
Coordination chemistry - introductionSANTHANAM V
 
Molecular orbitals diagram for ML6
Molecular orbitals diagram for ML6Molecular orbitals diagram for ML6
Molecular orbitals diagram for ML6Mithil Fal Desai
 
Coordination chemistry - CFT
Coordination chemistry - CFTCoordination chemistry - CFT
Coordination chemistry - CFTSANTHANAM V
 
Reactivity with metals
Reactivity with metalsReactivity with metals
Reactivity with metalsyeshasv13
 
6.3 (b) half equations
6.3 (b) half equations6.3 (b) half equations
6.3 (b) half equationsAzieda Dot
 
Molecular orbitals diagrams of hexacyanoferrate(III) and hexafluoroferrate(III)
Molecular orbitals diagrams of hexacyanoferrate(III) and hexafluoroferrate(III)Molecular orbitals diagrams of hexacyanoferrate(III) and hexafluoroferrate(III)
Molecular orbitals diagrams of hexacyanoferrate(III) and hexafluoroferrate(III)Mithil Fal Desai
 
d-block-elements.pptx.pdf
d-block-elements.pptx.pdfd-block-elements.pptx.pdf
d-block-elements.pptx.pdfAdityaRaj401097
 
Transition metal
Transition metalTransition metal
Transition metalgeetha T
 
IB Chemistry on Crystal Field Theory and Splitting of 3d orbital
IB Chemistry on Crystal Field Theory and Splitting of 3d orbitalIB Chemistry on Crystal Field Theory and Splitting of 3d orbital
IB Chemistry on Crystal Field Theory and Splitting of 3d orbitalLawrence kok
 
Group 2 Elements - Trends and Properties
Group 2 Elements - Trends and PropertiesGroup 2 Elements - Trends and Properties
Group 2 Elements - Trends and PropertiesRahul Jose
 

La actualidad más candente (20)

Transition metals
Transition metalsTransition metals
Transition metals
 
2.6.1 oxidation numbers
2.6.1 oxidation  numbers2.6.1 oxidation  numbers
2.6.1 oxidation numbers
 
Crystal field theory
Crystal field theoryCrystal field theory
Crystal field theory
 
Ap chemistry review
Ap chemistry reviewAp chemistry review
Ap chemistry review
 
Introduction to electrochemistry by t. hara
Introduction to electrochemistry by t. haraIntroduction to electrochemistry by t. hara
Introduction to electrochemistry by t. hara
 
Redox
RedoxRedox
Redox
 
Term symbols
Term symbolsTerm symbols
Term symbols
 
2016 Topic 2: Electron Configuration
2016  Topic 2: Electron Configuration2016  Topic 2: Electron Configuration
2016 Topic 2: Electron Configuration
 
Electron configuration
Electron configurationElectron configuration
Electron configuration
 
Coordination chemistry - introduction
Coordination chemistry - introductionCoordination chemistry - introduction
Coordination chemistry - introduction
 
Molecular orbitals diagram for ML6
Molecular orbitals diagram for ML6Molecular orbitals diagram for ML6
Molecular orbitals diagram for ML6
 
Coordination chemistry - CFT
Coordination chemistry - CFTCoordination chemistry - CFT
Coordination chemistry - CFT
 
Reactivity with metals
Reactivity with metalsReactivity with metals
Reactivity with metals
 
6.3 (b) half equations
6.3 (b) half equations6.3 (b) half equations
6.3 (b) half equations
 
Molecular orbitals diagrams of hexacyanoferrate(III) and hexafluoroferrate(III)
Molecular orbitals diagrams of hexacyanoferrate(III) and hexafluoroferrate(III)Molecular orbitals diagrams of hexacyanoferrate(III) and hexafluoroferrate(III)
Molecular orbitals diagrams of hexacyanoferrate(III) and hexafluoroferrate(III)
 
d-block-elements.pptx.pdf
d-block-elements.pptx.pdfd-block-elements.pptx.pdf
d-block-elements.pptx.pdf
 
Transition metal
Transition metalTransition metal
Transition metal
 
IB Chemistry on Crystal Field Theory and Splitting of 3d orbital
IB Chemistry on Crystal Field Theory and Splitting of 3d orbitalIB Chemistry on Crystal Field Theory and Splitting of 3d orbital
IB Chemistry on Crystal Field Theory and Splitting of 3d orbital
 
8.2 types of oxides
8.2 types of oxides8.2 types of oxides
8.2 types of oxides
 
Group 2 Elements - Trends and Properties
Group 2 Elements - Trends and PropertiesGroup 2 Elements - Trends and Properties
Group 2 Elements - Trends and Properties
 

Destacado

1ºBACH ECONOMÍA Repaso temas 5 6-7 (gh23)
1ºBACH ECONOMÍA Repaso temas 5 6-7 (gh23)1ºBACH ECONOMÍA Repaso temas 5 6-7 (gh23)
1ºBACH ECONOMÍA Repaso temas 5 6-7 (gh23)Geohistoria23
 
Análisis situacional integral de salud final
 Análisis situacional integral de salud final Análisis situacional integral de salud final
Análisis situacional integral de salud finalEstefanía Echeverría
 
Portafolio de Evidencias de mi Práctica Docente
Portafolio de Evidencias de mi Práctica DocentePortafolio de Evidencias de mi Práctica Docente
Portafolio de Evidencias de mi Práctica DocenteNorma Vega
 
1ºBACH Economía Tema 5 Oferta y demanda
1ºBACH Economía Tema 5 Oferta y demanda1ºBACH Economía Tema 5 Oferta y demanda
1ºBACH Economía Tema 5 Oferta y demandaGeohistoria23
 
Onderzoeksrapport acrs v3.0_definitief
Onderzoeksrapport acrs v3.0_definitiefOnderzoeksrapport acrs v3.0_definitief
Onderzoeksrapport acrs v3.0_definitiefrloggen
 
Como hacer un plan de negocios
Como hacer un plan de negociosComo hacer un plan de negocios
Como hacer un plan de negociosXPINNERPablo
 
Schrijven voor het web
Schrijven voor het webSchrijven voor het web
Schrijven voor het webSimone Levie
 
Evidence: Describing my kitchen. ENGLISH DOT WORKS 2. SENA.
Evidence: Describing my kitchen. ENGLISH DOT WORKS 2. SENA.Evidence: Describing my kitchen. ENGLISH DOT WORKS 2. SENA.
Evidence: Describing my kitchen. ENGLISH DOT WORKS 2. SENA... ..
 
Estrategias competitivas básicas
Estrategias competitivas básicasEstrategias competitivas básicas
Estrategias competitivas básicasLarryJimenez
 
2. describing cities and places. ENGLISH DOT WORKS 2. SENA. semana 4 acitivda...
2. describing cities and places. ENGLISH DOT WORKS 2. SENA. semana 4 acitivda...2. describing cities and places. ENGLISH DOT WORKS 2. SENA. semana 4 acitivda...
2. describing cities and places. ENGLISH DOT WORKS 2. SENA. semana 4 acitivda..... ..
 
3.Evidence: Getting to Bogota.ENGLISH DOT WORKS 2. SENA.semana 4 actividad 3.
3.Evidence: Getting to Bogota.ENGLISH DOT WORKS 2. SENA.semana 4 actividad 3.3.Evidence: Getting to Bogota.ENGLISH DOT WORKS 2. SENA.semana 4 actividad 3.
3.Evidence: Getting to Bogota.ENGLISH DOT WORKS 2. SENA.semana 4 actividad 3... ..
 
Evidence: Going to the restaurant . ENGLISH DOT WORKS 2. SENA.
Evidence: Going to the restaurant . ENGLISH DOT WORKS 2. SENA.Evidence: Going to the restaurant . ENGLISH DOT WORKS 2. SENA.
Evidence: Going to the restaurant . ENGLISH DOT WORKS 2. SENA... ..
 
Evidence: I can’t believe it.ENGLISH DOT WORKS 2. semana 3 actividad 1.SENA.
Evidence: I can’t believe it.ENGLISH DOT WORKS 2. semana 3 actividad 1.SENA.Evidence: I can’t believe it.ENGLISH DOT WORKS 2. semana 3 actividad 1.SENA.
Evidence: I can’t believe it.ENGLISH DOT WORKS 2. semana 3 actividad 1.SENA... ..
 

Destacado (20)

"Protección de la salud mental luego del terremoto y tsunami del 27 de febrer...
"Protección de la salud mental luego del terremoto y tsunami del 27 de febrer..."Protección de la salud mental luego del terremoto y tsunami del 27 de febrer...
"Protección de la salud mental luego del terremoto y tsunami del 27 de febrer...
 
1ºBACH ECONOMÍA Repaso temas 5 6-7 (gh23)
1ºBACH ECONOMÍA Repaso temas 5 6-7 (gh23)1ºBACH ECONOMÍA Repaso temas 5 6-7 (gh23)
1ºBACH ECONOMÍA Repaso temas 5 6-7 (gh23)
 
Análisis situacional integral de salud final
 Análisis situacional integral de salud final Análisis situacional integral de salud final
Análisis situacional integral de salud final
 
Portafolio de Evidencias de mi Práctica Docente
Portafolio de Evidencias de mi Práctica DocentePortafolio de Evidencias de mi Práctica Docente
Portafolio de Evidencias de mi Práctica Docente
 
Geheugen verbeteren
Geheugen verbeterenGeheugen verbeteren
Geheugen verbeteren
 
De impact van adhd
De impact van adhdDe impact van adhd
De impact van adhd
 
PMP Sonora Saludable 2010 2015
PMP Sonora Saludable 2010   2015  PMP Sonora Saludable 2010   2015
PMP Sonora Saludable 2010 2015
 
1ºBACH Economía Tema 5 Oferta y demanda
1ºBACH Economía Tema 5 Oferta y demanda1ºBACH Economía Tema 5 Oferta y demanda
1ºBACH Economía Tema 5 Oferta y demanda
 
Tears In The Rain
Tears In The RainTears In The Rain
Tears In The Rain
 
Onderzoeksrapport acrs v3.0_definitief
Onderzoeksrapport acrs v3.0_definitiefOnderzoeksrapport acrs v3.0_definitief
Onderzoeksrapport acrs v3.0_definitief
 
Como hacer un plan de negocios
Como hacer un plan de negociosComo hacer un plan de negocios
Como hacer un plan de negocios
 
Schrijven voor het web
Schrijven voor het webSchrijven voor het web
Schrijven voor het web
 
Evidence: Describing my kitchen. ENGLISH DOT WORKS 2. SENA.
Evidence: Describing my kitchen. ENGLISH DOT WORKS 2. SENA.Evidence: Describing my kitchen. ENGLISH DOT WORKS 2. SENA.
Evidence: Describing my kitchen. ENGLISH DOT WORKS 2. SENA.
 
Estrategias competitivas básicas
Estrategias competitivas básicasEstrategias competitivas básicas
Estrategias competitivas básicas
 
Cápsula 1. estudios de mercado
Cápsula 1. estudios de mercadoCápsula 1. estudios de mercado
Cápsula 1. estudios de mercado
 
Rodriguez alvarez
Rodriguez alvarezRodriguez alvarez
Rodriguez alvarez
 
2. describing cities and places. ENGLISH DOT WORKS 2. SENA. semana 4 acitivda...
2. describing cities and places. ENGLISH DOT WORKS 2. SENA. semana 4 acitivda...2. describing cities and places. ENGLISH DOT WORKS 2. SENA. semana 4 acitivda...
2. describing cities and places. ENGLISH DOT WORKS 2. SENA. semana 4 acitivda...
 
3.Evidence: Getting to Bogota.ENGLISH DOT WORKS 2. SENA.semana 4 actividad 3.
3.Evidence: Getting to Bogota.ENGLISH DOT WORKS 2. SENA.semana 4 actividad 3.3.Evidence: Getting to Bogota.ENGLISH DOT WORKS 2. SENA.semana 4 actividad 3.
3.Evidence: Getting to Bogota.ENGLISH DOT WORKS 2. SENA.semana 4 actividad 3.
 
Evidence: Going to the restaurant . ENGLISH DOT WORKS 2. SENA.
Evidence: Going to the restaurant . ENGLISH DOT WORKS 2. SENA.Evidence: Going to the restaurant . ENGLISH DOT WORKS 2. SENA.
Evidence: Going to the restaurant . ENGLISH DOT WORKS 2. SENA.
 
Evidence: I can’t believe it.ENGLISH DOT WORKS 2. semana 3 actividad 1.SENA.
Evidence: I can’t believe it.ENGLISH DOT WORKS 2. semana 3 actividad 1.SENA.Evidence: I can’t believe it.ENGLISH DOT WORKS 2. semana 3 actividad 1.SENA.
Evidence: I can’t believe it.ENGLISH DOT WORKS 2. semana 3 actividad 1.SENA.
 

Similar a IB Chemistry on Ionization energy and electron configuration

IB Chemistry on Ionization energy and electron configuration
IB Chemistry on Ionization energy and electron configurationIB Chemistry on Ionization energy and electron configuration
IB Chemistry on Ionization energy and electron configurationLawrence kok
 
IB Chemistry on Quantum Numbers and Electronic Configuration
IB Chemistry on Quantum Numbers and Electronic ConfigurationIB Chemistry on Quantum Numbers and Electronic Configuration
IB Chemistry on Quantum Numbers and Electronic ConfigurationLawrence kok
 
IB Chemistry on Quantum Numbers and Electronic Configuration
IB Chemistry on Quantum Numbers and Electronic ConfigurationIB Chemistry on Quantum Numbers and Electronic Configuration
IB Chemistry on Quantum Numbers and Electronic ConfigurationLawrence kok
 
IB Chemistry on Properties of Transition Metal and Magnetism
IB Chemistry on Properties of Transition Metal and MagnetismIB Chemistry on Properties of Transition Metal and Magnetism
IB Chemistry on Properties of Transition Metal and MagnetismLawrence kok
 
IB Chemistry on Properties of Transition Metal and Magnetism
IB Chemistry on Properties of Transition Metal and MagnetismIB Chemistry on Properties of Transition Metal and Magnetism
IB Chemistry on Properties of Transition Metal and MagnetismLawrence kok
 
Electronic configuration.pptx
Electronic configuration.pptxElectronic configuration.pptx
Electronic configuration.pptxDeepthy Gs
 
IB Chemistry on Crystal Field Theory and Splitting of 3d orbital
IB Chemistry on Crystal Field Theory and Splitting of 3d orbitalIB Chemistry on Crystal Field Theory and Splitting of 3d orbital
IB Chemistry on Crystal Field Theory and Splitting of 3d orbitalLawrence kok
 
Answers To Self-Tests And Exercises
Answers To Self-Tests And ExercisesAnswers To Self-Tests And Exercises
Answers To Self-Tests And ExercisesBecky Gilbert
 
Chapter 5, extra notes
Chapter 5, extra notesChapter 5, extra notes
Chapter 5, extra notesSHERIFA s
 
f block elements
  f block elements  f block elements
f block elementsRadha Mini
 
NEO_JEE_12_P1_CHE_E_The d & f - Block Elements ._S5_209.pdf
NEO_JEE_12_P1_CHE_E_The d & f - Block Elements ._S5_209.pdfNEO_JEE_12_P1_CHE_E_The d & f - Block Elements ._S5_209.pdf
NEO_JEE_12_P1_CHE_E_The d & f - Block Elements ._S5_209.pdfAtishThatei
 
E configs2
E configs2E configs2
E configs2TheSlaps
 
Econfigs2 150602233044-lva1-app6891
Econfigs2 150602233044-lva1-app6891Econfigs2 150602233044-lva1-app6891
Econfigs2 150602233044-lva1-app6891Cleophas Rwemera
 
Chemistry - Chp 6 - The Periodic Table Revisited - PowerPoint
Chemistry - Chp 6 - The Periodic Table Revisited - PowerPointChemistry - Chp 6 - The Periodic Table Revisited - PowerPoint
Chemistry - Chp 6 - The Periodic Table Revisited - PowerPointMel Anthony Pepito
 
Electron configuration
Electron configurationElectron configuration
Electron configurationKris Reddy
 
Ab initio studies on the luminescence of f-elements in solids
Ab initio studies on the luminescence of f-elements in solidsAb initio studies on the luminescence of f-elements in solids
Ab initio studies on the luminescence of f-elements in solidsLuis Seijo
 
Final3 Of Lecture 13
Final3 Of Lecture 13Final3 Of Lecture 13
Final3 Of Lecture 13Faysal Khan
 
Atomic structure and Electronic Configuration
Atomic structure and Electronic ConfigurationAtomic structure and Electronic Configuration
Atomic structure and Electronic Configurationpradeepkumarbiradar1
 

Similar a IB Chemistry on Ionization energy and electron configuration (20)

IB Chemistry on Ionization energy and electron configuration
IB Chemistry on Ionization energy and electron configurationIB Chemistry on Ionization energy and electron configuration
IB Chemistry on Ionization energy and electron configuration
 
IB Chemistry on Quantum Numbers and Electronic Configuration
IB Chemistry on Quantum Numbers and Electronic ConfigurationIB Chemistry on Quantum Numbers and Electronic Configuration
IB Chemistry on Quantum Numbers and Electronic Configuration
 
IB Chemistry on Quantum Numbers and Electronic Configuration
IB Chemistry on Quantum Numbers and Electronic ConfigurationIB Chemistry on Quantum Numbers and Electronic Configuration
IB Chemistry on Quantum Numbers and Electronic Configuration
 
IB Chemistry on Properties of Transition Metal and Magnetism
IB Chemistry on Properties of Transition Metal and MagnetismIB Chemistry on Properties of Transition Metal and Magnetism
IB Chemistry on Properties of Transition Metal and Magnetism
 
IB Chemistry on Properties of Transition Metal and Magnetism
IB Chemistry on Properties of Transition Metal and MagnetismIB Chemistry on Properties of Transition Metal and Magnetism
IB Chemistry on Properties of Transition Metal and Magnetism
 
Electronic configuration.pptx
Electronic configuration.pptxElectronic configuration.pptx
Electronic configuration.pptx
 
IB Chemistry on Crystal Field Theory and Splitting of 3d orbital
IB Chemistry on Crystal Field Theory and Splitting of 3d orbitalIB Chemistry on Crystal Field Theory and Splitting of 3d orbital
IB Chemistry on Crystal Field Theory and Splitting of 3d orbital
 
Answers To Self-Tests And Exercises
Answers To Self-Tests And ExercisesAnswers To Self-Tests And Exercises
Answers To Self-Tests And Exercises
 
Chapter 5, extra notes
Chapter 5, extra notesChapter 5, extra notes
Chapter 5, extra notes
 
f block elements
  f block elements  f block elements
f block elements
 
NEO_JEE_12_P1_CHE_E_The d & f - Block Elements ._S5_209.pdf
NEO_JEE_12_P1_CHE_E_The d & f - Block Elements ._S5_209.pdfNEO_JEE_12_P1_CHE_E_The d & f - Block Elements ._S5_209.pdf
NEO_JEE_12_P1_CHE_E_The d & f - Block Elements ._S5_209.pdf
 
E configs2
E configs2E configs2
E configs2
 
Econfigs2 150602233044-lva1-app6891
Econfigs2 150602233044-lva1-app6891Econfigs2 150602233044-lva1-app6891
Econfigs2 150602233044-lva1-app6891
 
Chemistry - Chp 6 - The Periodic Table Revisited - PowerPoint
Chemistry - Chp 6 - The Periodic Table Revisited - PowerPointChemistry - Chp 6 - The Periodic Table Revisited - PowerPoint
Chemistry - Chp 6 - The Periodic Table Revisited - PowerPoint
 
Electron configuration
Electron configurationElectron configuration
Electron configuration
 
Ab initio studies on the luminescence of f-elements in solids
Ab initio studies on the luminescence of f-elements in solidsAb initio studies on the luminescence of f-elements in solids
Ab initio studies on the luminescence of f-elements in solids
 
Chem Unit3
Chem Unit3Chem Unit3
Chem Unit3
 
Echon (electron configuration)
Echon (electron configuration)Echon (electron configuration)
Echon (electron configuration)
 
Final3 Of Lecture 13
Final3 Of Lecture 13Final3 Of Lecture 13
Final3 Of Lecture 13
 
Atomic structure and Electronic Configuration
Atomic structure and Electronic ConfigurationAtomic structure and Electronic Configuration
Atomic structure and Electronic Configuration
 

Más de Lawrence kok

IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...
IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...
IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...Lawrence kok
 
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...Lawrence kok
 
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...Lawrence kok
 
IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...
IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...
IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...Lawrence kok
 
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...Lawrence kok
 
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...Lawrence kok
 
IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...
IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...
IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...Lawrence kok
 
IA on effect of concentration of sodium alginate and calcium chloride in maki...
IA on effect of concentration of sodium alginate and calcium chloride in maki...IA on effect of concentration of sodium alginate and calcium chloride in maki...
IA on effect of concentration of sodium alginate and calcium chloride in maki...Lawrence kok
 
IA on effect of temperature on polyphenol (tannins) of white wine, using pota...
IA on effect of temperature on polyphenol (tannins) of white wine, using pota...IA on effect of temperature on polyphenol (tannins) of white wine, using pota...
IA on effect of temperature on polyphenol (tannins) of white wine, using pota...Lawrence kok
 
IA on effect of temperature on polyphenol (tannins) of green tea, using potas...
IA on effect of temperature on polyphenol (tannins) of green tea, using potas...IA on effect of temperature on polyphenol (tannins) of green tea, using potas...
IA on effect of temperature on polyphenol (tannins) of green tea, using potas...Lawrence kok
 
IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...
IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...
IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...Lawrence kok
 
IA on polyphenol (tannins) quantification between green and black tea using p...
IA on polyphenol (tannins) quantification between green and black tea using p...IA on polyphenol (tannins) quantification between green and black tea using p...
IA on polyphenol (tannins) quantification between green and black tea using p...Lawrence kok
 
IA on temperature on polyphenol (tannins strawberry) quantification using pot...
IA on temperature on polyphenol (tannins strawberry) quantification using pot...IA on temperature on polyphenol (tannins strawberry) quantification using pot...
IA on temperature on polyphenol (tannins strawberry) quantification using pot...Lawrence kok
 
IA on temperature on polyphenol (tannins apple cider) quantification using po...
IA on temperature on polyphenol (tannins apple cider) quantification using po...IA on temperature on polyphenol (tannins apple cider) quantification using po...
IA on temperature on polyphenol (tannins apple cider) quantification using po...Lawrence kok
 
IA on effect of temperature on polyphenol (tannins) quantification using pota...
IA on effect of temperature on polyphenol (tannins) quantification using pota...IA on effect of temperature on polyphenol (tannins) quantification using pota...
IA on effect of temperature on polyphenol (tannins) quantification using pota...Lawrence kok
 
IA on polyphenol quantification using potassium permanganate titration (Lowen...
IA on polyphenol quantification using potassium permanganate titration (Lowen...IA on polyphenol quantification using potassium permanganate titration (Lowen...
IA on polyphenol quantification using potassium permanganate titration (Lowen...Lawrence kok
 
IA on rate of hydrolysis of aspirin at different temperature, measured using ...
IA on rate of hydrolysis of aspirin at different temperature, measured using ...IA on rate of hydrolysis of aspirin at different temperature, measured using ...
IA on rate of hydrolysis of aspirin at different temperature, measured using ...Lawrence kok
 
IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...
IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...
IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...Lawrence kok
 
IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...
IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...
IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...Lawrence kok
 
IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...
IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...
IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...Lawrence kok
 

Más de Lawrence kok (20)

IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...
IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...
IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...
 
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
 
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
 
IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...
IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...
IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...
 
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
 
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
 
IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...
IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...
IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...
 
IA on effect of concentration of sodium alginate and calcium chloride in maki...
IA on effect of concentration of sodium alginate and calcium chloride in maki...IA on effect of concentration of sodium alginate and calcium chloride in maki...
IA on effect of concentration of sodium alginate and calcium chloride in maki...
 
IA on effect of temperature on polyphenol (tannins) of white wine, using pota...
IA on effect of temperature on polyphenol (tannins) of white wine, using pota...IA on effect of temperature on polyphenol (tannins) of white wine, using pota...
IA on effect of temperature on polyphenol (tannins) of white wine, using pota...
 
IA on effect of temperature on polyphenol (tannins) of green tea, using potas...
IA on effect of temperature on polyphenol (tannins) of green tea, using potas...IA on effect of temperature on polyphenol (tannins) of green tea, using potas...
IA on effect of temperature on polyphenol (tannins) of green tea, using potas...
 
IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...
IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...
IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...
 
IA on polyphenol (tannins) quantification between green and black tea using p...
IA on polyphenol (tannins) quantification between green and black tea using p...IA on polyphenol (tannins) quantification between green and black tea using p...
IA on polyphenol (tannins) quantification between green and black tea using p...
 
IA on temperature on polyphenol (tannins strawberry) quantification using pot...
IA on temperature on polyphenol (tannins strawberry) quantification using pot...IA on temperature on polyphenol (tannins strawberry) quantification using pot...
IA on temperature on polyphenol (tannins strawberry) quantification using pot...
 
IA on temperature on polyphenol (tannins apple cider) quantification using po...
IA on temperature on polyphenol (tannins apple cider) quantification using po...IA on temperature on polyphenol (tannins apple cider) quantification using po...
IA on temperature on polyphenol (tannins apple cider) quantification using po...
 
IA on effect of temperature on polyphenol (tannins) quantification using pota...
IA on effect of temperature on polyphenol (tannins) quantification using pota...IA on effect of temperature on polyphenol (tannins) quantification using pota...
IA on effect of temperature on polyphenol (tannins) quantification using pota...
 
IA on polyphenol quantification using potassium permanganate titration (Lowen...
IA on polyphenol quantification using potassium permanganate titration (Lowen...IA on polyphenol quantification using potassium permanganate titration (Lowen...
IA on polyphenol quantification using potassium permanganate titration (Lowen...
 
IA on rate of hydrolysis of aspirin at different temperature, measured using ...
IA on rate of hydrolysis of aspirin at different temperature, measured using ...IA on rate of hydrolysis of aspirin at different temperature, measured using ...
IA on rate of hydrolysis of aspirin at different temperature, measured using ...
 
IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...
IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...
IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...
 
IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...
IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...
IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...
 
IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...
IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...
IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...
 

Último

Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhikauryashika82
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfAdmir Softic
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsTechSoup
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.pptRamjanShidvankar
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfagholdier
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibitjbellavia9
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...ZurliaSoop
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and ModificationsMJDuyan
 
Dyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptxDyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptxcallscotland1987
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxAreebaZafar22
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17Celine George
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxVishalSingh1417
 
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptxSKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptxAmanpreet Kaur
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.MaryamAhmad92
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxnegromaestrong
 
ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701bronxfugly43
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsMebane Rash
 
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin ClassesCeline George
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...Nguyen Thanh Tu Collection
 

Último (20)

Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibit
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and Modifications
 
Dyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptxDyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptx
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptx
 
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptxSKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptx
 
Spatium Project Simulation student brief
Spatium Project Simulation student briefSpatium Project Simulation student brief
Spatium Project Simulation student brief
 
ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 

IB Chemistry on Ionization energy and electron configuration

  • 1. Tutorial on s, p, d, f, successive ionization and electronic configuration. Prepared by Lawrence Kok http://lawrencekok.blogspot.com
  • 2. Periodic Table of elements – divided into s, p, d, f blocks s block • s orbitals partially fill d block • d orbitals partially filled • transition elements f block • f orbital partially fill p block • p orbital partially fill
  • 3. s block elements • s orbitals partially fill 1 H He p block elements • p orbital partially fill 5 1s2 n = 2 period 2 B [He] 2s2 2p1 6 1s1 2 Periodic Table – s, p d, f blocks elements C [He] 2s2 2p2 7 N [He] 2s2 2p3 3 Li [He] 2s1 8 O [He] 2s2 2p4 4 Be [He] 2s2 9 F [He] 2s2 2p5 10 Ne [He] 2s2 2p6 13 Al [Ne] 3s2 3p1 3s1 11 Na [Ne] 12 Mg [Ne] 3s2 14 20 K Ca [Ne] 3s2 3p2 [Ar] 15 P [Ne] 3s2 3p3 [Ar] 4s2 16 S [Ne] 3s2 3p4 17 19 Si 4s1 CI [Ne] 3s2 3p5 18 Ar [Ne] 3s2 3p6 d block elements • d orbitals partially fill • transition elements 21 Sc [Ar] 4s2 3d1 22 Ti [Ar] 4s2 3d2 23 V [Ar] 4s2 3d13 24 Cr [Ar] 4s1 3d5 25 Mn [Ar] 4s2 3d5 26 Fe [Ar] 4s2 3d6 27 Co [Ar] 4s2 3d7 28 Ni [Ar] 4s2 3d8 29 Cu [Ar] 4s1 3d10 30 Zn [Ar] 4s2 3d10 f block elements • f orbitals partially fill
  • 4. s block elements • s orbitals partially fill 1 H He p block elements • p orbital partially fill 5 1s2 n = 2 period 2 B [He] 2s2 2p1 6 1s1 2 Periodic Table – s, p d, f blocks elements C [He] 2s2 2p2 7 N [He] 2s2 2p3 3 Li [He] 2s1 8 O [He] 2s2 2p4 4 Be [He] 2s2 9 F [He] 2s2 2p5 10 Ne [He] 2s2 2p6 13 Al [Ne] 3s2 3p1 3s1 11 Na [Ne] 12 Mg [Ne] 3s2 14 20 K Ca [Ne] 3s2 3p2 [Ar] 15 P [Ne] 3s2 3p3 [Ar] 4s2 16 S [Ne] 3s2 3p4 17 19 Si 4s1 CI [Ne] 3s2 3p5 18 Ar [Ne] 3s2 3p6 d block elements • d orbitals partially fill • transition elements 21 Sc [Ar] 4s2 3d1 22 Ti [Ar] 4s2 3d2 23 V [Ar] 4s2 3d13 24 Cr [Ar] 4s1 3d5 25 Mn [Ar] 4s2 3d5 26 Fe [Ar] 4s2 3d6 27 Co [Ar] 4s2 3d7 28 Ni [Ar] 4s2 3d8 29 Cu [Ar] 4s1 3d10 30 Zn [Ar] 4s2 3d10 f block elements • f orbitals partially fill Video on electron configuration Click here electron structure Click here video on s,p,d,f notation Click here video s,p,d,f blocks,
  • 5. Periodic Table – s, p d, f blocks elements Electron structure Chromium d block (Period 4) Electron structure Germanium p block, Gp 4 (Period 4) Electron structure Iodine p block, Gp 7 (Period 5) 1s2 2s2 2p6 3s2 3p6 4s1 3d5 [Ar] 4s1 3d5 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p2 [Ar] 4s2 3d10 4p2 1s2 2s2 2p6 3s2 3p6 3d104s2 4p6 5s2 4d10 5p5 [Kr] 5s2 4d10 5p5 d block – d partially filled Electron structure Cadmium d block (Period 5) 1s2 2s2 2p6 3s2 3p6 3d104s2 4p6 5s2 4d10 [Kr] 5s2 4d10 d block – d partially filled Gp 4 -4 valence electron Electron structure Mercury d block (Period 6) 1s2 2s2 2p6 3s2 3p6 3d104s2 4p6 5s2 4d10 5p6 6s2 4f14 5d10 [Xe] 6s2 4f14 5d10 d block – d partially filled Gp 7 - 7 valence electron Electron structure Lead p block, Gp 4 (Period 6) 1s2 2s2 2p6 3s2 3p6 3d104s2 4p6 5s2 4d10 5p6 6s2 4f14 5d106p2 [Xe] 6s2 4f14 5d10 6p2 Gp 4 -4 valence electron
  • 6. Electron filled according to 3 Principles 1 Aufbau Principle • electron occupy orbitals of lower energy first • building up, construction from bottom up 4Be High energy - 1s2 2s2 5B - 1s2 2s2 2p1 2p 2p 2s 2s Click here to view simulation 1s 1s lower energy
  • 7. Electron filled according to 3 Principles 1 Aufbau Principle • electron occupy orbitals of lower energy first • building up, construction from bottom up 4Be High energy - 1s2 2s2 5B - 1s2 2s2 2p1 2p 2p 2s 2s Click here to view simulation 1s 1s lower energy 2 Hund’s Principle • electron occupy orbitals singly first before pairing up 7N High energy - 1s2 2s2 2p3 8O - 1s2 2s2 2p4 2p 2s 1s 3 Click here to view simulation lower energy
  • 8. Electron filled according to 3 Principles 1 Aufbau Principle • electron occupy orbitals of lower energy first • building up, construction from bottom up 4Be High energy - 1s2 2s2 5B - 1s2 2s2 2p1 2p 2p 2s 2s Click here to view simulation 1s 1s lower energy 2 Hund’s Principle • electron occupy orbitals singly first before pairing up 7N High energy - 1s2 2s2 2p3 8O - 1s2 2s2 2p4 2p 2s Click here to view simulation 1s 3 lower energy Pauli Exclusion Principle • each orbital occupy by 2 electron opposite spin 4Be - 1s2 2s2 High energy 10Ne - 1s2 2s2 2p6 Click here to view simulation lower energy
  • 9. Electron Notation Atom s, p, d, f notation Complete configuration 10 Ne 1s2 2s2 2p6 11 Na 1s2 2s2 2p6 3s1 12 Mg 1s2 2s2 2p6 3s2 13 Al 1s2 2s2 2p6 3s2 3p1 14 Si 1s2 2s2 2p6 3s2 3p2 15 P 1s2 2s2 2p6 3s2 3p3 16 S 1s2 2s2 2p6 3s2 3p4 17 CI 1s2 2s2 2p6 3s2 3p5 18 Ar 1s2 2s2 2p6 3s2 3p6 19 K 1s2 2s2 2p6 3s2 3p6 4s1 20 Ca 1s2 2s2 2p6 3s2 3p6 4s2 21 Sc 1s2 2s2 2p6 3s2 3p6 4s2 3d1 22 Ti 1s2 2s2 2p6 3s2 3p6 4s2 3d2 23 V 1s2 2s2 2p6 3s2 3p6 4s2 3d3 24 Cr 1s2 2s2 2p6 3s2 3p6 4s1 3d5 25 Mn 1s2 2s2 2p6 3s2 3p6 4s2 3d5 26 Fe 1s2 2s2 2p6 3s2 3p6 4s2 3d6 27 Co 1s2 2s2 2p6 3s2 3p6 4s2 3d7 28 Ni 1s2 2s2 2p6 3s2 3p6 4s2 3d8 29 Cu 1s2 2s2 2p6 3s2 3p6 4s1 3d10 30 Zn 1s2 2s2 2p6 3s2 3p6 4s2 3d10
  • 10. Electron Notation Atom s, p, d, f notation Complete configuration Noble gas notation Condensed configuration 10 Ne 1s2 2s2 2p6 10 Ne [Ne] 11 Na 1s2 2s2 2p6 3s1 11 Na [Ne] 3s1 12 Mg 1s2 2s2 2p6 3s2 12 Mg [Ne] 3s2 13 Al 1s2 2s2 2p6 3s2 3p1 13 Al [Ne] 3s2 3p1 14 Si 1s2 2s2 2p6 3s2 3p2 14 Si [Ne] 3s2 3p2 15 P 1s2 2s2 2p6 3s2 3p3 15 P [Ne] 3s2 3p3 16 S 1s2 2s2 2p6 3s2 3p4 16 S [Ne] 3s2 3p4 17 CI 1s2 2s2 2p6 3s2 3p5 17 CI [Ne] 3s2 3p5 18 Ar 1s2 2s2 2p6 3s2 3p6 18 Ar [Ar] 19 K 1s2 2s2 2p6 3s2 3p6 4s1 19 K [Ar] 4s1 20 Ca 1s2 2s2 2p6 3s2 3p6 4s2 20 Ca [Ar] 4s2 21 Sc 1s2 2s2 2p6 3s2 3p6 4s2 3d1 21 Sc [Ar] 4s2 3d1 22 Ti 1s2 2s2 2p6 3s2 3p6 4s2 3d2 22 Ti [Ar] 4s2 3d2 23 V 1s2 2s2 2p6 3s2 3p6 4s2 3d3 23 V [Ar] 4s2 3d3 24 Cr 1s2 2s2 2p6 3s2 3p6 4s1 3d5 24 Cr [Ar] 4s1 3d5 25 Mn 1s2 2s2 2p6 3s2 3p6 4s2 3d5 25 Mn [Ar] 4s2 3d5 26 Fe 1s2 2s2 2p6 3s2 3p6 4s2 3d6 26 Fe [Ar] 4s2 3d6 27 Co 1s2 2s2 2p6 3s2 3p6 4s2 3d7 27 Co [Ar] 4s2 3d7 28 Ni 1s2 2s2 2p6 3s2 3p6 4s2 3d8 28 Ni [Ar] 4s2 3d8 29 Cu 1s2 2s2 2p6 3s2 3p6 4s1 3d10 29 Cu [Ar] 4s1 3d10 30 Zn 1s2 2s2 2p6 3s2 3p6 4s2 3d10 30 Zn [Ar] 4s2 3d10 [Ne] [Ar]
  • 11. Electron Notation Atom Positive/Negative Ion s, p, d, f notation Complete configuration Noble gas notation Condensed configuration Noble gas notation Complete configuration 10 Ne 1s2 2s2 2p6 10 Ne [Ne] 10 Ne 1s2 2s2 2p6 /[Ne] 11 Na 1s2 2s2 2p6 3s1 11 Na [Ne] 3s1 11 Na+ 1s2 2s2 2p6 / [Ne] 12 Mg 1s2 2s2 2p6 3s2 12 Mg [Ne] 3s2 12 Mg2+ 1s2 2s2 2p6 / [Ne] 13 Al 1s2 2s2 2p6 3s2 3p1 13 Al [Ne] 3s2 3p1 13 Al3+ 1s2 2s2 2p6 / [Ne] 14 Si 1s2 2s2 2p6 3s2 3p2 14 Si [Ne] 3s2 3p2 14 Si4+ 1s2 2s2 2p6 / [Ne] 15 P 1s2 2s2 2p6 3s2 3p3 15 P [Ne] 3s2 3p3 15 P3- 1s2 2s2 2p6 3s2 3p6 /[Ar] 16 S 1s2 2s2 2p6 3s2 3p4 16 S [Ne] 3s2 3p4 16 S2- 1s2 2s2 2p6 3s2 3p6 /[Ar] 17 CI 1s2 2s2 2p6 3s2 3p5 17 CI [Ne] 3s2 3p5 17 CI- 1s2 2s2 2p6 3s2 3p6/ [Ar] 18 Ar 1s2 2s2 2p6 3s2 3p6 18 Ar [Ar] 19 [Ne] 18 Ar [Ar] K [Ar] 4s1 19 K+ 1s2 2s2 2p6 3s2 3p6 /[Ar] 20 Ca [Ar] 4s2 20 Ca2+ 1s2 2s2 2p6 3s2 3p6 / [Ar] 21 Sc [Ar] 4s2 3d1 22 Ti [Ar] 4s2 3d2 1s2 2s2 2p6 3s2 3p6 4s2 3d3 23 V [Ar] 4s2 3d3 Cr 1s2 2s2 2p6 3s2 3p6 4s1 3d5 24 Cr [Ar] 4s1 3d5 25 Mn 1s2 2s2 2p6 3s2 3p6 4s2 3d5 25 Mn [Ar] 4s2 3d5 26 Fe 1s2 2s2 2p6 3s2 3p6 4s2 3d6 26 Fe [Ar] 4s2 3d6 27 Co 1s2 2s2 2p6 3s2 3p6 4s2 3d7 27 Co [Ar] 4s2 3d7 28 Ni 1s2 2s2 2p6 3s2 3p6 4s2 3d8 28 Ni [Ar] 4s2 3d8 29 Cu 1s2 2s2 2p6 3s2 3p6 4s1 3d10 29 Cu [Ar] 4s1 3d10 30 Zn 1s2 2s2 2p6 3s2 3p6 4s2 3d10 30 Zn [Ar] 4s2 3d10 K 1s2 2s2 2p6 3s2 3p6 4s1 19 20 Ca 1s2 2s2 2p6 3s2 3p6 4s2 21 Sc 1s2 2s2 2p6 3s2 3p6 4s2 3d1 22 Ti 1s2 2s2 2p6 3s2 3p6 4s2 3d2 23 V 24 [Ar]
  • 12. Electron configuration 5 B 1s2 2s2 2p1 6 C 1s2 2s2 2p2 7 N 1s2 2s2 2p3 8 O 1s2 2s2 2p4 9 F 1s2 2s2 2p5 10 Ne 1s2 2s2 2p6 11 Na 1s2 2s2 2p6 3s1 12 Mg 1s2 2s2 2p6 3s2 13 Al 1s2 2s2 2p6 3s2 3p1 14 Si 1s2 15 P 1s2 2s2 2p6 3s2 3p3 16 S 1s2 2s2 2p6 3s2 3p4 17 CI 1s2 2s2 2p6 3s2 3p5 18 Ar 1s2 2s2 2p6 3s2 3p6 19 K 1s2 2s2 2p6 3s2 3p6 4s1 20 Ca 1s2 2s2 2p6 3s2 3p6 4s2 21 Sc 1s2 2s2 2p6 3s2 3p6 4s2 3d1 22 Ti 1s2 2s2 2p6 3s2 3p6 4s2 3d2 23 V 1s2 2s2 2p6 3s2 3p6 4s2 3d3 24 Cr 1s2 2s2 2p6 3s2 3p6 4s1 3d5 25 Mn 1s2 2s2 2p6 3s2 3p6 4s2 3d5 26 Fe 1s2 2s2 2p6 3s2 3p6 4s2 3d6 27 Co 1s2 2s2 2p6 3s2 3p6 4s2 3d7 28 Ni 1s2 2s2 2p6 3s2 3p6 4s2 3d8 29 Cu 1s2 2s2 2p6 3s2 3p6 4s1 3d10 30 Zn 1s2 2s2 2p6 3s2 3p6 4s2 3d10 Electron occupy 4s first then 3d Energy level and sublevels 2s2 2p6 4s energy level lower than 3d 3s2 4s 3p 3p2 3s 18Ar – 1s2 2s2 2p6 3s2 3p6 2p 2s 1s 3d
  • 13. Electron configuration 5 B 1s2 2s2 2p1 6 C 1s2 2s2 2p2 7 N 1s2 2s2 2p3 8 O 1s2 2s2 2p4 9 F 1s2 2s2 2p5 10 Ne 1s2 2s2 2p6 11 Na 1s2 2s2 2p6 3s1 12 Mg 1s2 2s2 2p6 3s2 13 Al 1s2 2s2 2p6 3s2 3p1 14 Si 1s2 15 P 1s2 2s2 2p6 3s2 3p3 16 S 1s2 2s2 2p6 3s2 3p4 17 CI 1s2 18 Ar 1s2 2s2 2p6 3s2 3p6 19 K 1s2 20 Ca 1s2 2s2 2p6 3s2 3p6 4s2 21 Sc 1s2 2s2 2p6 3s2 3p6 4s2 3d1 22 Ti 1s2 2s2 2p6 3s2 3p6 4s2 3d2 23 V 1s2 2s2 2p6 3s2 3p6 4s2 3d3 24 Cr 1s2 2s2 2p6 3s2 3p6 4s1 3d5 25 Mn 1s2 2s2 2p6 3s2 3p6 4s2 3d5 26 Fe 1s2 2s2 2p6 3s2 3p6 4s2 3d6 27 Co 1s2 2s2 2p6 3s2 3p6 4s2 3d7 28 Ni 1s2 2s2 2p6 3s2 3p6 4s2 3d8 29 Cu 1s2 2s2 2p6 3s2 3p6 4s1 3d10 30 Zn 1s2 2s2 2p6 3s2 3p6 4s2 3d10 Electron occupy 4s first then 3d Energy level and sublevels 2s2 2s2 2s2 2p6 2p6 2p6 4s energy level lower than 3d 3s2 3s2 3s2 4s 3d 3p 3p2 3s 18Ar – 1s2 2s2 2p6 3s2 3p6 2p 2s 3p5 3p6 4s1 Electrons fill 4s first 3d 4s 1s 3p 19K – 1s2 2s2 2p6 3s2 3p6 4s1 3s 2p 2s 1s
  • 14. Electron configuration 5 B 1s2 2s2 2p1 6 C 1s2 2s2 2p2 7 N 1s2 2s2 2p3 8 O 1s2 2s2 2p4 9 F 1s2 2s2 2p5 10 Ne 1s2 2s2 2p6 11 Na 1s2 2s2 2p6 3s1 12 Mg 1s2 2s2 2p6 3s2 13 Al 1s2 2s2 2p6 3s2 3p1 14 Si 1s2 15 P 1s2 2s2 2p6 3s2 3p3 16 S 1s2 2s2 2p6 3s2 3p4 17 CI 1s2 18 Ar 1s2 2s2 2p6 3s2 3p6 19 K 1s2 20 Ca 1s2 2s2 2p6 3s2 3p6 4s2 21 Sc 1s2 2s2 2p6 3s2 3p6 4s2 3d1 22 Ti 1s2 2s2 2p6 3s2 3p6 4s2 3d2 23 V 1s2 2s2 2p6 3s2 3p6 4s2 3d3 24 Cr 1s2 2s2 2p6 3s2 3p6 4s1 3d5 25 Mn 1s2 2s2 2p6 3s2 3p6 4s2 3d5 26 Fe 1s2 2s2 2p6 3s2 3p6 4s2 3d6 27 Co 1s2 2s2 2p6 3s2 3p6 4s2 3d7 28 Ni 1s2 2s2 2p6 3s2 3p6 4s2 3d8 29 Cu 1s2 2s2 2p6 3s2 3p6 4s1 3d10 30 Zn Electron occupy 4s first then 3d Energy level and sublevels 1s2 2s2 2p6 3s2 3p6 4s2 3d10 2s2 2s2 2s2 2p6 2p6 2p6 4s energy level lower than 3d 3s2 3s2 3s2 4s 3d 3p 3p2 3s 18Ar – 1s2 2s2 2p6 3s2 3p6 2p 2s 3p5 3p6 4s1 Electrons fill 4s first 3d 4s 1s 3p 19K – 1s2 2s2 2p6 3s2 3p6 4s1 3s 4s then 3d is fill 2p 3d 2s 4s 1s 21Sc 3p 3s – 1s2 2s2 2p6 3s2 3p6 4s2 3d1 2p 2s 1s
  • 15. d block Exception to d block elements 4s energy level lower than 3d 3d 4s 3p Electron configuration d block 21 Sc 1s2 2s2 2p6 3s2 3p6 4s2 3d1 22 Ti V 1s2 2s2 2p6 3s2 3p6 4s2 3d3 24 Cr 1s2 2s2 2p6 3s2 3p6 4s1 3d5 25 Mn 1s2 2s2 2p6 3s2 3p6 4s2 3d5 26 Fe 1s2 2s2 2p6 3s2 3p6 4s2 3d6 27 Co 1s2 2s2 2p6 3s2 3p6 4s2 3d7 28 Ni 1s2 2s2 2p6 3s2 3p6 4s2 3d8 29 Cu 1s2 2s2 2p6 3s2 3p6 4s1 3d10 30 Zn 1s2 2s2 2p6 3s2 3p6 4s2 3d10 21Sc – 1s2 2s2 2p6 3s2 3p6 4s2 3d1 2p 1s2 2s2 2p6 3s2 3p6 4s2 3d2 23 3s 2s 1s 4s energy level lower than 3d
  • 16. d block Exception to d block elements 4s energy level lower than 3d 3d 4s 3p Electron configuration d block 21 Sc 1s2 2s2 2p6 3s2 3p6 4s2 3d1 22 Ti V 24 Cr 25 Mn 1s2 2s2 2p6 3s2 3p6 4s2 3d5 26 Fe 1s2 2s2 2p6 3s2 3p6 4s2 3d6 27 Co Ni 1s2 2s2 2p6 3s2 3p6 4s2 3d8 29 Cu 1s2 2s2 2p6 3s2 3p6 4s1 3d10 30 Zn 1s2 2s2 2p6 3s2 3p6 4s2 3d10 2s2 2p6 3s2 3p6 4s1 3d5 4s energy level lower than 3d 2p 1s2 2s2 2p6 3s2 3p6 4s2 3d7 28 – 1s2 2s2 2p6 3s2 3p6 4s2 3d1 1s2 2s2 2p6 3s2 3p6 4s2 3d3 1s2 21Sc 1s2 2s2 2p6 3s2 3p6 4s2 3d2 23 3s 2s 1s 24Cr – 1s2 2s2 2p6 3s2 3p6 4s13d5 24Cr – 1s2 2s2 2p6 3s2 3p6 4s2 3d4 3d ✔ ✗ 4s 3p 3s 2p 2s 1s Half fill energetically more stable
  • 17. d block Exception to d block elements 4s energy level lower than 3d 3d 4s 3p Electron configuration d block 21 Sc 1s2 2s2 2p6 3s2 3p6 4s2 3d1 22 Ti V 24 Cr 25 Mn 1s2 2s2 2p6 3s2 3p6 4s2 3d5 26 Fe 1s2 2s2 2p6 3s2 3p6 4s2 3d6 27 Co Ni 1s2 2s2 2p6 3s2 3p6 4s2 3d8 29 Cu 1s2 2s2 2p6 3s2 3p6 4s1 3d10 30 Zn 1s2 2s2 2p6 3s2 3p6 4s2 3d10 2s2 2p6 3s2 3p6 4s1 3d5 4s energy level lower than 3d 2p 1s2 2s2 2p6 3s2 3p6 4s2 3d7 28 – 1s2 2s2 2p6 3s2 3p6 4s2 3d1 1s2 2s2 2p6 3s2 3p6 4s2 3d3 1s2 21Sc 1s2 2s2 2p6 3s2 3p6 4s2 3d2 23 3s 2s 1s 24Cr – 1s2 2s2 2p6 3s2 3p6 4s13d5 24Cr – 1s2 2s2 2p6 3s2 3p6 4s2 3d4 3d ✔ ✗ 4s 3p 3s Half fill energetically more stable 2p 2s 1s 29Cu 29Cu –1s2 2s2 2p6 3s2 3p6 4s1 3d10 –1s2 2s2 2p6 3s2 3p6 4s2 3d9 ✔ ✗ 4s 3p 3s Half fill energetically more stable 2p 2s 1s 3d
  • 18. d block Exception to d block elements 4s energy level lower than 3d Electron configuration d block Noble gas notation Condensed configuration Positive Ions 21 Sc 1s2 2s2 2p6 3s2 3p6 4s2 3d1 21 Sc [Ar] 3d1 4s2 21 Sc3+ [Ar] 22 Ti 1s2 2s2 2p6 3s2 3p6 4s2 3d2 22 Ti [Ar] 3d2 4s2 22 Ti4+ [Ar] 23 V 1s2 2s2 2p6 3s2 3p6 4s2 3d3 23 V [Ar] 3d3 4s2 23 V3+ [Ar] 3d2 24 Cr 1s2 2s2 2p6 3s2 3p6 4s1 3d5 24 Cr [Ar] 3d5 4s1 24 Cr3+ [Ar] 3d3 25 Mn 1s2 2s2 2p6 3s2 3p6 4s2 3d5 25 Mn [Ar] 3d5 4s2 25 Mn2+ [Ar] 3d5 26 Fe 1s2 2s2 2p6 3s2 3p6 4s2 3d6 26 Fe [Ar] 3d6 4s2 26 Fe2+ [Ar] 3d6 27 Co 1s2 2s2 2p6 3s2 3p6 4s2 3d7 27 Co [Ar] 3d7 4s2 27 Co2+ [Ar] 3d7 28 Ni 1s2 2s2 2p6 3s2 3p6 4s2 3d8 28 Ni [Ar] 3d8 4s2 28 Ni2+ [Ar] 3d8 29 Cu 1s2 2s2 2p6 3s2 3p6 4s1 3d10 29 Cu [Ar] 3d10 4s1 29 Cu2+ [Ar] 3d9 30 Zn 1s2 2s2 2p6 3s2 3p6 4s2 3d10 30 Zn [Ar] 3d10 4s2 30 Zn2+ [Ar] 3d10 Electrons lost from 4s then 3d
  • 19. d block Exception to d block elements 4s energy level lower than 3d Electron configuration d block Noble gas notation Condensed configuration Positive Ions 21 Sc 1s2 2s2 2p6 3s2 3p6 4s2 3d1 21 Sc [Ar] 3d1 4s2 21 Sc3+ [Ar] 22 Ti 1s2 2s2 2p6 3s2 3p6 4s2 3d2 22 Ti [Ar] 3d2 4s2 22 Ti4+ [Ar] 23 V 1s2 2s2 2p6 3s2 3p6 4s2 3d3 23 V [Ar] 3d3 4s2 23 V3+ [Ar] 3d2 24 Cr 1s2 2s2 2p6 3s2 3p6 4s1 3d5 24 Cr [Ar] 3d5 4s1 24 Cr3+ [Ar] 3d3 25 Mn 1s2 2s2 2p6 3s2 3p6 4s2 3d5 25 Mn [Ar] 3d5 4s2 25 Mn2+ [Ar] 3d5 26 Fe 1s2 2s2 2p6 3s2 3p6 4s2 3d6 26 Fe [Ar] 3d6 4s2 26 Fe2+ [Ar] 3d6 27 Co 1s2 2s2 2p6 3s2 3p6 4s2 3d7 27 Co [Ar] 3d7 4s2 27 Co2+ [Ar] 3d7 28 Ni 1s2 2s2 2p6 3s2 3p6 4s2 3d8 28 Ni [Ar] 3d8 4s2 28 Ni2+ [Ar] 3d8 29 Cu 1s2 2s2 2p6 3s2 3p6 4s1 3d10 29 Cu [Ar] 3d10 4s1 29 Cu2+ [Ar] 3d9 30 Zn 1s2 2s2 2p6 3s2 3p6 4s2 3d10 30 Zn [Ar] 3d10 4s2 30 Zn2+ [Ar] 3d10 Why electron fill 4s first? 1 4s fill first – 4s2 4s – greater penetration/closer to nucleus 4s – lower in energy 3d 4s 20Ca – [Ar] 4s2 3d0 Electrons lost from 4s then 3d
  • 20. d block Exception to d block elements 4s energy level lower than 3d Noble gas notation Condensed configuration Electron configuration d block Positive Ions 21 Sc 1s2 2s2 2p6 3s2 3p6 4s2 3d1 21 Sc [Ar] 3d1 4s2 21 Sc3+ [Ar] 22 Ti 1s2 2s2 2p6 3s2 3p6 4s2 3d2 22 Ti [Ar] 3d2 4s2 22 Ti4+ [Ar] 23 V 1s2 2s2 2p6 3s2 3p6 4s2 3d3 23 V [Ar] 3d3 4s2 23 V3+ [Ar] 3d2 24 Cr 1s2 2s2 2p6 3s2 3p6 4s1 3d5 24 Cr [Ar] 3d5 4s1 24 Cr3+ [Ar] 3d3 25 Mn 1s2 2s2 2p6 3s2 3p6 4s2 3d5 25 Mn [Ar] 3d5 4s2 25 Mn2+ [Ar] 3d5 26 Fe 1s2 2s2 2p6 3s2 3p6 4s2 3d6 26 Fe [Ar] 3d6 4s2 26 Fe2+ [Ar] 3d6 27 Co 1s2 2s2 2p6 3s2 3p6 4s2 3d7 27 Co [Ar] 3d7 4s2 27 Co2+ [Ar] 3d7 28 Ni 1s2 2s2 2p6 3s2 3p6 4s2 3d8 28 Ni [Ar] 3d8 4s2 28 Ni2+ [Ar] 3d8 29 Cu 1s2 2s2 2p6 3s2 3p6 4s1 3d10 29 Cu [Ar] 3d10 4s1 29 Cu2+ [Ar] 3d9 30 Zn 1s2 2s2 2p6 3s2 3p6 4s2 3d10 30 Zn [Ar] 3d10 4s2 30 Zn2+ [Ar] 3d10 Why electron fill 4s first? 1 4s fill first – 4s2 4s – greater penetration/closer to nucleus 4s – lower in energy 3d 2 3d – filled 3d – higher energy 3d 4s 20Ca 4s – [Ar] 4s2 3d0 21Sc – [Ar] 4s2 3d1 Electrons lost from 4s then 3d
  • 21. d block Exception to d block elements 4s energy level lower than 3d Noble gas notation Condensed configuration Electron configuration d block Positive Ions 21 Sc 1s2 2s2 2p6 3s2 3p6 4s2 3d1 21 Sc [Ar] 3d1 4s2 21 Sc3+ [Ar] 22 Ti 1s2 2s2 2p6 3s2 3p6 4s2 3d2 22 Ti [Ar] 3d2 4s2 22 Ti4+ [Ar] 23 V 1s2 2s2 2p6 3s2 3p6 4s2 3d3 23 V [Ar] 3d3 4s2 23 V3+ [Ar] 3d2 24 Cr 1s2 2s2 2p6 3s2 3p6 4s1 3d5 24 Cr [Ar] 3d5 4s1 24 Cr3+ [Ar] 3d3 25 Mn 1s2 2s2 2p6 3s2 3p6 4s2 3d5 25 Mn [Ar] 3d5 4s2 25 Mn2+ [Ar] 3d5 26 Fe 1s2 2s2 2p6 3s2 3p6 4s2 3d6 26 Fe [Ar] 3d6 4s2 26 Fe2+ [Ar] 3d6 27 Co 1s2 2s2 2p6 3s2 3p6 4s2 3d7 27 Co [Ar] 3d7 4s2 27 Co2+ [Ar] 3d7 28 Ni 1s2 2s2 2p6 3s2 3p6 4s2 3d8 28 Ni [Ar] 3d8 4s2 28 Ni2+ [Ar] 3d8 29 Cu 1s2 2s2 2p6 3s2 3p6 4s1 3d10 29 Cu [Ar] 3d10 4s1 29 Cu2+ [Ar] 3d9 30 Zn 1s2 2s2 2p6 3s2 3p6 4s2 3d10 30 Zn [Ar] 3d10 4s2 30 Zn2+ [Ar] 3d10 Why electron fill 4s first? 1 Why electrons lost from 4s first 4s fill first – 4s2 4s – greater penetration/closer to nucleus 4s – lower in energy 3d 2 3d – filled 3d – higher energy 3 3d once filled 3d e attracted by increasing nuclear charge 3d orbitals lower in energy - shield 4s e 3d 4s 4s 20Ca 4s – [Ar] 4s2 3d0 Electrons lost from 4s then 3d 21Sc – [Ar] 4s2 3d1 3d 21Sc – [Ar] 3d2 4s2
  • 22. d block Exception to d block elements 4s energy level lower than 3d Noble gas notation Condensed configuration Electron configuration d block Positive Ions 21 Sc 1s2 2s2 2p6 3s2 3p6 4s2 3d1 21 Sc [Ar] 3d1 4s2 21 Sc3+ [Ar] 22 Ti 1s2 2s2 2p6 3s2 3p6 4s2 3d2 22 Ti [Ar] 3d2 4s2 22 Ti4+ [Ar] 23 V 1s2 2s2 2p6 3s2 3p6 4s2 3d3 23 V [Ar] 3d3 4s2 23 V3+ [Ar] 3d2 24 Cr 1s2 2s2 2p6 3s2 3p6 4s1 3d5 24 Cr [Ar] 3d5 4s1 24 Cr3+ [Ar] 3d3 25 Mn 1s2 2s2 2p6 3s2 3p6 4s2 3d5 25 Mn [Ar] 3d5 4s2 25 Mn2+ [Ar] 3d5 26 Fe 1s2 2s2 2p6 3s2 3p6 4s2 3d6 26 Fe [Ar] 3d6 4s2 26 Fe2+ [Ar] 3d6 27 Co 1s2 2s2 2p6 3s2 3p6 4s2 3d7 27 Co [Ar] 3d7 4s2 27 Co2+ [Ar] 3d7 28 Ni 1s2 2s2 2p6 3s2 3p6 4s2 3d8 28 Ni [Ar] 3d8 4s2 28 Ni2+ [Ar] 3d8 29 Cu 1s2 2s2 2p6 3s2 3p6 4s1 3d10 29 Cu [Ar] 3d10 4s1 29 Cu2+ [Ar] 3d9 30 Zn 1s2 2s2 2p6 3s2 3p6 4s2 3d10 30 Zn [Ar] 3d10 4s2 30 Zn2+ [Ar] 3d10 Why electron fill 4s first? 1 Why electrons lost from 4s first 4s fill first – 4s2 4s – greater penetration/closer to nucleus 4s – lower in energy 3d 2 3d – filled 3d – higher energy 3 4 4s – higher in energy 4s – e lost first 4s 4s 4s – [Ar] 4s2 3d0 4S – FIRST IN – FIRST OUT 3d once filled 3d e attracted by increasing nuclear charge 3d orbitals lower in energy - shield 4s e 3d 20Ca Electrons lost from 4s then 3d 21Sc – [Ar] 4s2 3d1 3d 3d 21Sc – [Ar] 3d2 4s2 lose 2 electron 21Sc2+ – [Ar] 3d2 4s0
  • 23. d block d block elements and ions 4s energy level lower than 3d Electron configuration d block Electron lost from 4s then 3d 21 Sc 22 Ti [Ar] 3d2 4s2 23 V Cr 25 Mn [Ar] 3d5 4s2 26 Fe [Ar] 3d6 4s2 27 Co [Ar] 3d7 4s2 28 Ni [Ar] 3d8 4s2 29 Cu [Ar] 3d10 4s1 30 Zn [Ar] 3d10 4s2 lose 3 e 3d 3d 4s 4s lose 2 e 3d 3d [Ar] V3+ [Ar] 3d2 24 Cr3+ [Ar] 3d3 Mn2+ [Ar] 3d5 26 4s Ti4+ 25 4s [Ar] Fe2+ [Ar] 3d6 27 [Ar] 3d5 4s1 3d Sc3+ 23 3d 21 22 lose 3 e [Ar] 3d3 4s2 24 4s 4s [Ar] 3d1 4s2 Positive Ions Co2+ [Ar] 3d7 28 Ni2+ [Ar] 3d8 29 Cu2+ [Ar] 3d9 30 Zn2+ [Ar] 3d10
  • 24. d block d block elements and ions 4s energy level lower than 3d Electron configuration d block Electron lost from 4s then 3d 21 Sc 22 Ti [Ar] 3d2 4s2 23 V Cr 25 Mn [Ar] 3d5 4s2 26 Fe [Ar] 3d6 4s2 27 Co 28 Ni [Ar] 3d8 4s2 29 Cu [Ar] 3d10 4s1 30 Zn [Ar] 3d10 4s2 3d 3d 4s 4s lose 2 e 3d 3d V3+ [Ar] 3d2 24 Cr3+ [Ar] 3d3 Mn2+ [Ar] 3d5 Fe2+ [Ar] 3d6 Co2+ [Ar] 3d7 28 Ni2+ [Ar] 3d8 29 Cu2+ [Ar] 3d9 30 [Ar] 3d7 4s2 lose 3 e [Ar] 26 4s Ti4+ 25 4s [Ar] 27 [Ar] 3d5 4s1 3d Sc3+ 23 3d 21 22 lose 3 e [Ar] 3d3 4s2 24 4s 4s [Ar] 3d1 4s2 Positive Ions Zn2+ [Ar] 3d10 Video on Ionization energy Click here to view IE Click here to view IE Click here to view IE
  • 25. Ionization energy (IE) 1st Ionization energy Min energy to remove 1 mole e from 1 mole of element in gaseous state M(g)  M+ (g) + e 2nd Ionization energy Min energy to remove 1 mole e from 1 mole of +1 ion to form +2 ion M+(g)  M2+ (g) + e Ionization energy Why IE increases across the period? Why IE decreases down a group ?
  • 26. Ionization energy (IE) 1st Ionization energy Min energy to remove 1 mole e from 1 mole of element in gaseous state M(g)  M+ (g) + e 2nd Ionization energy Min energy to remove 1 mole e from 1 mole of +1 ion to form +2 ion M+(g)  M2+ (g) + e Ionization energy Factors affecting ionization energy 1 Distance from nucleus electron Distance near to nucleus – IE High  Distance far away nucleus – IE Low  Distance near Strong electrostatic forces attraction bet nucleus and e IE – High  Why IE increases across the period? Why IE decreases down a group ?
  • 27. Why IE increases across the period? Why IE decreases down a group ? Ionization energy (IE) 1st Ionization energy Min energy to remove 1 mole e from 1 mole of element in gaseous state M(g)  M+ (g) + e 2nd Ionization energy Min energy to remove 1 mole e from 1 mole of +1 ion to form +2 ion M+(g)  M2+ (g) + e Ionization energy Factors affecting ionization energy 1 2 Distance from nucleus Nuclear charge electron +3 +4 +5 +6 Nuclear charge increase Distance near to nucleus – IE High  Distance far away nucleus – IE Low  Nuclear charge high (more proton) – IE High  Nuclear charge low  (less proton) – IE Low  +6 Distance near Nuclear charge  Strong electrostatic forces attraction bet nucleus and e Strong electrostatic forces attraction bet nucleus and e IE – High  IE – High 
  • 28. Why IE increases across the period? Why IE decreases down a group ? Ionization energy (IE) 1st Ionization energy Min energy to remove 1 mole e from 1 mole of element in gaseous state M(g)  M+ (g) + e 2nd Ionization energy Min energy to remove 1 mole e from 1 mole of +1 ion to form +2 ion M+(g)  M2+ (g) + e Ionization energy Factors affecting ionization energy 1 2 Distance from nucleus 3 Nuclear charge electron +3 +4 +5 +6 Effective Nuclear Charge (ENC)/(Zeff) • Screening effect/shielding • Effective nuclear charge (ENC)/(Zeff) (Zeff) = Nuclear charge (Z) – shielding effect • Net positive charge felt by valence electrons. Nuclear charge increase Distance near to nucleus – IE High  Distance far away nucleus – IE Low  Nuclear charge high (more proton) – IE High  Nuclear charge low  (less proton) – IE Low  +6 Inner electron – shield valence e from positive charge Distance near Nuclear charge  Higher electron/electron repulsion Strong electrostatic forces attraction bet nucleus and e Strong electrostatic forces attraction bet nucleus and e Easier valence e to leave IE – High  IE – High  IE – Low 
  • 29. IE drop from Be to B and N to O Ionization Energy- Period 2 Why IE increases across the period 2? IE increases across period 2 Nuclear charge increase  Strong electrostatic forces attraction bet nucleus and e IE – High  Li Be B C N O F Ne 2p 2s 1s 1s2 2s1 1s2 2s2 1s2 2s2 2p1 1s2 2s2 2p2 1s2 2s2 2p3 1s2 2s2 2p4 1s2 2s2 2p5 1s2 2s2 2p6
  • 30. IE drop from Be to B and N to O Ionization Energy- Period 2 Why IE increases across the period 2? IE increases across period 2 Nuclear charge increase  Strong electrostatic forces attraction bet nucleus and e IE – High  Li Be B C N O F Ne 2p 2s 1s 1s2 2s1 1s2 2s2 1s2 2s2 2p1 1s2 2s2 2p2 IE drop  from Be to B Electron in p sublevel of B – further away from nucleus Weak electrostatic force attraction between nucleus and electron IE - Low  period 2 1s2 2s2 2p3 1s2 2s2 2p4 1s2 2s2 2p5 1s2 2s2 2p6
  • 31. IE drop from Be to B and N to O Ionization Energy- Period 2 Why IE increases across the period 2? IE increases across period 2 Nuclear charge increase  Strong electrostatic forces attraction bet nucleus and e IE – High  Li Be B C N O F Ne 2p 2s 1s 1s2 2s1 1s2 2s2 1s2 2s2 2p1 1s2 2s2 2p2 IE drop  from Be to B 1s2 2s2 2p3 1s2 2s2 2p4 IE drop  from N to O Electron in p sublevel of B – further away from nucleus 2 electrons in same p orbital - Greater e/e repulsion Weak electrostatic force attraction between nucleus and electron Easier to remove e IE - Low  IE - Low  period 2 1s2 2s2 2p5 1s2 2s2 2p6
  • 32. IE drop from Mg to AI and P to S Ionization Energy- Period 3 Why IE increases across the period 3? IE increases across period 3 Nuclear charge increase  Strong electrostatic forces attraction bet nucleus and e IE – High  Na Mg AI Si P S CI Ar 3p 3s [Ne] 3s1 [Ne] 3s2 [Ne] 3s2 3p1 [Ne] 3s2 3p2 [Ne] 3s2 3p3 [Ne] 3s2 3p4 [Ne] 3s2 3p5 [Ne] 3s2 3p6
  • 33. IE drop from Mg to AI and P to S Ionization Energy- Period 3 Why IE increases across the period 3? IE increases across period 3 Nuclear charge increase  Strong electrostatic forces attraction bet nucleus and e IE – High  Na Mg AI Si P S CI Ar 3p 3s [Ne] 3s1 [Ne] 3s2 [Ne] 3s2 3p1 [Ne] 3s2 3p2 IE drop  from Mg to AI Electron in p sublevel of AI – further away from nucleus Weak electrostatic force attraction between nucleus and electron IE - Low  Period 3 [Ne] 3s2 3p3 [Ne] 3s2 3p4 [Ne] 3s2 3p5 [Ne] 3s2 3p6
  • 34. IE drop from Mg to AI and P to S Ionization Energy- Period 3 Why IE increases across the period 3? IE increases across period 3 Nuclear charge increase  Strong electrostatic forces attraction bet nucleus and e IE – High  Na Mg AI Si P S CI Ar 3p 3s [Ne] 3s1 [Ne] 3s2 [Ne] 3s2 3p1 [Ne] 3s2 3p2 IE drop  from Mg to AI [Ne] 3s2 3p3 [Ne] 3s2 3p4 IE drop  from P to S Electron in p sublevel of AI – further away from nucleus 2 electrons in same p orbital - Greater e/e repulsion Weak electrostatic force attraction between nucleus and electron Easier to remove e IE - Low  IE - Low  Period 3 [Ne] 3s2 3p5 [Ne] 3s2 3p6
  • 35. IE for Period 2 and 3 Ionization Energy- Period 2 and 3 Why IE period 3 lower than 2? Period 3 – 3 shells/energy level period 2 Period 3 Valence e further from nucleus High shielding effect – more inner e Weaker electrostatic forces attraction bet nucleus and e IE – Lower  period 2 Li Be B C N O F Ne 2p 2s 1s 1s2 2s1 1s2 2s2 1s2 2s2 2p1 1s2 2s2 2p2 1s2 2s2 2p3 1s2 2s2 2p4 1s2 2s2 2p5 1s2 2s2 2p6 Period 3 Na Mg AI Si P S [Ne] 3s2 3p1 [Ne] 3s2 3p2 [Ne] 3s2 3p3 [Ne] 3s2 3p4 CI Ar 3p 3s 2p 2s 1s [Ne] 3s1 [Ne] 3s2 [Ne] 3s2 3p5 [Ne] 3s2 3p6
  • 36. IE for Period 2 and 3 Ionization Energy- Period 2 and 3 Why IE period 3 lower than 2? Period 3 – 3 shells/energy level period 2 Period 3 Valence e further from nucleus High shielding effect – more inner e Weaker electrostatic forces attraction bet nucleus and e IE – Lower  period 2 Li Be B C N O F Ne 2p 2s 1s 1s2 2s1 1s2 2s2 1s2 2s2 2p1 1s2 2s2 2p2 1s2 2s2 2p3 1s2 2s2 2p4 1s2 2s2 2p5 1s2 2s2 2p6 Period 3 Na Mg AI Si P S [Ne] 3s2 3p1 [Ne] 3s2 3p2 [Ne] 3s2 3p3 [Ne] 3s2 3p4 CI Ar 3rd level 3p 3s 2p 2s 1s [Ne] 3s1 [Ne] 3s2 [Ne] 3s2 3p5 [Ne] 3s2 3p6
  • 37. IE for Ne and Ar Ionization Energy- Period 2 and 3 Why Ne and Ar have HIGH IE ? Full electron configuration, 2.8/2.8.8 neon argon Most energetically stable structure Difficult to lose electron IE – High  period 2 Li Be B C N O F Ne 2p 2s 1s 1s2 2s1 1s2 2s2 1s2 2s2 2p1 1s2 2s2 2p2 1s2 2s2 2p3 1s2 2s2 2p4 1s2 2s2 2p5 1s2 2s2 2p6 Period 3 Na Mg AI Si P S [Ne] 3s2 3p1 [Ne] 3s2 3p2 [Ne] 3s2 3p3 [Ne] 3s2 3p4 CI Ar 3p 3s 2p 2s 1s [Ne] 3s1 [Ne] 3s2 [Ne] 3s2 3p5 [Ne] 3s2 3p6
  • 38. Successive Ionization Energy (IE) for Mg ( 2.8.2) 1st Ionization energy Min energy to remove 1 mole e from 1 mole of element in gaseous state M(g)  M+(g) + e 2nd Ionization energy Min energy to remove 1 mole e from 1 mole of +1 ion to form +2 ion M+(g)  M2+(g) + e Mg 3rd energy level 1st + 2nd electron 3s 2p 2nd energy level 3rd to 8th electron 9th to 10th electron 2s 1st energy level 11th to 12th electron 1s 1s2 2s2 2p6 3s2 Successive Ionization Energy (IE) for magnesium
  • 39. Successive Ionization Energy (IE) for Mg ( 2.8.2) Successive Ionization Energy (IE) for magnesium 1st Ionization energy Min energy to remove 1 mole e from 1 mole of element in gaseous state M(g)  M+(g) + e 1 2nd Ionization energy Min energy to remove 1 mole e from 1 mole of +1 ion to form +2 ion M+(g)  M2+(g) + e Mg 3rd energy level 1st + 2nd electron 3s 2p 2nd energy level 3rd to 8th electron 9th to 10th electron 2s 1st energy level 11th to 12th electron 1s 1s2 2s2 2p6 3s2 1 Successive (IE) Mg (2.8.2) show • IE increase when e removed • • Ion become increasingly more positive as more e are removed Electron-electron repulsion decrease as more e removed High electrostatic forces attraction IE – High 
  • 40. Successive Ionization Energy (IE) for Mg ( 2.8.2) Successive Ionization Energy (IE) for magnesium 1st Ionization energy Min energy to remove 1 mole e from 1 mole of element in gaseous state M(g)  M+(g) + e 1 2nd Ionization energy Min energy to remove 1 mole e from 1 mole of +1 ion to form +2 ion M+(g)  M2+(g) + e 2 Mg 3rd energy level 1st + 2nd electron 3s 2p 2nd energy level 3rd to 8th electron 9th to 10th electron 2s 1st energy level 11th to 12th electron 1s 1s2 2s2 2p6 3s2 1 Successive (IE) Mg (2.8.2) show • IE increase when e removed 2 Successive (IE) Mg (2.8.2) show • High jump in 2nd to 3rd IE • High jump in 10th to 11th IE • • Ion become increasingly more positive as more e are removed Electron-electron repulsion decrease as more e removed High jump in IE – presence of new inner shell High electrostatic forces attraction Electron nearer to nucleus – High electrostatic forces attraction IE – High  IE – High 
  • 41. Successive Ionization Energy (IE) for Mg ( 2.8.2) Successive Ionization Energy (IE) for magnesium 1st Ionization energy Min energy to remove 1 mole e from 1 mole of element in gaseous state M(g)  M+(g) + e 1 2nd Ionization energy Min energy to remove 1 mole e from 1 mole of +1 ion to form +2 ion M+(g)  M2+(g) + e 2 Mg 3 3rd energy level 1st + 2nd electron 3s 2p 2nd energy level 3rd to 8th electron 9th to 10th electron 2s 1st energy level 11th to 12th electron 1s 1s2 2s2 2p6 3s2 1 Successive (IE) Mg (2.8.2) show • IE increase when e removed 2 Successive (IE) Mg (2.8.2) show • High jump in 2nd to 3rd IE • High jump in 10th to 11th IE 3 Successive (IE) Mg (2.8.2) show • Presence of 3 energy level • • Ion become increasingly more positive as more e are removed Electron-electron repulsion decrease as more e removed High jump in IE – presence of new inner shell 1st + 2nd e – outmost shell (3rd level) High electrostatic forces attraction Electron nearer to nucleus – High electrostatic forces attraction 3rd to 10th e – 2nd shell (2nd level) IE – High  IE – High  11th to 12th e – innermost shell (1st level)
  • 42. Successive Ionization Energy (IE) for Mg ( 2.8.2) Successive Ionization Energy (IE) for magnesium 1st Ionization energy Min energy to remove 1 mole e from 1 mole of element in gaseous state M(g)  M+(g) + e 4 2s and 2p 2nd Ionization energy Min energy to remove 1 mole e from 1 mole of +1 ion to form +2 ion M+(g)  M2+(g) + e Mg 3rd energy level 1st + 2nd electron 3s 2p 2nd energy level 3rd to 8th electron 9th to 10th electron 2s 1st energy level 11th to 12th electron 1s 1s2 2s2 2p6 3s2 4 Successive (IE) Mg (2.8.2) show • Presence of sublevel, 2s + 2p • Slow gradual increase in IE from 3rd to 10th e 3rd to 8th e in 2p orbital 9th to 10th e inner 2s orbital
  • 43. Successive Ionization Energy (IE) for Mg ( 2.8.2) Successive Ionization Energy (IE) for magnesium 1st Ionization energy Min energy to remove 1 mole e from 1 mole of element in gaseous state M(g)  M+(g) + e 5 4 2s and 2p 2nd Ionization energy Min energy to remove 1 mole e from 1 mole of +1 ion to form +2 ion M+(g)  M2+(g) + e Mg 3rd energy level 1st + 2nd electron 3s 2p 2nd energy level 3rd to 8th electron 9th to 10th electron 2s 1st energy level 11th to 12th electron 1s 1s2 2s2 2p6 3s2 4 Successive (IE) Mg (2.8.2) show • Presence of sublevel, 2s + 2p 5 Successive (IE) Mg (2.8.2) show • Succesive IE increasing • Slow gradual increase in IE from 3rd to 10th e Species form increase in proton/e ratio by losing e 3rd to 8th e in 2p orbital 9th to 10th e inner 2s orbital Species becomes more positively charged IE – High 
  • 44. Successive Ionization Energy (IE) for Mg ( 2.8.2) 1st Ionization energy Min energy to remove 1 mole e from 1 mole of element in gaseous state M(g)  M+(g) + e Successive Ionization Energy (IE) for magnesium 5 6 4 2s and 2p 2nd Ionization energy Min energy to remove 1 mole e from 1 mole of +1 ion to form +2 ion M+(g)  M2+(g) + e Mg 3rd energy level 1st + 2nd electron 3s 2p 2nd energy level 3rd to 8th electron 9th to 10th electron 2s 1st energy level 11th to 12th electron 1s 1s2 2s2 2p6 3s2 • Slow gradual increase in IE from 3rd to 10th e 4 Successive (IE) Mg (2.8.2) show • Presence of sublevel, 2s + 2p 5 Successive (IE) Mg (2.8.2) show • Succesive IE increasing Species form increase in proton/e ratio by losing e 6 Successive (IE) Mg (2.8.2) show • More difficult to lose e M(g)  M+(g) + e M+  M2++ e 3rd to 8th e in 2p orbital 9th to 10th e inner 2s orbital Species becomes more positively charged M2+ M3++ e More energy need to lose e IE – High  IE – High 
  • 45. IB Questions on IE s block elements • s orbitals partially fill 1 H He 5 1s2 n = 2 period 2 B [He] 2s2 2p1 6 1s1 2 p block elements • p orbital partially fill C [He] 2s2 2p2 7 N [He] 2s2 2p3 3 Li [He] 2s1 8 O [He] 2s2 2p4 4 Be [He] 2s2 9 F [He] 2s2 2p5 10 Ne [He] 2s2 2p6 13 Al [Ne] 3s2 3p1 14 Si [Ne] 3s2 3p2 15 P [Ne] 3s2 3p3 16 S [Ne] 3s2 3p4 17 CI [Ne] 3s2 3p5 18 Ar [Ne] 3s2 3p6 3s1 11 Na [Ne] 12 Mg [Ne] 3s2 19 20 1 K Ca [Ar] 4s1 [Ar] 1s2 2s2 2p6 3s2 3p6 3d104s2 4p6 5s2 4d10 5p6 6s2 4f14 5d106p2 [Xe] 6s2 4f14 5d10 6p2 4s2 Identify position elements P, Q, R, S and T Electron configuration : P – 3s2 3p6 Q – 4s2 4p5 R – 3s2 3p6 4s2 S – 1s2 2s2 2p6 3s2 3p6 3d3 4s2 T – 1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 2 Write electron configuration for X, Y and Z Element Group Period X 2 3 Y 15 2 Z 18 3 3 Write electron structure for ions: • • • • • • O - 1s2 2s2 2p4 O2- V - 1s2 2s2 2p6 3s2 3p6 4s2 3d3 V3+ Cu - 1s2 2s2 2p6 3s2 3p6 4s2 3d9 Cu2+ -
  • 46. IB Questions on IE s block elements • s orbitals partially fill 1 H He 5 1s2 n = 2 period 2 B [He] 2s2 2p1 6 1s1 2 p block elements • p orbital partially fill C [He] 2s2 2p2 7 N [He] 2s2 2p3 3 Li [He] 2s1 8 O [He] 2s2 2p4 4 Be [He] 2s2 9 F [He] 2s2 2p5 10 Ne [He] 2s2 2p6 13 Al [Ne] 3s2 3p1 14 Si [Ne] 3s2 3p2 15 P [Ne] 3s2 3p3 16 S [Ne] 3s2 3p4 17 CI [Ne] 3s2 3p5 18 Ar [Ne] 3s2 3p6 3s1 11 Na [Ne] 12 Mg [Ne] 3s2 19 K 20 1 Ca [Ar] [Ar] 1s2 2s2 2p6 3s2 3p6 3d104s2 4p6 5s2 4d10 5p6 6s2 4f14 5d106p2 [Xe] 6s2 4f14 5d10 6p2 4s1 4s2 Identify position elements P, Q, R, S and T Electron configuration : P – 3s2 3p6 Q – 4s2 4p5 R – 3s2 3p6 4s2 S – 1s2 2s2 2p6 3s2 3p6 3d3 4s2 T – 1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 Answer Element 2 Write electron configuration for X, Y and Z Element Group Period X 2 3 Y 15 2 Z 18 3 Answer Grou p Period Classification P 8/18 3 Noble gas Q 7/17 4 p block R 2 4 s block S 5 4 d block T 8/18 4 Noble gas X – 1s2 2s2 2p6 3s2 Y – 1s2 2s2 2p3 Z – 1s2 2s2 2p6 3s2 3p6 3 Write electron structure for ions: • • • • • • O - 1s2 2s2 2p4 O2- V - 1s2 2s2 2p6 3s2 3p6 4s2 3d3 V3+ Cu - 1s2 2s2 2p6 3s2 3p6 4s2 3d9 Cu2+ - Answer Write electron structure for ions: • • • • • • O - 1s2 2s2 2p4 O2- -1s2 2s2 2p6 V - 1s2 2s2 2p6 3s2 3p6 4s2 3d3 V 3+ - 1s2 2s2 2p6 3s2 3p6 4s0 3d2 Cu - 1s2 2s2 2p6 3s2 3p6 4s2 3d9 Cu 2+ - 1s2 2s2 2p6 3s23p6 4s0 3d9
  • 47. IB Questions on IE s block elements • s orbitals partially fill 1 H He 5 1s2 n = 2 period 2 B [He] 2s2 2p1 6 1s1 2 p block elements • p orbital partially fill C [He] 2s2 2p2 7 N [He] 2s2 2p3 3 Li [He] 2s1 8 O [He] 2s2 2p4 4 Be [He] 2s2 9 F [He] 2s2 2p5 10 Ne [He] 2s2 2p6 13 Al [Ne] 3s2 3p1 14 Si [Ne] 3s2 3p2 15 P [Ne] 3s2 3p3 16 S [Ne] 3s2 3p4 17 CI [Ne] 3s2 3p5 18 Ar [Ne] 3s2 3p6 3s1 11 Na [Ne] 12 Mg [Ne] 3s2 19 20 4 K Ca [Ar] [Ar] 1s2 2s2 2p6 3s2 3p6 3d104s2 4p6 5s2 4d10 5p6 6s2 4f14 5d106p2 [Xe] 6s2 4f14 5d10 6p2 4s1 4s2 Successive IE of X is shown below Predict the group and arrange in order of increasing proton number Element 1st IE 2nd IE 3rd IE 4th IE P 746 1423 7689 10456 Q 920 1768 14578 21343 R 587 1134 4890 6453 S 542 1045 4121 5412 5 Successive IE of X is shown below Determine electron structure of X Successive IE (kJ/mol) 1314 3302 5436 7436 10647 13768 71564 84736
  • 48. IB Questions on IE s block elements • s orbitals partially fill 1 H He 5 1s2 n = 2 period 2 B [He] 2s2 2p1 6 1s1 2 p block elements • p orbital partially fill C [He] 2s2 2p2 7 N [He] 2s2 2p3 3 Li [He] 2s1 8 O [He] 2s2 2p4 4 Be [He] 2s2 9 F [He] 2s2 2p5 10 Ne [He] 2s2 2p6 13 Al [Ne] 3s2 3p1 14 Si [Ne] 3s2 3p2 15 P [Ne] 3s2 3p3 16 S [Ne] 3s2 3p4 17 CI [Ne] 3s2 3p5 18 Ar [Ne] 3s2 3p6 3s1 11 Na [Ne] 12 Mg [Ne] 3s2 19 20 4 K Ca [Ar] [Ar] 1s2 2s2 2p6 3s2 3p6 3d104s2 4p6 5s2 4d10 5p6 6s2 4f14 5d106p2 [Xe] 6s2 4f14 5d10 6p2 4s1 4s2 Successive IE of X is shown below Predict the group and arrange in order of increasing proton number Element 1st IE 2nd IE 3rd IE 4th IE P 746 1423 7689 10456 Q 920 1768 14578 21343 R 587 1134 4890 6453 S 542 1045 4121 5412 Answer All in Gp 2 – 2 valence electron Order increasing proton number Q, P, R, S ReasonGp 2, cause 1st and 2nd IE low Q – Highest IE (less shell/energy level) S – Lowest IE (more shell/energy level) 5 Successive IE of X is shown below Determine electron structure of X Successive IE (kJ/mol) 1314 3302 5436 Answer: X = 6 outermost electron, Gp 6, 2.6 Reason - 1st IE to 6th IE are low. 7436 10647 13768 71564 84736
  • 49. IB Questions on IE 6 Successive IE of sodium is shown below: State full electron structure and explain how the successive IE are related to Its electron configuration. 8 Successive IE for 4 element shown below a) Which element form charge +1 b) Predict C in periodic table c) Which element requires least amt energy to charge a gaseous ion which carry charge +3 d) Which element belong to same group? Element 1st IE 2nd IE 3rd IE 4th IE A 423 3021 4657 5867 B 754 1431 7741 10432 C 557 1814 2735 11843 D 597 1104 4942 6342 7 Successive IE of magnesium is shown below: Explain the large increase in 10th and 11th IE and the general trend of Increasing successive IE for Mg.
  • 50. IB Questions on IE 6 Successive IE of sodium is shown below: State full electron structure and explain how the successive IE are related to Its electron configuration. 7 Successive IE of magnesium is shown below: Explain the large increase in 10th and 11th IE and the general trend of Increasing successive IE for Mg. 11th electron 10th electron Answer: 1s2 2s2 2p6 3s1 Reason: • 1st electron easiest to remove, or 1st e in outmost shell/n= 3 energy level • Large increase in IE bet 1st and 2nd as 2nd electron located in inner level, n=2 • Next 8 electrons more difficult to remove as the ion now is positively charged • Large increase in IE between 9th and 10th , two innermost electron 10th/11th in n=1 (close to nucleus) 8 Successive IE for 4 element shown below a) Which element form charge +1 b) Predict C in periodic table c) Which element requires least amt energy to charge a gaseous ion which carry charge +3 d) Which element belong to same group? Element 1st IE 2nd IE 3rd IE 4th IE A 423 3021 4657 5867 B 754 1431 7741 10432 C 557 1814 2735 11843 D 597 1104 4942 6342 Answer: Reason: • 10th electron comes from 2nd energy level, (n=2) and 11th electron from n=1 • Electron in 1st energy level (n=1) closer to nucleus/ not shielded by inner electrons • Successive IE high as it is more difficult to remove e from a positively charged ion. Answer: A – Gp 1, B - Gp 2, C – Gp 3, D – Gp 2 a) A- Gp 1 – lose 1 electron foming +1 b) C – Gp 3 c) Total IE = 1st IE + 2nd IE + 3rd IE A = 8101 B= 9926 C = 5106 D = 6643 C requires least – Gp 3 – lose 3 e easily d) B and D
  • 51. Acknowledgements Thanks to source of pictures and video used in this presentation http://crescentok.com/staff/jaskew/isr/tigerchem/econfig/electron4.htm http://pureinfotech.com/wp-content/uploads/2012/09/periodicTable_20120926101018.png Thanks to Creative Commons for excellent contribution on licenses http://creativecommons.org/licenses/ Prepared by Lawrence Kok Check out more video tutorials from my site and hope you enjoy this tutorial http://lawrencekok.blogspot.com