SlideShare una empresa de Scribd logo
1 de 12
INSTITUTO TECNOLOGICO DE MEXICALI INGENIERIA QUIMICA AMBIENTAL LABORATORIO INTEGRAL I REPORTE PRACTICA NO.3: “Obtención del numero de Reynolds” Alumnas: María Guadalupe Rangel González García Fabián Claudia Yesenia Profesor: NORMAN EDILBERTO RIVERA PAZOS FECHA DE ENTREGA: 12 FEB 2010 Índice. TOC  
1-3
    1. OBJETIVOS: PAGEREF _Toc253775361  32. MOTIVACION: PAGEREF _Toc253775362  33. FUNDAMENTO TEORICO: PAGEREF _Toc253775363  3-EL EQUIPO: PAGEREF _Toc253775364  3-FENOMENO FISICO SIMPLIFICADO: PAGEREF _Toc253775365  4-HIPOTESIS: PAGEREF _Toc253775366  5-MODELO MATEMATICO: PAGEREF _Toc253775367  54. DISEÑO DE LA PRACTICA PAGEREF _Toc253775368  6-HOJA DE DATOS PAGEREF _Toc253775369  6-EQUIPO Y MATERIALES: PAGEREF _Toc253775370  7-DESARROLLO DE LA PRÁCTICA: PAGEREF _Toc253775371  85. REALIZACION DE LA PRÁCTICA PAGEREF _Toc253775372  8-Mediciones: PAGEREF _Toc253775373  8-OBSERVACIONES: PAGEREF _Toc253775374  96. ANALISIS DE DATOS Y RESULTADOS: PAGEREF _Toc253775375  9-Cálculos PAGEREF _Toc253775376  10-Graficas PAGEREF _Toc253775377  117. DISCUSION Y CONCLUSIONES: PAGEREF _Toc253775378  118. SUGERENCIAS Y RECOMENDACIONES: PAGEREF _Toc253775379  119. REFERENCIAS PAGEREF _Toc253775380  12 1. OBJETIVOS:    -Comprender la importancia del número de Reynolds en el estudio del comportamiento  de flujos. -Calcular mediciones del número de Reynolds para flujos en diferentes condiciones mediante datos conocidos. 2. MOTIVACION: Por motivo de no poder observar directamente el tipo de flujo en una tubería cerrada, siendo de especial importancia para un ingeniero químico el comportamiento de éste, se hace uso del numero de Reynolds como un punto de partida para determinar las características de un fluido que fluye a través de una tubería, a partir de datos y la sustancia ya conocidos en el sistema. 3. FUNDAMENTO TEORICO: -¿Qué es el número de Reynolds? Es un valor que nos ayuda a identificar la naturaleza de un flujo en una tubería, ya sea laminar, en transición o turbulento. -¿De cuáles variables depende? Depende de la densidad, velocidad, diámetro o longitud y viscosidad dinámica, en términos de ésta; y de la velocidad, diámetro y viscosidad cinemática, en términos de ésta. -EL EQUIPO: Mesa de Hidrodinámica del Laboratorio de Química. 19050110191 -FENOMENO FISICO SIMPLIFICADO: Numero de Reynolds Reynolds (1874) estudió las características de flujo de los fluidos inyectando un trazador dentro de un líquido que fluía por una tubería. A velocidades bajas del líquido, el trazador se mueve linealmente en la dirección axial. Sin embargo a mayores velocidades, las líneas del flujo del fluido se desorganizan y el trazador se dispersa rápidamente  después de su inyección en el líquido. El flujo lineal se denomina Laminar y el flujo errático obtenido a mayores velocidades del líquido se denomina Turbulento Las características que condicionan el flujo laminar dependen de las propiedades del líquido y de las dimensiones del flujo. Conforme aumenta el flujo másico aumenta las fuerzas del momento o inercia, las cuales son contrarrestadas por la por la fricción o fuerzas viscosas dentro del líquido que fluye. Cuando estas  fuerzas opuestas alcanzan un cierto equilibrio se producen cambios en las características del flujo. En base a los experimentos realizados por Reynolds en 1874 se concluyó que las fuerzas del momento son función de la densidad, del diámetro de la tubería y de la velocidad media. Además, la fricción o fuerza viscosa depende de la viscosidad del líquido. Según dicho análisis, el Número de Reynolds se definió como la relación existente entre las fuerzas inerciales y las fuerzas viscosas (o de rozamiento). Este número es adimensional y puede utilizarse para definir las características del flujo dentro de una tubería. El número de Reynolds proporciona una indicación de la pérdida de energía causada por efectos viscosos. Observando la ecuación anterior, cuando las fuerzas viscosas tienen un efecto dominante en la pérdida de energía, el número de Reynolds es pequeño y el flujo se encuentra en el régimen laminar. Si el Número de Reynolds es 2100 o menor el flujo será laminar. Un número de Reynolds  mayor de 10 000 indican que las fuerzas viscosas influyen poco en la pérdida de energía y el flujo es turbulento. Flujo laminar. A valores bajos de flujo másico, cuando el flujo del líquido dentro de la tubería es laminar, se utiliza la ecuación demostrada en clase para calcular el perfil de velocidad (Ecuación de velocidad en función del radio). Estos cálculos revelan que el perfil de velocidad es parabólico y que la velocidad media del fluido es aproximadamente 0,5 veces la velocidad máxima existente en el centro de la conducción  Flujo turbulento. Cuando el flujo másico en una tubería aumenta hasta valores del número de Reynolds superiores a 2100  el flujo dentro de la tubería se vuelve errático y se produce la mezcla transversal del líquido. La intensidad de dicha mezcla aumenta conforme aumenta el número de Reynolds  desde 4000 hasta 10 000. A valores superiores del Número de Reynolds la turbulencia está totalmente desarrollada, de tal manera que el perfil de velocidad es prácticamente plano, siendo la velocidad media del flujo aproximadamente  0.8 veces la velocidad máxima. -HIPOTESIS: Se pretende por medio de la realización de esta práctica obtener el numero de Reynolds, utilizando datos obtenidos experimentalmente y asi comprobar cuando un flujo es laminar y turbulento de una manera didáctica.  -MODELO MATEMATICO: Fórmula  para calcular la velocidad la cual necesitamos para calcular el número de Reynolds. V=QA 1                                  V=4QπD2   (2) Donde A es el área en metros cuadrados (m2), por donde pasa el fluido en la tubería, Q es el flujo volumétrico en metros cúbicos sobre segundo (m3/s) y D el diámetro interno de la tubería en metros (m) Fórmula para calcular el número de Reynolds. Re=VDv     (3)  v Es la viscosidad cinemática que en metros cuadrados sobre segundo (m2/s). 753745314960Sustituyendo la velocidad en la formula numero 3 obtenemos otra fórmula para obtener el numero de Reynolds. Re=4QvπD   (4)  D (m) 4. DISEÑO DE LA PRÁCTICA -VARIABLES Y PARAMETROS Para poder obtener el número de Reynolds es necesario conocer la velocidad del fluido, esta se calcula con el caudal o flujo volumétrico (Q) y el área de sección transversal a partir del diámetro interno dada en las especificaciones de la tubería con la fórmula para sacar el área de un círculo.Habiendo obtenido la velocidad, para poder obtener en número de Reynolds haría falta la viscosidad cinemática, esta se obtiene a partir de tablas donde se busca dependiendo a que temperatura se encuentra el fluido. -HOJA DE DATOS Obtención del número de Reynolds. 4 de Febrero del 2010. Tubo PVC  20mm x 1.5 =17mm (diámetro interno). RepeticionesQ(m3/s) MedidoV(m2/s)CalculadoReCalculado1   2   3   4   5   6   7   8   9   10    Tubo PVC  32mm x 1.5 = 29mm (diámetro interno). RepeticionesQ(m3/s) MedidoV(m2/s)CalculadoReCalculado1   2   3   4   5   6   7   8   9   10    -EQUIPO Y MATERIALES: *Mesa hidrodinámica y complementos (mangueras, tanto para la presión como para el líquido). *Agua suficiente para el llenado del tanque del equipo (mesa hidrodinámica). -DESARROLLO DE LA PRÁCTICA: Para obtener un completo desarrollo de la practica se tiene que disponer del uso del equipo que es una mesa hidrodinámica la cual consta de un tanque (2)  al que se le debe llenar con liquido, en este caso agua, para asi tener una fuente de alimentación hacia las mangueras que van conectadas a las tuberías que forman parte del equipo, esta vez solo se utilizaran dos de las tuberías de PVC, cuyo diámetro interior es de 17mm y 29mm; antes de encender el equipo hay que confirmar que las válvulas del registrador electrónico de la presión (6) se encuentren cerradas y hay que conectar las mangueras correspondientes a la presión a esta parte del equipo y a las respectivas tuberías (las mangueras se conectan al registrador electrónico de la presión (en este caso a P1 y P2) y en la parte de las tuberías que está diseñada con entradas para tomar la presión (esto con el fin de evitar que fluya liquido hacia el exterior), debido a que solo es de interés para esta práctica conocer las mediciones de Q (caudal, capacidad, gasto, etc.) a diferentes aberturas de la válvula mariposa (llave de descarga) (11); por otra parte al encender el equipo es necesario verificar que el rotor de el sensor de flujo del impulsor (12) que se encuentra del lado de la llave de descarga correctamente e iniciar la toma de mediciones de la manera adecuada por medio del gabinete de interruptores con caratulas digitales (5) (de manera que se reduzca Q de dos en dos unidades, hasta llegar de 8 a 10 tomas de datos). 5. REALIZACION DE LA PRÁCTICA -Mediciones: Tubo PVC diámetro interno 17 mm  RepeticionesQ(m3/s) 10.0003533320.0003233330.0002916740.00025550.0002260.0001916770.0001680.0001216799.1667E-05105.8333E-05 Tubo PVC diámetro interno 29 mm RepeticionesQ(m3/s) 10.0003566720.0003216730.0002866740.0002566750.00022560.0001916770.0001680.0001266790.00009106.1667E-05 -OBSERVACIONES: *No olvidar conectar las mangueras al registrador electrónico de la presión y a las dos tuberías PVC (cada una en su debido orden), para evitar el derramamiento del fluido, y además verificar que las válvulas del registrador estén cerradas, ya que en esta práctica no es de interés conocer la diferencia de presiones. *Verificar que el rotor  del sensor de flujo del impulsor funcione de la manera adecuada al encender el equipo. *Tomar los datos lo más exactos y precisos posibles, para una mejor interpretación de los mismos. *Anotar la temperatura inicial antes de tomar la primera medición de Q. 6. ANALISIS DE DATOS Y RESULTADOS: Por medio de las mediciones obtenidas de Q se calculara el número de Reynolds con datos obtenidos de la manera experimental, donde a partir de los cuales se realizara la grafica (Q vs Re) correspondiente para comparar con los datos ya obtenidos teóricamente, respecto a un flujo laminar y turbulento.  -Cálculos Tubo PVC diámetro interno 17 mm RepeticionesQ(m3/s) V(m2/s)Re10.000353331.556671192.20E+0420.000323331.424500992.01E+0430.000291671.284988011.82E+0440.0002551.123446661.59E+0450.000220.96924811.37E+0460.000191670.844420691.19E+0470.000160.704907719.97E+0380.000121670.536023577.58E+0399.1667E-050.403853375.71E+03105.8333E-050.25699763.63E+03 Tubo PVC diámetro interno 29 mm RepeticionesQ(m3/s) V(m2/s)Re10.000356670.539978721.30E+0420.000321670.486990151.17E+0430.000286670.434001591.05E+0440.000256670.388582829.38E+0350.0002250.340640788.22E+0360.000191670.290175487.00E+0370.000160.242233445.84E+0380.000126670.191768144.63E+0390.000090.136256313.29E+03106.1667E-050.093360812.25E+03 -Graficas 7. DISCUSION Y CONCLUSIONES: Por medio de las graficas podemos que hay una completa correlación entre el caudal y el numero de Reynolds, entre mayor sea el flujo volumétrico el numero de Reynolds será mayor, por lo tanto es mas turbulento. 8. SUGERENCIAS Y RECOMENDACIONES: *Tener un mayor orden en el manejo del equipo y en la toma de las mediciones. 9. REFERENCIAS Mecánica de fluidos, Merle C. Potter, David C. Wiggert Manual de la mesa hidrodinámica. Modelo HM 112 Marca Gunt Hamburg. http://www.practiciencia.com.ar/cfisicas/mecanica/fluidos/flujo/numreyn/index.html http://tarwi.lamolina.edu.pe/~dsa/Reynold.htm
Practica #3   Obtencion Del Numero De Reynolds
Practica #3   Obtencion Del Numero De Reynolds
Practica #3   Obtencion Del Numero De Reynolds
Practica #3   Obtencion Del Numero De Reynolds
Practica #3   Obtencion Del Numero De Reynolds
Practica #3   Obtencion Del Numero De Reynolds
Practica #3   Obtencion Del Numero De Reynolds
Practica #3   Obtencion Del Numero De Reynolds
Practica #3   Obtencion Del Numero De Reynolds
Practica #3   Obtencion Del Numero De Reynolds
Practica #3   Obtencion Del Numero De Reynolds

Más contenido relacionado

La actualidad más candente

Número de reynolds flujo laminar y flujo turbulento
Número de reynolds  flujo laminar y flujo turbulentoNúmero de reynolds  flujo laminar y flujo turbulento
Número de reynolds flujo laminar y flujo turbulentoEdikson Carrillo
 
cinematica de los fluidos: Ecuacion de cantidad de movimiento, continuidad y ...
cinematica de los fluidos: Ecuacion de cantidad de movimiento, continuidad y ...cinematica de los fluidos: Ecuacion de cantidad de movimiento, continuidad y ...
cinematica de los fluidos: Ecuacion de cantidad de movimiento, continuidad y ...I.U.P.S.M
 
Laboratorio 1. Determinación de tipos de flujo según Reynolds
Laboratorio 1. Determinación de tipos de flujo según ReynoldsLaboratorio 1. Determinación de tipos de flujo según Reynolds
Laboratorio 1. Determinación de tipos de flujo según ReynoldsEduardo Silva Escalante
 
Práctica 1 Medición de Viscosidades
Práctica 1 Medición de ViscosidadesPráctica 1 Medición de Viscosidades
Práctica 1 Medición de ViscosidadesJasminSeufert
 
359757087 viscosidad-cinematica-de-aire-y-agua-pdf
359757087 viscosidad-cinematica-de-aire-y-agua-pdf359757087 viscosidad-cinematica-de-aire-y-agua-pdf
359757087 viscosidad-cinematica-de-aire-y-agua-pdfPablo Zuñiga
 
Viscosidad en gases y líquidos
Viscosidad en gases y líquidosViscosidad en gases y líquidos
Viscosidad en gases y líquidosKaren M. Guillén
 
Lab. Inte. I-Practica#10- Caida de presion en Accesorios y Tuberias
Lab. Inte. I-Practica#10- Caida de presion en Accesorios y TuberiasLab. Inte. I-Practica#10- Caida de presion en Accesorios y Tuberias
Lab. Inte. I-Practica#10- Caida de presion en Accesorios y Tuberiasjricardo001
 
Informe de Viscosidad, Mecánica de fluidos
Informe de Viscosidad, Mecánica de fluidosInforme de Viscosidad, Mecánica de fluidos
Informe de Viscosidad, Mecánica de fluidosAlexander Alvarado
 
221405948 ejercicios-resueltos(1)
221405948 ejercicios-resueltos(1)221405948 ejercicios-resueltos(1)
221405948 ejercicios-resueltos(1)Christian Venegas
 
Viscosímetro de tubo capilar
Viscosímetro de tubo capilarViscosímetro de tubo capilar
Viscosímetro de tubo capilarCarlos Valverde
 
Informe de práctica de pérdida de carga en tuberías y accesorios
Informe de práctica de pérdida de carga en tuberías y accesoriosInforme de práctica de pérdida de carga en tuberías y accesorios
Informe de práctica de pérdida de carga en tuberías y accesoriosRodrigo Gabrielli González
 
Calculo del tiempo de descarga de tanques y recipientes
Calculo del tiempo de descarga de tanques y recipientesCalculo del tiempo de descarga de tanques y recipientes
Calculo del tiempo de descarga de tanques y recipientesTania Gamboa Vila
 
Laboratorio 1 pérdidas en tuberías por fricción.
Laboratorio 1 pérdidas en tuberías por fricción.Laboratorio 1 pérdidas en tuberías por fricción.
Laboratorio 1 pérdidas en tuberías por fricción.juanccorreag1
 

La actualidad más candente (20)

Número de reynolds flujo laminar y flujo turbulento
Número de reynolds  flujo laminar y flujo turbulentoNúmero de reynolds  flujo laminar y flujo turbulento
Número de reynolds flujo laminar y flujo turbulento
 
cinematica de los fluidos: Ecuacion de cantidad de movimiento, continuidad y ...
cinematica de los fluidos: Ecuacion de cantidad de movimiento, continuidad y ...cinematica de los fluidos: Ecuacion de cantidad de movimiento, continuidad y ...
cinematica de los fluidos: Ecuacion de cantidad de movimiento, continuidad y ...
 
Informe teorema-de-bernoulli
Informe teorema-de-bernoulliInforme teorema-de-bernoulli
Informe teorema-de-bernoulli
 
Laboratorio 1. Determinación de tipos de flujo según Reynolds
Laboratorio 1. Determinación de tipos de flujo según ReynoldsLaboratorio 1. Determinación de tipos de flujo según Reynolds
Laboratorio 1. Determinación de tipos de flujo según Reynolds
 
Flujo reptante (ley de stokes)
Flujo reptante (ley de stokes)Flujo reptante (ley de stokes)
Flujo reptante (ley de stokes)
 
Práctica 1 Medición de Viscosidades
Práctica 1 Medición de ViscosidadesPráctica 1 Medición de Viscosidades
Práctica 1 Medición de Viscosidades
 
359757087 viscosidad-cinematica-de-aire-y-agua-pdf
359757087 viscosidad-cinematica-de-aire-y-agua-pdf359757087 viscosidad-cinematica-de-aire-y-agua-pdf
359757087 viscosidad-cinematica-de-aire-y-agua-pdf
 
Viscosidad en gases y líquidos
Viscosidad en gases y líquidosViscosidad en gases y líquidos
Viscosidad en gases y líquidos
 
sedimentacion
sedimentacionsedimentacion
sedimentacion
 
Lab. Inte. I-Practica#10- Caida de presion en Accesorios y Tuberias
Lab. Inte. I-Practica#10- Caida de presion en Accesorios y TuberiasLab. Inte. I-Practica#10- Caida de presion en Accesorios y Tuberias
Lab. Inte. I-Practica#10- Caida de presion en Accesorios y Tuberias
 
Fluidos i-viscosidad
Fluidos i-viscosidadFluidos i-viscosidad
Fluidos i-viscosidad
 
Perdidas carga en accesorios
Perdidas carga en accesoriosPerdidas carga en accesorios
Perdidas carga en accesorios
 
Informe de Viscosidad, Mecánica de fluidos
Informe de Viscosidad, Mecánica de fluidosInforme de Viscosidad, Mecánica de fluidos
Informe de Viscosidad, Mecánica de fluidos
 
221405948 ejercicios-resueltos(1)
221405948 ejercicios-resueltos(1)221405948 ejercicios-resueltos(1)
221405948 ejercicios-resueltos(1)
 
Viscosímetro de tubo capilar
Viscosímetro de tubo capilarViscosímetro de tubo capilar
Viscosímetro de tubo capilar
 
informe numero de reynolds
informe numero de reynoldsinforme numero de reynolds
informe numero de reynolds
 
Caida de presión y pérdida de carga
Caida de presión y pérdida de cargaCaida de presión y pérdida de carga
Caida de presión y pérdida de carga
 
Informe de práctica de pérdida de carga en tuberías y accesorios
Informe de práctica de pérdida de carga en tuberías y accesoriosInforme de práctica de pérdida de carga en tuberías y accesorios
Informe de práctica de pérdida de carga en tuberías y accesorios
 
Calculo del tiempo de descarga de tanques y recipientes
Calculo del tiempo de descarga de tanques y recipientesCalculo del tiempo de descarga de tanques y recipientes
Calculo del tiempo de descarga de tanques y recipientes
 
Laboratorio 1 pérdidas en tuberías por fricción.
Laboratorio 1 pérdidas en tuberías por fricción.Laboratorio 1 pérdidas en tuberías por fricción.
Laboratorio 1 pérdidas en tuberías por fricción.
 

Similar a Practica #3 Obtencion Del Numero De Reynolds

C:\Fakepath\Practica No 3
C:\Fakepath\Practica No 3C:\Fakepath\Practica No 3
C:\Fakepath\Practica No 3canomurillo
 
Practica 3 Obtencion Del Numero De Reynolds Docx[1]
Practica  3   Obtencion Del Numero De Reynolds Docx[1]Practica  3   Obtencion Del Numero De Reynolds Docx[1]
Practica 3 Obtencion Del Numero De Reynolds Docx[1]Lupita Rangel
 
1 informe de_laboratorio_numero_de_reyno
1 informe de_laboratorio_numero_de_reyno1 informe de_laboratorio_numero_de_reyno
1 informe de_laboratorio_numero_de_reynoJaime Contreras
 
1 informe de_laboratorio_numero_de_reyno
1 informe de_laboratorio_numero_de_reyno1 informe de_laboratorio_numero_de_reyno
1 informe de_laboratorio_numero_de_reynoFrank Naola
 
Mecanica de fluidos (5)
Mecanica de fluidos (5)Mecanica de fluidos (5)
Mecanica de fluidos (5)Henry SG
 
Practica n-03-de-mecanica-de-fluido
Practica n-03-de-mecanica-de-fluidoPractica n-03-de-mecanica-de-fluido
Practica n-03-de-mecanica-de-fluidoHerald Anco Gomez
 
C:\Fakepath\Practica No 4
C:\Fakepath\Practica No 4C:\Fakepath\Practica No 4
C:\Fakepath\Practica No 4MaguiMoon
 
PPT - PRODUCTO UNIDAD II - MECANICA DE FLUIDOS nuevo.pptx
PPT - PRODUCTO UNIDAD II - MECANICA DE FLUIDOS nuevo.pptxPPT - PRODUCTO UNIDAD II - MECANICA DE FLUIDOS nuevo.pptx
PPT - PRODUCTO UNIDAD II - MECANICA DE FLUIDOS nuevo.pptxAngelDanPinedoMicha1
 
Reporte 1
Reporte 1Reporte 1
Reporte 1...
 
Reporte 1
Reporte 1Reporte 1
Reporte 1...
 
Lab#3 exp.de reynolds-curva caract.de una bomba
Lab#3 exp.de reynolds-curva caract.de una bombaLab#3 exp.de reynolds-curva caract.de una bomba
Lab#3 exp.de reynolds-curva caract.de una bombajricardo001
 
C:\Fakepath\Practica No 4
C:\Fakepath\Practica No 4C:\Fakepath\Practica No 4
C:\Fakepath\Practica No 4MaguiMoon
 
Cuaderno 5 hidráulica
Cuaderno 5 hidráulicaCuaderno 5 hidráulica
Cuaderno 5 hidráulicaandogon
 
Lab. inte. i practica #2-flujo lamniar y turbulento
Lab. inte. i practica #2-flujo lamniar y turbulentoLab. inte. i practica #2-flujo lamniar y turbulento
Lab. inte. i practica #2-flujo lamniar y turbulentojricardo001
 

Similar a Practica #3 Obtencion Del Numero De Reynolds (20)

C:\Fakepath\Practica No 3
C:\Fakepath\Practica No 3C:\Fakepath\Practica No 3
C:\Fakepath\Practica No 3
 
Practica 3 Obtencion Del Numero De Reynolds Docx[1]
Practica  3   Obtencion Del Numero De Reynolds Docx[1]Practica  3   Obtencion Del Numero De Reynolds Docx[1]
Practica 3 Obtencion Del Numero De Reynolds Docx[1]
 
1 informe de_laboratorio_numero_de_reyno
1 informe de_laboratorio_numero_de_reyno1 informe de_laboratorio_numero_de_reyno
1 informe de_laboratorio_numero_de_reyno
 
1 informe de_laboratorio_numero_de_reyno
1 informe de_laboratorio_numero_de_reyno1 informe de_laboratorio_numero_de_reyno
1 informe de_laboratorio_numero_de_reyno
 
Mecanica de fluidos (5)
Mecanica de fluidos (5)Mecanica de fluidos (5)
Mecanica de fluidos (5)
 
laboratorio de fluidos
laboratorio de fluidoslaboratorio de fluidos
laboratorio de fluidos
 
Practica 2 lab int1
Practica 2 lab int1Practica 2 lab int1
Practica 2 lab int1
 
Lab ai-344-03
Lab ai-344-03Lab ai-344-03
Lab ai-344-03
 
Practica n-03-de-mecanica-de-fluido
Practica n-03-de-mecanica-de-fluidoPractica n-03-de-mecanica-de-fluido
Practica n-03-de-mecanica-de-fluido
 
C:\Fakepath\Practica No 4
C:\Fakepath\Practica No 4C:\Fakepath\Practica No 4
C:\Fakepath\Practica No 4
 
PPT - PRODUCTO UNIDAD II - MECANICA DE FLUIDOS nuevo.pptx
PPT - PRODUCTO UNIDAD II - MECANICA DE FLUIDOS nuevo.pptxPPT - PRODUCTO UNIDAD II - MECANICA DE FLUIDOS nuevo.pptx
PPT - PRODUCTO UNIDAD II - MECANICA DE FLUIDOS nuevo.pptx
 
Reporte 1
Reporte 1Reporte 1
Reporte 1
 
Reporte 1
Reporte 1Reporte 1
Reporte 1
 
Lab#3 exp.de reynolds-curva caract.de una bomba
Lab#3 exp.de reynolds-curva caract.de una bombaLab#3 exp.de reynolds-curva caract.de una bomba
Lab#3 exp.de reynolds-curva caract.de una bomba
 
C:\Fakepath\Practica No 4
C:\Fakepath\Practica No 4C:\Fakepath\Practica No 4
C:\Fakepath\Practica No 4
 
Perdidas en tuberias
Perdidas en tuberiasPerdidas en tuberias
Perdidas en tuberias
 
Practica #6
Practica #6Practica #6
Practica #6
 
informe 5 - copia.docx
informe 5 - copia.docxinforme 5 - copia.docx
informe 5 - copia.docx
 
Cuaderno 5 hidráulica
Cuaderno 5 hidráulicaCuaderno 5 hidráulica
Cuaderno 5 hidráulica
 
Lab. inte. i practica #2-flujo lamniar y turbulento
Lab. inte. i practica #2-flujo lamniar y turbulentoLab. inte. i practica #2-flujo lamniar y turbulento
Lab. inte. i practica #2-flujo lamniar y turbulento
 

Más de Lupita Rangel

Practica 4 Laboratorio Integral 1 (Modificada)
Practica 4 Laboratorio Integral 1 (Modificada)Practica 4 Laboratorio Integral 1 (Modificada)
Practica 4 Laboratorio Integral 1 (Modificada)Lupita Rangel
 
Practica 4 Laboratorio Integral 1
Practica 4 Laboratorio Integral 1Practica 4 Laboratorio Integral 1
Practica 4 Laboratorio Integral 1Lupita Rangel
 
Practica 4 Laboratorio Integral 1
Practica 4 Laboratorio Integral 1Practica 4 Laboratorio Integral 1
Practica 4 Laboratorio Integral 1Lupita Rangel
 
Solucionario De Fenomenos De Transporte R Byron Bird
Solucionario De Fenomenos De Transporte   R Byron BirdSolucionario De Fenomenos De Transporte   R Byron Bird
Solucionario De Fenomenos De Transporte R Byron BirdLupita Rangel
 
Practica 1 Azucena Y Magui Lab 1 Final
Practica 1 Azucena Y Magui Lab 1 FinalPractica 1 Azucena Y Magui Lab 1 Final
Practica 1 Azucena Y Magui Lab 1 FinalLupita Rangel
 
Modelo Matematico Numero De Reynolds
Modelo Matematico Numero De ReynoldsModelo Matematico Numero De Reynolds
Modelo Matematico Numero De ReynoldsLupita Rangel
 

Más de Lupita Rangel (13)

Ultimas 2 practicas
Ultimas 2 practicasUltimas 2 practicas
Ultimas 2 practicas
 
Ultimas 2 practicas
Ultimas 2 practicasUltimas 2 practicas
Ultimas 2 practicas
 
Practica 2
Practica 2Practica 2
Practica 2
 
Practica 1
Practica 1Practica 1
Practica 1
 
Practica 5,6,7
Practica 5,6,7Practica 5,6,7
Practica 5,6,7
 
Practica 4 Laboratorio Integral 1 (Modificada)
Practica 4 Laboratorio Integral 1 (Modificada)Practica 4 Laboratorio Integral 1 (Modificada)
Practica 4 Laboratorio Integral 1 (Modificada)
 
Practica 4 Laboratorio Integral 1
Practica 4 Laboratorio Integral 1Practica 4 Laboratorio Integral 1
Practica 4 Laboratorio Integral 1
 
Practica 4 Laboratorio Integral 1
Practica 4 Laboratorio Integral 1Practica 4 Laboratorio Integral 1
Practica 4 Laboratorio Integral 1
 
Solucionario De Fenomenos De Transporte R Byron Bird
Solucionario De Fenomenos De Transporte   R Byron BirdSolucionario De Fenomenos De Transporte   R Byron Bird
Solucionario De Fenomenos De Transporte R Byron Bird
 
Practica 1 Azucena Y Magui Lab 1 Final
Practica 1 Azucena Y Magui Lab 1 FinalPractica 1 Azucena Y Magui Lab 1 Final
Practica 1 Azucena Y Magui Lab 1 Final
 
Microscopio
MicroscopioMicroscopio
Microscopio
 
Formato Practica 3
Formato Practica 3Formato Practica 3
Formato Practica 3
 
Modelo Matematico Numero De Reynolds
Modelo Matematico Numero De ReynoldsModelo Matematico Numero De Reynolds
Modelo Matematico Numero De Reynolds
 

Último

investigación de los Avances tecnológicos del siglo XXI
investigación de los Avances tecnológicos del siglo XXIinvestigación de los Avances tecnológicos del siglo XXI
investigación de los Avances tecnológicos del siglo XXIhmpuellon
 
EL CICLO PRÁCTICO DE UN MOTOR DE CUATRO TIEMPOS.pptx
EL CICLO PRÁCTICO DE UN MOTOR DE CUATRO TIEMPOS.pptxEL CICLO PRÁCTICO DE UN MOTOR DE CUATRO TIEMPOS.pptx
EL CICLO PRÁCTICO DE UN MOTOR DE CUATRO TIEMPOS.pptxMiguelAtencio10
 
Innovaciones tecnologicas en el siglo 21
Innovaciones tecnologicas en el siglo 21Innovaciones tecnologicas en el siglo 21
Innovaciones tecnologicas en el siglo 21mariacbr99
 
PROYECTO FINAL. Tutorial para publicar en SlideShare.pptx
PROYECTO FINAL. Tutorial para publicar en SlideShare.pptxPROYECTO FINAL. Tutorial para publicar en SlideShare.pptx
PROYECTO FINAL. Tutorial para publicar en SlideShare.pptxAlan779941
 
redes informaticas en una oficina administrativa
redes informaticas en una oficina administrativaredes informaticas en una oficina administrativa
redes informaticas en una oficina administrativanicho110
 
How to use Redis with MuleSoft. A quick start presentation.
How to use Redis with MuleSoft. A quick start presentation.How to use Redis with MuleSoft. A quick start presentation.
How to use Redis with MuleSoft. A quick start presentation.FlorenciaCattelani
 
EVOLUCION DE LA TECNOLOGIA Y SUS ASPECTOSpptx
EVOLUCION DE LA TECNOLOGIA Y SUS ASPECTOSpptxEVOLUCION DE LA TECNOLOGIA Y SUS ASPECTOSpptx
EVOLUCION DE LA TECNOLOGIA Y SUS ASPECTOSpptxJorgeParada26
 
Buenos_Aires_Meetup_Redis_20240430_.pptx
Buenos_Aires_Meetup_Redis_20240430_.pptxBuenos_Aires_Meetup_Redis_20240430_.pptx
Buenos_Aires_Meetup_Redis_20240430_.pptxFederico Castellari
 
pruebas unitarias unitarias en java con JUNIT
pruebas unitarias unitarias en java con JUNITpruebas unitarias unitarias en java con JUNIT
pruebas unitarias unitarias en java con JUNITMaricarmen Sánchez Ruiz
 
Avances tecnológicos del siglo XXI 10-07 eyvana
Avances tecnológicos del siglo XXI 10-07 eyvanaAvances tecnológicos del siglo XXI 10-07 eyvana
Avances tecnológicos del siglo XXI 10-07 eyvanamcerpam
 
Avances tecnológicos del siglo XXI y ejemplos de estos
Avances tecnológicos del siglo XXI y ejemplos de estosAvances tecnológicos del siglo XXI y ejemplos de estos
Avances tecnológicos del siglo XXI y ejemplos de estossgonzalezp1
 
Resistencia extrema al cobre por un consorcio bacteriano conformado por Sulfo...
Resistencia extrema al cobre por un consorcio bacteriano conformado por Sulfo...Resistencia extrema al cobre por un consorcio bacteriano conformado por Sulfo...
Resistencia extrema al cobre por un consorcio bacteriano conformado por Sulfo...JohnRamos830530
 

Último (12)

investigación de los Avances tecnológicos del siglo XXI
investigación de los Avances tecnológicos del siglo XXIinvestigación de los Avances tecnológicos del siglo XXI
investigación de los Avances tecnológicos del siglo XXI
 
EL CICLO PRÁCTICO DE UN MOTOR DE CUATRO TIEMPOS.pptx
EL CICLO PRÁCTICO DE UN MOTOR DE CUATRO TIEMPOS.pptxEL CICLO PRÁCTICO DE UN MOTOR DE CUATRO TIEMPOS.pptx
EL CICLO PRÁCTICO DE UN MOTOR DE CUATRO TIEMPOS.pptx
 
Innovaciones tecnologicas en el siglo 21
Innovaciones tecnologicas en el siglo 21Innovaciones tecnologicas en el siglo 21
Innovaciones tecnologicas en el siglo 21
 
PROYECTO FINAL. Tutorial para publicar en SlideShare.pptx
PROYECTO FINAL. Tutorial para publicar en SlideShare.pptxPROYECTO FINAL. Tutorial para publicar en SlideShare.pptx
PROYECTO FINAL. Tutorial para publicar en SlideShare.pptx
 
redes informaticas en una oficina administrativa
redes informaticas en una oficina administrativaredes informaticas en una oficina administrativa
redes informaticas en una oficina administrativa
 
How to use Redis with MuleSoft. A quick start presentation.
How to use Redis with MuleSoft. A quick start presentation.How to use Redis with MuleSoft. A quick start presentation.
How to use Redis with MuleSoft. A quick start presentation.
 
EVOLUCION DE LA TECNOLOGIA Y SUS ASPECTOSpptx
EVOLUCION DE LA TECNOLOGIA Y SUS ASPECTOSpptxEVOLUCION DE LA TECNOLOGIA Y SUS ASPECTOSpptx
EVOLUCION DE LA TECNOLOGIA Y SUS ASPECTOSpptx
 
Buenos_Aires_Meetup_Redis_20240430_.pptx
Buenos_Aires_Meetup_Redis_20240430_.pptxBuenos_Aires_Meetup_Redis_20240430_.pptx
Buenos_Aires_Meetup_Redis_20240430_.pptx
 
pruebas unitarias unitarias en java con JUNIT
pruebas unitarias unitarias en java con JUNITpruebas unitarias unitarias en java con JUNIT
pruebas unitarias unitarias en java con JUNIT
 
Avances tecnológicos del siglo XXI 10-07 eyvana
Avances tecnológicos del siglo XXI 10-07 eyvanaAvances tecnológicos del siglo XXI 10-07 eyvana
Avances tecnológicos del siglo XXI 10-07 eyvana
 
Avances tecnológicos del siglo XXI y ejemplos de estos
Avances tecnológicos del siglo XXI y ejemplos de estosAvances tecnológicos del siglo XXI y ejemplos de estos
Avances tecnológicos del siglo XXI y ejemplos de estos
 
Resistencia extrema al cobre por un consorcio bacteriano conformado por Sulfo...
Resistencia extrema al cobre por un consorcio bacteriano conformado por Sulfo...Resistencia extrema al cobre por un consorcio bacteriano conformado por Sulfo...
Resistencia extrema al cobre por un consorcio bacteriano conformado por Sulfo...
 

Practica #3 Obtencion Del Numero De Reynolds

  • 1. INSTITUTO TECNOLOGICO DE MEXICALI INGENIERIA QUIMICA AMBIENTAL LABORATORIO INTEGRAL I REPORTE PRACTICA NO.3: “Obtención del numero de Reynolds” Alumnas: María Guadalupe Rangel González García Fabián Claudia Yesenia Profesor: NORMAN EDILBERTO RIVERA PAZOS FECHA DE ENTREGA: 12 FEB 2010 Índice. TOC 1-3 1. OBJETIVOS: PAGEREF _Toc253775361 32. MOTIVACION: PAGEREF _Toc253775362 33. FUNDAMENTO TEORICO: PAGEREF _Toc253775363 3-EL EQUIPO: PAGEREF _Toc253775364 3-FENOMENO FISICO SIMPLIFICADO: PAGEREF _Toc253775365 4-HIPOTESIS: PAGEREF _Toc253775366 5-MODELO MATEMATICO: PAGEREF _Toc253775367 54. DISEÑO DE LA PRACTICA PAGEREF _Toc253775368 6-HOJA DE DATOS PAGEREF _Toc253775369 6-EQUIPO Y MATERIALES: PAGEREF _Toc253775370 7-DESARROLLO DE LA PRÁCTICA: PAGEREF _Toc253775371 85. REALIZACION DE LA PRÁCTICA PAGEREF _Toc253775372 8-Mediciones: PAGEREF _Toc253775373 8-OBSERVACIONES: PAGEREF _Toc253775374 96. ANALISIS DE DATOS Y RESULTADOS: PAGEREF _Toc253775375 9-Cálculos PAGEREF _Toc253775376 10-Graficas PAGEREF _Toc253775377 117. DISCUSION Y CONCLUSIONES: PAGEREF _Toc253775378 118. SUGERENCIAS Y RECOMENDACIONES: PAGEREF _Toc253775379 119. REFERENCIAS PAGEREF _Toc253775380 12 1. OBJETIVOS: -Comprender la importancia del número de Reynolds en el estudio del comportamiento de flujos. -Calcular mediciones del número de Reynolds para flujos en diferentes condiciones mediante datos conocidos. 2. MOTIVACION: Por motivo de no poder observar directamente el tipo de flujo en una tubería cerrada, siendo de especial importancia para un ingeniero químico el comportamiento de éste, se hace uso del numero de Reynolds como un punto de partida para determinar las características de un fluido que fluye a través de una tubería, a partir de datos y la sustancia ya conocidos en el sistema. 3. FUNDAMENTO TEORICO: -¿Qué es el número de Reynolds? Es un valor que nos ayuda a identificar la naturaleza de un flujo en una tubería, ya sea laminar, en transición o turbulento. -¿De cuáles variables depende? Depende de la densidad, velocidad, diámetro o longitud y viscosidad dinámica, en términos de ésta; y de la velocidad, diámetro y viscosidad cinemática, en términos de ésta. -EL EQUIPO: Mesa de Hidrodinámica del Laboratorio de Química. 19050110191 -FENOMENO FISICO SIMPLIFICADO: Numero de Reynolds Reynolds (1874) estudió las características de flujo de los fluidos inyectando un trazador dentro de un líquido que fluía por una tubería. A velocidades bajas del líquido, el trazador se mueve linealmente en la dirección axial. Sin embargo a mayores velocidades, las líneas del flujo del fluido se desorganizan y el trazador se dispersa rápidamente  después de su inyección en el líquido. El flujo lineal se denomina Laminar y el flujo errático obtenido a mayores velocidades del líquido se denomina Turbulento Las características que condicionan el flujo laminar dependen de las propiedades del líquido y de las dimensiones del flujo. Conforme aumenta el flujo másico aumenta las fuerzas del momento o inercia, las cuales son contrarrestadas por la por la fricción o fuerzas viscosas dentro del líquido que fluye. Cuando estas  fuerzas opuestas alcanzan un cierto equilibrio se producen cambios en las características del flujo. En base a los experimentos realizados por Reynolds en 1874 se concluyó que las fuerzas del momento son función de la densidad, del diámetro de la tubería y de la velocidad media. Además, la fricción o fuerza viscosa depende de la viscosidad del líquido. Según dicho análisis, el Número de Reynolds se definió como la relación existente entre las fuerzas inerciales y las fuerzas viscosas (o de rozamiento). Este número es adimensional y puede utilizarse para definir las características del flujo dentro de una tubería. El número de Reynolds proporciona una indicación de la pérdida de energía causada por efectos viscosos. Observando la ecuación anterior, cuando las fuerzas viscosas tienen un efecto dominante en la pérdida de energía, el número de Reynolds es pequeño y el flujo se encuentra en el régimen laminar. Si el Número de Reynolds es 2100 o menor el flujo será laminar. Un número de Reynolds  mayor de 10 000 indican que las fuerzas viscosas influyen poco en la pérdida de energía y el flujo es turbulento. Flujo laminar. A valores bajos de flujo másico, cuando el flujo del líquido dentro de la tubería es laminar, se utiliza la ecuación demostrada en clase para calcular el perfil de velocidad (Ecuación de velocidad en función del radio). Estos cálculos revelan que el perfil de velocidad es parabólico y que la velocidad media del fluido es aproximadamente 0,5 veces la velocidad máxima existente en el centro de la conducción  Flujo turbulento. Cuando el flujo másico en una tubería aumenta hasta valores del número de Reynolds superiores a 2100  el flujo dentro de la tubería se vuelve errático y se produce la mezcla transversal del líquido. La intensidad de dicha mezcla aumenta conforme aumenta el número de Reynolds  desde 4000 hasta 10 000. A valores superiores del Número de Reynolds la turbulencia está totalmente desarrollada, de tal manera que el perfil de velocidad es prácticamente plano, siendo la velocidad media del flujo aproximadamente  0.8 veces la velocidad máxima. -HIPOTESIS: Se pretende por medio de la realización de esta práctica obtener el numero de Reynolds, utilizando datos obtenidos experimentalmente y asi comprobar cuando un flujo es laminar y turbulento de una manera didáctica. -MODELO MATEMATICO: Fórmula para calcular la velocidad la cual necesitamos para calcular el número de Reynolds. V=QA 1 V=4QπD2 (2) Donde A es el área en metros cuadrados (m2), por donde pasa el fluido en la tubería, Q es el flujo volumétrico en metros cúbicos sobre segundo (m3/s) y D el diámetro interno de la tubería en metros (m) Fórmula para calcular el número de Reynolds. Re=VDv (3) v Es la viscosidad cinemática que en metros cuadrados sobre segundo (m2/s). 753745314960Sustituyendo la velocidad en la formula numero 3 obtenemos otra fórmula para obtener el numero de Reynolds. Re=4QvπD (4) D (m) 4. DISEÑO DE LA PRÁCTICA -VARIABLES Y PARAMETROS Para poder obtener el número de Reynolds es necesario conocer la velocidad del fluido, esta se calcula con el caudal o flujo volumétrico (Q) y el área de sección transversal a partir del diámetro interno dada en las especificaciones de la tubería con la fórmula para sacar el área de un círculo.Habiendo obtenido la velocidad, para poder obtener en número de Reynolds haría falta la viscosidad cinemática, esta se obtiene a partir de tablas donde se busca dependiendo a que temperatura se encuentra el fluido. -HOJA DE DATOS Obtención del número de Reynolds. 4 de Febrero del 2010. Tubo PVC 20mm x 1.5 =17mm (diámetro interno). RepeticionesQ(m3/s) MedidoV(m2/s)CalculadoReCalculado1   2   3   4   5   6   7   8   9   10    Tubo PVC 32mm x 1.5 = 29mm (diámetro interno). RepeticionesQ(m3/s) MedidoV(m2/s)CalculadoReCalculado1   2   3   4   5   6   7   8   9   10    -EQUIPO Y MATERIALES: *Mesa hidrodinámica y complementos (mangueras, tanto para la presión como para el líquido). *Agua suficiente para el llenado del tanque del equipo (mesa hidrodinámica). -DESARROLLO DE LA PRÁCTICA: Para obtener un completo desarrollo de la practica se tiene que disponer del uso del equipo que es una mesa hidrodinámica la cual consta de un tanque (2) al que se le debe llenar con liquido, en este caso agua, para asi tener una fuente de alimentación hacia las mangueras que van conectadas a las tuberías que forman parte del equipo, esta vez solo se utilizaran dos de las tuberías de PVC, cuyo diámetro interior es de 17mm y 29mm; antes de encender el equipo hay que confirmar que las válvulas del registrador electrónico de la presión (6) se encuentren cerradas y hay que conectar las mangueras correspondientes a la presión a esta parte del equipo y a las respectivas tuberías (las mangueras se conectan al registrador electrónico de la presión (en este caso a P1 y P2) y en la parte de las tuberías que está diseñada con entradas para tomar la presión (esto con el fin de evitar que fluya liquido hacia el exterior), debido a que solo es de interés para esta práctica conocer las mediciones de Q (caudal, capacidad, gasto, etc.) a diferentes aberturas de la válvula mariposa (llave de descarga) (11); por otra parte al encender el equipo es necesario verificar que el rotor de el sensor de flujo del impulsor (12) que se encuentra del lado de la llave de descarga correctamente e iniciar la toma de mediciones de la manera adecuada por medio del gabinete de interruptores con caratulas digitales (5) (de manera que se reduzca Q de dos en dos unidades, hasta llegar de 8 a 10 tomas de datos). 5. REALIZACION DE LA PRÁCTICA -Mediciones: Tubo PVC diámetro interno 17 mm RepeticionesQ(m3/s) 10.0003533320.0003233330.0002916740.00025550.0002260.0001916770.0001680.0001216799.1667E-05105.8333E-05 Tubo PVC diámetro interno 29 mm RepeticionesQ(m3/s) 10.0003566720.0003216730.0002866740.0002566750.00022560.0001916770.0001680.0001266790.00009106.1667E-05 -OBSERVACIONES: *No olvidar conectar las mangueras al registrador electrónico de la presión y a las dos tuberías PVC (cada una en su debido orden), para evitar el derramamiento del fluido, y además verificar que las válvulas del registrador estén cerradas, ya que en esta práctica no es de interés conocer la diferencia de presiones. *Verificar que el rotor del sensor de flujo del impulsor funcione de la manera adecuada al encender el equipo. *Tomar los datos lo más exactos y precisos posibles, para una mejor interpretación de los mismos. *Anotar la temperatura inicial antes de tomar la primera medición de Q. 6. ANALISIS DE DATOS Y RESULTADOS: Por medio de las mediciones obtenidas de Q se calculara el número de Reynolds con datos obtenidos de la manera experimental, donde a partir de los cuales se realizara la grafica (Q vs Re) correspondiente para comparar con los datos ya obtenidos teóricamente, respecto a un flujo laminar y turbulento. -Cálculos Tubo PVC diámetro interno 17 mm RepeticionesQ(m3/s) V(m2/s)Re10.000353331.556671192.20E+0420.000323331.424500992.01E+0430.000291671.284988011.82E+0440.0002551.123446661.59E+0450.000220.96924811.37E+0460.000191670.844420691.19E+0470.000160.704907719.97E+0380.000121670.536023577.58E+0399.1667E-050.403853375.71E+03105.8333E-050.25699763.63E+03 Tubo PVC diámetro interno 29 mm RepeticionesQ(m3/s) V(m2/s)Re10.000356670.539978721.30E+0420.000321670.486990151.17E+0430.000286670.434001591.05E+0440.000256670.388582829.38E+0350.0002250.340640788.22E+0360.000191670.290175487.00E+0370.000160.242233445.84E+0380.000126670.191768144.63E+0390.000090.136256313.29E+03106.1667E-050.093360812.25E+03 -Graficas 7. DISCUSION Y CONCLUSIONES: Por medio de las graficas podemos que hay una completa correlación entre el caudal y el numero de Reynolds, entre mayor sea el flujo volumétrico el numero de Reynolds será mayor, por lo tanto es mas turbulento. 8. SUGERENCIAS Y RECOMENDACIONES: *Tener un mayor orden en el manejo del equipo y en la toma de las mediciones. 9. REFERENCIAS Mecánica de fluidos, Merle C. Potter, David C. Wiggert Manual de la mesa hidrodinámica. Modelo HM 112 Marca Gunt Hamburg. http://www.practiciencia.com.ar/cfisicas/mecanica/fluidos/flujo/numreyn/index.html http://tarwi.lamolina.edu.pe/~dsa/Reynold.htm