C.E.P. Santa María de la Providencia
Segundo Periodo 5to. de Secundaria
1
Capítulo 1
C.E.P. Santa María de la Providencia
Segundo Periodo 5to. de Secundaria
2
C.E.P. Santa María de la Providencia
Desde tiempos muy antiguos se conoce la propiedad que poseen
algunos cuerpos, como el...
C.E.P. Santa María de la Providencia
colgada. Comprobarás que la barra colgada se separa.
Esta separación se debe a la fue...
C.E.P. Santa María de la Providencia
carga positiva, protones y otras partículas, llamadas electrones,
que poseen carga ne...
C.E.P. Santa María de la Providencia
Cuantificación de la carga
Q = N . e─
N : Número de electrones en exceso o defecto
e─...
C.E.P. Santa María de la Providencia
- Las fuerzas eléctricas dependen de los valores de las
cargas. Cuanto mayores sean e...
C.E.P. Santa María de la Providencia
cargas e inversamente proporcional al cuadrado de la distancia
(d) que las separa.
NO...
C.E.P. Santa María de la Providencia
PROBLEMAS
NIVEL I
01.- Determinar el número de electrones en una carga de
+32 x 10 ─1...
C.E.P. Santa María de la Providencia
c) Repulsión, aumenta. d) Atracción, disminuye.
e) F D.
08.- Dos cargas se atraen con...
C.E.P. Santa María de la Providencia
04.- Se tienen dos cargas de 2 µC y 3 µC respectivamente y
están separadas 3 cm. ¿Cuá...
C.E.P. Santa María de la Providencia
a) 15N b) 30 c) 45 d) 60 e) 75
NIVEL III
01.- Determinar la fuerza eléctrica total so...
C.E.P. Santa María de la Providencia
05.- En la figura, las esferas son idénticas y la masa de cada una
es 10g. Si el sist...
C.E.P. Santa María de la Providencia
Departamento de Publicaciones
Segundo Periodo 5to. de Secundaria
14
C.E.P. Santa María de la Providencia
Segundo Periodo 5to. de Secundaria
15
Capítulo 2
C.E.P. Santa María de la Providencia
Segundo Periodo 5to. de Secundaria
16
C.E.P. Santa María de la Providencia
Toda carga eléctrica altera las propiedades del espacio que la
rodea, el mismo que ad...
C.E.P. Santa María de la Providencia
Líneas de Fuerza
Campo Eléctrico Uniforme
EA = EB = EC = Constante
Caso
F = E. q
Segu...
C.E.P. Santa María de la Providencia
PROBLEMAS
NIVEL I
01.- Determinar la intensidad de campo eléctrico en el punto “P”,
s...
C.E.P. Santa María de la Providencia
a) 450N/C b) 450 c) 270 d) 270 e) 90
06.- Determinar la intensidad de campo eléc...
C.E.P. Santa María de la Providencia
a) 9x107
N/Cb) 20x107
c) 19x107
d) 11x107
e) 29x107
NIVEL II
01.- Determinar la inten...
C.E.P. Santa María de la Providencia
04.- Si la carga q = ─3C esta en equilibrio, calcular la tensión en
la cuerda, su: E ...
C.E.P. Santa María de la Providencia
Segundo Periodo 5to. de Secundaria
23
Capítulo 3
C.E.P. Santa María de la Providencia
Segundo Periodo 5to. de Secundaria
24
C.E.P. Santa María de la Providencia
Introducción
En la actualidad, las máquinas, herramientas, en las fábricas, los
medio...
C.E.P. Santa María de la Providencia
Corriente eléctrica
La mayor parte de las aplicaciones prácticas de la electricidad,
...
C.E.P. Santa María de la Providencia
El campo eléctrico “arrastra” a los electrones libres (portadores de
carga eléctrica)...
C.E.P. Santa María de la Providencia
Esta oposición al movimiento libre de portadores de carga se
caracteriza por una magn...
C.E.P. Santa María de la Providencia
Si a través de la sección transversal de un conductor pasa, en el
tiempo t , una can...
C.E.P. Santa María de la Providencia
ASOCIACIÓN DE RESISTENCIAS
I.- En Serie
II.- En Paralelo
Segundo Periodo 5to. de Secu...
C.E.P. Santa María de la Providencia
PROBLEMAS
01.- A través de un conductor circula una carga de 90 C durante 1
minuto; h...
C.E.P. Santa María de la Providencia
08.-
09.-
10.-
11.-
12.-
13.-
14.-
Segundo Periodo 5to. de Secundaria
32
C.E.P. Santa María de la Providencia
15.-
16.-
17.-
18.-
19.-
20.-
Segundo Periodo 5to. de Secundaria
33
C.E.P. Santa María de la Providencia
PROBLEMAS
01.- Hallar la resistencia equivalente:
a) 18Ω b) 16Ω c) 20Ω d) 24Ω e) 22Ω
...
C.E.P. Santa María de la Providencia
a) 16Ω b) 12Ω c) 18Ω d) 24Ω e) 30Ω
05.- Hallar la resistencia equivalente:
a) 1Ω b) 2...
C.E.P. Santa María de la Providencia
b) 4Ω
c) 6Ω
d) 8Ω
e) 12Ω
09.- Hallar la resistencia equivalente:
a) 2Ω
b) 6Ω
c) 12Ω
d...
C.E.P. Santa María de la Providencia
a) 3/4Ω
b) 4/3Ω
c) 5/3Ω
d) 3/5Ω
e) 2Ω
13.- Hallar la resistencia equivalente entre A ...
C.E.P. Santa María de la Providencia
16.- Encuentre la resistencia equivalente entre A y B. R=10Ω
a) 11Ω b) 10Ω c) 12Ω
d) ...
C.E.P. Santa María de la Providencia
a) 5Ω b) 6Ω c) 7Ω d) 8Ω e) 10Ω
Segundo Periodo 5to. de Secundaria
39
Capítulo 4
C.E.P. Santa María de la Providencia
Segundo Periodo 5to. de Secundaria
40
C.E.P. Santa María de la Providencia
I. Ley de Ohm
Se califica así a las conclusiones teórico prácticas logradas por
Georg...
C.E.P. Santa María de la Providencia
Todo conductor cuya resistencia eléctrica no cambia se
denominará óhmico y la gráfica...
C.E.P. Santa María de la Providencia
Características
a) V = VAB = cte (igual en todas las resistencias)
b) I = I1 + I2 + I...
C.E.P. Santa María de la Providencia
IV. Potencia
Todo aparato eléctrico, sea una lámpara, un motor eléctrico u otro
cualq...
C.E.P. Santa María de la Providencia
 i1 + i3 + i4 = i2 + i5
b.- Ley de Mallas o Voltajes
Esta ley esta basada en el prin...
C.E.P. Santa María de la Providencia
PROBLEMAS
NIVEL I
En los siguientes circuitos, determine la intensidad de la corrient...
C.E.P. Santa María de la Providencia
a) 2A b) 4 c) 3 d) 6 e) 5
En los siguientes circuitos, determine la resistencia eléct...
C.E.P. Santa María de la Providencia
a) 10V b) 15 c) 20 d) 30 e) 18
09.-
a) 20V b) 40 c) 60 d) 80V e) 120
10.-
a) 4V b) 8 ...
C.E.P. Santa María de la Providencia
02.-
a) 2A b) 4 c) 8 d) 10 e) 6
03.-
a) 2A b) 4 c) 6 d) 8 e) 10
04.-
a) 2A b) 3 c) 4 ...
C.E.P. Santa María de la Providencia
a) 4I b) 6 c) 5 d) 3 e) 8
07.-
a) 10A b) 12 c) 16 d) 18 e) 24
08.-
a) 5A b) 10 c) 12 ...
C.E.P. Santa María de la Providencia
a) 12A b) 15 c) 13 d) 17 e) 18
NIVEL III
En los siguientes circuitos, indicar la lect...
C.E.P. Santa María de la Providencia
06.-
07.-
08.-
09.-
10.-
11.-
Segundo Periodo 5to. de Secundaria
52
C.E.P. Santa María de la Providencia
Hallar la intensidad de corriente que entrega la fuente de energía
cuando:
a) S1 en I...
Próxima SlideShare
Cargando en…5
×

Fisica 5 to_año_2bim_smdp2009

173 visualizaciones

Publicado el

Electricidad

Publicado en: Educación
0 comentarios
0 recomendaciones
Estadísticas
Notas
  • Sé el primero en comentar

  • Sé el primero en recomendar esto

Sin descargas
Visualizaciones
Visualizaciones totales
173
En SlideShare
0
De insertados
0
Número de insertados
4
Acciones
Compartido
0
Descargas
11
Comentarios
0
Recomendaciones
0
Insertados 0
No insertados

No hay notas en la diapositiva.

Fisica 5 to_año_2bim_smdp2009

  1. 1. C.E.P. Santa María de la Providencia Segundo Periodo 5to. de Secundaria 1 Capítulo 1
  2. 2. C.E.P. Santa María de la Providencia Segundo Periodo 5to. de Secundaria 2
  3. 3. C.E.P. Santa María de la Providencia Desde tiempos muy antiguos se conoce la propiedad que poseen algunos cuerpos, como el ámbar, de atraer a otros cuerpos después de ser frotados. Ya Tales de Mileto (640 - 547 a.C.) hizo experimentos en los que demostró que el ámbar, después de ser frotado con la piel de un animal, atraía ciertas semillas. Este fenómeno se denominó electricidad, y la propiedad que se supone que adquirían los cuerpos al frotarlos, carga eléctrica. Los papeles son atraídos por el lápiz cargado eléctricamente luego de haberlo frotado Frota un lapicero de plástico con tu chompa de lana y acércalo a unos trocitos de papel. Comprobarás que los papeles son atraídos por el plástico porque éste ha quedado electrizado. El mismo fenómeno sucede si, en vez de utilizar plástico, usas una barra de vidrio. Pero los fenómenos eléctricos no sólo dan lugar a fuerzas de atracción, sino que también dan lugar a fuerzas de repulsión. - Frota dos barritas de plástico o dos lapiceros con tu chompa de lana, cuelga una de ellas de un gancho o clavo con una cuerda y acerca la barra frotada a la barra Segundo Periodo 5to. de Secundaria 3
  4. 4. C.E.P. Santa María de la Providencia colgada. Comprobarás que la barra colgada se separa. Esta separación se debe a la fuerza de repulsión. - Por último, cuelga del gancho o clavo una barra de vidrio y acerca a ella la barra frotada. Observarás que la barra de vidrio se acerca a la de plástico, comprobando así que surgen fuerzas de atracción entre la barra de vidrio y la de plástico. Las dos barras de plástico La barra de vidrio y la de plástico se repelen entre sí. se atraen entre sí. Así como el plástico y el vidrio adquieren carga eléctrica al ser frotados, otros cuerpos también se comportan de forma similar a estas sustancias. Esto nos dice que las propiedades adquiridas por los cuerpos al ser frotados son opuestas. Por consiguiente, se puede admitir la existencia de dos clases de electricidad, una vítrea y otra resinosa, en virtud de las experiencias primarias hechas por el hombre. Más adelante veremos cómo estas características opuestas se formalizan matemáticamente con la adición de signos de cada electrización. ¿Por qué se produce la electrización? El comportamiento eléctrico de los cuerpos está íntimamente relacionado con la estructura de la materia. Como sabes, los cuerpos están formados por entidades elementales llamadas átomos. En los átomos existen unas partículas que poseen Segundo Periodo 5to. de Secundaria 4
  5. 5. C.E.P. Santa María de la Providencia carga positiva, protones y otras partículas, llamadas electrones, que poseen carga negativa. Finalmente, los átomos también poseen partículas sin carga, que reciben el nombre de neutrones. En general, los átomos poseen igual número de protones que de electrones, por lo que la carga positiva de los primeros se compensa con la negativa de los segundos. Así, el átomo, en conjunto, no posee carga eléctrica neta, y se dice que es eléctricamente neutro. Si sometemos un cuerpo a ciertas manipulaciones, por ejemplo, frotándolo, ese cuerpo puede ganar electrones o perderlos. Es por esto que las barras de vidrio o de plástico se electrizan al frotarlas, respectivamente, con seda o con lana. Con el frotamiento, la barra de plástico gana electrones de la lana (adquiere carga negativa), y la barra de vidrio cede electrones a la seda (adquiere carga positiva). Es decir, el tipo de carga eléctrica que un cuerpo posee está en función de que ese cuerpo tenga más o menos electrones que protones. - Si un cuerpo tiene carga negativa es porque ha ganado electrones de otros cuerpos y, por tanto, posee más electrones que protones. - Si un cuerpo tiene carga positiva es porque ha cedido electrones a otros cuerpos y, por tanto, posee menos electrones que protones. - Carga de un electrón: qe = -1,6 x 10-19 Coulomb (c) Carga de un protón: q p = + 1,6 x 10-19 Coulomb (c) Segundo Periodo 5to. de Secundaria 5
  6. 6. C.E.P. Santa María de la Providencia Cuantificación de la carga Q = N . e─ N : Número de electrones en exceso o defecto e─ : carga de un electrón ( 1,6 x 10─19 ) Las fuerzas eléctricas Como has podido comprobar si has realizado los experimentos de las páginas anteriores, entre las cargas eléctricas surgen fuerzas de atracción o de repulsión y el que surja una u otra clase de fuerza se debe a la característica propia (positiva o negativa) de las cargas que interactúan. A partir de estos hechos se puede formular la siguiente propiedad general: LEYES DE LA ELECTROSTÁTICA 01.- Ley Cualitativa Enunciado por primera vez por el físico norteamericano Benjamín Franklin (1706–1790). “La cargas eléctricas del mismo signo se repelen y cargas de signos diferente se atraen” 02.- Ley Cuantitativa Ley de Coulomb El físico francés Charles Coulomb (1736 - 1806), utilizando una balanza de torsión, estudió las fuerzas con las que se atraían o repelían los cuerpos cargados. Éstas fueron sus conclusiones: - Las fuerzas eléctricas aparecen sobre cada una de las dos cargas que interactúan, y son de igual magnitud e igual línea de acción, pero de sentidos opuestos. Segundo Periodo 5to. de Secundaria 6
  7. 7. C.E.P. Santa María de la Providencia - Las fuerzas eléctricas dependen de los valores de las cargas. Cuanto mayores sean esos valores, mayor será la fuerza con la que se atraerán o repelerán. - Las fuerzas eléctricas dependen de la distancia que separa las cargas. Cuanto mayor sea esa distancia, menor será la fuerza entre ellas. - Las fuerzas eléctricas dependen del medio en el que están situadas las cargas. No es igual la fuerza existente entre dos cargas cuando están en el vacío que cuando están en otro medio material, como el aceite o el agua. 2d 2q.1q .KF = La constante eléctrica “K”en el SI, se escribe así: 2C2Nm9109 oe4 1 K −×= π = Donde: eo = 8,85x10─12 C2 N─1 m─2 Para el aire K = 9 x 109 Para operar con más de una fuerza hay que tener presentes las leyes del álgebra vectorial ya estudiadas. Es decir, al operar la ecuación de la ley de Coulomb, podemos prescindir del signo de las cargas que interactúan, indicando en su representación vectorial si las fuerzas son de atracción o repulsión. El enunciado de esta ley es el siguiente: La fuerza (F) con la que dos cargas (Q1 y Qz) se atraen o se repelen, es directamente proporcional al producto de dichas Segundo Periodo 5to. de Secundaria 7 CGS K=1 q1 ; q2 : stat-coulomb (st- c) F: dinas d = centímetros MKS K= 9x109 q1 ; q2 : coulomb F: dinas d: metros
  8. 8. C.E.P. Santa María de la Providencia cargas e inversamente proporcional al cuadrado de la distancia (d) que las separa. NOTA IMPORTANTE Cuando dos cuerpos esféricos de igual radio cargados con q1 y q2 son puestos en contacto, se establece un flujo de electrones; al final, las esferas se reparten las cargas equitativamente cada uno con carga “Q”. 2 2q1q Q + = Cuando dos esferas de radios R1 y R2 cargadas con q1 y q2 entran en contacto, las cargas se redistribuyen en las superficies esféricas en forma proporcional al cuadrado de los radios respectivos, conservándose la carga total. Si la carga final en cada esfera es Q1 y Q2 respectivamente, del principio de conservación de las cargas se cumple que: Al inicio.... Luego del contacto......... q1 + q2 = Q1 + Q2 Segundo Periodo 5to. de Secundaria 8 2 2 R 2Q 2 1 R 1Q =
  9. 9. C.E.P. Santa María de la Providencia PROBLEMAS NIVEL I 01.- Determinar el número de electrones en una carga de +32 x 10 ─19 C. 02.- Indicar las cargas correctas: Q1 = +64 x 10 ─19 C Q2 = ─8 x 10 ─19 C Q3 = ─5 x 10 ─19 C Q4 = +12 x 10 ─19 C 03.- Si un cuerpo eléctricamente neutro gana 5 x 1020 electrones, calcular su carga en Coulombs. 04.- Una barra de vidrio frotada con un paño pierde 25x1020 electrones, calcular la carga en Coulombs. 05.- Un trozo de plástico frotado totalmente gana 14x1020 electrones, determinar su carga en "C". 06.- Se dispone de tres cargas eléctricas "A", "B" y "C" al acercarlas se observa que "A" y "B" se repelen, que "B" y "C" se atraen; si "C" tiene un exceso de electrones, ¿de qué signo es la carga de "A"? a) Positivo. b) Negativo. c) Neutro. d) Falta saber los valores de las cargas. e) Falta información sobre la distancia. 07.- Se tienen dos cargas de +4 x 10─5 y -3 x 10─5 C. Diga Ud. que tipo es la fuerza de interacción y que sucederá con la fuerza si disminuimos la distancia de separación entre dichas cargas. a) Repulsión, disminuye. b) Atracción, aumenta. Segundo Periodo 5to. de Secundaria 9
  10. 10. C.E.P. Santa María de la Providencia c) Repulsión, aumenta. d) Atracción, disminuye. e) F D. 08.- Dos cargas se atraen con una fuerza "F", ¿qué sucederá con la fuerza, si la distancia de separación la reducimos a la mitad? a) Se reduce a la mitad. b) Se duplica. c) Se reduce a la cuarta parte. d) Se cuadruplica. e) No se altera. 09.- Se tienen dos cargas eléctricas (A) y (B) que se repelen entre sí con una fuerza "F": ¿Cuál será la nueva fuerza de interacción, si los valores de las cargas se duplican y también se duplica la distancia de separación entre ellas? a) F b) F/2 c) 2F d) F/4 e) 4F 10. Dos cargas "Q1" y "Q2" separadas por cierta distancia "d" se atraen con una fuerza de 10N. Si una de ellas se cuadruplica, ¿cuál deberá ser la nueva distancia de separación para que la fuerza no se altere? a) d/2 b) d/4 c) 2d d) 4d e) d NIVEL II 01.- Dos cargas eléctricas interaccionan con 60N y si una de las cargas se duplica y la otra se reduce a su tercera parte y la distancia se reduce a la mitad, ¿cuál es la nueva fuerza de interacción? a) 80 N b) 100 c) 160 d) 200 e) 360 02.- Dos cargas puntuales se repelen con una fuerza de 5 N. Si una de las cargas se duplica y la distancia se reduce a la mitad, hallar la variación de la fuerza que sufren las cargas. a) 15 N b) 20 c) 35 d) 40 e) 55 03.- Dos cargas de +4x10─6 C y -5x10─6 C se separan una distancia de 3 m, ¿con qué fuerza se atraen? a) 1 N b) 10 c) 2 x 10─2 d) 20 e) 0,2 Segundo Periodo 5to. de Secundaria 10
  11. 11. C.E.P. Santa María de la Providencia 04.- Se tienen dos cargas de 2 µC y 3 µC respectivamente y están separadas 3 cm. ¿Cuánto vale la fuerza de interacción electrostática? a) 60 N b) 600 c) 6 000 d) 6 e) 60 000 05.- Dos esferas conductoras del mismo radio con carga de 20µC y -10µC se ponen en contacto y luego se les separa una distancia de 30 cm. Halla r la fuerza eléctrica entre ellas. a) 1N b) 1,5 c) 2 d) 2,5 e) 3 06.- Se tiene 5 pequeñas esferas metálicas de igual radio, una de ellas cargadas con magnitud +55µC. Si se ponen en contacto entre sí, ¿Cuál será la carga de cada una? a) 10µC b) 11µC c) 13µC d) 1µC e) NA 07.- Se tiene 5 pequeñas esferas de igual radio, descargadas. Una de ellas se carga eléctricamente con magnitud +32µC, luego el resto de esferas se ponen en contacto de una en una con la primera. Calcular la carga final de la primera esfera. a) 1µC b) 3µC c) 2µC d) 5µC e) 0,5µC 08.- Dos esferas conductoras idénticas, pequeñas, cuyas cargas son +35µC y ─45µC se acercan hasta tocarse y luego se separan hasta que su distancia es 10cm. ¿Cuál es ahora la fuerza de interacción entre ellas? a) 70N b) 90 c) 50 d) 57,5 e) 22,5 09.- Se tienen dos cargas QA = 9QB que se repelen con 90N. Si su separación es 6cm, hallar QB a) 1µC b) 2µC c) 4µC d) 6µC e) 8µC 10.- Se tienen tres cargas puntuales, dispuestas como se muestra en la figura, halle la fuerza resultante sobre la carga (C). QA = 9µC ; QB = +2µC ; QC = ─6µC Segundo Periodo 5to. de Secundaria 11
  12. 12. C.E.P. Santa María de la Providencia a) 15N b) 30 c) 45 d) 60 e) 75 NIVEL III 01.- Determinar la fuerza eléctrica total sobre la carga Qo = 2µC, si: Q1 = 50µC ; Q2 = ─40µC a) 1440N b) 1800 c) 360 d) 2160 e) 1840 02.- En el gráfico mostrado, calcular la fuerza resultante sobre la carga Q3 . ( Q1 = Q2 = Q3 = 10─4 C) a) 7,5N b) 10 c) 12,5 d) 15 e) 17,5 03.- Determinar la fuerza eléctrica resultante sobre la carga Q0. (Q1 = Q2 = 80µC ; Q0 = 5µC). a) 2,4N b) 24 c) 48 d) 1,2 e) 4,8 04.- Si las 5 cargas mostradas están alineadas y son positivas, encontrándose sólo “C” en equilibrio. ¿Cuál es la carga de “E”? a) 3µC b) 5µC c) 6µC d) 8µC e) 10µC Segundo Periodo 5to. de Secundaria 12
  13. 13. C.E.P. Santa María de la Providencia 05.- En la figura, las esferas son idénticas y la masa de cada una es 10g. Si el sistema está en equilibrio, determine la magnitud de la carga en cada esfera. (g=10m/s2 ) a) 10─5 C b) 10─6 C c) 10─4 C d) 10─7 C e) 10─3 C 06.- Si el sistema se encuentra en equilibrio hallar el peso dl bloque. QA = 3µC ; QB = -5µC ; WA = 1,5 N a) 1N b) 2 c) 3 d) 4 e) 5 07.- Determinar la fuerza eléctrica total sobre QB = 10µC si: QA = -9µC ; QC = 16µC a) 900N b) 900 2 c) 600 d) 600 2 e) 300 Segundo Periodo 5to. de Secundaria 13
  14. 14. C.E.P. Santa María de la Providencia Departamento de Publicaciones Segundo Periodo 5to. de Secundaria 14
  15. 15. C.E.P. Santa María de la Providencia Segundo Periodo 5to. de Secundaria 15 Capítulo 2
  16. 16. C.E.P. Santa María de la Providencia Segundo Periodo 5to. de Secundaria 16
  17. 17. C.E.P. Santa María de la Providencia Toda carga eléctrica altera las propiedades del espacio que la rodea, el mismo que adquiere una “sensibilidad eléctrica” que se pone de manifiesto cuando otra carga ingresa a esta región. Así, llamamos CAMPO ELECTRICO a aquella región del espacio que rodea a toda carga eléctrica, lugar en el cual deja sentir su efecto sobre otras partículas cargadas. El campo eléctrico es un agente transmisor de fuerzas. INTENSIDAD DEL CAMPO ELECTRICO Es una magnitud vectorial, que sirve para describir el campo eléctrico. Su valor se define como la fuerza eléctrica resultante que actúa por cada unidad de carga positiva en un punto del campo. En general: Unidades: CGS : F: dinas qo : st-coul MKS : F: Newtons qo : coulumb Segundo Periodo 5to. de Secundaria 17 2d Q k oq F E ==
  18. 18. C.E.P. Santa María de la Providencia Líneas de Fuerza Campo Eléctrico Uniforme EA = EB = EC = Constante Caso F = E. q Segundo Periodo 5to. de Secundaria 18
  19. 19. C.E.P. Santa María de la Providencia PROBLEMAS NIVEL I 01.- Determinar la intensidad de campo eléctrico en el punto “P”, si: Q = ─ 7x10─8 C. a) 70N/C b) 30 c) 70 d) 30 e) 50 02.- Calcular la intensidad de campo eléctrico en el punto “M”, si: si: Q = +32x10─8 C. a) 150N/C b) 180 c) 150 d) 180 e) 200 03.- Determinar la intensidad de campo eléctrico en el punto “N”, si: Q = ─ 8x10─8 C. a) 90N/C b) 90 c) 180 d) 180 e) NA 04.- Calcular la intensidad de campo eléctrico en el punto “P”, si: Q1 = ─ 32x10─8 C y Q2 = +5x10─8 C. a) 130N/C b) 130 c) 230 d) 230 e) 250 05.- Determinar la intensidad de campo eléctrico en el punto “M”, si: Q1 = +25x10─8 C y Q2 = ─8x10─8 C Segundo Periodo 5to. de Secundaria 19
  20. 20. C.E.P. Santa María de la Providencia a) 450N/C b) 450 c) 270 d) 270 e) 90 06.- Determinar la intensidad de campo eléctrico en el punto “P”, si: Q = 8x10─8 C a) 180N/C b) 160 c) 160 d) 180 e) 200 07.- Hallar la intensidad de campo eléctrico en el punto “A”, si: Q1 = ─ 5x10─8 a) 30N/C b) 50 c) 30 d) 50 e) 60 08.- Calcular la intensidad de campo eléctrico en el punto “M”, si: Q1 = +6x10─8 C y Q2 = ─8x10─8 C a) 180N/C b) 60 c) 240 d) 240 e) 180 09.- Determinar la intensidad de campo eléctrico en el punto “P”, si: Q1 = ─2x10─8 C y Q2 = +3x10─8 C a) 200N/C b) 250 c) 250 d) 200 e) 180 10.- Determinar la intensidad de campo eléctrico en el punto “P”, si: QA = 25µC y Q2 = ─20µC Segundo Periodo 5to. de Secundaria 20
  21. 21. C.E.P. Santa María de la Providencia a) 9x107 N/Cb) 20x107 c) 19x107 d) 11x107 e) 29x107 NIVEL II 01.- Determinar la intensidad de campo eléctrico en el punto “B”, si: Q1 = +4x10─8 C y Q2 = ─3x10─8 C a) 30N/C b) 40 c) 70 d) 50 e) NA 02.- Hallar la intensidad de campo eléctrico en el punto “B”. si: QA = +9x10─8 C y QB = ─16x10─8 C a) 90N/C b) 45 c) 90 2 d) 45 2 e) 60 03.- Calcular la intensidad de campo eléctrico en el punto “P”. si: Q1 = ─3x10─8 C y Q2 = ─5x10─8 C a) 30N/C b) 50 c) 80 d) 70 e) 100 Segundo Periodo 5to. de Secundaria 21
  22. 22. C.E.P. Santa María de la Providencia 04.- Si la carga q = ─3C esta en equilibrio, calcular la tensión en la cuerda, su: E = 5N/C y m=4kg. (g=10/m/s) a) 15N b) 40 c) 55 d) 25 e) 30 05.- Una esfera de 32x10─6 N y carga 16x10─8 C se encuentra en equilibrio, dentro de un campo eléctrico uniforme “E” cuyo valor es: a) 100N/C b) 200 c) 300 d) 400 e) 500 Segundo Periodo 5to. de Secundaria 22
  23. 23. C.E.P. Santa María de la Providencia Segundo Periodo 5to. de Secundaria 23 Capítulo 3
  24. 24. C.E.P. Santa María de la Providencia Segundo Periodo 5to. de Secundaria 24
  25. 25. C.E.P. Santa María de la Providencia Introducción En la actualidad, las máquinas, herramientas, en las fábricas, los medios de transporte, sistemas de iluminación en la ciudad, los medios de comunicación como la radio, la televisión, funcionan con energía eléctrica, cuando nos referimos a esta forma de energía eléctrica, cuando nos referimos a esta forma de energía, consideramos que ella es debido al trabajo realizado por la corriente eléctrica, la cual es suministrada a los consumidores, desde las centrales eléctricas mediante alambres conductores de gran longitud. La energía eléctrica es muy importante en nuestra vida, por ello cuando de improviso se apagan las bombillas eléctricas, en los edificios los ascensores se detienen, los semáforos se apagan creando congestión vehicular, se altera el normal desarrollo de nuestras actividades, suele decirse que todo esto es causado porque en los conductores no hay corriente eléctrica. ¿Qué es la corriente eléctrica? Es aquel fenómeno microscópico que se puede manifestar en los sólidos, líquidos y gases la influencia de ciertos factores entre los cuales no puede faltar una diferencia de potencial eléctrico, la cual puede establecerse mediante una batería, pila o alternador. Para entender este fenómeno, vamos a analizar un trozo de alambre de cobre. Segundo Periodo 5to. de Secundaria 25
  26. 26. C.E.P. Santa María de la Providencia Corriente eléctrica La mayor parte de las aplicaciones prácticas de la electricidad, implica el uso de la corriente eléctrica, cuando en un local inesperadamente se apagan los focos, el ventilador, etc , suele decirse que en los conductores “desapareció” la corriente eléctrica. ¿Qué es la corriente eléctrica y como se establece? La palabra “corriente” significa movimiento, desplazamiento o circulación de algo. ¿Qué es lo que puede desplazarse o circular en los conductores eléctricos? Consideremos el siguiente sistema eléctrico: • Conductor: Sustancia que se caracteriza por tener un gran número de electrones libres. • Pila (fuente de voltaje): Es un dispositivo eléctrico que se establece mediante reacciones químicas, una diferencia de potencial entre sus extremos. Al cerrar el interruptor, el foco ilumina (emite luz), por lo tanto, se ha establecido la corriente eléctrica. Al cerrar el interruptor se establece en todo el conductor un campo eléctrico que se orienta del lado de mayor potencial (A) hacia el lado de menor potencial (B) Segundo Periodo 5to. de Secundaria 26
  27. 27. C.E.P. Santa María de la Providencia El campo eléctrico “arrastra” a los electrones libres (portadores de carga eléctrica) del lado de menor hacia el lado de mayor potencial, estableciéndose un movimiento orientado de portadores de carga eléctrica, a esto se le denomina corriente eléctrica. Acciones de la corriente El movimiento orientado de los portadores de carga en un conductor, no puede ser observado. Pero la existencia de la corriente eléctrica se puede juzgar por las acciones o fenómenos de que va acompañada. Primero, un conductor por el cual pasa corriente se calienta. Segundo, en las soluciones de electrolitos, los separa en sus componentes químicos. Tercero, la corriente ejerce acción magnética, una aguja magnética colocada cerca de un conductor con corriente se desvía. ¿Qué indica: I = 2a ? Indica que, por la sección transversal del conductor pasa una cantidad de carga de 2C en cada segundo. ¿Los portadores de carga se desplaza con facilidad por el conductor? No, debido a la intersección de los portadores de carga con los demás elementos que forman la sustancia, es decir, experimentan una oposición a su paso. Segundo Periodo 5to. de Secundaria 27
  28. 28. C.E.P. Santa María de la Providencia Esta oposición al movimiento libre de portadores de carga se caracteriza por una magnitud física escalar denominada resistencia eléctrica (R). Sentido de la corriente eléctrica Por convención, la corriente eléctrica queda definida por portadores de carga electrizados en forma positiva denominándose a dicha corriente, corriente convencional. Observación Si la corriente se debe al movimiento de los portadores cargadas negativamente, el sentido de la corriente convencional se considera opuesta a dicho movimiento. De lo anterior, el sentido de la corriente convencional será: ¿Se puede medir la corriente eléctrica? Los efectos de la corriente eléctrica pueden manifestarse en diferentes grados, los experimentos muestran que la intensidad (grado de efecto) de la corriente depende de la cantidad de carga que pasa por el circuito, entonces la cantidad de carga transportada en la unidad de tiempo sirve de característica cuantitativa fundamental de la corriente y recibe el nombre de intensidad de corriente. Segundo Periodo 5to. de Secundaria 28
  29. 29. C.E.P. Santa María de la Providencia Si a través de la sección transversal de un conductor pasa, en el tiempo t , una cantidad de carga “q” la intensidad de corriente será: Unidad: Amperio (A) 1 A = 1C / seg ¿Qué es la resistencia eléctrica (R) ? Esta magnitud expresa el grado de oposición que ofrece todo cuerpo a la corriente eléctrica. Todos sabemos de los beneficios de la corriente y pugnamos por aprovecharla en grandes cantidades; sin embargo, la naturaleza compleja de la materia nos impone muchas dificultades, tales como el movimiento caótico de los electrones libres en los metales que chocan constantemente con los iones un tanto estables en la red cristalina incrementándose así la agitación térmica y evitando un flujo notable; en otros casos las trayectorias de los portadores son desviadas por la presencia de impurezas o vacíos; en suma, todos estos factores conllevan la atribución de una característica fundamental para cada material y la denominaremos resistencia eléctrica (ρ) El hombre no se resigna ante estos aspectos adversos y actualmente podemos comentar la utilización de materiales superconductores, tales como: Al, Hg, Zn, Pt, donde a temperaturas muy bajas, las pérdidas de energía en forma de calor son despreciables, debido a la mínima agitación de iones que reduce la cantidad de choques con los electrones. Fue Poulliet, un físico francés que decidió plantear el cálculo de la resistencia eléctrica (R) para los metales sólidos. Experimentalmente se verifica: Segundo Periodo 5to. de Secundaria 29 t q ∆ =I A L R ρ= R: en ohmios (Ω) L: longitud del conductor (m) A: sección recta o espesor uniforme (m2 ) ρ: resistencia eléctrica Unidad: Ω . m
  30. 30. C.E.P. Santa María de la Providencia ASOCIACIÓN DE RESISTENCIAS I.- En Serie II.- En Paralelo Segundo Periodo 5to. de Secundaria 30
  31. 31. C.E.P. Santa María de la Providencia PROBLEMAS 01.- A través de un conductor circula una carga de 90 C durante 1 minuto; hallar la intensidad de corriente eléctrica. a) 1A b) 1,5 c) 2 d) 2,5 e) 4 02.- La intensidad de corriente que circula por un conductor es 4µA; hallar la cantidad de cantidad de electrones que circulan durante 12s. a) 1014 b) 2x1014 c) 3x1014 d) 4x1014 e) 6x1014 03.- Por un conductor circulan 0,4 A. Determinar el número de electrones que pasa por su sección en 20s. a) 1019 b) 2x1019 c) 3x1019 d) 5x1019 e) 6x1019 04.- La intensidad de corriente eléctrica en un conductor es 0,2 A. Calcular la cantidad de carga eléctrica que se desplazará en 5minutos. a) 10 C b) 60 c) 12 d) 30 e) 36 05.- Por un conductor circula una carga de 20µC durante 4s. Hallar la intensidad de corriente eléctrica. a) 1A b) 2 c) 2,5 d) 4 e) 5 En cada caso, hallar la resistencia equivalente: 06.- 07.- Segundo Periodo 5to. de Secundaria 31
  32. 32. C.E.P. Santa María de la Providencia 08.- 09.- 10.- 11.- 12.- 13.- 14.- Segundo Periodo 5to. de Secundaria 32
  33. 33. C.E.P. Santa María de la Providencia 15.- 16.- 17.- 18.- 19.- 20.- Segundo Periodo 5to. de Secundaria 33
  34. 34. C.E.P. Santa María de la Providencia PROBLEMAS 01.- Hallar la resistencia equivalente: a) 18Ω b) 16Ω c) 20Ω d) 24Ω e) 22Ω 02.- Hallar la resistencia equivalente: a) 7Ω b) 10Ω c) 12Ω d) 12Ω e) 20Ω 03.- Hallar la resistencia equivalente: a) 8Ω b) 12Ω c) 4Ω d) 16Ω e) 2Ω 04.- Hallar la resistencia equivalente: Segundo Periodo 5to. de Secundaria 34
  35. 35. C.E.P. Santa María de la Providencia a) 16Ω b) 12Ω c) 18Ω d) 24Ω e) 30Ω 05.- Hallar la resistencia equivalente: a) 1Ω b) 2Ω c) 3Ω d) 4Ω e) 5Ω 06.- Hallar la resistencia equivalente: a) 6Ω b) 8Ω c) 10Ω d) 12Ω e) 9Ω 07.- Hallar la resistencia equivalente: a) 3Ω b) 5Ω c) 10Ω d) 15Ω e) 20Ω 08.- Hallar la resistencia equivalente: a) 2Ω Segundo Periodo 5to. de Secundaria 35
  36. 36. C.E.P. Santa María de la Providencia b) 4Ω c) 6Ω d) 8Ω e) 12Ω 09.- Hallar la resistencia equivalente: a) 2Ω b) 6Ω c) 12Ω d) 3Ω e) 9Ω 10.- Hallar la resistencia equivalente: a) 7Ω b) 12Ω c) 15Ω d) 8Ω e) 9Ω 11.- Hallar la resistencia equivalente entre los puntos a) 18Ω b) 2Ω c) 6Ω d) 3Ω e) 9Ω 12.- Hallar la resistencia equivalente entre A y B Segundo Periodo 5to. de Secundaria 36
  37. 37. C.E.P. Santa María de la Providencia a) 3/4Ω b) 4/3Ω c) 5/3Ω d) 3/5Ω e) 2Ω 13.- Hallar la resistencia equivalente entre A y B. a) 3R b) 2R c) 3,1R d) 4,1R e) 5,1R 14.- Si cada arista de un tetraedro tiene una resistencia “R”, halle la resistencia equivalente entre dos vértices del tetraedro. a) R/2 b) R/3 c) R/4 d) R/6 e) 2R 15.- Encuentre la resistencia equivalente entre A y B a) 4Ω b) 6Ω c) 7Ω d) 8Ω e) 5Ω Segundo Periodo 5to. de Secundaria 37
  38. 38. C.E.P. Santa María de la Providencia 16.- Encuentre la resistencia equivalente entre A y B. R=10Ω a) 11Ω b) 10Ω c) 12Ω d) 15Ω e) 16Ω 17.- En el circuito eléctrico mostrado, todas las resistencias son iguales a “R”. Si la llave “S” está abierta, la resistencia equivalente entre los puntos A y B es igual a 11Ω. Determinar la resistencia equivalente entre A y B cuando “S” está cerrada. a) 12Ω b) 8Ω c) 10Ω d) 7Ω e) 9Ω 18.- Si R=19Ω, hallar la resistencia equivalente entre A y B. a) 12Ω b) 13Ω c) 14Ω d) 15Ω e) 17Ω 19.- Si R=5Ω, hallar la resistencia equivalente entre A y B. a) 6Ω b) 5Ω c) 1Ω d) 2Ω e) NA 20.- Si R=8Ω, hallar la resistencia equivalente entre A y B. Segundo Periodo 5to. de Secundaria 38
  39. 39. C.E.P. Santa María de la Providencia a) 5Ω b) 6Ω c) 7Ω d) 8Ω e) 10Ω Segundo Periodo 5to. de Secundaria 39 Capítulo 4
  40. 40. C.E.P. Santa María de la Providencia Segundo Periodo 5to. de Secundaria 40
  41. 41. C.E.P. Santa María de la Providencia I. Ley de Ohm Se califica así a las conclusiones teórico prácticas logradas por Georg Simons Ohm en lo referente a la conductividad uniforme de la mayoría de resistores metálicos a condiciones ordinarias. Estas conclusiones se basan en un análisis de las redes cristalinas y movimiento de electrones libres que lograrían una rapidez media constante en vez de ser acelerados por el ampo eléctrico externo, esto gracias a los obstáculos (iones, impurezas, vacíos) que encuentran en su camino y que determinan una relación directamente proporcional entre la diferencia de potencial y la intensidad de corriente, veamos: Experimentalmente se observa: VAB D.P. I Es decir: VAB = I . R Segundo Periodo 5to. de Secundaria 41
  42. 42. C.E.P. Santa María de la Providencia Todo conductor cuya resistencia eléctrica no cambia se denominará óhmico y la gráfica VAB – I es:  Tgθ = R II. Asociación de Resistores Esto obedece a muchas necesidades, tales como : dividir corrientes, regular voltajes, estabilizar térmicamente circuitos de gran consumo de corriente eléctrica, es decir para darles una mejor utilidad. En sus formas más simples pueden ser: A.- Conexión en Serie Circuito Equivalente Características a) I = cte (igual en todas las resistencias) b) V = VAB = V1 + V2 + V3 c) Re = R1 + R2 + R3 B.- Conexión en Paralelo Circuito Equivalente Segundo Periodo 5to. de Secundaria 42
  43. 43. C.E.P. Santa María de la Providencia Características a) V = VAB = cte (igual en todas las resistencias) b) I = I1 + I2 + I3 c) III. Instrumentos de Medición a.- Amperímetro Es un instrumento que mide el valor de la intensidad de corriente eléctrica. Para que el amperímetro influya lo menos posible en la intensidad de corriente que mide, su resistencia debe ser bien pequeña. Si consideramos un amperímetro ideal su resistencia interna debe ser nula ( ri = 0 ). Entonces no altera la intensidad de corriente que mide. Notar que el amperímetro se conecta en serie. b.- Voltímetro El voltímetro indica el valor absoluto de la diferencia de potencial entre dos puntos de un circuito eléctrico. Para que no se altere esta parte del circuito, por el voltímetro no debe pasar corriente eléctrica, para ellos debe tener una resistencia eléctrica. Si consideramos el voltímetro ideal su resistencia se considera infinita ( Rinterna → ∞ ) Voltímetro ideal Segundo Periodo 5to. de Secundaria 43 321e R 1 R 1 R 1 R 1 ++=
  44. 44. C.E.P. Santa María de la Providencia IV. Potencia Todo aparato eléctrico, sea una lámpara, un motor eléctrico u otro cualquiera, esta diseñado para consumir una energía determinada en la unidad de tiempo. Por eso, además del trabajo de la corriente, tiene gran importancia el concepto de potencia de la corriente. El cual se determina como la razón del trabajo realizado por la corriente durante un tiempo “t”. La potencia se puede expresar en varias formas equivalentes.  P = V.I  P = I2 .R  P = R V2 En la mayoría de artefactos se indica la potencia que consume. V. Leyes de Kirchoff a) Ley de Nudos o Corrientes Esta basado en el principio de conservación de la carga eléctrica y establece que la suma de corrientes que ingresan a un nudo cualquiera de un circuito, es igual a la suma de corrientes que salen de dicho nudo.  En un nudo cualquiera se cumple: Σ I ingresan = Σ I salen Segundo Periodo 5to. de Secundaria 44
  45. 45. C.E.P. Santa María de la Providencia  i1 + i3 + i4 = i2 + i5 b.- Ley de Mallas o Voltajes Esta ley esta basada en el principio de conservación de la energía y establece que la suma algebraica de los voltajes en una malla cualquiera de un circuito, siempre debe ser igual a cero.  ∑ = n 2i Vi (malla) = 0 Esta ecuación es la de mayor utilización en la solución de circuitos eléctricos, sin embargo para casos especiales en trayectoria abierta (Rama eléctrica) comprendida entre dos puntos, se cumple:  Vo + ∑ = n 2i Vi (malla) = VF Donde: Vo = Potencial inicial en el punto “O” VF = Potencial final en el punto “F” La segunda ecuación solo se usa cuando se pide hallar los potenciales eléctricos en puntos especificados en un circuito o para hallar su respetiva diferencia de potencial. Se debe tener presente también que los puntos conectados a tierra tienen un potencial igual a cero. (Vtierra = 0) Segundo Periodo 5to. de Secundaria 45
  46. 46. C.E.P. Santa María de la Providencia PROBLEMAS NIVEL I En los siguientes circuitos, determine la intensidad de la corriente eléctrica. 01.- a) 3A b) 4 c) 5 d) 6 e) 8 02.- a) 5A b) 4 c) 3 d) 2 e) 1 03.- a) 1A b) 2 c) 3 d) 4 e) 5 04.- Segundo Periodo 5to. de Secundaria 46
  47. 47. C.E.P. Santa María de la Providencia a) 2A b) 4 c) 3 d) 6 e) 5 En los siguientes circuitos, determine la resistencia eléctrica 05.- a) 8Ω b) 10 c) 12 d) 6 e) 3 06.- a) 1Ω b) 2 c) 3 d) 4 e) 5 07.- a) 8Ω b) 6 c) 4 d) 12 e) 10 En los siguientes circuitos, determine el voltaje de la fuente. 08.- Segundo Periodo 5to. de Secundaria 47
  48. 48. C.E.P. Santa María de la Providencia a) 10V b) 15 c) 20 d) 30 e) 18 09.- a) 20V b) 40 c) 60 d) 80V e) 120 10.- a) 4V b) 8 c) 12 d) 18 e) 20 NIVEL II Hallar la Intensidad de corriente 01.- a) 2A b) 1 c) 4 d) 3 e) 6 Segundo Periodo 5to. de Secundaria 48
  49. 49. C.E.P. Santa María de la Providencia 02.- a) 2A b) 4 c) 8 d) 10 e) 6 03.- a) 2A b) 4 c) 6 d) 8 e) 10 04.- a) 2A b) 3 c) 4 d) 5 e) 6 05.- a) 2I b) I c) 3I d) 1,5I e) 4I/3 06.- Segundo Periodo 5to. de Secundaria 49
  50. 50. C.E.P. Santa María de la Providencia a) 4I b) 6 c) 5 d) 3 e) 8 07.- a) 10A b) 12 c) 16 d) 18 e) 24 08.- a) 5A b) 10 c) 12 d) 16 e) 24 09.- a) 8A b) 10 c) 12 d) 14 e) 16 10.- Segundo Periodo 5to. de Secundaria 50
  51. 51. C.E.P. Santa María de la Providencia a) 12A b) 15 c) 13 d) 17 e) 18 NIVEL III En los siguientes circuitos, indicar la lectura del voltímetro ideal. 01.- 02.- 03.- 04.- 05.- Segundo Periodo 5to. de Secundaria 51
  52. 52. C.E.P. Santa María de la Providencia 06.- 07.- 08.- 09.- 10.- 11.- Segundo Periodo 5to. de Secundaria 52
  53. 53. C.E.P. Santa María de la Providencia Hallar la intensidad de corriente que entrega la fuente de energía cuando: a) S1 en I y S2 en I b) S1 en I y S2 en II c) S1 en II y S2 en I d) S1 en II y S2 en II Segundo Periodo 5to. de Secundaria 53

×