SlideShare una empresa de Scribd logo
1 de 10
Amplificador colector común

 Seguidor por emisor y par Darlington y
 Darlington complementarios.
 Amplificadores de corriente y potencia
Amplificador Colector Común
El diagrama del circuito de un amplificador a transistor en colector común se
ve en la figura 1(a). Esta configuración es llamada también Seguidor Emisor,
porque la ganancia de voltaje es cerca de la unidad (Ec. 6), y entonces un
cambio de voltaje en la base aparece como un cambio igual a través de la
carga del emisor. En otras palabras, el emisor sigue la señal de entrada.
          + VCC
               C
      B                                         B       r               E
                                              > +V    _
                                           Ib                                                 + X




                                                                                      >
 Rs            E                    Rs             rr                            Io

                                +                                                Re            V o
                   Io                                       g m V rr
V s           Re               V o V s
          >   <  <              _               >                                             _ Y
                                                                            <             <
          Ri Ro          Ro'                        *
                                                    C
                                           Ri                               Ro        Ro'
                  (a )
                                F ig . 1                         (b )
Se ve que la resistencia de entrada Ri de un seguidor emisor es muy alta
(cientos de kilohms) y la resistencia de salida Ro es muy baja (unos ohms).
Entonces el uso más común del circuito de Colector Común es como etapa
impulsora la cual hace la función de transformar la resistencia (de alta a
baja) sobre un amplio rango de frecuencias, con una ganancia de voltaje
cercana a la unidad. En suma, el seguidor emisor incrementa el nivel de
potencia de la señal, que es, dando una ganancia de potencia.
El circuito equivalente del seguidor es la figura 1(b). Nótese que el colector
está puesto a tierra con respecto a la señal ac. (pues la fuente VCC se
reemplaza por un corto circuito).
 La ganancia de corriente
 En la figura 1(b) la corriente de salida, usando la KCL en E (emisor) da que:
                           Io = - Ib – gmVπ          (1)
 Y                          Vπ = Ib rπ                (2)
 Combinando las dos ecuaciones, e identificando que β = gmrπ y haciendo
 la relación Io/Ib entonces tenemos:
                           Ai = Io/Ib = - (β + 1)    (3)
Resistencia de Entrada
La resistencia de entrada Ri es la relación Vb/Ib. Usando la KVL para la malla
externa en la figura 1(b) obtenemos que:
                          Vb = Ibrπ – IoRE           (4)
Sustituyendo Io en la ecuación (3) y dividiendo por Ib tenemos que:
                       Ri = Vb/Ib = rπ + (1+ β)RE       (5)
En la ecuación observamos que Ri para el seguidor emisor es
considerablemente mayor que Ri = rπ para una etapa emisor común, incluso
para valores pequeños de RE porque β >> 1.
Ganancia de Voltaje
El voltaje de salida Vo = - IoRE , entonces Vs = IbRs + Vb usando la ecuación (3) y
(4) aciendo algunas manipulaciones algebraicas tenemos:
       Av = Vo/Vs = [(β+1)RE]/[Rs+rπ+ (β+1)RE] = [(β+1)RE]/[Rs+Ri]       (6)
Para (β+1)RE >> Rs+rπ como es el caso usual, Av es aproximadamente la
unidad (pero ligeramente menor que la unidad).
Resistencia de Salida
La resistencia Ro’ es la resistencia Thévenin vista desde los terminales X – Y.
Como el voltaje Thévenin es simplemente Vo = AvVs, determinando la
corriente de corto circuito Isc de Ro’ = Vo/Isc. Obsérvese que Isc = - Io, y dejando
RE = 0 (corto circuito), podemos obtener:
              Ro’ = {[(Rs+rπ)RE/(β+1)]/[(Rs+rπ)/(β+1)]+RE}         (7)
La ecuación nos indica que Ro’ es la combinación en paralelo de RE y la
resistencia (Rs+rπ)/(β+1). En la figura 1(b) observamos que Ro’ = Ro//RE y
entonces tenemos:
                        Ro = (Rs+rπ)/(β+1)               (8)
Obsérvese que la resistencia de salida es una función de la resistencia de la
fuente Rs. Porque β>>1, Ro de un seguidor emisor es pequeña (omhs) en
comparación con la resistencia de entrada, la cual es grande (cientos de
Kilohms). excursión de Señal
Máxima
En un diseño de un seguidor emisor, el punto Q estará en el centro de la
recte de carga para obtener la máxima excursión de señal de salida (MPP:
máximo pico a pico).
Recta de carga en DC
En la figura 2(a) los valores grandes de R2 saturarán el transistor, produciendo
una corriente de saturación de:
                            IC(sat) = VCC/RE        (9)
Los pequeños valores de R2 llevarán el transistor a corte, produciendo un
voltaje de corte de:
                           VCE(corte) = VCC        (10)
La figura 2(b) muestra la recta de carga en continua con el punto Q
                + V C C




                                               >
             R 1                               Ic
                                  V c c /R e
                          R L
      V in   R 2                                    Q*
                      R E
                                                                       V c e
                                                                          >
             (a )                         0                         V c c
                                F ig 2              (b )
Recta de carca AC. O para señal
La resistencia para señal es menor que la resistencia para DC. Por lo tanto,
cuando la señal alterna entra, el punto instantáneo de operación se mueve
a lo largo de la recta de carga AC., tanto la corriente de señal pico a pico y
voltaje están determinados por la recta de carga AC.
              Ic
                   R e c ta d e
                                                        Como la recta de carga AC. Tiene una
           >




                   c a rg a A C .

                                                        pendiente mayor que la de DC., entonces la
                              Q
                             *      R e c ta d e
                                    c a rg a D C .      máxima excursión de salida siempre es
          0                              V cc
                                                >V ce   menor que la fuente de voltaje.
       F ig 3
                                                                   MPP < VCE          (9)


Máxima excursión de señal a la salida
Cuando el punto Q está por debajo del centro de la recta de carga para AC.
El pico máximo de salida (MP) es: MP = ICQre Por otro lado si el punto Q
está por encima del centro de loa recta de carga AC., el pico máximo de
salida es: MP = VCEQ
Para cualquier punto Q por tanto, el pico máximo de salida es:
            MP = ICQre o VCEQ según cual sea el menor     (10)
  Y por lo que la máxima excursión de salida es dos veces esa cantidad
                            MPP = 2MP           (11)
Cuando el punto Q está en el centro de la recta de carga AC., entonces:
                            ICQre = VCEQ        (12)
          Ic                                      Ic




                                                  >
        >




                                                           Q
                                                       *
                        Q
                    *
                            V ce                                  V ce
                               >                                    >
                             Ic q . r e                    V ce
                >            <                >            <




 Conexiones Darlington
 Una conexión Darlington consiste en dos transistores conectados en
Dos transistores conectados en cascada, donde la ganancia de corriente total
es el producto de las ganancias individuales.
Como la ganancia de corriente es mucho mayor, una conexión Darlington
puede tener una impedancia de entrada muy alta y producir corrientes de
salida muy grandes. Usados como reguladores de voltaje y amplificadores de
potencia.

Par Darlington
Los CC-CC en cascada mostrados en la figura 4, son llamados a menudo como
transistores Darlington o par Darlington. La fuente de corriente IEE se usa para
proveer de polarización el circuito.                                    +VC C
Para el transistor compuesto (entre líneas                             C       Ic




                                                                           <
                                                                   <
punteadas), Ib1 es la corriente de entrada y IC = IC1                 Ic 1    Ic 2
                                                        B         Q 1




                                                                           <
+ IC2 l cual es la corriente de salida. Obsérvese               >
                                                             Ib 1          Q 2
que la corriente de la señal de entrada en Q2 es
la corriente del emisor de Q1. Entonces IC2 = βIb2 =
β(β+1)Ib1 y IC = IC1+IC2 = βIb1+ β(β+1)Ib1              F ig 4                E
Por lo cual la ganancia de corriente del transistor
compuesto βC es:
βC = IC/Ib1 = β(β+2) ≈ β2         (13)
Para β>>2. Para β = 100, β2 = 104 claramente, la ganancia de corriente es
mucho mejor.
El transistor Darlington es a menudo usado como un seguidor emisor. Los
extremados altos valores de βC hacen que AV virtualmente la unidad, Ri
extremadamente grande y Ro extremadamente pequeña.
En el análisis para un Darlington es similar al del CC, excepto que hay dos
transistores y por tanto dos caídas VBE por lo que el voltaje DC en el emisor
de salida será:
                      VE = VB – 2 VBE = VB - 1,4 V    (14)
Darlington Complementario
En una conexión en cascada de un transistor NPN y un PNP como se ve en la
Figura 5.
                                                                         C
La corriente del colector de Q1 es la corriente de base   B
                                                                Q 1
de Q2 por lo que el circuito actúa como un Darlington
                                                                      Q 2
PNP con una ganancia de corriente βC = β1β2. Se usa
como amplificador de potencia clase B contrafase.                   E
                                                           F ig 5

Más contenido relacionado

La actualidad más candente

Electronica transitores efecto de cambio
Electronica transitores efecto de cambioElectronica transitores efecto de cambio
Electronica transitores efecto de cambio
Velmuz Buzz
 

La actualidad más candente (20)

01 señal senoidal
01 señal senoidal01 señal senoidal
01 señal senoidal
 
Transistor bjt y fet _UNI
Transistor bjt y fet _UNITransistor bjt y fet _UNI
Transistor bjt y fet _UNI
 
Practica 2 Circuito RLC
Practica 2 Circuito RLCPractica 2 Circuito RLC
Practica 2 Circuito RLC
 
Maquinas de corriente continua (CC)
Maquinas de corriente continua (CC)Maquinas de corriente continua (CC)
Maquinas de corriente continua (CC)
 
proyecto final : AMPLIFICACIÓN Y ACONDICIONAMIENTO DE SEÑALES
proyecto final : AMPLIFICACIÓN Y ACONDICIONAMIENTO DE SEÑALESproyecto final : AMPLIFICACIÓN Y ACONDICIONAMIENTO DE SEÑALES
proyecto final : AMPLIFICACIÓN Y ACONDICIONAMIENTO DE SEÑALES
 
Transistores BJT y JFET. Circuitos de polarización.
Transistores BJT y JFET. Circuitos de polarización. Transistores BJT y JFET. Circuitos de polarización.
Transistores BJT y JFET. Circuitos de polarización.
 
Temporizador(555 astable timer)
Temporizador(555 astable timer)Temporizador(555 astable timer)
Temporizador(555 astable timer)
 
1.6. Niveles de Resistencia Estatica y Dinamica en un Diodo
1.6. Niveles de Resistencia Estatica y Dinamica en un Diodo1.6. Niveles de Resistencia Estatica y Dinamica en un Diodo
1.6. Niveles de Resistencia Estatica y Dinamica en un Diodo
 
Practica Amplificador clase AB
Practica Amplificador clase ABPractica Amplificador clase AB
Practica Amplificador clase AB
 
El transistor bjt
El transistor bjtEl transistor bjt
El transistor bjt
 
El transistor como amplificador
El transistor como amplificadorEl transistor como amplificador
El transistor como amplificador
 
Laboratorio 3
Laboratorio 3Laboratorio 3
Laboratorio 3
 
problemas amplificador multietapa
problemas amplificador multietapaproblemas amplificador multietapa
problemas amplificador multietapa
 
Electronica transitores efecto de cambio
Electronica transitores efecto de cambioElectronica transitores efecto de cambio
Electronica transitores efecto de cambio
 
Electrónica potencia 2
Electrónica potencia 2Electrónica potencia 2
Electrónica potencia 2
 
El transistor jfet
El transistor jfetEl transistor jfet
El transistor jfet
 
Transistor Bipolar
Transistor BipolarTransistor Bipolar
Transistor Bipolar
 
Lugar de las raices
Lugar de las raicesLugar de las raices
Lugar de las raices
 
Transistoresfet
TransistoresfetTransistoresfet
Transistoresfet
 
DESFASAMIENTO DE ONDAS SENOIDALES EN CIRCUITOS R-L Y R-C
DESFASAMIENTO DE ONDAS SENOIDALES EN CIRCUITOS  R-L Y R-CDESFASAMIENTO DE ONDAS SENOIDALES EN CIRCUITOS  R-L Y R-C
DESFASAMIENTO DE ONDAS SENOIDALES EN CIRCUITOS R-L Y R-C
 

Similar a Amplificador colector común clase 8

Amplificadores de potencia clase 10ª
Amplificadores de potencia clase 10ªAmplificadores de potencia clase 10ª
Amplificadores de potencia clase 10ª
ManuelGmoJaramillo
 
Electronica polarizacion
Electronica polarizacionElectronica polarizacion
Electronica polarizacion
Velmuz Buzz
 
13a clase amplificador operacional básico
13a clase amplificador operacional básico 13a clase amplificador operacional básico
13a clase amplificador operacional básico
ManuelGmoJaramillo
 
Electronica modelaje de transitores bipolares
Electronica  modelaje de transitores bipolaresElectronica  modelaje de transitores bipolares
Electronica modelaje de transitores bipolares
Velmuz Buzz
 
Diapositivassextapartesegundaevaluacionpolarizacionbjt 1230664656506117-1
Diapositivassextapartesegundaevaluacionpolarizacionbjt 1230664656506117-1Diapositivassextapartesegundaevaluacionpolarizacionbjt 1230664656506117-1
Diapositivassextapartesegundaevaluacionpolarizacionbjt 1230664656506117-1
marcosgabo
 
circuitos de polarizacion cc
circuitos de polarizacion cccircuitos de polarizacion cc
circuitos de polarizacion cc
Catalina Lara
 
Integderiv
IntegderivIntegderiv
Integderiv
bvsrtgp
 
Amplificadores operacionales pp 1ª clase
Amplificadores operacionales pp 1ª claseAmplificadores operacionales pp 1ª clase
Amplificadores operacionales pp 1ª clase
ManuelGmoJaramillo
 
Fuentes de corriente clase 6ª
Fuentes de corriente clase 6ªFuentes de corriente clase 6ª
Fuentes de corriente clase 6ª
ManuelGmoJaramillo
 
Fuentes de corriente wildar clase 7
Fuentes de corriente wildar clase 7Fuentes de corriente wildar clase 7
Fuentes de corriente wildar clase 7
ManuelGmoJaramillo
 
Tippens fisica 7e_diapositivas_32a
Tippens fisica 7e_diapositivas_32aTippens fisica 7e_diapositivas_32a
Tippens fisica 7e_diapositivas_32a
Robert
 

Similar a Amplificador colector común clase 8 (20)

8a clase amplificador colector común
8a clase amplificador colector común 8a clase amplificador colector común
8a clase amplificador colector común
 
Amplificadores de potencia clase 10ª
Amplificadores de potencia clase 10ªAmplificadores de potencia clase 10ª
Amplificadores de potencia clase 10ª
 
Amplificador
AmplificadorAmplificador
Amplificador
 
Electronica polarizacion
Electronica polarizacionElectronica polarizacion
Electronica polarizacion
 
Presentacion el transistor
Presentacion  el transistorPresentacion  el transistor
Presentacion el transistor
 
13a clase amplificador operacional básico
13a clase amplificador operacional básico 13a clase amplificador operacional básico
13a clase amplificador operacional básico
 
Electronica modelaje de transitores bipolares
Electronica  modelaje de transitores bipolaresElectronica  modelaje de transitores bipolares
Electronica modelaje de transitores bipolares
 
Diapositivassextapartesegundaevaluacionpolarizacionbjt 1230664656506117-1
Diapositivassextapartesegundaevaluacionpolarizacionbjt 1230664656506117-1Diapositivassextapartesegundaevaluacionpolarizacionbjt 1230664656506117-1
Diapositivassextapartesegundaevaluacionpolarizacionbjt 1230664656506117-1
 
circuitos de polarizacion cc
circuitos de polarizacion cccircuitos de polarizacion cc
circuitos de polarizacion cc
 
18a clase multivibradores y temporizadores
18a clase multivibradores y temporizadores18a clase multivibradores y temporizadores
18a clase multivibradores y temporizadores
 
Integderiv
IntegderivIntegderiv
Integderiv
 
Amplificadores operacionales pp 1ª clase
Amplificadores operacionales pp 1ª claseAmplificadores operacionales pp 1ª clase
Amplificadores operacionales pp 1ª clase
 
Clase a con trafo
Clase a con trafoClase a con trafo
Clase a con trafo
 
Amplificadores depotencia
Amplificadores depotenciaAmplificadores depotencia
Amplificadores depotencia
 
Fuentes de corriente clase 6ª
Fuentes de corriente clase 6ªFuentes de corriente clase 6ª
Fuentes de corriente clase 6ª
 
Fuentes de corriente wildar clase 7
Fuentes de corriente wildar clase 7Fuentes de corriente wildar clase 7
Fuentes de corriente wildar clase 7
 
Recta de carga
Recta de cargaRecta de carga
Recta de carga
 
Temp555
Temp555Temp555
Temp555
 
Original septiembre 2011 2012
Original septiembre 2011 2012Original septiembre 2011 2012
Original septiembre 2011 2012
 
Tippens fisica 7e_diapositivas_32a
Tippens fisica 7e_diapositivas_32aTippens fisica 7e_diapositivas_32a
Tippens fisica 7e_diapositivas_32a
 

Más de ManuelGmoJaramillo

17a clase realimentación negativa
17a clase realimentación negativa17a clase realimentación negativa
17a clase realimentación negativa
ManuelGmoJaramillo
 
5a clase el amplificador diferencial
5a clase el amplificador diferencial 5a clase el amplificador diferencial
5a clase el amplificador diferencial
ManuelGmoJaramillo
 
21a clase sistemas de protección para fuentes reguladas
21a clase sistemas de protección para fuentes reguladas21a clase sistemas de protección para fuentes reguladas
21a clase sistemas de protección para fuentes reguladas
ManuelGmoJaramillo
 
Etapa de salida del amplificador operacional clase 12ª
Etapa de salida del amplificador operacional clase 12ªEtapa de salida del amplificador operacional clase 12ª
Etapa de salida del amplificador operacional clase 12ª
ManuelGmoJaramillo
 
Amplificadores clase B clase 11ª
Amplificadores clase B clase 11ªAmplificadores clase B clase 11ª
Amplificadores clase B clase 11ª
ManuelGmoJaramillo
 

Más de ManuelGmoJaramillo (20)

24a clase fuentes dc conmutadas elevadoras e inversoras
24a clase  fuentes dc conmutadas elevadoras e inversoras24a clase  fuentes dc conmutadas elevadoras e inversoras
24a clase fuentes dc conmutadas elevadoras e inversoras
 
23a clase fuentes dc reguladas conmutadas
23a clase fuentes dc reguladas conmutadas23a clase fuentes dc reguladas conmutadas
23a clase fuentes dc reguladas conmutadas
 
22a clase generadores de pwm
22a clase generadores de pwm22a clase generadores de pwm
22a clase generadores de pwm
 
17a clase realimentación negativa
17a clase realimentación negativa17a clase realimentación negativa
17a clase realimentación negativa
 
16a clase otras aplicaciones de comparadores
16a clase otras aplicaciones de comparadores16a clase otras aplicaciones de comparadores
16a clase otras aplicaciones de comparadores
 
15a clase comparadores
15a clase comparadores15a clase comparadores
15a clase comparadores
 
14a clase análisis del operacional real
14a clase análisis del operacional real14a clase análisis del operacional real
14a clase análisis del operacional real
 
12a clase etapa de salida del amplificador operacional
12a clase etapa de salida del amplificador operacional 12a clase etapa de salida del amplificador operacional
12a clase etapa de salida del amplificador operacional
 
11a clase amplificadores clase b
11a clase amplificadores clase b 11a clase amplificadores clase b
11a clase amplificadores clase b
 
10a clase amplificadores de potencia
10a clase amplificadores de potencia 10a clase amplificadores de potencia
10a clase amplificadores de potencia
 
9a clase trasladador o cambiador de nivel dc
9a clase trasladador o cambiador de nivel dc 9a clase trasladador o cambiador de nivel dc
9a clase trasladador o cambiador de nivel dc
 
4a clase etapas internal del operacional
4a clase etapas internal del operacional 4a clase etapas internal del operacional
4a clase etapas internal del operacional
 
7a clase fuentes de corriente wildar
7a clase fuentes de corriente wildar 7a clase fuentes de corriente wildar
7a clase fuentes de corriente wildar
 
6a clase fuentes de corriente
6a clase fuentes de corriente 6a clase fuentes de corriente
6a clase fuentes de corriente
 
5a clase el amplificador diferencial
5a clase el amplificador diferencial 5a clase el amplificador diferencial
5a clase el amplificador diferencial
 
21a clase sistemas de protección para fuentes reguladas
21a clase sistemas de protección para fuentes reguladas21a clase sistemas de protección para fuentes reguladas
21a clase sistemas de protección para fuentes reguladas
 
20a clase fuentes reguladas dc líneales
20a clase fuentes reguladas dc líneales20a clase fuentes reguladas dc líneales
20a clase fuentes reguladas dc líneales
 
19a clase filtros capacitivos e inductivos
19a clase filtros capacitivos e inductivos19a clase filtros capacitivos e inductivos
19a clase filtros capacitivos e inductivos
 
Etapa de salida del amplificador operacional clase 12ª
Etapa de salida del amplificador operacional clase 12ªEtapa de salida del amplificador operacional clase 12ª
Etapa de salida del amplificador operacional clase 12ª
 
Amplificadores clase B clase 11ª
Amplificadores clase B clase 11ªAmplificadores clase B clase 11ª
Amplificadores clase B clase 11ª
 

Último

Proyecto de aprendizaje dia de la madre MINT.pdf
Proyecto de aprendizaje dia de la madre MINT.pdfProyecto de aprendizaje dia de la madre MINT.pdf
Proyecto de aprendizaje dia de la madre MINT.pdf
patriciaines1993
 

Último (20)

SISTEMA RESPIRATORIO PARA NIÑOS PRIMARIA
SISTEMA RESPIRATORIO PARA NIÑOS PRIMARIASISTEMA RESPIRATORIO PARA NIÑOS PRIMARIA
SISTEMA RESPIRATORIO PARA NIÑOS PRIMARIA
 
Sesión de clase: Fe contra todo pronóstico
Sesión de clase: Fe contra todo pronósticoSesión de clase: Fe contra todo pronóstico
Sesión de clase: Fe contra todo pronóstico
 
Interpretación de cortes geológicos 2024
Interpretación de cortes geológicos 2024Interpretación de cortes geológicos 2024
Interpretación de cortes geológicos 2024
 
TRABAJO FINAL TOPOGRAFÍA COMPLETO DE LA UPC
TRABAJO FINAL TOPOGRAFÍA COMPLETO DE LA UPCTRABAJO FINAL TOPOGRAFÍA COMPLETO DE LA UPC
TRABAJO FINAL TOPOGRAFÍA COMPLETO DE LA UPC
 
Feliz Día de la Madre - 5 de Mayo, 2024.pdf
Feliz Día de la Madre - 5 de Mayo, 2024.pdfFeliz Día de la Madre - 5 de Mayo, 2024.pdf
Feliz Día de la Madre - 5 de Mayo, 2024.pdf
 
Procedimientos para la planificación en los Centros Educativos tipo V ( multi...
Procedimientos para la planificación en los Centros Educativos tipo V ( multi...Procedimientos para la planificación en los Centros Educativos tipo V ( multi...
Procedimientos para la planificación en los Centros Educativos tipo V ( multi...
 
Supuestos_prácticos_funciones.docx
Supuestos_prácticos_funciones.docxSupuestos_prácticos_funciones.docx
Supuestos_prácticos_funciones.docx
 
origen y desarrollo del ensayo literario
origen y desarrollo del ensayo literarioorigen y desarrollo del ensayo literario
origen y desarrollo del ensayo literario
 
Biografía de Charles Coulomb física .pdf
Biografía de Charles Coulomb física .pdfBiografía de Charles Coulomb física .pdf
Biografía de Charles Coulomb física .pdf
 
Usos y desusos de la inteligencia artificial en revistas científicas
Usos y desusos de la inteligencia artificial en revistas científicasUsos y desusos de la inteligencia artificial en revistas científicas
Usos y desusos de la inteligencia artificial en revistas científicas
 
Power Point E. S.: Los dos testigos.pptx
Power Point E. S.: Los dos testigos.pptxPower Point E. S.: Los dos testigos.pptx
Power Point E. S.: Los dos testigos.pptx
 
Prueba de evaluación Geografía e Historia Comunidad de Madrid 2º de la ESO
Prueba de evaluación Geografía e Historia Comunidad de Madrid 2º de la ESOPrueba de evaluación Geografía e Historia Comunidad de Madrid 2º de la ESO
Prueba de evaluación Geografía e Historia Comunidad de Madrid 2º de la ESO
 
Tema 19. Inmunología y el sistema inmunitario 2024
Tema 19. Inmunología y el sistema inmunitario 2024Tema 19. Inmunología y el sistema inmunitario 2024
Tema 19. Inmunología y el sistema inmunitario 2024
 
Proyecto de aprendizaje dia de la madre MINT.pdf
Proyecto de aprendizaje dia de la madre MINT.pdfProyecto de aprendizaje dia de la madre MINT.pdf
Proyecto de aprendizaje dia de la madre MINT.pdf
 
ACRÓNIMO DE PARÍS PARA SU OLIMPIADA 2024. Por JAVIER SOLIS NOYOLA
ACRÓNIMO DE PARÍS PARA SU OLIMPIADA 2024. Por JAVIER SOLIS NOYOLAACRÓNIMO DE PARÍS PARA SU OLIMPIADA 2024. Por JAVIER SOLIS NOYOLA
ACRÓNIMO DE PARÍS PARA SU OLIMPIADA 2024. Por JAVIER SOLIS NOYOLA
 
activ4-bloque4 transversal doctorado.pdf
activ4-bloque4 transversal doctorado.pdfactiv4-bloque4 transversal doctorado.pdf
activ4-bloque4 transversal doctorado.pdf
 
Tema 10. Dinámica y funciones de la Atmosfera 2024
Tema 10. Dinámica y funciones de la Atmosfera 2024Tema 10. Dinámica y funciones de la Atmosfera 2024
Tema 10. Dinámica y funciones de la Atmosfera 2024
 
semana 4 9NO Estudios sociales.pptxnnnn
semana 4  9NO Estudios sociales.pptxnnnnsemana 4  9NO Estudios sociales.pptxnnnn
semana 4 9NO Estudios sociales.pptxnnnn
 
Sesión de clase APC: Los dos testigos.pdf
Sesión de clase APC: Los dos testigos.pdfSesión de clase APC: Los dos testigos.pdf
Sesión de clase APC: Los dos testigos.pdf
 
FUERZA Y MOVIMIENTO ciencias cuarto basico.ppt
FUERZA Y MOVIMIENTO ciencias cuarto basico.pptFUERZA Y MOVIMIENTO ciencias cuarto basico.ppt
FUERZA Y MOVIMIENTO ciencias cuarto basico.ppt
 

Amplificador colector común clase 8

  • 1. Amplificador colector común Seguidor por emisor y par Darlington y Darlington complementarios. Amplificadores de corriente y potencia
  • 2. Amplificador Colector Común El diagrama del circuito de un amplificador a transistor en colector común se ve en la figura 1(a). Esta configuración es llamada también Seguidor Emisor, porque la ganancia de voltaje es cerca de la unidad (Ec. 6), y entonces un cambio de voltaje en la base aparece como un cambio igual a través de la carga del emisor. En otras palabras, el emisor sigue la señal de entrada. + VCC C B B r E > +V _ Ib + X > Rs E Rs rr Io + Re V o Io g m V rr V s Re V o V s > < < _ > _ Y < < Ri Ro Ro' * C Ri Ro Ro' (a ) F ig . 1 (b )
  • 3. Se ve que la resistencia de entrada Ri de un seguidor emisor es muy alta (cientos de kilohms) y la resistencia de salida Ro es muy baja (unos ohms). Entonces el uso más común del circuito de Colector Común es como etapa impulsora la cual hace la función de transformar la resistencia (de alta a baja) sobre un amplio rango de frecuencias, con una ganancia de voltaje cercana a la unidad. En suma, el seguidor emisor incrementa el nivel de potencia de la señal, que es, dando una ganancia de potencia. El circuito equivalente del seguidor es la figura 1(b). Nótese que el colector está puesto a tierra con respecto a la señal ac. (pues la fuente VCC se reemplaza por un corto circuito). La ganancia de corriente En la figura 1(b) la corriente de salida, usando la KCL en E (emisor) da que: Io = - Ib – gmVπ (1) Y Vπ = Ib rπ (2) Combinando las dos ecuaciones, e identificando que β = gmrπ y haciendo la relación Io/Ib entonces tenemos: Ai = Io/Ib = - (β + 1) (3)
  • 4. Resistencia de Entrada La resistencia de entrada Ri es la relación Vb/Ib. Usando la KVL para la malla externa en la figura 1(b) obtenemos que: Vb = Ibrπ – IoRE (4) Sustituyendo Io en la ecuación (3) y dividiendo por Ib tenemos que: Ri = Vb/Ib = rπ + (1+ β)RE (5) En la ecuación observamos que Ri para el seguidor emisor es considerablemente mayor que Ri = rπ para una etapa emisor común, incluso para valores pequeños de RE porque β >> 1. Ganancia de Voltaje El voltaje de salida Vo = - IoRE , entonces Vs = IbRs + Vb usando la ecuación (3) y (4) aciendo algunas manipulaciones algebraicas tenemos: Av = Vo/Vs = [(β+1)RE]/[Rs+rπ+ (β+1)RE] = [(β+1)RE]/[Rs+Ri] (6) Para (β+1)RE >> Rs+rπ como es el caso usual, Av es aproximadamente la unidad (pero ligeramente menor que la unidad). Resistencia de Salida
  • 5. La resistencia Ro’ es la resistencia Thévenin vista desde los terminales X – Y. Como el voltaje Thévenin es simplemente Vo = AvVs, determinando la corriente de corto circuito Isc de Ro’ = Vo/Isc. Obsérvese que Isc = - Io, y dejando RE = 0 (corto circuito), podemos obtener: Ro’ = {[(Rs+rπ)RE/(β+1)]/[(Rs+rπ)/(β+1)]+RE} (7) La ecuación nos indica que Ro’ es la combinación en paralelo de RE y la resistencia (Rs+rπ)/(β+1). En la figura 1(b) observamos que Ro’ = Ro//RE y entonces tenemos: Ro = (Rs+rπ)/(β+1) (8) Obsérvese que la resistencia de salida es una función de la resistencia de la fuente Rs. Porque β>>1, Ro de un seguidor emisor es pequeña (omhs) en comparación con la resistencia de entrada, la cual es grande (cientos de Kilohms). excursión de Señal Máxima En un diseño de un seguidor emisor, el punto Q estará en el centro de la recte de carga para obtener la máxima excursión de señal de salida (MPP: máximo pico a pico).
  • 6. Recta de carga en DC En la figura 2(a) los valores grandes de R2 saturarán el transistor, produciendo una corriente de saturación de: IC(sat) = VCC/RE (9) Los pequeños valores de R2 llevarán el transistor a corte, produciendo un voltaje de corte de: VCE(corte) = VCC (10) La figura 2(b) muestra la recta de carga en continua con el punto Q + V C C > R 1 Ic V c c /R e R L V in R 2 Q* R E V c e > (a ) 0 V c c F ig 2 (b )
  • 7. Recta de carca AC. O para señal La resistencia para señal es menor que la resistencia para DC. Por lo tanto, cuando la señal alterna entra, el punto instantáneo de operación se mueve a lo largo de la recta de carga AC., tanto la corriente de señal pico a pico y voltaje están determinados por la recta de carga AC. Ic R e c ta d e Como la recta de carga AC. Tiene una > c a rg a A C . pendiente mayor que la de DC., entonces la Q * R e c ta d e c a rg a D C . máxima excursión de salida siempre es 0 V cc >V ce menor que la fuente de voltaje. F ig 3 MPP < VCE (9) Máxima excursión de señal a la salida Cuando el punto Q está por debajo del centro de la recta de carga para AC. El pico máximo de salida (MP) es: MP = ICQre Por otro lado si el punto Q está por encima del centro de loa recta de carga AC., el pico máximo de salida es: MP = VCEQ
  • 8. Para cualquier punto Q por tanto, el pico máximo de salida es: MP = ICQre o VCEQ según cual sea el menor (10) Y por lo que la máxima excursión de salida es dos veces esa cantidad MPP = 2MP (11) Cuando el punto Q está en el centro de la recta de carga AC., entonces: ICQre = VCEQ (12) Ic Ic > > Q * Q * V ce V ce > > Ic q . r e V ce > < > < Conexiones Darlington Una conexión Darlington consiste en dos transistores conectados en
  • 9. Dos transistores conectados en cascada, donde la ganancia de corriente total es el producto de las ganancias individuales. Como la ganancia de corriente es mucho mayor, una conexión Darlington puede tener una impedancia de entrada muy alta y producir corrientes de salida muy grandes. Usados como reguladores de voltaje y amplificadores de potencia. Par Darlington Los CC-CC en cascada mostrados en la figura 4, son llamados a menudo como transistores Darlington o par Darlington. La fuente de corriente IEE se usa para proveer de polarización el circuito. +VC C Para el transistor compuesto (entre líneas C Ic < < punteadas), Ib1 es la corriente de entrada y IC = IC1 Ic 1 Ic 2 B Q 1 < + IC2 l cual es la corriente de salida. Obsérvese > Ib 1 Q 2 que la corriente de la señal de entrada en Q2 es la corriente del emisor de Q1. Entonces IC2 = βIb2 = β(β+1)Ib1 y IC = IC1+IC2 = βIb1+ β(β+1)Ib1 F ig 4 E Por lo cual la ganancia de corriente del transistor compuesto βC es:
  • 10. βC = IC/Ib1 = β(β+2) ≈ β2 (13) Para β>>2. Para β = 100, β2 = 104 claramente, la ganancia de corriente es mucho mejor. El transistor Darlington es a menudo usado como un seguidor emisor. Los extremados altos valores de βC hacen que AV virtualmente la unidad, Ri extremadamente grande y Ro extremadamente pequeña. En el análisis para un Darlington es similar al del CC, excepto que hay dos transistores y por tanto dos caídas VBE por lo que el voltaje DC en el emisor de salida será: VE = VB – 2 VBE = VB - 1,4 V (14) Darlington Complementario En una conexión en cascada de un transistor NPN y un PNP como se ve en la Figura 5. C La corriente del colector de Q1 es la corriente de base B Q 1 de Q2 por lo que el circuito actúa como un Darlington Q 2 PNP con una ganancia de corriente βC = β1β2. Se usa como amplificador de potencia clase B contrafase. E F ig 5