SlideShare una empresa de Scribd logo
1 de 20
Descargar para leer sin conexión
BIOLOGIA MENCIÓN
                                                                                         BM-30
U N I D A D IV: G E N É T I C A




                                  GENÉTICA I

                                                                        Segregación de los alelos
                                                                         en los espermatozoides




                                                  espermatozoides


                                  1/2         R            1/2      r



                                    R                        R
       1/2        R                           R                     r


                                        1/4                   1/4
        óvulos


                                    r                        r
                                              R                     r
      1/2         r

                                        1/4                   1/4
INTRODUCCIÓN

La genética es considerada como una disciplina relativamente nueva en el campo de la Biología. Si
se quisiera establecer una edad para esta ciencia tan importante en el estudio de los seres vivos,
ella no alcanzaría todavía al siglo desde que las ciencias biológicas comprendieron que tras ella se
encerraba un mundo inimaginable de perspectivas para conocer y dominar la esencia de la vida.
Nadie niega hoy que, sin menospreciar los esfuerzos que le precedieron, la genética nace con
Gregor Mendel (1822-1884), quien descubrió lo que hoy día conocemos como las “Leyes de la
Herencia”. Sus trabajos, que describiremos más adelante como la base de la llamada Genética
Clásica, no fueron valorados por el mundo científico de la época, sino hasta los inicios del siglo
pasado.




1.    MÉTODOS DE MENDEL

Muchos científicos antes de Mendel habían tratado de elucidar cómo se heredan las características
biológicas. Habían cruzado plantas o animales y observado detenidamente las semejanzas entre la
progenie y sus progenitores. Los resultados fueron confusos, la progenie era semejante a un
progenitor en algunos rasgos, al otro progenitor en otros y claramente no se asemejaba a ninguno
en otros rasgos. No fue posible descubrir regularidades precisas.




                                                             Mendel tuvo éxito en donde otros
                                                             investigadores    habían     fracasado.
                                                             Estableció la necesidad de prestar
                                                             atención a un solo rasgo cada vez,
                                                             por ejemplo la forma de la semilla,
                                                             en lugar de considerar todas las
                                                             características de la planta. Con este
                                                             propósito seleccionó siete caracteres
                                                             que se diferenciaban de forma muy
                                                             clara (Figura 1), y se aseguró que
                                                             estas fueran variedades puras. Otro
                                                             hecho importante del trabajo de
                                                             Mendel fue su enfoque cuantitativo,
                                                             contó el número de las progenies de
                                                             cada clase con el propósito de
                                                             descubrir si los portadores de los
                                                             rasgos en estudio aparecían siempre
                                                             en la misma proporción. El método
                                                             mendeliano de análisis genético
                                                             todavía    se   utiliza   actualmente.
                                                             Revisemos ahora los experimentos de
                                                             Mendel, las leyes básicas de la
                                                             herencia derivada de los experimentos,
                                                             la teoría que explica estas leyes y los
                                                             resultados experimentales.
Figura 1. Los siete caracteres estudiados por Mendel
en la planta de arveja Pisum sativum.




                                                       2
2.     LEYES DE MENDEL

Conviene aclarar que Mendel, por ser pionero, carecía de los conocimientos actuales sobre la
presencia de pares de alelos en los seres vivos y sobre el mecanismo de transmisión de los
cromosomas, por lo que esta exposición está basada en la interpretación posterior de los trabajos
de Mendel.

     Primera ley de Mendel o de la segregación (Monohibridismo)

Enunciado de la ley: “Los factores (genes alelos) para cada carácter segregan o se separan
(anafase I) en iguales proporciones en el momento de la formación de gametos y terminan por lo
tanto en distinta descendencia”.

Dos corolarios importantísimos derivan de esta ley:

     1) La herencia es particulada, vale decir, los genes no se mezclan al pasar de una generación a
        la que sigue.

     2) Los gametos son siempre puros, no existen gametos híbridos.




                                                         El experimento de Mendel. Mendel llegó a
                                                         esta conclusión trabajando con una variedad
                                                         pura de plantas de guisantes que producían
                                                         semillas amarillas y con una variedad que
                                                         producía      semillas verdes. Al hacer un
                                                         cruzamiento entre estas plantas, obtenía
                                                         siempre una llamada generación filial (F1)
                                                         compuesta en un 100% de              plantas con
                                                         semillas amarillas.
                                                         Para llevar a cabo la segunda parte de su
                                                         experimento,       Mendel        tomó     plantas
                                                         procedentes de las semillas de la primera
                                                         generación (F1) del experimento anterior
                                                         (Figura 2) y las polinizó entre sí. Del cruce
                                                         obtuvo plantas productoras de semillas
                                                         amarillas y verdes en la proporción que se
                                                         indica en la figura 3. Así pues, aunque el alelo
                                                         que determina la coloración verde de las
                                                         semillas parecía haber desaparecido en la
                                                         primera     generación      filial,   vuelve    a
                                                         manifestarse en esta segunda generación
                                                         (F2).




Figura 2. El experimento de Mendel que lo llevó a enunciar su primera ley.




                                                     3
Interpretación del experimento (Figura 3). El polen de la planta progenitora aporta a la
descendencia un alelo para el color de la semilla, y el óvulo de la otra planta progenitora aporta el
otro alelo para el color de la semilla; de los dos alelos, solamente se manifiesta aquel que es
dominante (A), mientras que el recesivo (a) permanece oculto.
Los dos alelos distintos para el color de la semilla presentes en los individuos de la primera
generación filial (F1), no se han mezclado ni han desaparecido, simplemente ocurría que se
manifestaba solo uno de los dos. Cuando el individuo de fenotipo amarillo (genotipo Aa) formaba
los gametos, se separaban sus alelos mediante el proceso de meiosis, de tal forma que en cada
gameto solo está presente uno de los alelos y así se pueden explicar los resultados obtenidos.




             Figura 3. Cruzamiento monohíbrido y representación en un tablero de Punnett.



OBSERVACIÓN:

   Cuando repasamos cuidadosamente el experimento de Mendel podemos fijar nuestra
   atención en dos aspectos distintos presentes en los descendientes de cada generación.
   Fácilmente podemos determinar la característica externa (Fenotipo) que presenta cada
   individuo en cada generación pero, ¿podríamos decir lo mismo a la hora de determinar
   sus características genéticas (Genotipo)?

   En el caso de los genes que manifiestan herencia dominante, no existe ninguna
   diferencia aparente entre los individuos heterocigóticos (Aa) y los homocigóticos (AA),
   pues ambos individuos presentan un fenotipo amarillo.




                                                  4
El cruzamiento de prueba o retrocruza sirve para diferenciar el individuo homocigoto del
heterocigótico y consiste en cruzar el fenotipo dominante (proveniente, por ejemplo, de un
individuo de la F1) con la variedad homocigota recesiva (aa):

          Si es homocigótico, toda la descendencia será igual (Figura 4).

          Si es heterocigótico, en la descendencia volverá a aparecer el carácter recesivo en una
           proporción del 50% (Figura 5).




                                                                             50% Híbrido (Aa)
                                                                             50% Homocigoto recesivo (aa)




         Ejercicios (Herencia de un carácter)


1.       Juan tiene un gato negro llamado Sam. Cuando Juan cruza a Sam con una hembra blanca,
         obtiene una camada de ½ de gatitos blancos y ½ de gatitos negros, al cruzar estos gatitos
         negros entre ellos, originan ¾ de gatitos negros y ¼ de gatitos blancos. Al respecto,
         conteste

         a) ¿Cuál es el genotipo del gato Sam y la hembra blanca?




         b) ¿Cuál es el genotipo de los gatitos negros, hijos de Sam y la gata blanca?




                                                    5
2.   En los pepinos, el color naranja de la fruta (R) es dominante sobre el color crema (r). Una
     planta de pepinos homocigótica para las frutas color naranja se cruza con una planta
     homocigótica para las frutas color crema. Se cruza la F 1 consigo misma para producir la F2.
     Al respecto, conteste

     a) ¿Cuáles son los genotipos de los padres homocigotos?




     b) ¿Cuál es el genotipo de F1?




     c) Al cruzar F1 consigo misma, ¿cuál es la proporción genotípica y fenotípica de F2?




     d) Es correcto plantear que en F2:

        Hay un 50% de homocigotos y un 50% de heterocigotos.




        Un 75% porta el gen recesivo.




        Un 75% porta el gen dominante.




3.   Una mujer presenta un tipo de enanismo llamado acondroplasia, y está determinada por el
     gen dominante E. El padre de esta mujer también presenta enanismo, y la madre tiene
     estatura normal. ¿Cuáles son los genotipos más probables del padre, la madre y la mujer?




                                                6
Gregor Mendel publicó los resultados de sus estudios genéticos con la arveja en 1866 y de este
modo estableció los fundamentos de la genética moderna. En su trabajo, Mendel propuso
algunos principios genéticos básicos. Uno de ellos se conoce como el Principio de Segregación. El
encontró que de cualquier progenitor solo una forma alélica de un gen es transmitida a la
descendencia a través de los gametos. Por ejemplo, una planta que tiene un factor (gen) para la
semilla lisa y también uno para la semilla rugosa deberá transmitir a su descendencia solo uno de
los dos alelos a través de un gameto. Mendel no sabía nada de cromosomas o de la meiosis ya que
esto no había sido aún descubierto. Actualmente se sabe que la base física de este principio está
en la primera anafase meiótica donde los cromosomas homólogos se segregan o separan uno del
otro. Si el gen para la semilla lisa está en un cromosoma y su forma alélica para la semilla
rugosa está en su homólogo, resulta claro que los dos alelos no pueden encontrarse normalmente
en el mismo gameto.




          Anafase I Meiótica




                                             Un organismo diploide posee dos alelos ubicados en
                                                    diferentes cromosomas homólogos.

                                               7
Segunda ley de Mendel o de la distribución independiente (Dihibridismo)

Enunciado de la ley: “Los factores determinantes de los distintos caracteres se combinan
independientemente unos con otros segregando al azar en los gametos resultantes”. Esta ley no
es tan universal como la ley de la segregación, porque se aplica a los genes que se ubican en
cromosomas distintos (no homólogos), pero no necesariamente a los que se ubican en el mismo
cromosoma (ligados). Sin embargo es correcto decir que los cromosomas se distribuyen en forma
independiente durante la formación de los gametos (permutación cromosómica), de la misma
manera que los hacen dos genes cualquiera en pares de cromosomas no homólogos.

El experimento de Mendel: cruzó plantas de guisantes de semilla amarilla y lisa con
plantas de semilla verde y rugosa (Homocigóticas para los dos caracteres) (Figura 6).




               P                                     X


                          AABB                                           aabb

                                              Gametos
                            AB                                             ab


                                     F1
                                                                         AaBb


Figura 6. Las semillas obtenidas en este cruzamiento eran todas amarillas y lisas, cumpliéndose así la
primera ley para cada uno de los caracteres considerados, y revelándonos también que los alelos dominantes
para esos caracteres son los que determinan el color amarillo y la forma lisa. Las plantas obtenidas y que
constituyen la F1 son dihíbridas (AaBb).




                                                    8
Las plantas de la F1 se cruzan entre sí, teniendo en cuenta los gametos que formarán cada una de
las plantas (Figura 7). Se puede apreciar que los alelos de los distintos genes se transmiten con
independencia unos de otros, ya que en la segunda generación filial F2 aparecen guisantes
amarillos y rugosos y otros que son verdes y lisos, combinaciones no encontradas ni en la
generación parental (P), ni en la filial primera (F1). Los resultados obtenidos para cada uno
de los caracteres considerados por separado, responden a la segunda ley (Figura 8).




                                  F1



                                       Aa            Bb


                                A            a B             b




                              AB          Ab         aB          ab            Gametos posibles

                Figura 7. Gametos que formará el individuo dihíbrido (AaBb) de la F1.




Interpretación del experimento: Los resultados de los experimentos de la segunda ley
refuerzan el concepto de que los genes son independientes entre sí, que no se mezclan ni
desaparecen generación tras generación. Para esta interpretación fue providencial la elección de
los caracteres, pues estos resultados no se cumplen siempre, sino solamente en el caso de que
los dos caracteres a estudiar estén regulados por genes que se encuentran en distintos
cromosomas.




                                                 9
9/16           3/16            3/16       1/16
                                 A_B_           A_bb            aaB_       aabb

    Figura 8. Proporciones fenotípicas resultantes de una cruza entre dos individuos dihíbridos (AaBb).




Cruzamiento de prueba

Al hacer un cruzamiento de prueba a un dihíbrido (de la F1) se obtiene una descendencia
representada por 4 fenotipos distintos que siguen una proporción fenotípica de 25% cada uno.




                                      1     :     1         :     1    :    1

                                   Figura 9. Cruce de prueba dihíbrido.




                                                       10
Ejercicios (Herencia de dos caracteres)

En las arvejas, la flor púrpura (P) es dominante sobre el color blanco (p), y el tamaño alto de la
planta (T) es dominante sobre la enana (t).

a)    Se cruzan plantas homocigóticas de flores púrpuras y enanas, con plantas homocigóticas de
      flores blancas y altas. ¿cómo es el genotipo y fenotipo de la descendencia F1?




b)    Al cruzar descendientes de F1 entre sí, se originan en F2 640 plantas de arvejas. Al respecto,
      conteste

     ¿Cuántos descendientes serán doble homocigotos?




     ¿Cuántos descendientes serán doble heterocigotos?




     La proporción de los siguientes fenotipos será:

        Flor púrpura y altas.



        Flor púrpura y enanas.



        Flor blanca y altas.



        Flor blanca y enanas.




                                                 11
2.   EL albinismo es una enfermedad recesiva autosómica (a), y la miopía es una enfermedad
     dominante autosómica (M), señale la descendencia en los siguientes cruces:

     a) Hombre albino, miope heterocigoto x mujer pigmentada homocigota, miope heterocigota.




     b) Hombre albino, miope heterocigoto x mujer pigmentada heterocigota y visión normal.




     c) Hombre albino, miope heterocigoto x mujer pigmentada homocigota y visión normal.




3.   Si en cruzamiento se obtienen los siguientes resultados:

          25%   planta   alta de hojas largas.
          25%   planta   alta de hojas recortadas.
          25%   planta   enana de hojas largas.
          25%   planta   enana de hojas recortadas

     a)   El genotipo más probable de sus padres será:




     b)   ¿Cómo se denomina este tipo de cruce?




                                                12
El Principio de la distribución independiente de Mendel, establece que la
segregación de un par de factores ocurre independientemente de la de
cualquier otro par. Por ejemplo, en un par de cromosomas homólogos están
los alelos para el color de la semilla: amarilla y verde y en el otro par de
homólogos están los alelos para la forma de la misma: lisa y rugosa.




               A: amarilla   a: verde           B: lisa   b: rugosa
La segregación de los alelos para el color de la semilla ocurre
independientemente de la segregación de los alelos para la forma, porque
cada par de homólogos se comporta como una unidad independiente durante
la meiosis. Además debido a que la orientación de los bivalentes en la
primera placa metafásica es completamente al azar, cuatro combinaciones
de factores pueden encontrarse en los productos meióticos:




          amarilla-lisa        amarilla-rugosa            verde-lisa   verde-rugosa

En la actualidad se sabe que esto es cierto solo para los loci localizados en
cromosomas homólogos distintos y no para los genes ligados; que se
estudiarán a continuación.




                                    Genes ligados



                                           13
3.   GENES LIGADOS

Cuando dos o más genes se encuentran en el mismo cromosoma, se dice que están ligados,
pueden estarlo en los autosomas o en los sexuales. Los genes que están en el mismo cromosoma
tienden a permanecer juntos durante la formación de gametos, por lo tanto, los resultados de los
cruzamientos de prueba de individuos dihíbridos producen resultados diferentes.

Los genes que están en cromosomas homólogos diferentes se distribuyen de manera
independiente, por lo que los resultados de los cruzamientos de prueba de dihíbridos dan una
proporción de 1:1:1:1




                          1       :        1        :           1   :     1
         Figura 10. Cruce de prueba cuando los genes están en diferentes pares de homólogos.


En cambio, cuando los genes están ligados no se distribuyen de manera independiente, sino que
tienden a permanecer juntos en las mismas combinaciones en las que se encontraban en los
progenitores, de esta manera los resultados de cruzamientos de prueba de individuos dihíbridos
con genes ligados da por resultado una proporción de 1:1.




                                               1        :   1
                     Figura 11. Cruce de prueba cuando los genes están ligados.
                                                   14
Recombinación entre genes ligados

En la progenie de un cruzamiento dihíbrido, las desviaciones importantes de una proporción
1:1:1:1 deben considerarse como evidencia de ligamientos sin embargo, los genes ligados no
siempre permanecen juntos, debido a que las cromátidas no hermanas (homólogas) pueden
intercambiar segmentos de longitud variables durante la profase meiótica. No olvidar que los
cromosomas homólogos se aparean e intercambian segmentos durante el crossing-over, por lo
que producen gametos con combinaciones únicas.




Figura 12. (a), un par de cromosomas homólogos con genes ligados están iniciando un entrecruzamiento.
(b), el par de cromosomas homólogos ha terminado el entrecruzamiento y los genes ligados se han
separado. (c), se presentan los cromosomas resultantes una vez terminada la segunda división meiótica,
los cromosomas parentales se encuentran a los extremos y los recombinantes al centro.




Los productos meióticos AB y ab tienen los genes ligados en la misma forma que en los
cromosomas parentales. Los otros dos productos meióticos Ab y aB resultantes del
entrecruzamiento han recombinado las relaciones de ligamiento originales de los progenitores en
nuevas formas llamadas recombinantes.

La frecuencia con que se produce un entrecruzamiento (quiasma) entre dos loci genéticos tiene
una probabilidad característica, mientras más alejados se encuentren dos genes en un
cromosoma, mayor es la oportunidad para que se produzca un entrecruzamiento entre ellos, en
cambio cuando los genes están más cercanos hay una probabilidad menor de entrecruzamiento.
Estas probabilidades son útiles para predecir las proporciones de gametos parentales que se
esperan que se formen a partir de un genotipo dado. El porcentaje de gametos recombinantes
formados a partir de un genotipo dado, es un reflejo directo de la frecuencia con la cual se forman
entrecruzamientos entre los genes en cuestión.

De todas maneras aunque exista crossing-over, al realizar un cruce de prueba de un dihíbrido
con genes ligados (cruzamiento entre un dihíbrido y un padre recesivo), la proporción fenotípica
de la descendencia no será 1:1:1:1, sino que será siempre mayor la proporción de descendencia
con fenotipos parentales, como por ejemplo:

                             Amarillas lisas       40%
                             Amarillas rugosas     10%
                             Verdes lisas          10%
                             Verdes rugosas        40%

                                                 15
GLOSARIO


Alelos: cada una de las alternativas que puede tener un gen o formas alternas de un gen, que
ocupan el mismo locus (lugar) en cada cromosoma homólogo.

Autosoma: Cualquier cromosoma que no sea un cromosoma sexual. Los seres humanos tienen en
sus células 22 pares de autosomas y un par de cromosomas sexuales.

Cromosoma: La estructura que lleva los genes. Los cromosomas eucarióticos son filamentos o
bastones de cromatina que aparecen contraídos durante la mitosis y la meiosis y que en otros
momentos están contenidos en un núcleo. Los cromosomas procarióticos consisten en un círculo
de DNA con el que se asocian varias proteínas. Los cromosomas virales son moléculas lineales o
circulares de DNA o RNA.

Cromosomas homólogos: Una de las dos copias de un determinado cromosoma de una célula
diploide, derivando cada copia de cada uno de los padres.

Genes: Unidades hereditarias que conforman los cromosomas. Estos segmentos específicos de
DNA controlan las estructuras y funciones celulares, también se define como unidad funcional de
la herencia. Secuencia de bases de DNA que usualmente codifican para una secuencia
polipeptídica de aminoácidos

Genotipo: constitución genética o conjunto de genes que posee un individuo.

Heterocromosoma: corresponden a los cromosomas sexuales (diferentes) X e Y, los cuales
determinan el sexo del individuo.

Fenotipo: es el resultado de dos fuerzas; los genes heredados y la acción del medio ambiente
que determina la posibilidad que el gen se exprese o no. Fenotipo = Genotipo+ Ambiente.

Homocigoto: significa que posee dos copias idénticas de ese gen para un rasgo dado en los dos
cromosomas homólogos, puede ser dominante AA o recesivo aa.

Heterocigoto o Híbrido: es cuando un individuo tiene un alelo dominante y un alelo recesivo en
los cromosomas homólogos (Aa)

Segregación: separación de cromosomas homólogos durante la anafase meiótica.

Generación Filial: Generación de individuos productos de cruzamientos. La primera generación
se denomina F1, la segunda generación F2 y así sucesivamente. Son relativos a la generación
parental.

Genes alelos: Par de genes que actúan sobre una misma característica en un individuo, estos se
ubican en el mismo sitio físico pero en distintos cromosomas homólogos, por ejemplo; el color de
las semillas de arveja amarillo y verde, estos pares de genes se designan comúnmente por letras
como AA, Aa y aa.

Gen dominante: Es aquel gen que siempre se expresa ya sea en su forma heterocigota Aa,
como en su forma homocigota AA.

Gen recesivo: Es aquel que solo logra expresarse cuando se encuentra en forma homocigota
recesiva aa.



                                              16
Preguntas de selección múltiple

1.   Se cruza un individuo heterocigoto con otro homocigoto recesivo. Al respecto, es correcto
     afirmar que

             I)     todos los descendientes portan el alelo recesivo.
            II)     el 50% son homocigotos.
           III)     el 50% porta el alelo dominante.

     A)   Solo I.
     B)   Solo II.
     C)   Solo III.
     D)   Solo I y II.
     E)   I, II y III.


2.   Se cruzan gatos con el mismo genotipo y fenotipo y originan una camada de 6 gatos negros y
     2 blancos. Al respecto, es correcto afirmar que los

             I)     progenitores son heterocigotos.
            II)     gatos blancos de la camada son homocigotos recesivos.
           III)     los gatos negros de la camada necesariamente tienen el genotipo de los padres.

     A)   Solo I.
     B)   Solo II.
     C)   Solo III.
     D)   Solo I y II.
     E)   I, II y III.


3.   El número de tipos de gametos para un genotipo dado, puede ser calculado mediante la
     fórmula 2n, donde n representa el número de alelos distintos. Entonces un individuo de
     genotipo AABbCCDDEe, producirá el siguiente número de gametos diferentes.

     A)    2.
     B)    4.
     C)    8.
     D)   16.
     E)   32.


4.   En la oveja, la lana brillante (L) es producida por un alelo que es dominante sobre el alelo
     para la lana normal. Una oveja hembra adulta con lana brillante se aparea con un macho
     adulto de lana normal y en la primera camada resultante se obtienen solo ovejas de lana
     brillante. A partir de estos datos se puede afirmar correctamente que el genotipo

             I)     del macho adulto es hibrido.
            II)     de la camada es 100% heterocigoto.
           III)     de la hembra es homocigoto dominante.

     A)   Solo   I.
     B)   Solo   II.
     C)   Solo   III.
     D)   Solo   I y III.
     E)   Solo   II y III.

                                                   17
5.   En los ratones, un alelo para los ojos color damasco es recesivo respecto del marrón. En un
     locus que se distribuye en forma independiente, un alelo para el color tostado del pelaje es
     recesivo respecto del pelaje negro. Se cruza un ratón que es homocigótico para los ojos
     marrones y para el color del pelaje negro, con otro que posee ojos de color damasco y pelaje
     tostado. Los F1 resultantes se cruzan entre sí para producir la F2. En una camada de treinta y
     dos ratones F2. ¿Cuántos serán de pelaje color tostado y de ojos marrones?

     A)   9
     B)   6
     C)   3.
     D)   2.
     E)   1.


6.   En los seres humanos, la alcaptonuria es una alteración metabólica en la cual las personas
     afectadas producen orina negra y problemas neurológicos. La alcaptonuria está determinada
     por un alelo (a) que es recesivo respecto del alelo para el metabolismo normal (A). Sally
     tiene un metabolismo normal, pero su hermano tiene alcaptonuria. El padre de Sally tiene
     alcaptonuria y su madre tiene un metabolismo normal. Respecto a los genotipo de la familia
     es correcto señalar que

             I)     Sally posee el alelo recesivo.
            II)     la madre de Sally es heterocigota.
           III)     el hermano y el padre de Sally son homocigotos dominantes.
     A)   Solo   I.
     B)   Solo   II.
     C)   Solo   III.
     D)   Solo   I y II.
     E)   Solo   I y III.


7.   En los cobayos, el alelo para el pelaje negro (B) es dominante sobre el alelo para el marrón
     (b). Se cruza un cobayo negro con uno marrón y producen en F 1 cinco cobayos F1 negros y
     seis marrones. Si los cobayos negros F1 se cruzaran con cobayos negros homocigotos, la
     descendencia esperada seria de un

             I)     100 % de cobayos de pelaje negro.
            II)     50 % de homocigotos y un 50% de heterocigotos.
           III)     75% de cobayos de pelaje negro y un 25 % de cobayos de pelaje marrón.
     A)   Solo   I.
     B)   Solo   II.
     C)   Solo   III.
     D)   Solo   I y II.
     E)   Solo   II y III.


8.   En las arvejas de Mendel, el color de las semillas está codificado por un gen con un alelo
     amarillo dominante y otro alelo verde recesivo. Si en un cruce se obtuvo una cantidad de 118
     semillas amarillas y 42 semillas verdes, el genotipo más probable de los progenitores es

     A)   AA x aa
     B)   AA x Aa
     C)   Aa x aa
     D)   Aa x Aa
     E)   aa x aa
                                                 18
9.   ¿Cuál(es) de las siguientes alternativas completa(n) correctamente el siguiente enunciado?
     “La relación fenotípica 9 : 3 : 3 : 1 es característica de la generación F 2 de un cruzamiento
     dihíbrido con dominancia, en el cual

             I)    cada una de las características está determinada por un par de genes
                   autosómicos.
             II)   se producen cuatro tipos de gametos con la misma frecuencia en ambos sexos.
            III)   la segregación de un par de genes ocurre independiente de cualquier otro.

     Es (son) correcta(s)

     A)   solo I.
     B)   solo II.
     C)   solo III.
     D)   solo I y II.
     E)   I, II y III.


10. Los cuyes de pelaje negro y áspero, dominan sobre los de pelaje blanco y suave. Si al cruzar
    ejemplares puros, la primera generación, es 100% dihíbrida, la probabilidad de que en la
    segunda generación aparezcan cuyes blancos y suaves es de

     A)    6.25    %
     B)   12.50    %
     C)   25.00    %
     D)   50.00    %
     E)   75.00    %

11. En humanos los gemelos constituyen un buen modelo de estudio ya que

     A)   permite saber el efecto del fenotipo sobre el genotipo.
     B)   es posible estudiar el efecto del ambiente sobre los homocigotos.
     C)   como ambos tienen igual genotipo es más fácil entender el efecto del ambiente.
     D)   como ambos tiene el mismo sexo es más fácil comprender la herencia ligada al sexo.
     E)   permite obtener clones de un mismo genotipo y con ello entender mejor las leyes de la
          herencia.


12. Sobre el genotipo y fenotipo, es correcto afirmar que el

             I)    efecto del ambiente es producido principalmente sobre los genes dominantes que
                   sobre genes recesivos.
            II)    mismo ambiente influye de manera tal que frente a un mismo genotipo se puede
                   manifestar con diferentes fenotipos.
            III)   genotipo representa todos los genes responsables que fabrican las proteínas, los
                   lípidos y los carbohidratos que requiere el organismo de un ser vivo.

     A)   Solo I.
     B)   Solo III.
     C)   Solo I y II.
     D)   Solo II y III.
     E)   I, II y III.




                                                 19
13. En la herencia de una enfermedad dominante se cumple necesariamente que

    A)   no nacerán la mitad de los individuos.
    B)   todo individuo afectado tiene al menos un progenitor afectado.
    C)   todo progenitor afectado genera descendientes afectados y normales.
    D)   la enfermedad puede aparecer en los descendientes de dos personas normales.
    E)   solo si ambos progenitores están afectados, sus descendientes también lo están.


14. Para que al menos un hijo presente un carácter recesivo, los genotipos de los progenitores
    deben ser

            I)     ambos heterocigotos.
           II)     uno heterocigoto y el otro homocigoto recesivo.
          III)     uno homocigoto dominante y el otro heterocigoto.

    A)   Solo   I.
    B)   Solo   II.
    C)   Solo   III.
    D)   Solo   I y II.
    E)   Solo   I y III.


15. Al cruzar un dihomocigoto dominante, con un dihíbrido es correcto esperar una descendencia

            I)     100% dominante.
           II)     75% dominante y 25% recesivos.
          III)     con un 25% de dihomocigotos.

    A)   Solo   I.
    B)   Solo   II.
    C)   Solo   III.
    D)   Solo   I y III.
    E)   Solo   II y III.




                                             RESPUESTAS


                 Preguntas   1   2   3   4   5   6   7    8   9   10   11   12   13   14   15
                   Claves    E   D   B   E   B   D   D    D   E   A    C    B    B    D    D



                                                                                                DMDO-BM30



            Puedes complementar los contenidos de esta guía visitando nuestra Web
                             http://www.pedrodevaldivia.cl/



                                                     20

Más contenido relacionado

La actualidad más candente

28 problemas resueltos
28 problemas resueltos28 problemas resueltos
28 problemas resueltosMiriam Valle
 
Diferencias transcripcion eucariotas procariotas
Diferencias transcripcion eucariotas procariotasDiferencias transcripcion eucariotas procariotas
Diferencias transcripcion eucariotas procariotasEducación
 
Practica de la mosca de la fruta
Practica de la mosca de la frutaPractica de la mosca de la fruta
Practica de la mosca de la frutaErnesto Argüello
 
Segunda ley de mendel
Segunda ley de mendelSegunda ley de mendel
Segunda ley de mendelIsrael Ortega
 
Genotipo y Fenotipo
Genotipo y FenotipoGenotipo y Fenotipo
Genotipo y Fenotipopilarosorio
 
Problemas de Genetica mendeliana resueltos
Problemas de Genetica mendeliana resueltosProblemas de Genetica mendeliana resueltos
Problemas de Genetica mendeliana resueltosCiberGeneticaUNAM
 
PDV: Biolgía Guía N°13 [4° Medio] (2012)
PDV: Biolgía Guía N°13 [4° Medio] (2012)PDV: Biolgía Guía N°13 [4° Medio] (2012)
PDV: Biolgía Guía N°13 [4° Medio] (2012)PSU Informator
 
Examen de-biologia-molecular
Examen de-biologia-molecularExamen de-biologia-molecular
Examen de-biologia-molecularMonica Gonzalez
 
28 Problemas Resueltos De Genética
28 Problemas Resueltos De Genética28 Problemas Resueltos De Genética
28 Problemas Resueltos De GenéticaRaúl Hurtado
 
Funciones de las proteínas
Funciones de las proteínasFunciones de las proteínas
Funciones de las proteínasgabymaba18
 
Genetica de poblaciones
Genetica de poblacionesGenetica de poblaciones
Genetica de poblacionesNithaa
 

La actualidad más candente (20)

Diapositivas genetica
Diapositivas geneticaDiapositivas genetica
Diapositivas genetica
 
Genetica (3)
Genetica (3)Genetica (3)
Genetica (3)
 
28 problemas resueltos
28 problemas resueltos28 problemas resueltos
28 problemas resueltos
 
Diferencias transcripcion eucariotas procariotas
Diferencias transcripcion eucariotas procariotasDiferencias transcripcion eucariotas procariotas
Diferencias transcripcion eucariotas procariotas
 
Problemas de genetica
Problemas de geneticaProblemas de genetica
Problemas de genetica
 
Cuadrados de punnett
Cuadrados de punnettCuadrados de punnett
Cuadrados de punnett
 
Practica de la mosca de la fruta
Practica de la mosca de la frutaPractica de la mosca de la fruta
Practica de la mosca de la fruta
 
Segunda ley de mendel
Segunda ley de mendelSegunda ley de mendel
Segunda ley de mendel
 
Que son los genes
Que son los genesQue son los genes
Que son los genes
 
Genotipo y Fenotipo
Genotipo y FenotipoGenotipo y Fenotipo
Genotipo y Fenotipo
 
Problemas de Genetica mendeliana resueltos
Problemas de Genetica mendeliana resueltosProblemas de Genetica mendeliana resueltos
Problemas de Genetica mendeliana resueltos
 
Tema 11
Tema 11Tema 11
Tema 11
 
Cariotipo humano y reproduccion celular
Cariotipo humano y reproduccion celularCariotipo humano y reproduccion celular
Cariotipo humano y reproduccion celular
 
PDV: Biolgía Guía N°13 [4° Medio] (2012)
PDV: Biolgía Guía N°13 [4° Medio] (2012)PDV: Biolgía Guía N°13 [4° Medio] (2012)
PDV: Biolgía Guía N°13 [4° Medio] (2012)
 
Examen de-biologia-molecular
Examen de-biologia-molecularExamen de-biologia-molecular
Examen de-biologia-molecular
 
28 Problemas Resueltos De Genética
28 Problemas Resueltos De Genética28 Problemas Resueltos De Genética
28 Problemas Resueltos De Genética
 
Funciones de las proteínas
Funciones de las proteínasFunciones de las proteínas
Funciones de las proteínas
 
Ciclo Celular
Ciclo CelularCiclo Celular
Ciclo Celular
 
Genetica de poblaciones
Genetica de poblacionesGenetica de poblaciones
Genetica de poblaciones
 
Generalidades de poliploidia en insectos y plantas
Generalidades de poliploidia en insectos y plantasGeneralidades de poliploidia en insectos y plantas
Generalidades de poliploidia en insectos y plantas
 

Destacado

DEMRE: [Respuestas 2] ciencias PSU 2009
DEMRE: [Respuestas 2] ciencias PSU 2009DEMRE: [Respuestas 2] ciencias PSU 2009
DEMRE: [Respuestas 2] ciencias PSU 2009PSU Informator
 
PDV: Biologia mencion Guía N°34 [4° Medio] (2012)
PDV: Biologia mencion Guía N°34 [4° Medio] (2012)PDV: Biologia mencion Guía N°34 [4° Medio] (2012)
PDV: Biologia mencion Guía N°34 [4° Medio] (2012)PSU Informator
 
DEMRE: [Respuestas 3] Lenguaje PSU 2011
DEMRE: [Respuestas 3] Lenguaje PSU 2011DEMRE: [Respuestas 3] Lenguaje PSU 2011
DEMRE: [Respuestas 3] Lenguaje PSU 2011PSU Informator
 
PDV: Biologia mencion Guía N°37 [4° Medio] (2012)
PDV: Biologia mencion Guía N°37 [4° Medio] (2012)PDV: Biologia mencion Guía N°37 [4° Medio] (2012)
PDV: Biologia mencion Guía N°37 [4° Medio] (2012)PSU Informator
 
PDV: Biologia mencion Guía N°32 [4° Medio] (2012)
PDV: Biologia mencion Guía N°32 [4° Medio] (2012)PDV: Biologia mencion Guía N°32 [4° Medio] (2012)
PDV: Biologia mencion Guía N°32 [4° Medio] (2012)PSU Informator
 
PDV: Biologia mencion Guía N°26 [4° Medio] (2012)
PDV: Biologia mencion Guía N°26 [4° Medio] (2012)PDV: Biologia mencion Guía N°26 [4° Medio] (2012)
PDV: Biologia mencion Guía N°26 [4° Medio] (2012)PSU Informator
 
PDV: Biologia mencion Guía N°33 [4° Medio] (2012)
PDV: Biologia mencion Guía N°33 [4° Medio] (2012)PDV: Biologia mencion Guía N°33 [4° Medio] (2012)
PDV: Biologia mencion Guía N°33 [4° Medio] (2012)PSU Informator
 
PDV: Lenguaje Guía N°27 [4º Medio] (2012)
PDV: Lenguaje Guía N°27 [4º Medio] (2012)PDV: Lenguaje Guía N°27 [4º Medio] (2012)
PDV: Lenguaje Guía N°27 [4º Medio] (2012)PSU Informator
 
PDV: Lenguaje Guía N°14 [3° Medio] (2012)
PDV: Lenguaje Guía N°14 [3° Medio] (2012)PDV: Lenguaje Guía N°14 [3° Medio] (2012)
PDV: Lenguaje Guía N°14 [3° Medio] (2012)PSU Informator
 
DEMRE: [Respuestas 3] Matematica PSU 2010
DEMRE: [Respuestas 3] Matematica PSU 2010DEMRE: [Respuestas 3] Matematica PSU 2010
DEMRE: [Respuestas 3] Matematica PSU 2010PSU Informator
 
PDV: Lenguaje Guía N°25 [3° Medio] (2012)
PDV: Lenguaje Guía N°25 [3° Medio] (2012)PDV: Lenguaje Guía N°25 [3° Medio] (2012)
PDV: Lenguaje Guía N°25 [3° Medio] (2012)PSU Informator
 
DEMRE: [Respuestas 4] Matematica PSU 2010
DEMRE: [Respuestas 4] Matematica PSU 2010DEMRE: [Respuestas 4] Matematica PSU 2010
DEMRE: [Respuestas 4] Matematica PSU 2010PSU Informator
 
PDV: Lenguaje Guía N°32 [3° Medio] (2012)
PDV: Lenguaje Guía N°32 [3° Medio] (2012)PDV: Lenguaje Guía N°32 [3° Medio] (2012)
PDV: Lenguaje Guía N°32 [3° Medio] (2012)PSU Informator
 
PDV: Lenguaje Guía N°30 [4º Medio] (2012)
PDV: Lenguaje Guía N°30 [4º Medio] (2012)PDV: Lenguaje Guía N°30 [4º Medio] (2012)
PDV: Lenguaje Guía N°30 [4º Medio] (2012)PSU Informator
 
PDV: [Explicación] Matemática N°4
PDV: [Explicación] Matemática N°4PDV: [Explicación] Matemática N°4
PDV: [Explicación] Matemática N°4PSU Informator
 
Respuestas N°4 de la PSU de Ciencias del año 2009.
Respuestas N°4 de la PSU de Ciencias del año 2009.Respuestas N°4 de la PSU de Ciencias del año 2009.
Respuestas N°4 de la PSU de Ciencias del año 2009.PSU Informator
 
PDV: Lenguaje Guía N°31 [4º Medio] (2012)
PDV: Lenguaje Guía N°31 [4º Medio] (2012)PDV: Lenguaje Guía N°31 [4º Medio] (2012)
PDV: Lenguaje Guía N°31 [4º Medio] (2012)PSU Informator
 
DEMRE: [Respuestas 2] Historia PSU 2011
DEMRE: [Respuestas 2] Historia PSU 2011DEMRE: [Respuestas 2] Historia PSU 2011
DEMRE: [Respuestas 2] Historia PSU 2011PSU Informator
 
PDV: Biologia Guía N°16 [4° Medio] (2012)
PDV: Biologia Guía N°16 [4° Medio] (2012)PDV: Biologia Guía N°16 [4° Medio] (2012)
PDV: Biologia Guía N°16 [4° Medio] (2012)PSU Informator
 
PDV: Física Desafío N°4 (2012)
PDV: Física Desafío N°4 (2012)PDV: Física Desafío N°4 (2012)
PDV: Física Desafío N°4 (2012)PSU Informator
 

Destacado (20)

DEMRE: [Respuestas 2] ciencias PSU 2009
DEMRE: [Respuestas 2] ciencias PSU 2009DEMRE: [Respuestas 2] ciencias PSU 2009
DEMRE: [Respuestas 2] ciencias PSU 2009
 
PDV: Biologia mencion Guía N°34 [4° Medio] (2012)
PDV: Biologia mencion Guía N°34 [4° Medio] (2012)PDV: Biologia mencion Guía N°34 [4° Medio] (2012)
PDV: Biologia mencion Guía N°34 [4° Medio] (2012)
 
DEMRE: [Respuestas 3] Lenguaje PSU 2011
DEMRE: [Respuestas 3] Lenguaje PSU 2011DEMRE: [Respuestas 3] Lenguaje PSU 2011
DEMRE: [Respuestas 3] Lenguaje PSU 2011
 
PDV: Biologia mencion Guía N°37 [4° Medio] (2012)
PDV: Biologia mencion Guía N°37 [4° Medio] (2012)PDV: Biologia mencion Guía N°37 [4° Medio] (2012)
PDV: Biologia mencion Guía N°37 [4° Medio] (2012)
 
PDV: Biologia mencion Guía N°32 [4° Medio] (2012)
PDV: Biologia mencion Guía N°32 [4° Medio] (2012)PDV: Biologia mencion Guía N°32 [4° Medio] (2012)
PDV: Biologia mencion Guía N°32 [4° Medio] (2012)
 
PDV: Biologia mencion Guía N°26 [4° Medio] (2012)
PDV: Biologia mencion Guía N°26 [4° Medio] (2012)PDV: Biologia mencion Guía N°26 [4° Medio] (2012)
PDV: Biologia mencion Guía N°26 [4° Medio] (2012)
 
PDV: Biologia mencion Guía N°33 [4° Medio] (2012)
PDV: Biologia mencion Guía N°33 [4° Medio] (2012)PDV: Biologia mencion Guía N°33 [4° Medio] (2012)
PDV: Biologia mencion Guía N°33 [4° Medio] (2012)
 
PDV: Lenguaje Guía N°27 [4º Medio] (2012)
PDV: Lenguaje Guía N°27 [4º Medio] (2012)PDV: Lenguaje Guía N°27 [4º Medio] (2012)
PDV: Lenguaje Guía N°27 [4º Medio] (2012)
 
PDV: Lenguaje Guía N°14 [3° Medio] (2012)
PDV: Lenguaje Guía N°14 [3° Medio] (2012)PDV: Lenguaje Guía N°14 [3° Medio] (2012)
PDV: Lenguaje Guía N°14 [3° Medio] (2012)
 
DEMRE: [Respuestas 3] Matematica PSU 2010
DEMRE: [Respuestas 3] Matematica PSU 2010DEMRE: [Respuestas 3] Matematica PSU 2010
DEMRE: [Respuestas 3] Matematica PSU 2010
 
PDV: Lenguaje Guía N°25 [3° Medio] (2012)
PDV: Lenguaje Guía N°25 [3° Medio] (2012)PDV: Lenguaje Guía N°25 [3° Medio] (2012)
PDV: Lenguaje Guía N°25 [3° Medio] (2012)
 
DEMRE: [Respuestas 4] Matematica PSU 2010
DEMRE: [Respuestas 4] Matematica PSU 2010DEMRE: [Respuestas 4] Matematica PSU 2010
DEMRE: [Respuestas 4] Matematica PSU 2010
 
PDV: Lenguaje Guía N°32 [3° Medio] (2012)
PDV: Lenguaje Guía N°32 [3° Medio] (2012)PDV: Lenguaje Guía N°32 [3° Medio] (2012)
PDV: Lenguaje Guía N°32 [3° Medio] (2012)
 
PDV: Lenguaje Guía N°30 [4º Medio] (2012)
PDV: Lenguaje Guía N°30 [4º Medio] (2012)PDV: Lenguaje Guía N°30 [4º Medio] (2012)
PDV: Lenguaje Guía N°30 [4º Medio] (2012)
 
PDV: [Explicación] Matemática N°4
PDV: [Explicación] Matemática N°4PDV: [Explicación] Matemática N°4
PDV: [Explicación] Matemática N°4
 
Respuestas N°4 de la PSU de Ciencias del año 2009.
Respuestas N°4 de la PSU de Ciencias del año 2009.Respuestas N°4 de la PSU de Ciencias del año 2009.
Respuestas N°4 de la PSU de Ciencias del año 2009.
 
PDV: Lenguaje Guía N°31 [4º Medio] (2012)
PDV: Lenguaje Guía N°31 [4º Medio] (2012)PDV: Lenguaje Guía N°31 [4º Medio] (2012)
PDV: Lenguaje Guía N°31 [4º Medio] (2012)
 
DEMRE: [Respuestas 2] Historia PSU 2011
DEMRE: [Respuestas 2] Historia PSU 2011DEMRE: [Respuestas 2] Historia PSU 2011
DEMRE: [Respuestas 2] Historia PSU 2011
 
PDV: Biologia Guía N°16 [4° Medio] (2012)
PDV: Biologia Guía N°16 [4° Medio] (2012)PDV: Biologia Guía N°16 [4° Medio] (2012)
PDV: Biologia Guía N°16 [4° Medio] (2012)
 
PDV: Física Desafío N°4 (2012)
PDV: Física Desafío N°4 (2012)PDV: Física Desafío N°4 (2012)
PDV: Física Desafío N°4 (2012)
 

Similar a PDV: Biologia mencion Guía N°30 [4° Medio] (2012)

Similar a PDV: Biologia mencion Guía N°30 [4° Medio] (2012) (20)

Primera Ley De Mendel
Primera Ley De MendelPrimera Ley De Mendel
Primera Ley De Mendel
 
Genética I (BC21 - PDV 2013)
Genética I (BC21 - PDV 2013)Genética I (BC21 - PDV 2013)
Genética I (BC21 - PDV 2013)
 
Tema 4 Leyes De Mendel Blog
Tema 4 Leyes De Mendel BlogTema 4 Leyes De Mendel Blog
Tema 4 Leyes De Mendel Blog
 
Genética mendeliana
Genética mendelianaGenética mendeliana
Genética mendeliana
 
Trabajos de Mendel-1.pptx
Trabajos de Mendel-1.pptxTrabajos de Mendel-1.pptx
Trabajos de Mendel-1.pptx
 
Genetica basica
Genetica basicaGenetica basica
Genetica basica
 
actidad 7 Biologia
actidad 7 Biologiaactidad 7 Biologia
actidad 7 Biologia
 
PDV: Biología Guía N°15 [3° Medio] (2012)
PDV: Biología Guía N°15 [3° Medio] (2012)PDV: Biología Guía N°15 [3° Medio] (2012)
PDV: Biología Guía N°15 [3° Medio] (2012)
 
Leyes de Mendel
Leyes  de MendelLeyes  de Mendel
Leyes de Mendel
 
Clase 22; genetica mendelania
Clase 22; genetica mendelaniaClase 22; genetica mendelania
Clase 22; genetica mendelania
 
Historia de la genética
Historia de la genéticaHistoria de la genética
Historia de la genética
 
Proyecto Olga Ramirez
Proyecto Olga RamirezProyecto Olga Ramirez
Proyecto Olga Ramirez
 
Genetica basica
Genetica basicaGenetica basica
Genetica basica
 
Genetica y comportamiento
Genetica y comportamientoGenetica y comportamiento
Genetica y comportamiento
 
Genética Mendeliana investigacion 5to ano 2022.docx
Genética Mendeliana investigacion 5to ano 2022.docxGenética Mendeliana investigacion 5to ano 2022.docx
Genética Mendeliana investigacion 5to ano 2022.docx
 
Genetica basica
Genetica basicaGenetica basica
Genetica basica
 
Genetica Básica
Genetica BásicaGenetica Básica
Genetica Básica
 
Genetica basica
Genetica basicaGenetica basica
Genetica basica
 
Leyes de Mendel
Leyes de MendelLeyes de Mendel
Leyes de Mendel
 
Teoria genetica
Teoria geneticaTeoria genetica
Teoria genetica
 

Más de PSU Informator

PDV: Biologia mencion Guía N°28 [4° Medio] (2012)
PDV: Biologia mencion Guía N°28 [4° Medio] (2012)PDV: Biologia mencion Guía N°28 [4° Medio] (2012)
PDV: Biologia mencion Guía N°28 [4° Medio] (2012)PSU Informator
 
PDV: Biologia mencion Guía N°27 [4° Medio] (2012)
PDV: Biologia mencion Guía N°27 [4° Medio] (2012)PDV: Biologia mencion Guía N°27 [4° Medio] (2012)
PDV: Biologia mencion Guía N°27 [4° Medio] (2012)PSU Informator
 
PDV: Biologia Guía N°19 [4° Medio] (2012)
PDV: Biologia Guía N°19 [4° Medio] (2012)PDV: Biologia Guía N°19 [4° Medio] (2012)
PDV: Biologia Guía N°19 [4° Medio] (2012)PSU Informator
 
PDV: Biologia Guía N°18 [4° Medio] (2012)
PDV: Biologia Guía N°18 [4° Medio] (2012)PDV: Biologia Guía N°18 [4° Medio] (2012)
PDV: Biologia Guía N°18 [4° Medio] (2012)PSU Informator
 
PDV: Biologia Guía N°17 [4° Medio] (2012)
PDV: Biologia Guía N°17 [4° Medio] (2012)PDV: Biologia Guía N°17 [4° Medio] (2012)
PDV: Biologia Guía N°17 [4° Medio] (2012)PSU Informator
 
DEMRE: [Respuestas 2] lenguaje PSU 2009
DEMRE: [Respuestas 2] lenguaje PSU 2009DEMRE: [Respuestas 2] lenguaje PSU 2009
DEMRE: [Respuestas 2] lenguaje PSU 2009PSU Informator
 
DEMRE: [Respuestas 2] historia PSU 2009
DEMRE: [Respuestas 2] historia PSU 2009DEMRE: [Respuestas 2] historia PSU 2009
DEMRE: [Respuestas 2] historia PSU 2009PSU Informator
 
DEMRE: [Respuestas 2] ciencias PSU 2009
DEMRE: [Respuestas 2] ciencias PSU 2009DEMRE: [Respuestas 2] ciencias PSU 2009
DEMRE: [Respuestas 2] ciencias PSU 2009PSU Informator
 
DEMRE: [Respuestas 2] Ciencias PSU 2011
DEMRE: [Respuestas 2] Ciencias PSU 2011DEMRE: [Respuestas 2] Ciencias PSU 2011
DEMRE: [Respuestas 2] Ciencias PSU 2011PSU Informator
 
DEMRE: [Respuestas 3] Matemática PSU 2011
DEMRE: [Respuestas 3] Matemática PSU 2011DEMRE: [Respuestas 3] Matemática PSU 2011
DEMRE: [Respuestas 3] Matemática PSU 2011PSU Informator
 
DEMRE: [Respuestas 1] Historia PSU 2009
DEMRE: [Respuestas 1] Historia PSU 2009DEMRE: [Respuestas 1] Historia PSU 2009
DEMRE: [Respuestas 1] Historia PSU 2009PSU Informator
 
DEMRE: [Respuestas 4] Ciencias PSU 2009
DEMRE: [Respuestas 4] Ciencias PSU 2009DEMRE: [Respuestas 4] Ciencias PSU 2009
DEMRE: [Respuestas 4] Ciencias PSU 2009PSU Informator
 
DEMRE: [Respuestas 1] Matemática PSU 2009
DEMRE: [Respuestas 1] Matemática PSU 2009DEMRE: [Respuestas 1] Matemática PSU 2009
DEMRE: [Respuestas 1] Matemática PSU 2009PSU Informator
 
DEMRE: [Respuestas 1] Lenguaje PSU 2009
DEMRE: [Respuestas 1] Lenguaje PSU 2009DEMRE: [Respuestas 1] Lenguaje PSU 2009
DEMRE: [Respuestas 1] Lenguaje PSU 2009PSU Informator
 
PDV: [Preguntas] Mención Química N°4
PDV: [Preguntas] Mención Química N°4PDV: [Preguntas] Mención Química N°4
PDV: [Preguntas] Mención Química N°4PSU Informator
 
PDV: [Claves] Mención Química N°4
PDV: [Claves] Mención Química N°4PDV: [Claves] Mención Química N°4
PDV: [Claves] Mención Química N°4PSU Informator
 
PDV: [Preguntas] Historia N°4
PDV: [Preguntas] Historia N°4PDV: [Preguntas] Historia N°4
PDV: [Preguntas] Historia N°4PSU Informator
 
PDV: [Explicación] Historia N°4
PDV: [Explicación] Historia N°4PDV: [Explicación] Historia N°4
PDV: [Explicación] Historia N°4PSU Informator
 

Más de PSU Informator (18)

PDV: Biologia mencion Guía N°28 [4° Medio] (2012)
PDV: Biologia mencion Guía N°28 [4° Medio] (2012)PDV: Biologia mencion Guía N°28 [4° Medio] (2012)
PDV: Biologia mencion Guía N°28 [4° Medio] (2012)
 
PDV: Biologia mencion Guía N°27 [4° Medio] (2012)
PDV: Biologia mencion Guía N°27 [4° Medio] (2012)PDV: Biologia mencion Guía N°27 [4° Medio] (2012)
PDV: Biologia mencion Guía N°27 [4° Medio] (2012)
 
PDV: Biologia Guía N°19 [4° Medio] (2012)
PDV: Biologia Guía N°19 [4° Medio] (2012)PDV: Biologia Guía N°19 [4° Medio] (2012)
PDV: Biologia Guía N°19 [4° Medio] (2012)
 
PDV: Biologia Guía N°18 [4° Medio] (2012)
PDV: Biologia Guía N°18 [4° Medio] (2012)PDV: Biologia Guía N°18 [4° Medio] (2012)
PDV: Biologia Guía N°18 [4° Medio] (2012)
 
PDV: Biologia Guía N°17 [4° Medio] (2012)
PDV: Biologia Guía N°17 [4° Medio] (2012)PDV: Biologia Guía N°17 [4° Medio] (2012)
PDV: Biologia Guía N°17 [4° Medio] (2012)
 
DEMRE: [Respuestas 2] lenguaje PSU 2009
DEMRE: [Respuestas 2] lenguaje PSU 2009DEMRE: [Respuestas 2] lenguaje PSU 2009
DEMRE: [Respuestas 2] lenguaje PSU 2009
 
DEMRE: [Respuestas 2] historia PSU 2009
DEMRE: [Respuestas 2] historia PSU 2009DEMRE: [Respuestas 2] historia PSU 2009
DEMRE: [Respuestas 2] historia PSU 2009
 
DEMRE: [Respuestas 2] ciencias PSU 2009
DEMRE: [Respuestas 2] ciencias PSU 2009DEMRE: [Respuestas 2] ciencias PSU 2009
DEMRE: [Respuestas 2] ciencias PSU 2009
 
DEMRE: [Respuestas 2] Ciencias PSU 2011
DEMRE: [Respuestas 2] Ciencias PSU 2011DEMRE: [Respuestas 2] Ciencias PSU 2011
DEMRE: [Respuestas 2] Ciencias PSU 2011
 
DEMRE: [Respuestas 3] Matemática PSU 2011
DEMRE: [Respuestas 3] Matemática PSU 2011DEMRE: [Respuestas 3] Matemática PSU 2011
DEMRE: [Respuestas 3] Matemática PSU 2011
 
DEMRE: [Respuestas 1] Historia PSU 2009
DEMRE: [Respuestas 1] Historia PSU 2009DEMRE: [Respuestas 1] Historia PSU 2009
DEMRE: [Respuestas 1] Historia PSU 2009
 
DEMRE: [Respuestas 4] Ciencias PSU 2009
DEMRE: [Respuestas 4] Ciencias PSU 2009DEMRE: [Respuestas 4] Ciencias PSU 2009
DEMRE: [Respuestas 4] Ciencias PSU 2009
 
DEMRE: [Respuestas 1] Matemática PSU 2009
DEMRE: [Respuestas 1] Matemática PSU 2009DEMRE: [Respuestas 1] Matemática PSU 2009
DEMRE: [Respuestas 1] Matemática PSU 2009
 
DEMRE: [Respuestas 1] Lenguaje PSU 2009
DEMRE: [Respuestas 1] Lenguaje PSU 2009DEMRE: [Respuestas 1] Lenguaje PSU 2009
DEMRE: [Respuestas 1] Lenguaje PSU 2009
 
PDV: [Preguntas] Mención Química N°4
PDV: [Preguntas] Mención Química N°4PDV: [Preguntas] Mención Química N°4
PDV: [Preguntas] Mención Química N°4
 
PDV: [Claves] Mención Química N°4
PDV: [Claves] Mención Química N°4PDV: [Claves] Mención Química N°4
PDV: [Claves] Mención Química N°4
 
PDV: [Preguntas] Historia N°4
PDV: [Preguntas] Historia N°4PDV: [Preguntas] Historia N°4
PDV: [Preguntas] Historia N°4
 
PDV: [Explicación] Historia N°4
PDV: [Explicación] Historia N°4PDV: [Explicación] Historia N°4
PDV: [Explicación] Historia N°4
 

PDV: Biologia mencion Guía N°30 [4° Medio] (2012)

  • 1. BIOLOGIA MENCIÓN BM-30 U N I D A D IV: G E N É T I C A GENÉTICA I Segregación de los alelos en los espermatozoides espermatozoides 1/2 R 1/2 r R R 1/2 R R r 1/4 1/4 óvulos r r R r 1/2 r 1/4 1/4
  • 2. INTRODUCCIÓN La genética es considerada como una disciplina relativamente nueva en el campo de la Biología. Si se quisiera establecer una edad para esta ciencia tan importante en el estudio de los seres vivos, ella no alcanzaría todavía al siglo desde que las ciencias biológicas comprendieron que tras ella se encerraba un mundo inimaginable de perspectivas para conocer y dominar la esencia de la vida. Nadie niega hoy que, sin menospreciar los esfuerzos que le precedieron, la genética nace con Gregor Mendel (1822-1884), quien descubrió lo que hoy día conocemos como las “Leyes de la Herencia”. Sus trabajos, que describiremos más adelante como la base de la llamada Genética Clásica, no fueron valorados por el mundo científico de la época, sino hasta los inicios del siglo pasado. 1. MÉTODOS DE MENDEL Muchos científicos antes de Mendel habían tratado de elucidar cómo se heredan las características biológicas. Habían cruzado plantas o animales y observado detenidamente las semejanzas entre la progenie y sus progenitores. Los resultados fueron confusos, la progenie era semejante a un progenitor en algunos rasgos, al otro progenitor en otros y claramente no se asemejaba a ninguno en otros rasgos. No fue posible descubrir regularidades precisas. Mendel tuvo éxito en donde otros investigadores habían fracasado. Estableció la necesidad de prestar atención a un solo rasgo cada vez, por ejemplo la forma de la semilla, en lugar de considerar todas las características de la planta. Con este propósito seleccionó siete caracteres que se diferenciaban de forma muy clara (Figura 1), y se aseguró que estas fueran variedades puras. Otro hecho importante del trabajo de Mendel fue su enfoque cuantitativo, contó el número de las progenies de cada clase con el propósito de descubrir si los portadores de los rasgos en estudio aparecían siempre en la misma proporción. El método mendeliano de análisis genético todavía se utiliza actualmente. Revisemos ahora los experimentos de Mendel, las leyes básicas de la herencia derivada de los experimentos, la teoría que explica estas leyes y los resultados experimentales. Figura 1. Los siete caracteres estudiados por Mendel en la planta de arveja Pisum sativum. 2
  • 3. 2. LEYES DE MENDEL Conviene aclarar que Mendel, por ser pionero, carecía de los conocimientos actuales sobre la presencia de pares de alelos en los seres vivos y sobre el mecanismo de transmisión de los cromosomas, por lo que esta exposición está basada en la interpretación posterior de los trabajos de Mendel. Primera ley de Mendel o de la segregación (Monohibridismo) Enunciado de la ley: “Los factores (genes alelos) para cada carácter segregan o se separan (anafase I) en iguales proporciones en el momento de la formación de gametos y terminan por lo tanto en distinta descendencia”. Dos corolarios importantísimos derivan de esta ley: 1) La herencia es particulada, vale decir, los genes no se mezclan al pasar de una generación a la que sigue. 2) Los gametos son siempre puros, no existen gametos híbridos. El experimento de Mendel. Mendel llegó a esta conclusión trabajando con una variedad pura de plantas de guisantes que producían semillas amarillas y con una variedad que producía semillas verdes. Al hacer un cruzamiento entre estas plantas, obtenía siempre una llamada generación filial (F1) compuesta en un 100% de plantas con semillas amarillas. Para llevar a cabo la segunda parte de su experimento, Mendel tomó plantas procedentes de las semillas de la primera generación (F1) del experimento anterior (Figura 2) y las polinizó entre sí. Del cruce obtuvo plantas productoras de semillas amarillas y verdes en la proporción que se indica en la figura 3. Así pues, aunque el alelo que determina la coloración verde de las semillas parecía haber desaparecido en la primera generación filial, vuelve a manifestarse en esta segunda generación (F2). Figura 2. El experimento de Mendel que lo llevó a enunciar su primera ley. 3
  • 4. Interpretación del experimento (Figura 3). El polen de la planta progenitora aporta a la descendencia un alelo para el color de la semilla, y el óvulo de la otra planta progenitora aporta el otro alelo para el color de la semilla; de los dos alelos, solamente se manifiesta aquel que es dominante (A), mientras que el recesivo (a) permanece oculto. Los dos alelos distintos para el color de la semilla presentes en los individuos de la primera generación filial (F1), no se han mezclado ni han desaparecido, simplemente ocurría que se manifestaba solo uno de los dos. Cuando el individuo de fenotipo amarillo (genotipo Aa) formaba los gametos, se separaban sus alelos mediante el proceso de meiosis, de tal forma que en cada gameto solo está presente uno de los alelos y así se pueden explicar los resultados obtenidos. Figura 3. Cruzamiento monohíbrido y representación en un tablero de Punnett. OBSERVACIÓN: Cuando repasamos cuidadosamente el experimento de Mendel podemos fijar nuestra atención en dos aspectos distintos presentes en los descendientes de cada generación. Fácilmente podemos determinar la característica externa (Fenotipo) que presenta cada individuo en cada generación pero, ¿podríamos decir lo mismo a la hora de determinar sus características genéticas (Genotipo)? En el caso de los genes que manifiestan herencia dominante, no existe ninguna diferencia aparente entre los individuos heterocigóticos (Aa) y los homocigóticos (AA), pues ambos individuos presentan un fenotipo amarillo. 4
  • 5. El cruzamiento de prueba o retrocruza sirve para diferenciar el individuo homocigoto del heterocigótico y consiste en cruzar el fenotipo dominante (proveniente, por ejemplo, de un individuo de la F1) con la variedad homocigota recesiva (aa):  Si es homocigótico, toda la descendencia será igual (Figura 4).  Si es heterocigótico, en la descendencia volverá a aparecer el carácter recesivo en una proporción del 50% (Figura 5). 50% Híbrido (Aa) 50% Homocigoto recesivo (aa) Ejercicios (Herencia de un carácter) 1. Juan tiene un gato negro llamado Sam. Cuando Juan cruza a Sam con una hembra blanca, obtiene una camada de ½ de gatitos blancos y ½ de gatitos negros, al cruzar estos gatitos negros entre ellos, originan ¾ de gatitos negros y ¼ de gatitos blancos. Al respecto, conteste a) ¿Cuál es el genotipo del gato Sam y la hembra blanca? b) ¿Cuál es el genotipo de los gatitos negros, hijos de Sam y la gata blanca? 5
  • 6. 2. En los pepinos, el color naranja de la fruta (R) es dominante sobre el color crema (r). Una planta de pepinos homocigótica para las frutas color naranja se cruza con una planta homocigótica para las frutas color crema. Se cruza la F 1 consigo misma para producir la F2. Al respecto, conteste a) ¿Cuáles son los genotipos de los padres homocigotos? b) ¿Cuál es el genotipo de F1? c) Al cruzar F1 consigo misma, ¿cuál es la proporción genotípica y fenotípica de F2? d) Es correcto plantear que en F2: Hay un 50% de homocigotos y un 50% de heterocigotos. Un 75% porta el gen recesivo. Un 75% porta el gen dominante. 3. Una mujer presenta un tipo de enanismo llamado acondroplasia, y está determinada por el gen dominante E. El padre de esta mujer también presenta enanismo, y la madre tiene estatura normal. ¿Cuáles son los genotipos más probables del padre, la madre y la mujer? 6
  • 7. Gregor Mendel publicó los resultados de sus estudios genéticos con la arveja en 1866 y de este modo estableció los fundamentos de la genética moderna. En su trabajo, Mendel propuso algunos principios genéticos básicos. Uno de ellos se conoce como el Principio de Segregación. El encontró que de cualquier progenitor solo una forma alélica de un gen es transmitida a la descendencia a través de los gametos. Por ejemplo, una planta que tiene un factor (gen) para la semilla lisa y también uno para la semilla rugosa deberá transmitir a su descendencia solo uno de los dos alelos a través de un gameto. Mendel no sabía nada de cromosomas o de la meiosis ya que esto no había sido aún descubierto. Actualmente se sabe que la base física de este principio está en la primera anafase meiótica donde los cromosomas homólogos se segregan o separan uno del otro. Si el gen para la semilla lisa está en un cromosoma y su forma alélica para la semilla rugosa está en su homólogo, resulta claro que los dos alelos no pueden encontrarse normalmente en el mismo gameto. Anafase I Meiótica Un organismo diploide posee dos alelos ubicados en diferentes cromosomas homólogos. 7
  • 8. Segunda ley de Mendel o de la distribución independiente (Dihibridismo) Enunciado de la ley: “Los factores determinantes de los distintos caracteres se combinan independientemente unos con otros segregando al azar en los gametos resultantes”. Esta ley no es tan universal como la ley de la segregación, porque se aplica a los genes que se ubican en cromosomas distintos (no homólogos), pero no necesariamente a los que se ubican en el mismo cromosoma (ligados). Sin embargo es correcto decir que los cromosomas se distribuyen en forma independiente durante la formación de los gametos (permutación cromosómica), de la misma manera que los hacen dos genes cualquiera en pares de cromosomas no homólogos. El experimento de Mendel: cruzó plantas de guisantes de semilla amarilla y lisa con plantas de semilla verde y rugosa (Homocigóticas para los dos caracteres) (Figura 6). P X AABB aabb Gametos AB ab F1 AaBb Figura 6. Las semillas obtenidas en este cruzamiento eran todas amarillas y lisas, cumpliéndose así la primera ley para cada uno de los caracteres considerados, y revelándonos también que los alelos dominantes para esos caracteres son los que determinan el color amarillo y la forma lisa. Las plantas obtenidas y que constituyen la F1 son dihíbridas (AaBb). 8
  • 9. Las plantas de la F1 se cruzan entre sí, teniendo en cuenta los gametos que formarán cada una de las plantas (Figura 7). Se puede apreciar que los alelos de los distintos genes se transmiten con independencia unos de otros, ya que en la segunda generación filial F2 aparecen guisantes amarillos y rugosos y otros que son verdes y lisos, combinaciones no encontradas ni en la generación parental (P), ni en la filial primera (F1). Los resultados obtenidos para cada uno de los caracteres considerados por separado, responden a la segunda ley (Figura 8). F1 Aa Bb A a B b AB Ab aB ab Gametos posibles Figura 7. Gametos que formará el individuo dihíbrido (AaBb) de la F1. Interpretación del experimento: Los resultados de los experimentos de la segunda ley refuerzan el concepto de que los genes son independientes entre sí, que no se mezclan ni desaparecen generación tras generación. Para esta interpretación fue providencial la elección de los caracteres, pues estos resultados no se cumplen siempre, sino solamente en el caso de que los dos caracteres a estudiar estén regulados por genes que se encuentran en distintos cromosomas. 9
  • 10. 9/16 3/16 3/16 1/16 A_B_ A_bb aaB_ aabb Figura 8. Proporciones fenotípicas resultantes de una cruza entre dos individuos dihíbridos (AaBb). Cruzamiento de prueba Al hacer un cruzamiento de prueba a un dihíbrido (de la F1) se obtiene una descendencia representada por 4 fenotipos distintos que siguen una proporción fenotípica de 25% cada uno. 1 : 1 : 1 : 1 Figura 9. Cruce de prueba dihíbrido. 10
  • 11. Ejercicios (Herencia de dos caracteres) En las arvejas, la flor púrpura (P) es dominante sobre el color blanco (p), y el tamaño alto de la planta (T) es dominante sobre la enana (t). a) Se cruzan plantas homocigóticas de flores púrpuras y enanas, con plantas homocigóticas de flores blancas y altas. ¿cómo es el genotipo y fenotipo de la descendencia F1? b) Al cruzar descendientes de F1 entre sí, se originan en F2 640 plantas de arvejas. Al respecto, conteste ¿Cuántos descendientes serán doble homocigotos? ¿Cuántos descendientes serán doble heterocigotos? La proporción de los siguientes fenotipos será:  Flor púrpura y altas.  Flor púrpura y enanas.  Flor blanca y altas.  Flor blanca y enanas. 11
  • 12. 2. EL albinismo es una enfermedad recesiva autosómica (a), y la miopía es una enfermedad dominante autosómica (M), señale la descendencia en los siguientes cruces: a) Hombre albino, miope heterocigoto x mujer pigmentada homocigota, miope heterocigota. b) Hombre albino, miope heterocigoto x mujer pigmentada heterocigota y visión normal. c) Hombre albino, miope heterocigoto x mujer pigmentada homocigota y visión normal. 3. Si en cruzamiento se obtienen los siguientes resultados: 25% planta alta de hojas largas. 25% planta alta de hojas recortadas. 25% planta enana de hojas largas. 25% planta enana de hojas recortadas a) El genotipo más probable de sus padres será: b) ¿Cómo se denomina este tipo de cruce? 12
  • 13. El Principio de la distribución independiente de Mendel, establece que la segregación de un par de factores ocurre independientemente de la de cualquier otro par. Por ejemplo, en un par de cromosomas homólogos están los alelos para el color de la semilla: amarilla y verde y en el otro par de homólogos están los alelos para la forma de la misma: lisa y rugosa. A: amarilla a: verde B: lisa b: rugosa La segregación de los alelos para el color de la semilla ocurre independientemente de la segregación de los alelos para la forma, porque cada par de homólogos se comporta como una unidad independiente durante la meiosis. Además debido a que la orientación de los bivalentes en la primera placa metafásica es completamente al azar, cuatro combinaciones de factores pueden encontrarse en los productos meióticos: amarilla-lisa amarilla-rugosa verde-lisa verde-rugosa En la actualidad se sabe que esto es cierto solo para los loci localizados en cromosomas homólogos distintos y no para los genes ligados; que se estudiarán a continuación. Genes ligados 13
  • 14. 3. GENES LIGADOS Cuando dos o más genes se encuentran en el mismo cromosoma, se dice que están ligados, pueden estarlo en los autosomas o en los sexuales. Los genes que están en el mismo cromosoma tienden a permanecer juntos durante la formación de gametos, por lo tanto, los resultados de los cruzamientos de prueba de individuos dihíbridos producen resultados diferentes. Los genes que están en cromosomas homólogos diferentes se distribuyen de manera independiente, por lo que los resultados de los cruzamientos de prueba de dihíbridos dan una proporción de 1:1:1:1 1 : 1 : 1 : 1 Figura 10. Cruce de prueba cuando los genes están en diferentes pares de homólogos. En cambio, cuando los genes están ligados no se distribuyen de manera independiente, sino que tienden a permanecer juntos en las mismas combinaciones en las que se encontraban en los progenitores, de esta manera los resultados de cruzamientos de prueba de individuos dihíbridos con genes ligados da por resultado una proporción de 1:1. 1 : 1 Figura 11. Cruce de prueba cuando los genes están ligados. 14
  • 15. Recombinación entre genes ligados En la progenie de un cruzamiento dihíbrido, las desviaciones importantes de una proporción 1:1:1:1 deben considerarse como evidencia de ligamientos sin embargo, los genes ligados no siempre permanecen juntos, debido a que las cromátidas no hermanas (homólogas) pueden intercambiar segmentos de longitud variables durante la profase meiótica. No olvidar que los cromosomas homólogos se aparean e intercambian segmentos durante el crossing-over, por lo que producen gametos con combinaciones únicas. Figura 12. (a), un par de cromosomas homólogos con genes ligados están iniciando un entrecruzamiento. (b), el par de cromosomas homólogos ha terminado el entrecruzamiento y los genes ligados se han separado. (c), se presentan los cromosomas resultantes una vez terminada la segunda división meiótica, los cromosomas parentales se encuentran a los extremos y los recombinantes al centro. Los productos meióticos AB y ab tienen los genes ligados en la misma forma que en los cromosomas parentales. Los otros dos productos meióticos Ab y aB resultantes del entrecruzamiento han recombinado las relaciones de ligamiento originales de los progenitores en nuevas formas llamadas recombinantes. La frecuencia con que se produce un entrecruzamiento (quiasma) entre dos loci genéticos tiene una probabilidad característica, mientras más alejados se encuentren dos genes en un cromosoma, mayor es la oportunidad para que se produzca un entrecruzamiento entre ellos, en cambio cuando los genes están más cercanos hay una probabilidad menor de entrecruzamiento. Estas probabilidades son útiles para predecir las proporciones de gametos parentales que se esperan que se formen a partir de un genotipo dado. El porcentaje de gametos recombinantes formados a partir de un genotipo dado, es un reflejo directo de la frecuencia con la cual se forman entrecruzamientos entre los genes en cuestión. De todas maneras aunque exista crossing-over, al realizar un cruce de prueba de un dihíbrido con genes ligados (cruzamiento entre un dihíbrido y un padre recesivo), la proporción fenotípica de la descendencia no será 1:1:1:1, sino que será siempre mayor la proporción de descendencia con fenotipos parentales, como por ejemplo: Amarillas lisas 40% Amarillas rugosas 10% Verdes lisas 10% Verdes rugosas 40% 15
  • 16. GLOSARIO Alelos: cada una de las alternativas que puede tener un gen o formas alternas de un gen, que ocupan el mismo locus (lugar) en cada cromosoma homólogo. Autosoma: Cualquier cromosoma que no sea un cromosoma sexual. Los seres humanos tienen en sus células 22 pares de autosomas y un par de cromosomas sexuales. Cromosoma: La estructura que lleva los genes. Los cromosomas eucarióticos son filamentos o bastones de cromatina que aparecen contraídos durante la mitosis y la meiosis y que en otros momentos están contenidos en un núcleo. Los cromosomas procarióticos consisten en un círculo de DNA con el que se asocian varias proteínas. Los cromosomas virales son moléculas lineales o circulares de DNA o RNA. Cromosomas homólogos: Una de las dos copias de un determinado cromosoma de una célula diploide, derivando cada copia de cada uno de los padres. Genes: Unidades hereditarias que conforman los cromosomas. Estos segmentos específicos de DNA controlan las estructuras y funciones celulares, también se define como unidad funcional de la herencia. Secuencia de bases de DNA que usualmente codifican para una secuencia polipeptídica de aminoácidos Genotipo: constitución genética o conjunto de genes que posee un individuo. Heterocromosoma: corresponden a los cromosomas sexuales (diferentes) X e Y, los cuales determinan el sexo del individuo. Fenotipo: es el resultado de dos fuerzas; los genes heredados y la acción del medio ambiente que determina la posibilidad que el gen se exprese o no. Fenotipo = Genotipo+ Ambiente. Homocigoto: significa que posee dos copias idénticas de ese gen para un rasgo dado en los dos cromosomas homólogos, puede ser dominante AA o recesivo aa. Heterocigoto o Híbrido: es cuando un individuo tiene un alelo dominante y un alelo recesivo en los cromosomas homólogos (Aa) Segregación: separación de cromosomas homólogos durante la anafase meiótica. Generación Filial: Generación de individuos productos de cruzamientos. La primera generación se denomina F1, la segunda generación F2 y así sucesivamente. Son relativos a la generación parental. Genes alelos: Par de genes que actúan sobre una misma característica en un individuo, estos se ubican en el mismo sitio físico pero en distintos cromosomas homólogos, por ejemplo; el color de las semillas de arveja amarillo y verde, estos pares de genes se designan comúnmente por letras como AA, Aa y aa. Gen dominante: Es aquel gen que siempre se expresa ya sea en su forma heterocigota Aa, como en su forma homocigota AA. Gen recesivo: Es aquel que solo logra expresarse cuando se encuentra en forma homocigota recesiva aa. 16
  • 17. Preguntas de selección múltiple 1. Se cruza un individuo heterocigoto con otro homocigoto recesivo. Al respecto, es correcto afirmar que I) todos los descendientes portan el alelo recesivo. II) el 50% son homocigotos. III) el 50% porta el alelo dominante. A) Solo I. B) Solo II. C) Solo III. D) Solo I y II. E) I, II y III. 2. Se cruzan gatos con el mismo genotipo y fenotipo y originan una camada de 6 gatos negros y 2 blancos. Al respecto, es correcto afirmar que los I) progenitores son heterocigotos. II) gatos blancos de la camada son homocigotos recesivos. III) los gatos negros de la camada necesariamente tienen el genotipo de los padres. A) Solo I. B) Solo II. C) Solo III. D) Solo I y II. E) I, II y III. 3. El número de tipos de gametos para un genotipo dado, puede ser calculado mediante la fórmula 2n, donde n representa el número de alelos distintos. Entonces un individuo de genotipo AABbCCDDEe, producirá el siguiente número de gametos diferentes. A) 2. B) 4. C) 8. D) 16. E) 32. 4. En la oveja, la lana brillante (L) es producida por un alelo que es dominante sobre el alelo para la lana normal. Una oveja hembra adulta con lana brillante se aparea con un macho adulto de lana normal y en la primera camada resultante se obtienen solo ovejas de lana brillante. A partir de estos datos se puede afirmar correctamente que el genotipo I) del macho adulto es hibrido. II) de la camada es 100% heterocigoto. III) de la hembra es homocigoto dominante. A) Solo I. B) Solo II. C) Solo III. D) Solo I y III. E) Solo II y III. 17
  • 18. 5. En los ratones, un alelo para los ojos color damasco es recesivo respecto del marrón. En un locus que se distribuye en forma independiente, un alelo para el color tostado del pelaje es recesivo respecto del pelaje negro. Se cruza un ratón que es homocigótico para los ojos marrones y para el color del pelaje negro, con otro que posee ojos de color damasco y pelaje tostado. Los F1 resultantes se cruzan entre sí para producir la F2. En una camada de treinta y dos ratones F2. ¿Cuántos serán de pelaje color tostado y de ojos marrones? A) 9 B) 6 C) 3. D) 2. E) 1. 6. En los seres humanos, la alcaptonuria es una alteración metabólica en la cual las personas afectadas producen orina negra y problemas neurológicos. La alcaptonuria está determinada por un alelo (a) que es recesivo respecto del alelo para el metabolismo normal (A). Sally tiene un metabolismo normal, pero su hermano tiene alcaptonuria. El padre de Sally tiene alcaptonuria y su madre tiene un metabolismo normal. Respecto a los genotipo de la familia es correcto señalar que I) Sally posee el alelo recesivo. II) la madre de Sally es heterocigota. III) el hermano y el padre de Sally son homocigotos dominantes. A) Solo I. B) Solo II. C) Solo III. D) Solo I y II. E) Solo I y III. 7. En los cobayos, el alelo para el pelaje negro (B) es dominante sobre el alelo para el marrón (b). Se cruza un cobayo negro con uno marrón y producen en F 1 cinco cobayos F1 negros y seis marrones. Si los cobayos negros F1 se cruzaran con cobayos negros homocigotos, la descendencia esperada seria de un I) 100 % de cobayos de pelaje negro. II) 50 % de homocigotos y un 50% de heterocigotos. III) 75% de cobayos de pelaje negro y un 25 % de cobayos de pelaje marrón. A) Solo I. B) Solo II. C) Solo III. D) Solo I y II. E) Solo II y III. 8. En las arvejas de Mendel, el color de las semillas está codificado por un gen con un alelo amarillo dominante y otro alelo verde recesivo. Si en un cruce se obtuvo una cantidad de 118 semillas amarillas y 42 semillas verdes, el genotipo más probable de los progenitores es A) AA x aa B) AA x Aa C) Aa x aa D) Aa x Aa E) aa x aa 18
  • 19. 9. ¿Cuál(es) de las siguientes alternativas completa(n) correctamente el siguiente enunciado? “La relación fenotípica 9 : 3 : 3 : 1 es característica de la generación F 2 de un cruzamiento dihíbrido con dominancia, en el cual I) cada una de las características está determinada por un par de genes autosómicos. II) se producen cuatro tipos de gametos con la misma frecuencia en ambos sexos. III) la segregación de un par de genes ocurre independiente de cualquier otro. Es (son) correcta(s) A) solo I. B) solo II. C) solo III. D) solo I y II. E) I, II y III. 10. Los cuyes de pelaje negro y áspero, dominan sobre los de pelaje blanco y suave. Si al cruzar ejemplares puros, la primera generación, es 100% dihíbrida, la probabilidad de que en la segunda generación aparezcan cuyes blancos y suaves es de A) 6.25 % B) 12.50 % C) 25.00 % D) 50.00 % E) 75.00 % 11. En humanos los gemelos constituyen un buen modelo de estudio ya que A) permite saber el efecto del fenotipo sobre el genotipo. B) es posible estudiar el efecto del ambiente sobre los homocigotos. C) como ambos tienen igual genotipo es más fácil entender el efecto del ambiente. D) como ambos tiene el mismo sexo es más fácil comprender la herencia ligada al sexo. E) permite obtener clones de un mismo genotipo y con ello entender mejor las leyes de la herencia. 12. Sobre el genotipo y fenotipo, es correcto afirmar que el I) efecto del ambiente es producido principalmente sobre los genes dominantes que sobre genes recesivos. II) mismo ambiente influye de manera tal que frente a un mismo genotipo se puede manifestar con diferentes fenotipos. III) genotipo representa todos los genes responsables que fabrican las proteínas, los lípidos y los carbohidratos que requiere el organismo de un ser vivo. A) Solo I. B) Solo III. C) Solo I y II. D) Solo II y III. E) I, II y III. 19
  • 20. 13. En la herencia de una enfermedad dominante se cumple necesariamente que A) no nacerán la mitad de los individuos. B) todo individuo afectado tiene al menos un progenitor afectado. C) todo progenitor afectado genera descendientes afectados y normales. D) la enfermedad puede aparecer en los descendientes de dos personas normales. E) solo si ambos progenitores están afectados, sus descendientes también lo están. 14. Para que al menos un hijo presente un carácter recesivo, los genotipos de los progenitores deben ser I) ambos heterocigotos. II) uno heterocigoto y el otro homocigoto recesivo. III) uno homocigoto dominante y el otro heterocigoto. A) Solo I. B) Solo II. C) Solo III. D) Solo I y II. E) Solo I y III. 15. Al cruzar un dihomocigoto dominante, con un dihíbrido es correcto esperar una descendencia I) 100% dominante. II) 75% dominante y 25% recesivos. III) con un 25% de dihomocigotos. A) Solo I. B) Solo II. C) Solo III. D) Solo I y III. E) Solo II y III. RESPUESTAS Preguntas 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Claves E D B E B D D D E A C B B D D DMDO-BM30 Puedes complementar los contenidos de esta guía visitando nuestra Web http://www.pedrodevaldivia.cl/ 20