SlideShare una empresa de Scribd logo
1 de 26
DIPLOMADO EN PRODUCCIÓN Y USOS DEL HIDRÓGENO
Modulo 13 : Consideraciones económicas en la implementación
Carlos Andrés Vasco Correa
Economista, Docente-Investigador en Microeconomía Aplicada, economía ambiental y de la energía
Departamento de Economía
Universidad de Antioquia
Julio 8 de 2021
carlos.vasco@udea.edu.co
Clasificación A1 MinCiencias
2
Contenido
Carlos Andrés Vasco Correa
DIPLOMADO: Producción y Usos del Hidrógeno Modulo 13: Consideraciones económicas en la implementación
1
2
3
4
Metodología de Costos Nivelados
Competitividad del Hidrógeno
Modelación Determinística y Estocástica
Aplicaciones prácticas
3
LCOE - Costos Nivelados
Carlos Andrés Vasco Correa
DIPLOMADO: Producción y Usos del Hidrógeno Modulo 13: Consideraciones económicas en la implementación
Life Cycle Costing (LCC)
LCC is an important method to evaluate the total cost of a product or a system over its given lifetime
• Define the cost elements;
• Define the cost structure;
• Establish cost estimating relationships;
• Establish the method of LCC formulation.
Levelized Cost of Hydrogen (LCOH)
In is the initial investment cost for year n, Mn is the maintenance cost in year n, Fn is the fuel cost in year
n, En is the energy generation in year n, i is the discount rate and N is the lifetime.
The LCOE method is a valuable tool when comparing different case studies and is not limited to renewable
energy sources but has been used widely to assess the cost of hydrogen.
Viktorsson, L., Heinonen, J., Skulason, J., & Unnthorsson, R. (2017). A Step towards the Hydrogen Economy—A Life Cycle Cost Analysis of A Hydrogen Refueling Station. Energies, 10(6), 763.
https://doi.org/10.3390/en10060763
4
LCOE - Costos Nivelados
Carlos Andrés Vasco Correa
DIPLOMADO: Producción y Usos del Hidrógeno Modulo 13: Consideraciones económicas en la implementación
Life Cycle Costing (LCC) for Hydrogen
where Cinv is the investment cost, Cwe is the Water Electrolyzer cost, Cc is the compressor cost, Cs
is the storage unit cost, Cd is the dispenser cost and Cmisc is miscellaneous costs or all other costs
that were connected to the station (certification and the preparation costs).
where i is the nominal discount rate and n is the economic lifetime of the station.
The annualized, a, investment costs are therefore
Viktorsson, L., Heinonen, J., Skulason, J., & Unnthorsson, R. (2017). A Step towards the Hydrogen Economy—A Life Cycle Cost Analysis of A Hydrogen Refueling Station. Energies, 10(6), 763.
https://doi.org/10.3390/en10060763
Capital Recovery Factor (CRF)
5
LCOE - Costos Nivelados
Carlos Andrés Vasco Correa
DIPLOMADO: Producción y Usos del Hidrógeno Modulo 13: Consideraciones económicas en la implementación
Life Cycle Costing (LCC) for Hydrogen
The operational and maintenance (O&M) costs were divided between fixed and variable expenses.
The annual fixed O&M is denoted by:
where Cmc is the maintenance cost for the compressor, Ccont is the service contract cost and Crep,a is the
annualized replacement cost.
Similarly, the variable O&M is presented by
where Ce is the annual electricity cost and Cw is the annual water cost
Viktorsson, L., Heinonen, J., Skulason, J., & Unnthorsson, R. (2017). A Step towards the Hydrogen Economy—A Life Cycle Cost Analysis of A Hydrogen Refueling Station. Energies, 10(6), 763.
https://doi.org/10.3390/en10060763
6
LCOE - Costos Nivelados
Carlos Andrés Vasco Correa
DIPLOMADO: Producción y Usos del Hidrógeno Modulo 13: Consideraciones económicas en la implementación
Life Cycle Costing (LCC) for Hydrogen
The annualized LCC can therefore be expressed by
After the annualized LCC have been calculated the LCOH can be assessed by dividing the
annualized LCC noted as CLCC,a by the amount of produced hydrogen (kg H2) noted as EH2,a
LCOH (USD/ Kg H2) =
Viktorsson, L., Heinonen, J., Skulason, J., & Unnthorsson, R. (2017). A Step towards the Hydrogen Economy—A Life Cycle Cost Analysis of A Hydrogen Refueling Station. Energies, 10(6), 763.
https://doi.org/10.3390/en10060763
7
LCOE - Costos Nivelados
Carlos Andrés Vasco Correa
DIPLOMADO: Producción y Usos del Hidrógeno Modulo 13: Consideraciones económicas en la implementación
Fuente: Tecnologías del Hidrógeno y Perspectivas para Chile 2019 - 4e Chile
8
Competitividad del Hidrógeno
Carlos Andrés Vasco Correa
DIPLOMADO: Producción y Usos del Hidrógeno Modulo 13: Consideraciones económicas en la implementación
Hydrogen Council (2021) “The Path to Hydrogen
Competitiveness: A Cost Perspective” hydrogencouncil.com.
9
Carlos Andrés Vasco Correa
DIPLOMADO: Producción y Usos del Hidrógeno Modulo 13: Consideraciones económicas en la implementación
Competitividad del Hidrógeno
Hydrogen Council (2021) “The Path to Hydrogen Competitiveness: A Cost Perspective” hydrogencouncil.com.
10
Carlos Andrés Vasco Correa
DIPLOMADO: Producción y Usos del Hidrógeno Modulo 13: Consideraciones económicas en la implementación
Competitividad del Hidrógeno
Hydrogen Council (2021) “The Path to Hydrogen Competitiveness: A Cost Perspective” hydrogencouncil.com.
11
Competitividad del Hidrógeno
Hydrogen Council (2021) “The Path to Hydrogen Competitiveness: A Cost Perspective” hydrogencouncil.com.
12
Carlos Andrés Vasco Correa
DIPLOMADO: Producción y Usos del Hidrógeno Modulo 13: Consideraciones económicas en la implementación
Competitividad del Hidrógeno
Hydrogen Council (2021) “The Path to Hydrogen Competitiveness: A Cost Perspective” hydrogencouncil.com.
13
Carlos Andrés Vasco Correa
DIPLOMADO: Producción y Usos del Hidrógeno Modulo 13: Consideraciones económicas en la implementación
Competitividad del Hidrógeno
IRENA (2020), Green Hydrogen Cost Reduction: Scaling up Electrolysers to Meet the 1.5⁰C Climate Goal, International Renewable Energy Agency,
Abu Dhabi.
14
Carlos Andrés Vasco Correa
DIPLOMADO: Producción y Usos del Hidrógeno Modulo 13: Consideraciones económicas en la implementación
Competitividad del Hidrógeno
Nguyen, T., Abdin, Z., Holm, T., & Mérida, W. (2019). Grid-connected hydrogen production via large-scale water electrolysis. Energy Conversion and Management, 200, 112108.
https://doi.org/10.1016/j.enconman.2019.112108
Grid-connected hydrogen production via large-scale water electrolysis
15
Carlos Andrés Vasco Correa
DIPLOMADO: Producción y Usos del Hidrógeno Modulo 13: Consideraciones económicas en la implementación
Competitividad del Hidrógeno
Nguyen, T., Abdin, Z., Holm, T., & Mérida, W. (2019). Grid-
connected hydrogen production via large-scale water
electrolysis. Energy Conversion and Management, 200,
112108. https://doi.org/10.1016/j.enconman.2019.112108
CANADA: Grid-connected hydrogen production via large-scale water
electrolysis
16
Carlos Andrés Vasco Correa
DIPLOMADO: Producción y Usos del Hidrógeno Modulo 13: Consideraciones económicas en la implementación
Competitividad del Hidrógeno
Hydrogen Council (2021) “The Path to Hydrogen Competitiveness: A Cost Perspective” hydrogencouncil.com.
17
Carlos Andrés Vasco Correa
DIPLOMADO: Producción y Usos del Hidrógeno Modulo 13: Consideraciones económicas en la implementación
Competitividad del Hidrógeno
Hydrogen Council (2021) “The Path to Hydrogen Competitiveness:
A Cost Perspective” hydrogencouncil.com.
18
Carlos Andrés Vasco Correa
DIPLOMADO: Producción y Usos del Hidrógeno Modulo 13: Consideraciones económicas en la implementación
Competitividad del Hidrógeno
19
Carlos Andrés Vasco Correa
DIPLOMADO: Producción y Usos del Hidrógeno Modulo 13: Consideraciones económicas en la implementación
Competitividad del Hidrógeno
20
Carlos Andrés Vasco Correa
DIPLOMADO: Producción y Usos del Hidrógeno Modulo 13: Consideraciones económicas en la implementación
Competitividad: Ruta Colombia
Fuente: Procolombia (2021)
21
Carlos Andrés Vasco Correa
DIPLOMADO: Producción y Usos del Hidrógeno Modulo 13: Consideraciones económicas en la implementación
Competitividad: Ruta Colombia
22
Carlos Andrés Vasco Correa
DIPLOMADO: Producción y Usos del Hidrógeno Modulo 13: Consideraciones económicas en la implementación
Competitividad: Ruta Colombia
23
Modelación Determinística y Estocástica
Platon, V., & Constantinescu, A. (2014). Monte Carlo Method in Risk Analysis for Investment Projects. Procedia Economics and Finance, 15, 393–400.
https://doi.org/10.1016/s2212-5671(14)00463-8
24
Modelación Determinística y Estocástica
25
Modelación Determinística
26
Modelación Estocástica
Simulaciones Montecarlo Simulaciones en HOMER Pro
US DOE – National
Renewable Energy Lab

Más contenido relacionado

Similar a Hidrogeno Verde Diplomado UdeA.pptx

2021-Internal combustion engines and biofuels Examining why this robust combi...
2021-Internal combustion engines and biofuels Examining why this robust combi...2021-Internal combustion engines and biofuels Examining why this robust combi...
2021-Internal combustion engines and biofuels Examining why this robust combi...AlejandroBohorquez20
 
01 Introduccion a la eficiencia energetica en Edificacion(2).pptx
01 Introduccion a la eficiencia energetica en Edificacion(2).pptx01 Introduccion a la eficiencia energetica en Edificacion(2).pptx
01 Introduccion a la eficiencia energetica en Edificacion(2).pptxseblibro
 
Bogotá, escenario óptimo para un Zero Energy District
Bogotá, escenario óptimo para un Zero Energy DistrictBogotá, escenario óptimo para un Zero Energy District
Bogotá, escenario óptimo para un Zero Energy DistrictWorld Office Forum
 
Sesion 8.4_Vasilis Fthenakis_Columbia University.pdf
Sesion 8.4_Vasilis Fthenakis_Columbia University.pdfSesion 8.4_Vasilis Fthenakis_Columbia University.pdf
Sesion 8.4_Vasilis Fthenakis_Columbia University.pdfdfdfdf7
 
Debbie Weyl
Debbie WeylDebbie Weyl
Debbie WeylCCCS
 
Analisis y diagnostico de la eficiencia energetica
Analisis y diagnostico de la eficiencia energeticaAnalisis y diagnostico de la eficiencia energetica
Analisis y diagnostico de la eficiencia energeticaFarid Mokhtar Noriega
 
Bolet_n_03_EE_Aire_Acondicionado(Autosaved).pdf
Bolet_n_03_EE_Aire_Acondicionado(Autosaved).pdfBolet_n_03_EE_Aire_Acondicionado(Autosaved).pdf
Bolet_n_03_EE_Aire_Acondicionado(Autosaved).pdfgerardoludwig1
 
E 3 anteproyecto
E 3 anteproyectoE 3 anteproyecto
E 3 anteproyectoguest226607
 
E 3 anteproyecto
E 3 anteproyectoE 3 anteproyecto
E 3 anteproyectoguest226607
 
E 3 anteproyecto
E 3 anteproyectoE 3 anteproyecto
E 3 anteproyectoguest226607
 
Low emision strategy presentation
Low emision strategy presentationLow emision strategy presentation
Low emision strategy presentationAlejandro Espin
 
Dialnet-DesarrolloDelPrototipoDeUnHidrogeneradorElectricoC-5980557 (1).pdf
Dialnet-DesarrolloDelPrototipoDeUnHidrogeneradorElectricoC-5980557 (1).pdfDialnet-DesarrolloDelPrototipoDeUnHidrogeneradorElectricoC-5980557 (1).pdf
Dialnet-DesarrolloDelPrototipoDeUnHidrogeneradorElectricoC-5980557 (1).pdfPaulaDiazMancilla
 
Tecnologías energéticas - Escenarios hasta el año 2050
Tecnologías energéticas - Escenarios hasta el año 2050Tecnologías energéticas - Escenarios hasta el año 2050
Tecnologías energéticas - Escenarios hasta el año 2050GreenFacts
 
Presentacion de hidrogeno como transportarlo.pdf
Presentacion de hidrogeno como transportarlo.pdfPresentacion de hidrogeno como transportarlo.pdf
Presentacion de hidrogeno como transportarlo.pdfHenryApaza12
 

Similar a Hidrogeno Verde Diplomado UdeA.pptx (20)

2021-Internal combustion engines and biofuels Examining why this robust combi...
2021-Internal combustion engines and biofuels Examining why this robust combi...2021-Internal combustion engines and biofuels Examining why this robust combi...
2021-Internal combustion engines and biofuels Examining why this robust combi...
 
01 Introduccion a la eficiencia energetica en Edificacion(2).pptx
01 Introduccion a la eficiencia energetica en Edificacion(2).pptx01 Introduccion a la eficiencia energetica en Edificacion(2).pptx
01 Introduccion a la eficiencia energetica en Edificacion(2).pptx
 
Bogotá, escenario óptimo para un Zero Energy District
Bogotá, escenario óptimo para un Zero Energy DistrictBogotá, escenario óptimo para un Zero Energy District
Bogotá, escenario óptimo para un Zero Energy District
 
Practica tema 5
Practica tema 5Practica tema 5
Practica tema 5
 
Sesion 8.4_Vasilis Fthenakis_Columbia University.pdf
Sesion 8.4_Vasilis Fthenakis_Columbia University.pdfSesion 8.4_Vasilis Fthenakis_Columbia University.pdf
Sesion 8.4_Vasilis Fthenakis_Columbia University.pdf
 
Debbie Weyl
Debbie WeylDebbie Weyl
Debbie Weyl
 
Proyecto generacion electrica
Proyecto generacion electricaProyecto generacion electrica
Proyecto generacion electrica
 
El_hidrogeno_como_combustible.pdf
El_hidrogeno_como_combustible.pdfEl_hidrogeno_como_combustible.pdf
El_hidrogeno_como_combustible.pdf
 
Analisis y diagnostico de la eficiencia energetica
Analisis y diagnostico de la eficiencia energeticaAnalisis y diagnostico de la eficiencia energetica
Analisis y diagnostico de la eficiencia energetica
 
Bolet_n_03_EE_Aire_Acondicionado(Autosaved).pdf
Bolet_n_03_EE_Aire_Acondicionado(Autosaved).pdfBolet_n_03_EE_Aire_Acondicionado(Autosaved).pdf
Bolet_n_03_EE_Aire_Acondicionado(Autosaved).pdf
 
E 3 anteproyecto
E 3 anteproyectoE 3 anteproyecto
E 3 anteproyecto
 
E 3 anteproyecto
E 3 anteproyectoE 3 anteproyecto
E 3 anteproyecto
 
E 3 anteproyecto
E 3 anteproyectoE 3 anteproyecto
E 3 anteproyecto
 
Low emision strategy presentation
Low emision strategy presentationLow emision strategy presentation
Low emision strategy presentation
 
Certificacion eficiencia energetica
Certificacion eficiencia energeticaCertificacion eficiencia energetica
Certificacion eficiencia energetica
 
Edificios verdes
Edificios verdesEdificios verdes
Edificios verdes
 
Dialnet-DesarrolloDelPrototipoDeUnHidrogeneradorElectricoC-5980557 (1).pdf
Dialnet-DesarrolloDelPrototipoDeUnHidrogeneradorElectricoC-5980557 (1).pdfDialnet-DesarrolloDelPrototipoDeUnHidrogeneradorElectricoC-5980557 (1).pdf
Dialnet-DesarrolloDelPrototipoDeUnHidrogeneradorElectricoC-5980557 (1).pdf
 
Tecnologías energéticas - Escenarios hasta el año 2050
Tecnologías energéticas - Escenarios hasta el año 2050Tecnologías energéticas - Escenarios hasta el año 2050
Tecnologías energéticas - Escenarios hasta el año 2050
 
Presentacion de hidrogeno como transportarlo.pdf
Presentacion de hidrogeno como transportarlo.pdfPresentacion de hidrogeno como transportarlo.pdf
Presentacion de hidrogeno como transportarlo.pdf
 
UPME, Dra. Angela Cadena
UPME, Dra. Angela CadenaUPME, Dra. Angela Cadena
UPME, Dra. Angela Cadena
 

Último

PLANEACION-Y-CONTROL-DE-UTILIDADES-.pptx
PLANEACION-Y-CONTROL-DE-UTILIDADES-.pptxPLANEACION-Y-CONTROL-DE-UTILIDADES-.pptx
PLANEACION-Y-CONTROL-DE-UTILIDADES-.pptxMiguelLoaiza5
 
Desempleo en Chile para el año 2022 según criterios externos
Desempleo en Chile para el año 2022 según criterios externosDesempleo en Chile para el año 2022 según criterios externos
Desempleo en Chile para el año 2022 según criterios externoscbocazvergara
 
Fichas de Letras para nivel primario buenísimo
Fichas de Letras para nivel primario buenísimoFichas de Letras para nivel primario buenísimo
Fichas de Letras para nivel primario buenísimoValentinaMolero
 
TEORIA DEL CONSUMIDOR.pptxxxxxxxxxxxxxxxxxxxxxxxx
TEORIA DEL CONSUMIDOR.pptxxxxxxxxxxxxxxxxxxxxxxxxTEORIA DEL CONSUMIDOR.pptxxxxxxxxxxxxxxxxxxxxxxxx
TEORIA DEL CONSUMIDOR.pptxxxxxxxxxxxxxxxxxxxxxxxxangelguillermo29
 
AUDITORÍA FINANCIERAS AL ELEMENTO 5 DEL PCGE
AUDITORÍA FINANCIERAS AL ELEMENTO 5 DEL PCGEAUDITORÍA FINANCIERAS AL ELEMENTO 5 DEL PCGE
AUDITORÍA FINANCIERAS AL ELEMENTO 5 DEL PCGELzaroLpezErcilioFlor
 
El rey que no amaba a los elefantes. Vida y caida de Juan Carlos I, el ultimo...
El rey que no amaba a los elefantes. Vida y caida de Juan Carlos I, el ultimo...El rey que no amaba a los elefantes. Vida y caida de Juan Carlos I, el ultimo...
El rey que no amaba a los elefantes. Vida y caida de Juan Carlos I, el ultimo...PEPONLU
 
Guia appto bancor para creditos inmobiliarios en Cordoba
Guia appto bancor para creditos inmobiliarios en CordobaGuia appto bancor para creditos inmobiliarios en Cordoba
Guia appto bancor para creditos inmobiliarios en Cordobassuser163013
 
TEMA: LA DEMANDA , LA OFERTA Y EL PUNTO DE EQUILIBRIO.pdf
TEMA: LA DEMANDA , LA OFERTA Y  EL PUNTO DE EQUILIBRIO.pdfTEMA: LA DEMANDA , LA OFERTA Y  EL PUNTO DE EQUILIBRIO.pdf
TEMA: LA DEMANDA , LA OFERTA Y EL PUNTO DE EQUILIBRIO.pdfJoseLuisCallisayaBau
 
PARADIGMA 1.docx paradicma g vmjhhhhhhhhhhhhhhhhhhhhhhh
PARADIGMA 1.docx paradicma g vmjhhhhhhhhhhhhhhhhhhhhhhhPARADIGMA 1.docx paradicma g vmjhhhhhhhhhhhhhhhhhhhhhhh
PARADIGMA 1.docx paradicma g vmjhhhhhhhhhhhhhhhhhhhhhhhangelorihuela4
 
Encuesta Expectativas - Informe Mayo 2024.pdf
Encuesta Expectativas - Informe Mayo 2024.pdfEncuesta Expectativas - Informe Mayo 2024.pdf
Encuesta Expectativas - Informe Mayo 2024.pdfEXANTE
 
Razon de liquidez, endeudamiento y rentabilidad y
Razon de liquidez, endeudamiento y rentabilidad yRazon de liquidez, endeudamiento y rentabilidad y
Razon de liquidez, endeudamiento y rentabilidad yAXELCESARBALDERRAMAM
 
Libro sobre el Lavado de Dinero en versión PDF
Libro sobre el Lavado de Dinero en versión PDFLibro sobre el Lavado de Dinero en versión PDF
Libro sobre el Lavado de Dinero en versión PDFJulietaArango1
 
1 PRESENTACION MERCADO DE COMPRAS PUBLICAS
1 PRESENTACION MERCADO DE COMPRAS PUBLICAS1 PRESENTACION MERCADO DE COMPRAS PUBLICAS
1 PRESENTACION MERCADO DE COMPRAS PUBLICAScamicarobur
 
EL PROCESO DE FISCALIZACION TRIBUTARIA .pptx
EL PROCESO DE FISCALIZACION TRIBUTARIA .pptxEL PROCESO DE FISCALIZACION TRIBUTARIA .pptx
EL PROCESO DE FISCALIZACION TRIBUTARIA .pptxgalvezedgar
 
Cuadro Comparativo selección proveedores
Cuadro Comparativo selección proveedoresCuadro Comparativo selección proveedores
Cuadro Comparativo selección proveedoresSofiaGutirrez19
 
tad22.pdf sggwhqhqt1vbwju2u2u1jwy2jjqy1j2jqu
tad22.pdf sggwhqhqt1vbwju2u2u1jwy2jjqy1j2jqutad22.pdf sggwhqhqt1vbwju2u2u1jwy2jjqy1j2jqu
tad22.pdf sggwhqhqt1vbwju2u2u1jwy2jjqy1j2jquiceokey158
 
flujogramadepoliconsultorio-policlínico-pampas
flujogramadepoliconsultorio-policlínico-pampasflujogramadepoliconsultorio-policlínico-pampas
flujogramadepoliconsultorio-policlínico-pampasJuan Rodrigez
 
Que son y los tipos de costos predeterminados
Que son y los tipos de costos predeterminadosQue son y los tipos de costos predeterminados
Que son y los tipos de costos predeterminadosLizet465114
 
LAS CULTURAS HIDRAULICAS EN BOLIVIA.pptx
LAS CULTURAS HIDRAULICAS EN BOLIVIA.pptxLAS CULTURAS HIDRAULICAS EN BOLIVIA.pptx
LAS CULTURAS HIDRAULICAS EN BOLIVIA.pptxinecpv
 

Último (20)

GESTIÓN DE LOS RECURSOS DEL PROYECTO.pdf
GESTIÓN DE LOS RECURSOS DEL PROYECTO.pdfGESTIÓN DE LOS RECURSOS DEL PROYECTO.pdf
GESTIÓN DE LOS RECURSOS DEL PROYECTO.pdf
 
PLANEACION-Y-CONTROL-DE-UTILIDADES-.pptx
PLANEACION-Y-CONTROL-DE-UTILIDADES-.pptxPLANEACION-Y-CONTROL-DE-UTILIDADES-.pptx
PLANEACION-Y-CONTROL-DE-UTILIDADES-.pptx
 
Desempleo en Chile para el año 2022 según criterios externos
Desempleo en Chile para el año 2022 según criterios externosDesempleo en Chile para el año 2022 según criterios externos
Desempleo en Chile para el año 2022 según criterios externos
 
Fichas de Letras para nivel primario buenísimo
Fichas de Letras para nivel primario buenísimoFichas de Letras para nivel primario buenísimo
Fichas de Letras para nivel primario buenísimo
 
TEORIA DEL CONSUMIDOR.pptxxxxxxxxxxxxxxxxxxxxxxxx
TEORIA DEL CONSUMIDOR.pptxxxxxxxxxxxxxxxxxxxxxxxxTEORIA DEL CONSUMIDOR.pptxxxxxxxxxxxxxxxxxxxxxxxx
TEORIA DEL CONSUMIDOR.pptxxxxxxxxxxxxxxxxxxxxxxxx
 
AUDITORÍA FINANCIERAS AL ELEMENTO 5 DEL PCGE
AUDITORÍA FINANCIERAS AL ELEMENTO 5 DEL PCGEAUDITORÍA FINANCIERAS AL ELEMENTO 5 DEL PCGE
AUDITORÍA FINANCIERAS AL ELEMENTO 5 DEL PCGE
 
El rey que no amaba a los elefantes. Vida y caida de Juan Carlos I, el ultimo...
El rey que no amaba a los elefantes. Vida y caida de Juan Carlos I, el ultimo...El rey que no amaba a los elefantes. Vida y caida de Juan Carlos I, el ultimo...
El rey que no amaba a los elefantes. Vida y caida de Juan Carlos I, el ultimo...
 
Guia appto bancor para creditos inmobiliarios en Cordoba
Guia appto bancor para creditos inmobiliarios en CordobaGuia appto bancor para creditos inmobiliarios en Cordoba
Guia appto bancor para creditos inmobiliarios en Cordoba
 
TEMA: LA DEMANDA , LA OFERTA Y EL PUNTO DE EQUILIBRIO.pdf
TEMA: LA DEMANDA , LA OFERTA Y  EL PUNTO DE EQUILIBRIO.pdfTEMA: LA DEMANDA , LA OFERTA Y  EL PUNTO DE EQUILIBRIO.pdf
TEMA: LA DEMANDA , LA OFERTA Y EL PUNTO DE EQUILIBRIO.pdf
 
PARADIGMA 1.docx paradicma g vmjhhhhhhhhhhhhhhhhhhhhhhh
PARADIGMA 1.docx paradicma g vmjhhhhhhhhhhhhhhhhhhhhhhhPARADIGMA 1.docx paradicma g vmjhhhhhhhhhhhhhhhhhhhhhhh
PARADIGMA 1.docx paradicma g vmjhhhhhhhhhhhhhhhhhhhhhhh
 
Encuesta Expectativas - Informe Mayo 2024.pdf
Encuesta Expectativas - Informe Mayo 2024.pdfEncuesta Expectativas - Informe Mayo 2024.pdf
Encuesta Expectativas - Informe Mayo 2024.pdf
 
Razon de liquidez, endeudamiento y rentabilidad y
Razon de liquidez, endeudamiento y rentabilidad yRazon de liquidez, endeudamiento y rentabilidad y
Razon de liquidez, endeudamiento y rentabilidad y
 
Libro sobre el Lavado de Dinero en versión PDF
Libro sobre el Lavado de Dinero en versión PDFLibro sobre el Lavado de Dinero en versión PDF
Libro sobre el Lavado de Dinero en versión PDF
 
1 PRESENTACION MERCADO DE COMPRAS PUBLICAS
1 PRESENTACION MERCADO DE COMPRAS PUBLICAS1 PRESENTACION MERCADO DE COMPRAS PUBLICAS
1 PRESENTACION MERCADO DE COMPRAS PUBLICAS
 
EL PROCESO DE FISCALIZACION TRIBUTARIA .pptx
EL PROCESO DE FISCALIZACION TRIBUTARIA .pptxEL PROCESO DE FISCALIZACION TRIBUTARIA .pptx
EL PROCESO DE FISCALIZACION TRIBUTARIA .pptx
 
Cuadro Comparativo selección proveedores
Cuadro Comparativo selección proveedoresCuadro Comparativo selección proveedores
Cuadro Comparativo selección proveedores
 
tad22.pdf sggwhqhqt1vbwju2u2u1jwy2jjqy1j2jqu
tad22.pdf sggwhqhqt1vbwju2u2u1jwy2jjqy1j2jqutad22.pdf sggwhqhqt1vbwju2u2u1jwy2jjqy1j2jqu
tad22.pdf sggwhqhqt1vbwju2u2u1jwy2jjqy1j2jqu
 
flujogramadepoliconsultorio-policlínico-pampas
flujogramadepoliconsultorio-policlínico-pampasflujogramadepoliconsultorio-policlínico-pampas
flujogramadepoliconsultorio-policlínico-pampas
 
Que son y los tipos de costos predeterminados
Que son y los tipos de costos predeterminadosQue son y los tipos de costos predeterminados
Que son y los tipos de costos predeterminados
 
LAS CULTURAS HIDRAULICAS EN BOLIVIA.pptx
LAS CULTURAS HIDRAULICAS EN BOLIVIA.pptxLAS CULTURAS HIDRAULICAS EN BOLIVIA.pptx
LAS CULTURAS HIDRAULICAS EN BOLIVIA.pptx
 

Hidrogeno Verde Diplomado UdeA.pptx

  • 1. DIPLOMADO EN PRODUCCIÓN Y USOS DEL HIDRÓGENO Modulo 13 : Consideraciones económicas en la implementación Carlos Andrés Vasco Correa Economista, Docente-Investigador en Microeconomía Aplicada, economía ambiental y de la energía Departamento de Economía Universidad de Antioquia Julio 8 de 2021 carlos.vasco@udea.edu.co Clasificación A1 MinCiencias
  • 2. 2 Contenido Carlos Andrés Vasco Correa DIPLOMADO: Producción y Usos del Hidrógeno Modulo 13: Consideraciones económicas en la implementación 1 2 3 4 Metodología de Costos Nivelados Competitividad del Hidrógeno Modelación Determinística y Estocástica Aplicaciones prácticas
  • 3. 3 LCOE - Costos Nivelados Carlos Andrés Vasco Correa DIPLOMADO: Producción y Usos del Hidrógeno Modulo 13: Consideraciones económicas en la implementación Life Cycle Costing (LCC) LCC is an important method to evaluate the total cost of a product or a system over its given lifetime • Define the cost elements; • Define the cost structure; • Establish cost estimating relationships; • Establish the method of LCC formulation. Levelized Cost of Hydrogen (LCOH) In is the initial investment cost for year n, Mn is the maintenance cost in year n, Fn is the fuel cost in year n, En is the energy generation in year n, i is the discount rate and N is the lifetime. The LCOE method is a valuable tool when comparing different case studies and is not limited to renewable energy sources but has been used widely to assess the cost of hydrogen. Viktorsson, L., Heinonen, J., Skulason, J., & Unnthorsson, R. (2017). A Step towards the Hydrogen Economy—A Life Cycle Cost Analysis of A Hydrogen Refueling Station. Energies, 10(6), 763. https://doi.org/10.3390/en10060763
  • 4. 4 LCOE - Costos Nivelados Carlos Andrés Vasco Correa DIPLOMADO: Producción y Usos del Hidrógeno Modulo 13: Consideraciones económicas en la implementación Life Cycle Costing (LCC) for Hydrogen where Cinv is the investment cost, Cwe is the Water Electrolyzer cost, Cc is the compressor cost, Cs is the storage unit cost, Cd is the dispenser cost and Cmisc is miscellaneous costs or all other costs that were connected to the station (certification and the preparation costs). where i is the nominal discount rate and n is the economic lifetime of the station. The annualized, a, investment costs are therefore Viktorsson, L., Heinonen, J., Skulason, J., & Unnthorsson, R. (2017). A Step towards the Hydrogen Economy—A Life Cycle Cost Analysis of A Hydrogen Refueling Station. Energies, 10(6), 763. https://doi.org/10.3390/en10060763 Capital Recovery Factor (CRF)
  • 5. 5 LCOE - Costos Nivelados Carlos Andrés Vasco Correa DIPLOMADO: Producción y Usos del Hidrógeno Modulo 13: Consideraciones económicas en la implementación Life Cycle Costing (LCC) for Hydrogen The operational and maintenance (O&M) costs were divided between fixed and variable expenses. The annual fixed O&M is denoted by: where Cmc is the maintenance cost for the compressor, Ccont is the service contract cost and Crep,a is the annualized replacement cost. Similarly, the variable O&M is presented by where Ce is the annual electricity cost and Cw is the annual water cost Viktorsson, L., Heinonen, J., Skulason, J., & Unnthorsson, R. (2017). A Step towards the Hydrogen Economy—A Life Cycle Cost Analysis of A Hydrogen Refueling Station. Energies, 10(6), 763. https://doi.org/10.3390/en10060763
  • 6. 6 LCOE - Costos Nivelados Carlos Andrés Vasco Correa DIPLOMADO: Producción y Usos del Hidrógeno Modulo 13: Consideraciones económicas en la implementación Life Cycle Costing (LCC) for Hydrogen The annualized LCC can therefore be expressed by After the annualized LCC have been calculated the LCOH can be assessed by dividing the annualized LCC noted as CLCC,a by the amount of produced hydrogen (kg H2) noted as EH2,a LCOH (USD/ Kg H2) = Viktorsson, L., Heinonen, J., Skulason, J., & Unnthorsson, R. (2017). A Step towards the Hydrogen Economy—A Life Cycle Cost Analysis of A Hydrogen Refueling Station. Energies, 10(6), 763. https://doi.org/10.3390/en10060763
  • 7. 7 LCOE - Costos Nivelados Carlos Andrés Vasco Correa DIPLOMADO: Producción y Usos del Hidrógeno Modulo 13: Consideraciones económicas en la implementación Fuente: Tecnologías del Hidrógeno y Perspectivas para Chile 2019 - 4e Chile
  • 8. 8 Competitividad del Hidrógeno Carlos Andrés Vasco Correa DIPLOMADO: Producción y Usos del Hidrógeno Modulo 13: Consideraciones económicas en la implementación Hydrogen Council (2021) “The Path to Hydrogen Competitiveness: A Cost Perspective” hydrogencouncil.com.
  • 9. 9 Carlos Andrés Vasco Correa DIPLOMADO: Producción y Usos del Hidrógeno Modulo 13: Consideraciones económicas en la implementación Competitividad del Hidrógeno Hydrogen Council (2021) “The Path to Hydrogen Competitiveness: A Cost Perspective” hydrogencouncil.com.
  • 10. 10 Carlos Andrés Vasco Correa DIPLOMADO: Producción y Usos del Hidrógeno Modulo 13: Consideraciones económicas en la implementación Competitividad del Hidrógeno Hydrogen Council (2021) “The Path to Hydrogen Competitiveness: A Cost Perspective” hydrogencouncil.com.
  • 11. 11 Competitividad del Hidrógeno Hydrogen Council (2021) “The Path to Hydrogen Competitiveness: A Cost Perspective” hydrogencouncil.com.
  • 12. 12 Carlos Andrés Vasco Correa DIPLOMADO: Producción y Usos del Hidrógeno Modulo 13: Consideraciones económicas en la implementación Competitividad del Hidrógeno Hydrogen Council (2021) “The Path to Hydrogen Competitiveness: A Cost Perspective” hydrogencouncil.com.
  • 13. 13 Carlos Andrés Vasco Correa DIPLOMADO: Producción y Usos del Hidrógeno Modulo 13: Consideraciones económicas en la implementación Competitividad del Hidrógeno IRENA (2020), Green Hydrogen Cost Reduction: Scaling up Electrolysers to Meet the 1.5⁰C Climate Goal, International Renewable Energy Agency, Abu Dhabi.
  • 14. 14 Carlos Andrés Vasco Correa DIPLOMADO: Producción y Usos del Hidrógeno Modulo 13: Consideraciones económicas en la implementación Competitividad del Hidrógeno Nguyen, T., Abdin, Z., Holm, T., & Mérida, W. (2019). Grid-connected hydrogen production via large-scale water electrolysis. Energy Conversion and Management, 200, 112108. https://doi.org/10.1016/j.enconman.2019.112108 Grid-connected hydrogen production via large-scale water electrolysis
  • 15. 15 Carlos Andrés Vasco Correa DIPLOMADO: Producción y Usos del Hidrógeno Modulo 13: Consideraciones económicas en la implementación Competitividad del Hidrógeno Nguyen, T., Abdin, Z., Holm, T., & Mérida, W. (2019). Grid- connected hydrogen production via large-scale water electrolysis. Energy Conversion and Management, 200, 112108. https://doi.org/10.1016/j.enconman.2019.112108 CANADA: Grid-connected hydrogen production via large-scale water electrolysis
  • 16. 16 Carlos Andrés Vasco Correa DIPLOMADO: Producción y Usos del Hidrógeno Modulo 13: Consideraciones económicas en la implementación Competitividad del Hidrógeno Hydrogen Council (2021) “The Path to Hydrogen Competitiveness: A Cost Perspective” hydrogencouncil.com.
  • 17. 17 Carlos Andrés Vasco Correa DIPLOMADO: Producción y Usos del Hidrógeno Modulo 13: Consideraciones económicas en la implementación Competitividad del Hidrógeno Hydrogen Council (2021) “The Path to Hydrogen Competitiveness: A Cost Perspective” hydrogencouncil.com.
  • 18. 18 Carlos Andrés Vasco Correa DIPLOMADO: Producción y Usos del Hidrógeno Modulo 13: Consideraciones económicas en la implementación Competitividad del Hidrógeno
  • 19. 19 Carlos Andrés Vasco Correa DIPLOMADO: Producción y Usos del Hidrógeno Modulo 13: Consideraciones económicas en la implementación Competitividad del Hidrógeno
  • 20. 20 Carlos Andrés Vasco Correa DIPLOMADO: Producción y Usos del Hidrógeno Modulo 13: Consideraciones económicas en la implementación Competitividad: Ruta Colombia Fuente: Procolombia (2021)
  • 21. 21 Carlos Andrés Vasco Correa DIPLOMADO: Producción y Usos del Hidrógeno Modulo 13: Consideraciones económicas en la implementación Competitividad: Ruta Colombia
  • 22. 22 Carlos Andrés Vasco Correa DIPLOMADO: Producción y Usos del Hidrógeno Modulo 13: Consideraciones económicas en la implementación Competitividad: Ruta Colombia
  • 23. 23 Modelación Determinística y Estocástica Platon, V., & Constantinescu, A. (2014). Monte Carlo Method in Risk Analysis for Investment Projects. Procedia Economics and Finance, 15, 393–400. https://doi.org/10.1016/s2212-5671(14)00463-8
  • 26. 26 Modelación Estocástica Simulaciones Montecarlo Simulaciones en HOMER Pro US DOE – National Renewable Energy Lab

Notas del editor

  1. LCC is an important method to evaluate the total cost of a product or a system over its given lifetime [31,32]. By applying LCC into the early life cycle stage, changes are easier in terms of minimizing the LCC. There is no global approach that fits all situations and as the literature reveals the LCC discourse has been a long journey. Many methods have been proposed and are rather general in approach [31–33]. Although the methods are different, many of the main steps are similar to some of the first methods such as the steps in the method by Harvey [33]: Although LCC has been accepted as a methodology it is still being criticized. The main disadvantages of the LCC method come from the fact that it includes a future estimation and can lead to uncertain results. Despite the flaws of the LCC method it still provides a somewhat holistic universal method to evaluate and compare different investment opportunities. Hydrogen output is usually measured in terms of energy and therefore, similarly to electrical calculations, the cost can be presented in terms of cost per unit energy or mass of hydrogen
  2. Renewable hydrogen production costs continue to fall more swiftly than previously expected. Compared with the Hydrogen Council Study 2020 report, “Path to hydrogen competitiveness: a cost perspective”, this year’s update resulted in even more aggressive cost-down expectations for renewable hydrogen production. Three factors are driving this acceleration. First, capex requirements are dropping. We expect a significant electrolyzer capex decline by 2030 – to about USD 200-250/kW at the system-level (including electrolyzer stack, voltage supply and rectifier, drying/purification and compression to 30 bar). That is 30-50% lower than we anticipated last year, due to accelerated cost roadmaps and a faster scale-up of electrolyzer supply chains. For example, several electrolyzer manufacturers have announced near-term capacity scale-ups for a combined total of over approximately 3 GW per year. Second, the levelized cost of energy (LCOE) is declining. Ongoing reductions in renewables cost to levels as much as 15% lower than previously expected result from the deployment of at-scale renewables, especially in regions with high solar irradiation (where renewables auctions continue to break record lows). The strongest reductions are expected in locations with optimal resources, including Spain, Chile, and the Middle East. Third, utilization levels continue to increase. Large-scale, integrated renewable hydrogen projects are achieving higher electrolyzer utilization levels. This performance is driven largely by the centralization of production, a better mix of renewables (e.g., onshore wind and solar PV) and integrated design optimization (e.g., oversizing renewables capacity versus electrolyzer capacity for optimized utilization)
  3. We find that hydrogen can unlock approximately 8 per cent of global energy demand with a hydrogen production cost of USD 2.50 per kg, while a cost of USD 1.80 per kg would unlock as much as roughly 15 per cent of global energy demand by 2030. This does not imply that hydrogen will satisfy all of this energy demand by 2030, but it does showcase that hydrogen will have a significant role to play as a clean energy vector in the future energy mix. As mentioned in our prior report, we expect hydrogen may fulfil about 18 per cent of final energy demand by 2050.
  4. Key drivers for continued cost reduction include the industrialisation of electrolyser manufacturing (-25 per cent), improvements in electrolyser efficiency and operations and maintenance (-10 per cent), and the use of low-cost renewable power (-20 per cent). The latter will be region specific and depend highly on access to renewable resources (sun and wind). Regarding capex, a 60 to 80 per cent reduction from larger-scale manufacturing is expected by 2030. Important drivers of this drop include the shift from a largely manual production process to greater use of automation and ‘roll-to-roll’ streamlined production processes. Supporting factors include further technological improvements (like optimisation of catalyst loading), and increased system sizes, with associated scaling benefits. Moving from the 1 to 2 MW systems typically deployed today to, for instance, 80 to 100 MW systems can significantly decrease the cost contribution from auxiliary systems. In total, these improvements should reduce the capex from today’s USD 2 per kg of hydrogen produced to USD 0.50 per kg by 2030. As mentioned in the previous chapter, this number might be conservative: the underlying learning rate is notably more conservative than in other ‘new’ technologies like solar photovoltaics (PV) and wind power. Thus, actual cost decline could happen even faster and accelerate the competitiveness of renewable hydrogen from electrolysis even more. Higher efficiency results from incremental improvements in technology. The industry could increase lower heating value efficiency from around 64 to 68 per cent today for PEM/alkaline technology to about 70 per cent in 2030. Higher efficiency enables a smaller system using less electricity to produce the same amount of hydrogen, which would account for an approximate USD 0.40 per kg of hydrogen cost improvement. Additional O&M cost improvements should contribute another USD 0.20 per kg in cost cuts. The lower cost of electricity from renewables will contribute the biggest share of reduction in operational cost. In the offshore wind example, a 40 per cent cost decline from approximately USD 70 to 40 per MWh could occur in 2030, accounting for lower costs of around USD 1.30 per kg. Variations in renewables resources make renewable hydrogen from electrolysis production highly region specific. For example, solar paired with wind power in Chile should reduce hydrogen production cost to as low as USD 1.40 in 2030. Exhibit 14 shows the resulting production cost under different LCOE, utilisation, and electrolyser capex assumptions. The assessment also shows that even for a conservative assumption – an electrolyser capex of USD 500 per kW – access to renewables at USD 20 per MWh enables production of renewable hydrogen at about USD 2 per kg.
  5. Figure ES1 shows how up to 85% of green hydrogen production costs can be reduced in the long term by a combination of cheaper electricity and electrolyser capex investment, in addition to increased efficiency and optimised operation of the electrolyser. Today’s cost and performance are not the same for all electrolyser technologies (see Table ES1). Alkaline and PEM electrolysers are the most advanced and already commercial, while each technology has its own competitive advantage. Alkaline electrolysers have the lowest installed cost, while PEM electrolysers have a much smaller footprint, combined with higher current density and output pressure. Meanwhile, solid oxide has the highest electrical efficiency. As the ell stack is only part of the electrolyser facility footprint, a reduced stack footprint of around 60% for PEM compared to alkaline translates into a 20%-24% reduction in the facility footprint, with an estimated footprint of 8 hectares (ha)- 3 ha for a 1 GW facility using PEM, compared to 10 ha-17 ha using alkaline (ISPT, 2020). Gaps in cost and performance are expected to narrow over time as innovation and mass deployment of different electrolysis technologies rive convergence towards similar costs. The wide range in system costs is expected to remain, however, as this is very much dependent on the scale, application and scope of delivery. For instance, a containerised system inside an xisting facility with existing power supply is significantly lower cost than a new building in a plot of land to be purchased, with complete water and electricity supply system to be included, high purity hydrogen for fuel cell applications and high output pressure. Normally, numbers for system costs include not only cell stack, but also balance of stacks, power rectifiers, the hydrogen purification system, water supply and purification, cooling and commissioning – yet xclude shipping, civil works and site preparations. Notably, the numbers for 2020 are cost estimates for a system ordered in 2020, representing the lowest value the price can be (on the limit of zero profit). As the market scales up apidly, in the initial phase, the investment in manufacturing facilities must be recovered, therefore the gap between cost and price is currently higher than in 10 or 20 years from now. As a reference, an estimated investment of EUR 45- 9 million is required for each GW of manufacturing capacity (Cihlar et al., 2020).
  6. Figure ES1 shows how up to 85% of green hydrogen production costs can be reduced in the long term by a combination of cheaper electricity and electrolyser capex investment, in addition to increased efficiency and optimised operation of the electrolyser. Today’s cost and performance are not the same for all electrolyser technologies (see Table ES1). Alkaline and PEM electrolysers are the most advanced and already commercial, while each technology has its own competitive advantage. Alkaline electrolysers have the lowest installed cost, while PEM electrolysers have a much smaller footprint, combined with higher current density and output pressure. Meanwhile, solid oxide has the highest electrical efficiency. As the ell stack is only part of the electrolyser facility footprint, a reduced stack footprint of around 60% for PEM compared to alkaline translates into a 20%-24% reduction in the facility footprint, with an estimated footprint of 8 hectares (ha)- 3 ha for a 1 GW facility using PEM, compared to 10 ha-17 ha using alkaline (ISPT, 2020). Gaps in cost and performance are expected to narrow over time as innovation and mass deployment of different electrolysis technologies rive convergence towards similar costs. The wide range in system costs is expected to remain, however, as this is very much dependent on the scale, application and scope of delivery. For instance, a containerised system inside an xisting facility with existing power supply is significantly lower cost than a new building in a plot of land to be purchased, with complete water and electricity supply system to be included, high purity hydrogen for fuel cell applications and high output pressure. Normally, numbers for system costs include not only cell stack, but also balance of stacks, power rectifiers, the hydrogen purification system, water supply and purification, cooling and commissioning – yet xclude shipping, civil works and site preparations. Notably, the numbers for 2020 are cost estimates for a system ordered in 2020, representing the lowest value the price can be (on the limit of zero profit). As the market scales up apidly, in the initial phase, the investment in manufacturing facilities must be recovered, therefore the gap between cost and price is currently higher than in 10 or 20 years from now. As a reference, an estimated investment of EUR 45- 9 million is required for each GW of manufacturing capacity (Cihlar et al., 2020).
  7. Figure ES1 shows how up to 85% of green hydrogen production costs can be reduced in the long term by a combination of cheaper electricity and electrolyser capex investment, in addition to increased efficiency and optimised operation of the electrolyser. Today’s cost and performance are not the same for all electrolyser technologies (see Table ES1). Alkaline and PEM electrolysers are the most advanced and already commercial, while each technology has its own competitive advantage. Alkaline electrolysers have the lowest installed cost, while PEM electrolysers have a much smaller footprint, combined with higher current density and output pressure. Meanwhile, solid oxide has the highest electrical efficiency. As the ell stack is only part of the electrolyser facility footprint, a reduced stack footprint of around 60% for PEM compared to alkaline translates into a 20%-24% reduction in the facility footprint, with an estimated footprint of 8 hectares (ha)- 3 ha for a 1 GW facility using PEM, compared to 10 ha-17 ha using alkaline (ISPT, 2020). Gaps in cost and performance are expected to narrow over time as innovation and mass deployment of different electrolysis technologies rive convergence towards similar costs. The wide range in system costs is expected to remain, however, as this is very much dependent on the scale, application and scope of delivery. For instance, a containerised system inside an xisting facility with existing power supply is significantly lower cost than a new building in a plot of land to be purchased, with complete water and electricity supply system to be included, high purity hydrogen for fuel cell applications and high output pressure. Normally, numbers for system costs include not only cell stack, but also balance of stacks, power rectifiers, the hydrogen purification system, water supply and purification, cooling and commissioning – yet xclude shipping, civil works and site preparations. Notably, the numbers for 2020 are cost estimates for a system ordered in 2020, representing the lowest value the price can be (on the limit of zero profit). As the market scales up apidly, in the initial phase, the investment in manufacturing facilities must be recovered, therefore the gap between cost and price is currently higher than in 10 or 20 years from now. As a reference, an estimated investment of EUR 45- 9 million is required for each GW of manufacturing capacity (Cihlar et al., 2020).
  8. Achieving this level of cost improvement depends on the scale-up of demand and the associated increase in utilisation of distribution infrastructure. For example, the main cost drivers in the trucking distribution pathway are as follows: Increase in trucking capacity. Costs for gaseous and liquid hydrogen trucking should decrease by USD 0.10 to 0.20 per kg for typical distances of 300 to 500 km, due mainly to improved utilisation and lower equipment costs with rising scale. Increasing scale and density of filling centres. Increasing utilisation and scaling up capacity of truck filling centers and liquefaction plants should reduce costs further by about USD 0.50 per kg for both liquid and gaseous trucking. A further cost decline is expected from the increasing density of filling centres: a reduction of trucking distance by 100 km on average will reduce trucking costs by another USD 0.10 per kg. Scaling up demand and HRS size. Hydrogen refuelling stations are currently the highest cost element in the cost at the pump, accounting for about 70 per cent of total distribution and retail costs. Today’s high cost primarily results from the low utilisation of even small stations due to the limited uptake of fuel cell vehicles. A cost decline of about 80 per cent is possible, from roughly USD 5 to 6 per kg in 2020 to about USD 1 to 1.50 per kg in 2030. The savings consist of higher utilisation (USD -2 per kg), increasing station size (USD -1 per kg) and industrialisation of equipment manufacturing (roughly USD -0.80 per kg).
  9. 05 de Mayo de 2021 El ministerio de Minas y Energía de Colombia anunció que para el primer semestre de este año el país ya contará con una hoja de ruta para la implementación del hidrógeno verde como fuente de energía, no solo para atender la demanda local, sino también para exportar. En línea con lo anterior, el Ministerio de Minas y Energía y ProColombia presentan el documento “Perspectivas del Hidrógeno en Colombia” que expone las ventajas y oportunidades de esta fuente de energía para la consolidación y desarrollo de la matriz energética nacional.