SlideShare una empresa de Scribd logo
1 de 14
Descargar para leer sin conexión
Calculating the Angle between Projections of
Vectors via Geometric (Clifford) Algebra
February 5, 2018
James Smith
nitac14b@yahoo.com
https://mx.linkedin.com/in/james-smith-1b195047
Abstract
We express a problem from visual astronomy in terms of Geometric
(Clifford) Algebra, then solve the problem by deriving expressions for the
sine and cosine of the angle between projections of two vectors upon a
plane. Geometric Algebra enables us to do so without deriving expressions
for the projections themselves.
“Derive expressions for the sine and cosine of the angle of rotation,
β, from the projection of u upon the bivector ˆM to the projection of
v upon ˆM.”
1
Contents
1 Introduction 2
2 Formulating the Problem in Geometric-Algebra (GA) Terms,
and Devising a Solution Strategy 3
2.1 Initial Observations . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Recalling What We’ve Learned from Solving Similar Problems
via GA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Further Observations, and Identifying a Strategy . . . . . . . . . 6
3 Solutions for cos β and sin β 8
3.1 Expressions for u · ˆM and v · ˆM . . . . . . . . . . . . . . . . . . 8
3.2 Expressions for u · ˆM and v · ˆM . . . . . . . . . . . . . . . . 9
3.3 Solution for sin β . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3.1 Expansion of u · ˆM v · ˆM 2 . . . . . . . . . . . . . . 10
3.3.2 Expansion of ˆM
−1
u · ˆM v · ˆM 2 . . . . . . . . . . . 10
3.3.3 Final result for sin β . . . . . . . . . . . . . . . . . . . . . 10
3.4 Solution for cos β . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4 Testing the Formulas that We’ve Derived 11
5 Conclusions, and Summary of the Formulas Derived Herein 12
6 Appendix: Calculating the Unit Bivector ˆM of a Plane Whose
Dual is the Vector ˆe 13
1 Introduction
In this document, we will solve—numerically as well as symbolically—a problem
of a type that can take the following concrete form, with reference to Fig.1:
“At a certain location on the Earth, a vertical pole casts a shadow
on a perfectly flat, horizontal plaza. On that plaza, local residents
Figure 1: A gnomon (vertical pole) casts a shadow on a perfectly flat, level
plaza. The direction of vector s is from the base of the gnomon to the tip of the
shadow. The direction of the Sun’s rays is ˆr. Upon the plaza, local inhabitants
have drawn a line pointing in the direction “local north” (ˆnL). The unit vector
in the direction of the plane’s normal is ˆg.
who are fans of naked-eye astronomy have traced a north-south
line running through the base of the pole. With respect to a right-
handed orthonormal reference frame with basis vectors ˆa, ˆb, and
ˆc, the direction of the Sun’s rays is given by the unit vector ˆr =
ˆara + ˆbrb + ˆcrc. The direction of the upward-pointing vector normal
to the plaza is ˆg = ˆaga + ˆbgb + ˆcgc, and the direction of the Earth’s
rotational axis (i.e., the direction from the center of the Earth to
the North Pole) is ˆnL = ˆanLa + ˆbnLb + ˆcnLc. What is the angle, β,
between the north-south line and the pole’s shadow?”
2 Formulating the Problem in Geometric-Algebra
(GA) Terms, and Devising a Solution Strategy
2.1 Initial Observations
Let’s begin by making a few observations that might be useful:
1. A vertical pole that is used to cast a shadow on a flat surface for the
purpose of astronomical observations is known as a gnomon. We’ll use
that term in the rest of this document.
2. By saying “the direction of the Sun’s rays is ˆr = ˆara + ˆbrb + ˆcrc”, we
assumed that all of the Sun’s rays are parallel. We’ll use that assumption
throughout this document.
3. For our purposes, the Earth can be assumed perfectly spherical.
3
Figure 2: The plaza is a plane tangent to the Earth (assumed spherical) at the
point at which the gnomon is embedded .
4. The plaza is a plane tangent to the Earth at the point at which the gnomon
is embedded (Fig. 2).
5. The direction of the shadow is the direction of the perpendicular projection
of ˆr upon the plaza. Fig. 2 shows why: the gnomon is perpendicular to
the plaza, so the shadow is the perpendicular projection some vector λˆr
upon the plaza. Thus, the direction from the base of the gnomon to the
tip of the shadow is the same as the direction of the projection of ˆr upon
the plaza.
6. The direction from south to north, as traced on the plaza by local residents,
is the perpendicular projection of ˆnc upon the plaza. As proof of that
assertion, consider Fig. 3. The south-north line on the plaza is tangent to
the great circle that passes through the Earth’s North Geographic Pole,
and that also passes through the base of the gnomon. The plane that
contains that great circle also contains the both ˆg and ˆnc. Therefore, that
plane is perpendicular to the plaza. Putting all of these ideas together,
the south-north line on the plaza is the projection of some scalar multiple
µˆnc of the vector ˆnc. Thus, that line has the direction of ˆnc’s projection
on the plaza.
2.2 Recalling What We’ve Learned from Solving Similar
Problems via GA
Let’s refresh our memory about techniques that we may used to solve other
problems via GA:
4
Figure 3: The direction “local north” (i.e., the direction from south to north, as
traced on the plaza by local residents) is the same as that of the perpendicular
projection of ˆnc upon the plaza.
1. Problems involving projections onto a plane are usually solved by using
the appropriately-oriented bivector that is parallel to the plane, rather
than by using the vector that is perpendicular to it. The Appendix
(Section 6) shows how to find the required bivector, given said vector. The
conclusion is that for the unit perpendicular vector ˆe = ˆaea + ˆbeb + ˆcec,
the appropriately-oriented unit bivector is
ˆM = ˆaˆbec + ˆbˆcea − ˆaˆceb (2.1)
In GA terms, ˆe is the “dual” of the bivector ˆM. We can also see that if
we write ˆM in the form ˆM = ˆaˆbmab + ˆbˆcmbc + ˆaˆcmac, then
mab = ec, mbc = ea, mac = −eb. (2.2)
2.
Notation: PC (d) is the
projection of d upon C.
The perpendicular projection of a given vector w upon a given unit
bivector, ˆM, is (Reference [1], p. 65 , and Ref. [2], p.119):
P ˆM (w) = w · ˆM ˆM
−1
. (2.3)
3. The inverse ˆM
−1
of the unit bivector ˆM is − ˆM .
4. For any vector y that is parallel to the bivector A, Ay = −yA.
5. Putting the last three observations, we arrive at
P ˆM (w) = ˆM w · ˆM . (2.4)
5
6. If two vectors p and q are parallel to the bivector ˆM, then ˆpˆq = e
ˆMφ
, where
the scalar φ is the angle of rotation from p to q. Therefore, p · q + p ∧ q =
cos φ + ˆM sin φ. The algebraic sign of φ is positive if the direction of that
rotation is the same as the orientation of ˆM, and negative if in the opposite
direction.
7. Equating terms of the same grade in the previous item, we find that
cos φ = ˆp · ˆq;
sin φ = ˆM
−1
(ˆp ∧ ˆq) .
(2.5)
8. Macdonald’s definitions (Ref. [2], p. 101) of the inner and outer products
are often useful. Those definitions are, for a multivector A of grade j and
a multivector B of grade k:
Aj · Bk = AB k−j (Note: Aj · Bk does not exist if j > k);
Aj ∧ Bk = AB k+j.
(2.6)
2.3 Further Observations, and Identifying a Strategy
We ’ve been discussion how to find the angle between the south-north line and
the gnomon’s shadow. Now, to provide results that will be more generally useful,
we’ll treat two arbitrary vectors u and v (not necessarily unit vectors) and an
arbitrary unit bivector, ˆM (Fig. 4). We wish to find the sine and cosine of β,
the angle of rotation from P ˆM (u) to P ˆM (u).
We could solve the problem by calculating each of those projections according
to Eq. (2.3), then calculating the sine and cosine of the requested angle from Eq.
(2.5). However, our review of GA in the previous section suggests a strategy
that will save us considerable trouble. We’ll begin by using Eq. (2.3) to express
the two projections that interest us:
P ˆM (ˆu) = ˆu · ˆM ˆM
−1
;
P ˆM (v) = v · ˆM ˆM
−1
.
Can we now use Eq. (2.5) to calculate cos β and sin β? Not yet: although
u and v are unit vectors, their projects upon ˆM may not be. Therefore,
we’ll need to calculate P ˆM (u) and P ˆM (v) , a detail to which we’ll return
momentarily. First, we need to calculate u · ˆM ˆM
−1
· v · ˆM ˆM
−1
and
u · ˆM ˆM
−1
∧ v · ˆM ˆM
−1
.
The definitions of the inner and outer products in Eq. (2.6) use the product
AjBk, which in our case (because we want to know the rotation from P ˆM (u) to
P ˆM (u)) is
u · ˆM ˆM
−1
v · ˆM ˆM
−1
.
6
Figure 4: Diagram of the translation, into GA terms, of the more-general type of
problem that was motivated by our consideration of the specific case of shadows
cast upon a flat, horizontal plaza by a vertical pole. We’ll derive expressions for
the sine and cosine of the angle of rotation β from the projection of u upon the
bivector ˆM to the projection of v upon ˆM. The vector ˆe is the dual of ˆM, and
is therefore normal to ˆM.
7
Next, we recognize that v · ˆM is a vector, and is parallel to ˆM. Therefore,
using Eq. (2.4), we can write v · ˆM ˆM
−1
as ˆM v · ˆM . Using this idea in
the previous equation,
u · ˆM ˆM
−1
v · ˆM ˆM
−1
= u · ˆM ˆM
−1
ˆM v · ˆM
= u · ˆM v · ˆM . (2.7)
We could also find P ˆM (u)
and P ˆM (v) via a route
similar to that used in deriving
Eq. (2.7). For example,
P ˆM (u) = [P ˆM (u)]2
= u · ˆM ˆM
−1
u · ˆM ˆM
−1
= u · ˆM
2
= u · ˆM .
Now, let’s return to the question of P ˆM (u) and P ˆM (v) . Because
the vector P ˆM (u) is parallel to the unit bivector ˆM, P ˆM (u) ˆM is just a 90◦
rotation of P ˆM (u). Thus, P ˆM (u) ˆM = P ˆM (u) . But P ˆM (u) ˆM =
u · ˆM ˆM
−1
ˆM = u · ˆM. After using similar reasoning for P ˆM (v) , we find
that
P ˆM (u) = u · ˆM , and
P ˆM (v) = v · ˆM . (2.8)
Putting all of these ideas together, plus Eq. (2.5), and recognizing that
u · ˆM and v · ˆM are vectors (and therefore are of grade 1),
sin β =
ˆM
−1
u · ˆM v · ˆM 2
u · ˆM v · ˆM
, (2.9a)
cos β =
u · ˆM v · ˆM 0
u · ˆM v · ˆM
. (2.9b)
3 Solutions for cos β and sin β
We’ll begin by writing ˆM and the two vectors as
u = ˆaua + ˆbub + ˆcuc,
v = ˆava + ˆbvb + ˆcvc, and
ˆM = ˆaˆbmab + ˆbˆcmbc + ˆaˆcmac.
3.1 Expressions for u · ˆM and v · ˆM
Vector u is of grade 1, and bivector ˆM is of grade 2, so from Eq. (2.6),
u · ˆM = u ˆM 2−1
= ˆaua + ˆbub + ˆcuc ˆaˆbmab + ˆbˆcmbc + ˆaˆcmac 1
= ˆa (−ubmab − ucmac) + ˆb (uamab − ucmbc) + ˆc (uamac + ubmbc) .
8
Similarly,
v · ˆM = ˆa (−vbmab − vcmac) + ˆb (vamab − vcmbc) + ˆc (vamac + vbmbc) .
3.2 Expressions for u · ˆM and v · ˆM
Using the expressions that we developed in Section 3.1 , u · ˆM 2
and v · ˆM ,
plus the fact that m2
ab + m2
bc + m2
ac = 1 because ˆM is a unit bivector,
u · ˆM 2
= u2
a 1 − m2
bc + u2
b 1 − m2
ac + u2
c 1 − m2
ab
+ 2uaubmacmbc + 2ubucmabmac − 2uaucmabmbc ,
(3.1a)
and
v · ˆM 2
= v2
a 1 − m2
bc + v2
b 1 − m2
ac + v2
c 1 − m2
ab
+ 2vavbmacmbc + 2vbvcmabmac − 2vavcmabmbc .
(3.1b)
Using the correspondence (Eq. (2.2)) between coefficients in ˆM and ˆe, we
can also write Eq. (3.1) as
u · ˆM 2
= u2
a 1 − e2
a + u2
b 1 − e2
b + u2
c 1 − e2
c
− 2uaubeaeb − 2ubucebec − 2uauceaec ,
(3.2a)
and
v · ˆM 2
= v2
a 1 − e2
a + v2
b 1 − e2
b + v2
c 1 − e2
c
− 2vavbeaeb − 2vbvcebec − 2vavceaec .
(3.2b)
3.3 Solution for sin β
As you might expect, the expansion of Eq. (2.9)a becomes extensive and messy,
so we’ll do it in several steps.
9
3.3.1 Expansion of u · ˆM v · ˆM 2
After considerable simplification, using the expressions developed in Section 3.1
for u · ˆM and v · ˆM,
u · ˆM v · ˆM 2 = ˆaˆb (uavb − ubva) m2
ab + (ubvc − ucvb) mabmbc
+ (uavc − ucva) mabmac ]
+ ˆbˆc (ubvc − ucvb) m2
bc + (uavb − ubva) mabmbc
+ (uavc − ucva) mbcmac ]
+ ˆaˆc (uavc − ucva) m2
ac + (uavb − ubva) mabmac
+ (ubvc − ucvb) mbcmac ] .
(3.3)
3.3.2 Expansion of ˆM
−1
u · ˆM v · ˆM 2
Surprisingly, left-multiplying the expression for u · ˆM v · ˆM 2 (Eq. (3.3))
by ˆM
−1
gives a comparatively simple result. The inverse of a unit bivector is
just the negative of that bivector, so ˆM
−1
= − ˆM = −ˆaˆbmab − ˆbˆcmbc − ˆaˆcmac.
After expanding, carrying out massive cancellations, and using the fact that
m2
ab + m2
bc + m2
ac = 1,
ˆM
−1
u · ˆM v · ˆM 2 = (uavb − ubva) mab + (ubvc − ucvb) mbc
+ (uavc − ucva) mac.
(3.4)
Does our answer make sense? The expression on the right-hand side of Eq. (3.4) will be the numerator
of the final expression for sin β. We should stop here to ask ourselves whether
that expression makes sense. For example, does it behave as it should, given the
physical situation for which it’s been derived? One thing we know is that if the
vectors u and v are reversed, then angle β will remain the same in magnitude,
but will change algebraic sign. The same is true for the right-hand side of Eq.
(3.4), so in this respect, at least, it does make sense.
We also note that if u = v, then the right-hand side of Eq. (3.4) is zero, as
it should be, because when u = v, β = 0.
3.3.3 Final result for sin β
Using our result from Eq. (3.4)
sin β =
(uavb − ubva) mab + (ubvc − ucvb) mbc + (uavc − ucva) mac
u · ˆM v · ˆM
, (3.5)
10
where u · ˆM and v · ˆM are the square roots of the expressions on the
right-hand side of Eqs. (3.1). Using the correspondence (Eq. (2.2)) between
coefficients in ˆM and ˆe, we can also write Eq. (3.5) as
sin β =
(uavb − ubva) ec + (ubvc − ucvb) ea − (uavc − ucva) eb
u · ˆM v · ˆM
. (3.6)
3.4 Solution for cos β
The work needed to derive the expression for cos β is much less extensive than
was needed for sin β, so we will omit many of the details.
The expansion of u · ˆM v · ˆM 0 reduces to
u · ˆM v · ˆM 0 = uava 1 − m2
bc + ubvb 1 − m2
ac
+ ucvc 1 − m2
ab − (uavc + ucva) mabmbc
+ (ubvc + ucvb) mabmac + (uavb + ubva) mbcmac.
(3.7)
Then, according to Eq. (2.9), cos β is the right-hand side of Eq. (3.7), divided
by the product u · ˆM v · ˆM (from Eqs. (3.1)). Using the correspondence
(Eq. (2.2)) between coefficients in ˆM and ˆe, we can also write Eq. (3.7) as
u · ˆM v · ˆM 0 = uava 1 − e2
a + ubvb 1 − e2
b
+ ucvc 1 − e2
c − (uavc + ucva) eaec
− (ubvc + ucvb) ebec − (uavb + ubva) eaeb.
(3.8)
Does our answer make sense?Once again, we should ask whether our answer makes sense. For example,
does interchanging the vectors u and v leave the result unchanged, as it should?
Yes.
In addition, if u = v, then u · ˆM v · ˆM 0 reduces to the expression
that we found for u · ˆM 2
(Eqs. (3.1)). This result, too, is as it should be.
We could also, more laboriously, verify that sin2
β + cos2
β = 1.
4 Testing the Formulas that We’ve Derived
Fig. 5 shows an interactive GeoGebra construction (Reference [3]) that compares
the calculated and actual values of sin β and cos β.
11
Figure 5: An interactive GeoGebra construction (Reference [3]) that tests the
formulas derived herein by comparing the calculated and actual values of sin β
and cos β.
5 Conclusions, and Summary of the Formulas
Derived Herein
The key idea in these derivations was that because the vectors u · ˆM ˆM
−1
and v · ˆM ˆM
−1
are parallel to ˆM, we can calculate the sine and cosine of β
from the product u · ˆM v · ˆM , rather than having to calculate them from
the product u · ˆM ˆM
−1
v · ˆM ˆM
−1
.
Writing u, v, and ˆe, and ˆM, as
• u = ˆaua + ˆbub + ˆcuc,
• v = ˆava + ˆbvb + ˆcvc,
• e = ˆaea + ˆbeb + ˆcec, and
• ˆM = ˆaˆbmab + ˆbˆcmbc + ˆaˆcmac = ˆaˆbec + ˆbˆcea − ˆaˆceb ,
we found that (Eqs. (3.5) and (3.6))
sin β =
(uavb − ubva) mab + (ubvc − ucvb) mbc + (uavc − ucva) mac
u · ˆM v · ˆM
,
=
(uavb − ubva) ec + (ubvc − ucvb) ea − (uavc − ucva) eb
u · ˆM v · ˆM
,
12
where u · ˆM and v · ˆM are the square roots of the expressions on the
right-hand side of Eqs. (3.1).
WE also find that (Eqs. (3.7) and (3.8))
cos β =
u · ˆM v · ˆM 0
u · ˆM v · ˆM
,
where
u · ˆM v · ˆM 0 = uava 1 − m2
bc + ubvb 1 − m2
ac
+ ucvc 1 − m2
ab − (uavc + ucva) mabmbc
+ (ubvc + ucvb) mabmac + (uavb + ubva) mbcmac,
= uava 1 − e2
a + ubvb 1 − e2
b
+ ucvc 1 − e2
c − (uavc + ucva) eaec
− (ubvc + ucvb) ebec − (uavb + ubva) eaeb.
References
[1] D. Hestenes, 1999, New Foundations for Classical Mechanics, (Second
Edition), Kluwer Academic Publishers (Dordrecht/Boston/London).
[2] A. Macdonald, Linear and Geometric Algebra (First Edition) p. 126,
CreateSpace Independent Publishing Platform (Lexington, 2012).
[3] J. A. Smith, 2018, “Angle Between Projections of Vectors via Geom. Alge-
bra” (a GeoGebra construction), https://www.geogebra.org/m/Zpsxygxy.
[4] J. A. Smith, 2017, “Some Solution Strategies for Equations that Arise in
Geometric (Clifford) Algebra”, http://vixra.org/abs/1610.0054 .
6 Appendix: Calculating the Unit Bivector ˆM
of a Plane Whose Dual is the Vector ˆe
As may be inferred from a study of References [1] (p. (56, 63) and [2] (pp.
106-108) , the bivector ˆM that we seek is the one whose dual is ˆe. That is, ˆM
must satisfy the condition
ˆe = ˆMI−1
3 ;
∴ ˆM = ˆeI3. (6.1)
Although we won’t use that fact
here, I−1
3 is I3’s negative:
I−1
3 = −ˆaˆbˆc.
where I3 is the right-handed pseudoscalar for G3
. That pseudoscalar is the
product, written in right-handed order, of our orthonormal reference frame’s
13
basis vectors: I3 = ˆaˆbˆc (and is also ˆbˆcˆa and ˆcˆaˆb). Therefore, writing ˆM as
ˆM = ˆaea + ˆbeb + ˆcec,
ˆM = ˆeI3
= ˆaea + ˆbeb + ˆcec ˆaˆbˆc
= ˆaˆaˆbˆcea + ˆbˆaˆbˆceb + ˆcˆaˆbˆcec
= ˆaˆbec + ˆbˆcea − ˆaˆceb. (6.2)
To make this simplification, we
use the following facts:
• The product of two
perpendicular vectors
(such as ˆa and ˆb) is a
bivector;
• Therefore, for any two
perpendicular vectors p
and q, qp = −qp; and
• (Of course) for any unit
vector ˆp, ˆpˆp = 1.
See also Ref. [4].
In writing that last result, we’ve followed [2]’s convention (p. 82) of using
ˆaˆb, ˆbˆc, and ˆaˆc as our bivector basis. Examining Eq. (6.2) we can see that if we
write ˆM in the form ˆM = ˆaˆbmab + ˆbˆcmbc + ˆaˆcmac , then
mab = ec, mbc = ea, mac = −eb. (6.3)
14

Más contenido relacionado

La actualidad más candente

7. centroid and centre of gravity
7. centroid and centre of gravity7. centroid and centre of gravity
7. centroid and centre of gravityEkeeda
 
Properties of surfaces-Centre of gravity and Moment of Inertia
Properties of surfaces-Centre of gravity and Moment of InertiaProperties of surfaces-Centre of gravity and Moment of Inertia
Properties of surfaces-Centre of gravity and Moment of InertiaJISHNU V
 
Centroid and Centre of Gravity
Centroid and Centre of GravityCentroid and Centre of Gravity
Centroid and Centre of GravityEkeeda
 
Chapter ii tension & compression 1
Chapter ii tension & compression 1Chapter ii tension & compression 1
Chapter ii tension & compression 1MARTIN ATHIYO
 
R05010105 A P P L I E D M E C H A N I C S
R05010105  A P P L I E D  M E C H A N I C SR05010105  A P P L I E D  M E C H A N I C S
R05010105 A P P L I E D M E C H A N I C Sguestd436758
 
1 centroids
1 centroids1 centroids
1 centroidsELIMENG
 
Solution of a Vector-Triangle Problem Via Geometric (Clifford) Algebra
Solution of a Vector-Triangle Problem Via Geometric (Clifford) AlgebraSolution of a Vector-Triangle Problem Via Geometric (Clifford) Algebra
Solution of a Vector-Triangle Problem Via Geometric (Clifford) AlgebraJames Smith
 
Solution of a Sangaku ``Tangency" Problem via Geometric Algebra
Solution of a Sangaku ``Tangency" Problem via Geometric AlgebraSolution of a Sangaku ``Tangency" Problem via Geometric Algebra
Solution of a Sangaku ``Tangency" Problem via Geometric AlgebraJames Smith
 
125761583 rahulhggjg
125761583 rahulhggjg125761583 rahulhggjg
125761583 rahulhggjghomeworkping8
 
Lecture 3.5.1 Ellipse as a compressed circle
Lecture 3.5.1 Ellipse as a compressed circleLecture 3.5.1 Ellipse as a compressed circle
Lecture 3.5.1 Ellipse as a compressed circlenarayana dash
 
Structur e very helpfull
Structur e very helpfullStructur e very helpfull
Structur e very helpfullPrionath Roy
 
Lesson 14 centroid of volume
Lesson 14 centroid of volumeLesson 14 centroid of volume
Lesson 14 centroid of volumeLawrence De Vera
 
Area relation of two right angled triangle in trigonometric form
Area relation of two right angled triangle in trigonometric formArea relation of two right angled triangle in trigonometric form
Area relation of two right angled triangle in trigonometric formresearchinventy
 
Structural Mechanics: Deflections of Beams in Bending
Structural Mechanics: Deflections of Beams in BendingStructural Mechanics: Deflections of Beams in Bending
Structural Mechanics: Deflections of Beams in BendingAlessandro Palmeri
 
Geometry unit 9.5
Geometry unit 9.5Geometry unit 9.5
Geometry unit 9.5Mark Ryder
 

La actualidad más candente (20)

7. centroid and centre of gravity
7. centroid and centre of gravity7. centroid and centre of gravity
7. centroid and centre of gravity
 
Properties of surfaces-Centre of gravity and Moment of Inertia
Properties of surfaces-Centre of gravity and Moment of InertiaProperties of surfaces-Centre of gravity and Moment of Inertia
Properties of surfaces-Centre of gravity and Moment of Inertia
 
Centroid and Centre of Gravity
Centroid and Centre of GravityCentroid and Centre of Gravity
Centroid and Centre of Gravity
 
Chapter ii tension & compression 1
Chapter ii tension & compression 1Chapter ii tension & compression 1
Chapter ii tension & compression 1
 
R05010105 A P P L I E D M E C H A N I C S
R05010105  A P P L I E D  M E C H A N I C SR05010105  A P P L I E D  M E C H A N I C S
R05010105 A P P L I E D M E C H A N I C S
 
Moment of inertia revision
Moment of inertia revisionMoment of inertia revision
Moment of inertia revision
 
1 centroids
1 centroids1 centroids
1 centroids
 
Solution of a Vector-Triangle Problem Via Geometric (Clifford) Algebra
Solution of a Vector-Triangle Problem Via Geometric (Clifford) AlgebraSolution of a Vector-Triangle Problem Via Geometric (Clifford) Algebra
Solution of a Vector-Triangle Problem Via Geometric (Clifford) Algebra
 
Solution of a Sangaku ``Tangency" Problem via Geometric Algebra
Solution of a Sangaku ``Tangency" Problem via Geometric AlgebraSolution of a Sangaku ``Tangency" Problem via Geometric Algebra
Solution of a Sangaku ``Tangency" Problem via Geometric Algebra
 
125761583 rahulhggjg
125761583 rahulhggjg125761583 rahulhggjg
125761583 rahulhggjg
 
Centre of Gravity
Centre of GravityCentre of Gravity
Centre of Gravity
 
Lecture 3.5.1 Ellipse as a compressed circle
Lecture 3.5.1 Ellipse as a compressed circleLecture 3.5.1 Ellipse as a compressed circle
Lecture 3.5.1 Ellipse as a compressed circle
 
Structur e very helpfull
Structur e very helpfullStructur e very helpfull
Structur e very helpfull
 
Lesson 14 centroid of volume
Lesson 14 centroid of volumeLesson 14 centroid of volume
Lesson 14 centroid of volume
 
Area relation of two right angled triangle in trigonometric form
Area relation of two right angled triangle in trigonometric formArea relation of two right angled triangle in trigonometric form
Area relation of two right angled triangle in trigonometric form
 
Centroid
CentroidCentroid
Centroid
 
Structural Mechanics: Deflections of Beams in Bending
Structural Mechanics: Deflections of Beams in BendingStructural Mechanics: Deflections of Beams in Bending
Structural Mechanics: Deflections of Beams in Bending
 
Moment of inertia (1)
Moment of inertia (1)Moment of inertia (1)
Moment of inertia (1)
 
CENTROID
CENTROIDCENTROID
CENTROID
 
Geometry unit 9.5
Geometry unit 9.5Geometry unit 9.5
Geometry unit 9.5
 

Similar a Calculating the Angle between Projections of Vectors via Geometric (Clifford) Algebra

5 prelim determination.pdf
5 prelim determination.pdf5 prelim determination.pdf
5 prelim determination.pdfa a
 
Calculation of the Curvature Expected in Photographs of a Sphere's Horizon
Calculation of the Curvature Expected in Photographs of a Sphere's HorizonCalculation of the Curvature Expected in Photographs of a Sphere's Horizon
Calculation of the Curvature Expected in Photographs of a Sphere's HorizonJames Smith
 
Vectors.pdf
Vectors.pdfVectors.pdf
Vectors.pdfd00a7ece
 
Vectors.pdf
Vectors.pdfVectors.pdf
Vectors.pdfd00a7ece
 
Vectors.pdf
Vectors.pdfVectors.pdf
Vectors.pdfd00a7ece
 
Measurement  of  the  angle  θ        .docx
Measurement  of  the  angle  θ        .docxMeasurement  of  the  angle  θ        .docx
Measurement  of  the  angle  θ        .docxendawalling
 
Rich Mathematical Problems in Astronomy
Rich Mathematical Problems in AstronomyRich Mathematical Problems in Astronomy
Rich Mathematical Problems in Astronomysmiller5
 
Using a Common Theme to Find Intersections of Spheres with Lines and Planes v...
Using a Common Theme to Find Intersections of Spheres with Lines and Planes v...Using a Common Theme to Find Intersections of Spheres with Lines and Planes v...
Using a Common Theme to Find Intersections of Spheres with Lines and Planes v...James Smith
 
Icuc1
Icuc1Icuc1
Icuc1epfl
 
Lab mannual ncert 3
Lab mannual ncert 3Lab mannual ncert 3
Lab mannual ncert 3Himani Asija
 
A Very Brief Introduction to Reflections in 2D Geometric Algebra, and their U...
A Very Brief Introduction to Reflections in 2D Geometric Algebra, and their U...A Very Brief Introduction to Reflections in 2D Geometric Algebra, and their U...
A Very Brief Introduction to Reflections in 2D Geometric Algebra, and their U...James Smith
 
Chapter 5 unit f 001
Chapter 5 unit f 001Chapter 5 unit f 001
Chapter 5 unit f 001jbianco9910
 
Casimir energy for a double spherical shell: A global mode sum approach
Casimir energy for a double spherical shell: A global mode sum approachCasimir energy for a double spherical shell: A global mode sum approach
Casimir energy for a double spherical shell: A global mode sum approachMiltão Ribeiro
 
Complex Numbers
Complex NumbersComplex Numbers
Complex NumbersArun Umrao
 
Vector fields and equipotentials
Vector fields and equipotentialsVector fields and equipotentials
Vector fields and equipotentialsTarun Gehlot
 
Lego like spheres and tori, enumeration and drawings
Lego like spheres and tori, enumeration and drawingsLego like spheres and tori, enumeration and drawings
Lego like spheres and tori, enumeration and drawingsMathieu Dutour Sikiric
 
Vector fields and equipotentials
Vector fields and equipotentialsVector fields and equipotentials
Vector fields and equipotentialsTarun Gehlot
 

Similar a Calculating the Angle between Projections of Vectors via Geometric (Clifford) Algebra (20)

5 prelim determination.pdf
5 prelim determination.pdf5 prelim determination.pdf
5 prelim determination.pdf
 
Solution kepler chap 1
Solution kepler chap 1Solution kepler chap 1
Solution kepler chap 1
 
Calculation of the Curvature Expected in Photographs of a Sphere's Horizon
Calculation of the Curvature Expected in Photographs of a Sphere's HorizonCalculation of the Curvature Expected in Photographs of a Sphere's Horizon
Calculation of the Curvature Expected in Photographs of a Sphere's Horizon
 
Vectors.pdf
Vectors.pdfVectors.pdf
Vectors.pdf
 
Vectors.pdf
Vectors.pdfVectors.pdf
Vectors.pdf
 
Vectors.pdf
Vectors.pdfVectors.pdf
Vectors.pdf
 
Ce 255 handout
Ce 255 handoutCe 255 handout
Ce 255 handout
 
Measurement  of  the  angle  θ        .docx
Measurement  of  the  angle  θ        .docxMeasurement  of  the  angle  θ        .docx
Measurement  of  the  angle  θ        .docx
 
Rich Mathematical Problems in Astronomy
Rich Mathematical Problems in AstronomyRich Mathematical Problems in Astronomy
Rich Mathematical Problems in Astronomy
 
Using a Common Theme to Find Intersections of Spheres with Lines and Planes v...
Using a Common Theme to Find Intersections of Spheres with Lines and Planes v...Using a Common Theme to Find Intersections of Spheres with Lines and Planes v...
Using a Common Theme to Find Intersections of Spheres with Lines and Planes v...
 
Icuc1
Icuc1Icuc1
Icuc1
 
Lab mannual ncert 3
Lab mannual ncert 3Lab mannual ncert 3
Lab mannual ncert 3
 
A Very Brief Introduction to Reflections in 2D Geometric Algebra, and their U...
A Very Brief Introduction to Reflections in 2D Geometric Algebra, and their U...A Very Brief Introduction to Reflections in 2D Geometric Algebra, and their U...
A Very Brief Introduction to Reflections in 2D Geometric Algebra, and their U...
 
Chapter 5 unit f 001
Chapter 5 unit f 001Chapter 5 unit f 001
Chapter 5 unit f 001
 
Casimir energy for a double spherical shell: A global mode sum approach
Casimir energy for a double spherical shell: A global mode sum approachCasimir energy for a double spherical shell: A global mode sum approach
Casimir energy for a double spherical shell: A global mode sum approach
 
Complex Numbers
Complex NumbersComplex Numbers
Complex Numbers
 
Vector fields and equipotentials
Vector fields and equipotentialsVector fields and equipotentials
Vector fields and equipotentials
 
G0562430
G0562430G0562430
G0562430
 
Lego like spheres and tori, enumeration and drawings
Lego like spheres and tori, enumeration and drawingsLego like spheres and tori, enumeration and drawings
Lego like spheres and tori, enumeration and drawings
 
Vector fields and equipotentials
Vector fields and equipotentialsVector fields and equipotentials
Vector fields and equipotentials
 

Más de James Smith

Un acercamiento a los determinantes e inversos de matrices
Un acercamiento a los determinantes e inversos de matricesUn acercamiento a los determinantes e inversos de matrices
Un acercamiento a los determinantes e inversos de matricesJames Smith
 
Understanding the "Chain Rule" for Derivatives by Deriving Your Own Version
Understanding the "Chain Rule" for Derivatives by Deriving Your Own VersionUnderstanding the "Chain Rule" for Derivatives by Deriving Your Own Version
Understanding the "Chain Rule" for Derivatives by Deriving Your Own VersionJames Smith
 
Solution of a High-School Algebra Problem to Illustrate the Use of Elementary...
Solution of a High-School Algebra Problem to Illustrate the Use of Elementary...Solution of a High-School Algebra Problem to Illustrate the Use of Elementary...
Solution of a High-School Algebra Problem to Illustrate the Use of Elementary...James Smith
 
Nuevo Manual de la UNESCO para la Enseñanza de Ciencias
Nuevo Manual de la UNESCO para la Enseñanza de CienciasNuevo Manual de la UNESCO para la Enseñanza de Ciencias
Nuevo Manual de la UNESCO para la Enseñanza de CienciasJames Smith
 
Estimation of the Earth's "Unperturbed" Perihelion from Times of Solstices an...
Estimation of the Earth's "Unperturbed" Perihelion from Times of Solstices an...Estimation of the Earth's "Unperturbed" Perihelion from Times of Solstices an...
Estimation of the Earth's "Unperturbed" Perihelion from Times of Solstices an...James Smith
 
"Rotation of a Rotation" via Geometric (Clifford) Algebra
"Rotation of a Rotation" via Geometric (Clifford) Algebra"Rotation of a Rotation" via Geometric (Clifford) Algebra
"Rotation of a Rotation" via Geometric (Clifford) AlgebraJames Smith
 
Sismos: Recursos acerca de la inspección y refuerzo de edificios dañados por ...
Sismos: Recursos acerca de la inspección y refuerzo de edificios dañados por ...Sismos: Recursos acerca de la inspección y refuerzo de edificios dañados por ...
Sismos: Recursos acerca de la inspección y refuerzo de edificios dañados por ...James Smith
 
A Modification of the Lifshitz-Slyozov-Wagner Equation for Predicting Coarsen...
A Modification of the Lifshitz-Slyozov-Wagner Equation for Predicting Coarsen...A Modification of the Lifshitz-Slyozov-Wagner Equation for Predicting Coarsen...
A Modification of the Lifshitz-Slyozov-Wagner Equation for Predicting Coarsen...James Smith
 
Calculating Dimensions for Constructing Super Adobe (Earth Bag) Domes
Calculating Dimensions for Constructing Super Adobe (Earth Bag) DomesCalculating Dimensions for Constructing Super Adobe (Earth Bag) Domes
Calculating Dimensions for Constructing Super Adobe (Earth Bag) DomesJames Smith
 
Trampas comunes en los exámenes de se selección sobre matemáticas
Trampas comunes en los exámenes de se selección sobre matemáticasTrampas comunes en los exámenes de se selección sobre matemáticas
Trampas comunes en los exámenes de se selección sobre matemáticasJames Smith
 
Why Does the Atmosphere Rotate? Trajectory of a desorbed molecule
Why Does the Atmosphere Rotate? Trajectory of a desorbed moleculeWhy Does the Atmosphere Rotate? Trajectory of a desorbed molecule
Why Does the Atmosphere Rotate? Trajectory of a desorbed moleculeJames Smith
 
Kepler and Newton vs. Geocentrism, Flat Earth, and the "Vortex"
Kepler and Newton vs. Geocentrism, Flat Earth, and the "Vortex"Kepler and Newton vs. Geocentrism, Flat Earth, and the "Vortex"
Kepler and Newton vs. Geocentrism, Flat Earth, and the "Vortex"James Smith
 
Proporciones de los radios y distancias en una "cadena de Steiner" de 6 circu...
Proporciones de los radios y distancias en una "cadena de Steiner" de 6 circu...Proporciones de los radios y distancias en una "cadena de Steiner" de 6 circu...
Proporciones de los radios y distancias en una "cadena de Steiner" de 6 circu...James Smith
 
Ejercicios geometría, con respuestas
Ejercicios geometría, con respuestasEjercicios geometría, con respuestas
Ejercicios geometría, con respuestasJames Smith
 
El cálculo de superviviencia
El cálculo de supervivienciaEl cálculo de superviviencia
El cálculo de supervivienciaJames Smith
 
Cómo sumar fracciones algbráicas
Cómo sumar fracciones algbráicasCómo sumar fracciones algbráicas
Cómo sumar fracciones algbráicasJames Smith
 
Cómo entender el uso de escalas logarítmicas
Cómo entender el uso de escalas logarítmicasCómo entender el uso de escalas logarítmicas
Cómo entender el uso de escalas logarítmicasJames Smith
 
El desarrollo de ecuaciones lineales
El desarrollo de ecuaciones linealesEl desarrollo de ecuaciones lineales
El desarrollo de ecuaciones linealesJames Smith
 
Cambios de óptica en el curso de un despeje
Cambios de óptica en el curso de un despejeCambios de óptica en el curso de un despeje
Cambios de óptica en el curso de un despejeJames Smith
 
Modelación matemática de una rueda y eje con momento de incercia variable par...
Modelación matemática de una rueda y eje con momento de incercia variable par...Modelación matemática de una rueda y eje con momento de incercia variable par...
Modelación matemática de una rueda y eje con momento de incercia variable par...James Smith
 

Más de James Smith (20)

Un acercamiento a los determinantes e inversos de matrices
Un acercamiento a los determinantes e inversos de matricesUn acercamiento a los determinantes e inversos de matrices
Un acercamiento a los determinantes e inversos de matrices
 
Understanding the "Chain Rule" for Derivatives by Deriving Your Own Version
Understanding the "Chain Rule" for Derivatives by Deriving Your Own VersionUnderstanding the "Chain Rule" for Derivatives by Deriving Your Own Version
Understanding the "Chain Rule" for Derivatives by Deriving Your Own Version
 
Solution of a High-School Algebra Problem to Illustrate the Use of Elementary...
Solution of a High-School Algebra Problem to Illustrate the Use of Elementary...Solution of a High-School Algebra Problem to Illustrate the Use of Elementary...
Solution of a High-School Algebra Problem to Illustrate the Use of Elementary...
 
Nuevo Manual de la UNESCO para la Enseñanza de Ciencias
Nuevo Manual de la UNESCO para la Enseñanza de CienciasNuevo Manual de la UNESCO para la Enseñanza de Ciencias
Nuevo Manual de la UNESCO para la Enseñanza de Ciencias
 
Estimation of the Earth's "Unperturbed" Perihelion from Times of Solstices an...
Estimation of the Earth's "Unperturbed" Perihelion from Times of Solstices an...Estimation of the Earth's "Unperturbed" Perihelion from Times of Solstices an...
Estimation of the Earth's "Unperturbed" Perihelion from Times of Solstices an...
 
"Rotation of a Rotation" via Geometric (Clifford) Algebra
"Rotation of a Rotation" via Geometric (Clifford) Algebra"Rotation of a Rotation" via Geometric (Clifford) Algebra
"Rotation of a Rotation" via Geometric (Clifford) Algebra
 
Sismos: Recursos acerca de la inspección y refuerzo de edificios dañados por ...
Sismos: Recursos acerca de la inspección y refuerzo de edificios dañados por ...Sismos: Recursos acerca de la inspección y refuerzo de edificios dañados por ...
Sismos: Recursos acerca de la inspección y refuerzo de edificios dañados por ...
 
A Modification of the Lifshitz-Slyozov-Wagner Equation for Predicting Coarsen...
A Modification of the Lifshitz-Slyozov-Wagner Equation for Predicting Coarsen...A Modification of the Lifshitz-Slyozov-Wagner Equation for Predicting Coarsen...
A Modification of the Lifshitz-Slyozov-Wagner Equation for Predicting Coarsen...
 
Calculating Dimensions for Constructing Super Adobe (Earth Bag) Domes
Calculating Dimensions for Constructing Super Adobe (Earth Bag) DomesCalculating Dimensions for Constructing Super Adobe (Earth Bag) Domes
Calculating Dimensions for Constructing Super Adobe (Earth Bag) Domes
 
Trampas comunes en los exámenes de se selección sobre matemáticas
Trampas comunes en los exámenes de se selección sobre matemáticasTrampas comunes en los exámenes de se selección sobre matemáticas
Trampas comunes en los exámenes de se selección sobre matemáticas
 
Why Does the Atmosphere Rotate? Trajectory of a desorbed molecule
Why Does the Atmosphere Rotate? Trajectory of a desorbed moleculeWhy Does the Atmosphere Rotate? Trajectory of a desorbed molecule
Why Does the Atmosphere Rotate? Trajectory of a desorbed molecule
 
Kepler and Newton vs. Geocentrism, Flat Earth, and the "Vortex"
Kepler and Newton vs. Geocentrism, Flat Earth, and the "Vortex"Kepler and Newton vs. Geocentrism, Flat Earth, and the "Vortex"
Kepler and Newton vs. Geocentrism, Flat Earth, and the "Vortex"
 
Proporciones de los radios y distancias en una "cadena de Steiner" de 6 circu...
Proporciones de los radios y distancias en una "cadena de Steiner" de 6 circu...Proporciones de los radios y distancias en una "cadena de Steiner" de 6 circu...
Proporciones de los radios y distancias en una "cadena de Steiner" de 6 circu...
 
Ejercicios geometría, con respuestas
Ejercicios geometría, con respuestasEjercicios geometría, con respuestas
Ejercicios geometría, con respuestas
 
El cálculo de superviviencia
El cálculo de supervivienciaEl cálculo de superviviencia
El cálculo de superviviencia
 
Cómo sumar fracciones algbráicas
Cómo sumar fracciones algbráicasCómo sumar fracciones algbráicas
Cómo sumar fracciones algbráicas
 
Cómo entender el uso de escalas logarítmicas
Cómo entender el uso de escalas logarítmicasCómo entender el uso de escalas logarítmicas
Cómo entender el uso de escalas logarítmicas
 
El desarrollo de ecuaciones lineales
El desarrollo de ecuaciones linealesEl desarrollo de ecuaciones lineales
El desarrollo de ecuaciones lineales
 
Cambios de óptica en el curso de un despeje
Cambios de óptica en el curso de un despejeCambios de óptica en el curso de un despeje
Cambios de óptica en el curso de un despeje
 
Modelación matemática de una rueda y eje con momento de incercia variable par...
Modelación matemática de una rueda y eje con momento de incercia variable par...Modelación matemática de una rueda y eje con momento de incercia variable par...
Modelación matemática de una rueda y eje con momento de incercia variable par...
 

Último

Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfagholdier
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsTechSoup
 
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...Shubhangi Sonawane
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactPECB
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.pptRamjanShidvankar
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphThiyagu K
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxVishalSingh1417
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxVishalSingh1417
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxnegromaestrong
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104misteraugie
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfciinovamais
 
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural Resources
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural ResourcesEnergy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural Resources
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural ResourcesShubhangi Sonawane
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxAreebaZafar22
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...Poonam Aher Patil
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDThiyagu K
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxheathfieldcps1
 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfAyushMahapatra5
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptxMaritesTamaniVerdade
 

Último (20)

Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptx
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptx
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptx
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural Resources
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural ResourcesEnergy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural Resources
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural Resources
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 
Asian American Pacific Islander Month DDSD 2024.pptx
Asian American Pacific Islander Month DDSD 2024.pptxAsian American Pacific Islander Month DDSD 2024.pptx
Asian American Pacific Islander Month DDSD 2024.pptx
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SD
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdf
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
 

Calculating the Angle between Projections of Vectors via Geometric (Clifford) Algebra

  • 1. Calculating the Angle between Projections of Vectors via Geometric (Clifford) Algebra February 5, 2018 James Smith nitac14b@yahoo.com https://mx.linkedin.com/in/james-smith-1b195047 Abstract We express a problem from visual astronomy in terms of Geometric (Clifford) Algebra, then solve the problem by deriving expressions for the sine and cosine of the angle between projections of two vectors upon a plane. Geometric Algebra enables us to do so without deriving expressions for the projections themselves. “Derive expressions for the sine and cosine of the angle of rotation, β, from the projection of u upon the bivector ˆM to the projection of v upon ˆM.” 1
  • 2. Contents 1 Introduction 2 2 Formulating the Problem in Geometric-Algebra (GA) Terms, and Devising a Solution Strategy 3 2.1 Initial Observations . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 Recalling What We’ve Learned from Solving Similar Problems via GA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.3 Further Observations, and Identifying a Strategy . . . . . . . . . 6 3 Solutions for cos β and sin β 8 3.1 Expressions for u · ˆM and v · ˆM . . . . . . . . . . . . . . . . . . 8 3.2 Expressions for u · ˆM and v · ˆM . . . . . . . . . . . . . . . . 9 3.3 Solution for sin β . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.3.1 Expansion of u · ˆM v · ˆM 2 . . . . . . . . . . . . . . 10 3.3.2 Expansion of ˆM −1 u · ˆM v · ˆM 2 . . . . . . . . . . . 10 3.3.3 Final result for sin β . . . . . . . . . . . . . . . . . . . . . 10 3.4 Solution for cos β . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 4 Testing the Formulas that We’ve Derived 11 5 Conclusions, and Summary of the Formulas Derived Herein 12 6 Appendix: Calculating the Unit Bivector ˆM of a Plane Whose Dual is the Vector ˆe 13 1 Introduction In this document, we will solve—numerically as well as symbolically—a problem of a type that can take the following concrete form, with reference to Fig.1: “At a certain location on the Earth, a vertical pole casts a shadow on a perfectly flat, horizontal plaza. On that plaza, local residents
  • 3. Figure 1: A gnomon (vertical pole) casts a shadow on a perfectly flat, level plaza. The direction of vector s is from the base of the gnomon to the tip of the shadow. The direction of the Sun’s rays is ˆr. Upon the plaza, local inhabitants have drawn a line pointing in the direction “local north” (ˆnL). The unit vector in the direction of the plane’s normal is ˆg. who are fans of naked-eye astronomy have traced a north-south line running through the base of the pole. With respect to a right- handed orthonormal reference frame with basis vectors ˆa, ˆb, and ˆc, the direction of the Sun’s rays is given by the unit vector ˆr = ˆara + ˆbrb + ˆcrc. The direction of the upward-pointing vector normal to the plaza is ˆg = ˆaga + ˆbgb + ˆcgc, and the direction of the Earth’s rotational axis (i.e., the direction from the center of the Earth to the North Pole) is ˆnL = ˆanLa + ˆbnLb + ˆcnLc. What is the angle, β, between the north-south line and the pole’s shadow?” 2 Formulating the Problem in Geometric-Algebra (GA) Terms, and Devising a Solution Strategy 2.1 Initial Observations Let’s begin by making a few observations that might be useful: 1. A vertical pole that is used to cast a shadow on a flat surface for the purpose of astronomical observations is known as a gnomon. We’ll use that term in the rest of this document. 2. By saying “the direction of the Sun’s rays is ˆr = ˆara + ˆbrb + ˆcrc”, we assumed that all of the Sun’s rays are parallel. We’ll use that assumption throughout this document. 3. For our purposes, the Earth can be assumed perfectly spherical. 3
  • 4. Figure 2: The plaza is a plane tangent to the Earth (assumed spherical) at the point at which the gnomon is embedded . 4. The plaza is a plane tangent to the Earth at the point at which the gnomon is embedded (Fig. 2). 5. The direction of the shadow is the direction of the perpendicular projection of ˆr upon the plaza. Fig. 2 shows why: the gnomon is perpendicular to the plaza, so the shadow is the perpendicular projection some vector λˆr upon the plaza. Thus, the direction from the base of the gnomon to the tip of the shadow is the same as the direction of the projection of ˆr upon the plaza. 6. The direction from south to north, as traced on the plaza by local residents, is the perpendicular projection of ˆnc upon the plaza. As proof of that assertion, consider Fig. 3. The south-north line on the plaza is tangent to the great circle that passes through the Earth’s North Geographic Pole, and that also passes through the base of the gnomon. The plane that contains that great circle also contains the both ˆg and ˆnc. Therefore, that plane is perpendicular to the plaza. Putting all of these ideas together, the south-north line on the plaza is the projection of some scalar multiple µˆnc of the vector ˆnc. Thus, that line has the direction of ˆnc’s projection on the plaza. 2.2 Recalling What We’ve Learned from Solving Similar Problems via GA Let’s refresh our memory about techniques that we may used to solve other problems via GA: 4
  • 5. Figure 3: The direction “local north” (i.e., the direction from south to north, as traced on the plaza by local residents) is the same as that of the perpendicular projection of ˆnc upon the plaza. 1. Problems involving projections onto a plane are usually solved by using the appropriately-oriented bivector that is parallel to the plane, rather than by using the vector that is perpendicular to it. The Appendix (Section 6) shows how to find the required bivector, given said vector. The conclusion is that for the unit perpendicular vector ˆe = ˆaea + ˆbeb + ˆcec, the appropriately-oriented unit bivector is ˆM = ˆaˆbec + ˆbˆcea − ˆaˆceb (2.1) In GA terms, ˆe is the “dual” of the bivector ˆM. We can also see that if we write ˆM in the form ˆM = ˆaˆbmab + ˆbˆcmbc + ˆaˆcmac, then mab = ec, mbc = ea, mac = −eb. (2.2) 2. Notation: PC (d) is the projection of d upon C. The perpendicular projection of a given vector w upon a given unit bivector, ˆM, is (Reference [1], p. 65 , and Ref. [2], p.119): P ˆM (w) = w · ˆM ˆM −1 . (2.3) 3. The inverse ˆM −1 of the unit bivector ˆM is − ˆM . 4. For any vector y that is parallel to the bivector A, Ay = −yA. 5. Putting the last three observations, we arrive at P ˆM (w) = ˆM w · ˆM . (2.4) 5
  • 6. 6. If two vectors p and q are parallel to the bivector ˆM, then ˆpˆq = e ˆMφ , where the scalar φ is the angle of rotation from p to q. Therefore, p · q + p ∧ q = cos φ + ˆM sin φ. The algebraic sign of φ is positive if the direction of that rotation is the same as the orientation of ˆM, and negative if in the opposite direction. 7. Equating terms of the same grade in the previous item, we find that cos φ = ˆp · ˆq; sin φ = ˆM −1 (ˆp ∧ ˆq) . (2.5) 8. Macdonald’s definitions (Ref. [2], p. 101) of the inner and outer products are often useful. Those definitions are, for a multivector A of grade j and a multivector B of grade k: Aj · Bk = AB k−j (Note: Aj · Bk does not exist if j > k); Aj ∧ Bk = AB k+j. (2.6) 2.3 Further Observations, and Identifying a Strategy We ’ve been discussion how to find the angle between the south-north line and the gnomon’s shadow. Now, to provide results that will be more generally useful, we’ll treat two arbitrary vectors u and v (not necessarily unit vectors) and an arbitrary unit bivector, ˆM (Fig. 4). We wish to find the sine and cosine of β, the angle of rotation from P ˆM (u) to P ˆM (u). We could solve the problem by calculating each of those projections according to Eq. (2.3), then calculating the sine and cosine of the requested angle from Eq. (2.5). However, our review of GA in the previous section suggests a strategy that will save us considerable trouble. We’ll begin by using Eq. (2.3) to express the two projections that interest us: P ˆM (ˆu) = ˆu · ˆM ˆM −1 ; P ˆM (v) = v · ˆM ˆM −1 . Can we now use Eq. (2.5) to calculate cos β and sin β? Not yet: although u and v are unit vectors, their projects upon ˆM may not be. Therefore, we’ll need to calculate P ˆM (u) and P ˆM (v) , a detail to which we’ll return momentarily. First, we need to calculate u · ˆM ˆM −1 · v · ˆM ˆM −1 and u · ˆM ˆM −1 ∧ v · ˆM ˆM −1 . The definitions of the inner and outer products in Eq. (2.6) use the product AjBk, which in our case (because we want to know the rotation from P ˆM (u) to P ˆM (u)) is u · ˆM ˆM −1 v · ˆM ˆM −1 . 6
  • 7. Figure 4: Diagram of the translation, into GA terms, of the more-general type of problem that was motivated by our consideration of the specific case of shadows cast upon a flat, horizontal plaza by a vertical pole. We’ll derive expressions for the sine and cosine of the angle of rotation β from the projection of u upon the bivector ˆM to the projection of v upon ˆM. The vector ˆe is the dual of ˆM, and is therefore normal to ˆM. 7
  • 8. Next, we recognize that v · ˆM is a vector, and is parallel to ˆM. Therefore, using Eq. (2.4), we can write v · ˆM ˆM −1 as ˆM v · ˆM . Using this idea in the previous equation, u · ˆM ˆM −1 v · ˆM ˆM −1 = u · ˆM ˆM −1 ˆM v · ˆM = u · ˆM v · ˆM . (2.7) We could also find P ˆM (u) and P ˆM (v) via a route similar to that used in deriving Eq. (2.7). For example, P ˆM (u) = [P ˆM (u)]2 = u · ˆM ˆM −1 u · ˆM ˆM −1 = u · ˆM 2 = u · ˆM . Now, let’s return to the question of P ˆM (u) and P ˆM (v) . Because the vector P ˆM (u) is parallel to the unit bivector ˆM, P ˆM (u) ˆM is just a 90◦ rotation of P ˆM (u). Thus, P ˆM (u) ˆM = P ˆM (u) . But P ˆM (u) ˆM = u · ˆM ˆM −1 ˆM = u · ˆM. After using similar reasoning for P ˆM (v) , we find that P ˆM (u) = u · ˆM , and P ˆM (v) = v · ˆM . (2.8) Putting all of these ideas together, plus Eq. (2.5), and recognizing that u · ˆM and v · ˆM are vectors (and therefore are of grade 1), sin β = ˆM −1 u · ˆM v · ˆM 2 u · ˆM v · ˆM , (2.9a) cos β = u · ˆM v · ˆM 0 u · ˆM v · ˆM . (2.9b) 3 Solutions for cos β and sin β We’ll begin by writing ˆM and the two vectors as u = ˆaua + ˆbub + ˆcuc, v = ˆava + ˆbvb + ˆcvc, and ˆM = ˆaˆbmab + ˆbˆcmbc + ˆaˆcmac. 3.1 Expressions for u · ˆM and v · ˆM Vector u is of grade 1, and bivector ˆM is of grade 2, so from Eq. (2.6), u · ˆM = u ˆM 2−1 = ˆaua + ˆbub + ˆcuc ˆaˆbmab + ˆbˆcmbc + ˆaˆcmac 1 = ˆa (−ubmab − ucmac) + ˆb (uamab − ucmbc) + ˆc (uamac + ubmbc) . 8
  • 9. Similarly, v · ˆM = ˆa (−vbmab − vcmac) + ˆb (vamab − vcmbc) + ˆc (vamac + vbmbc) . 3.2 Expressions for u · ˆM and v · ˆM Using the expressions that we developed in Section 3.1 , u · ˆM 2 and v · ˆM , plus the fact that m2 ab + m2 bc + m2 ac = 1 because ˆM is a unit bivector, u · ˆM 2 = u2 a 1 − m2 bc + u2 b 1 − m2 ac + u2 c 1 − m2 ab + 2uaubmacmbc + 2ubucmabmac − 2uaucmabmbc , (3.1a) and v · ˆM 2 = v2 a 1 − m2 bc + v2 b 1 − m2 ac + v2 c 1 − m2 ab + 2vavbmacmbc + 2vbvcmabmac − 2vavcmabmbc . (3.1b) Using the correspondence (Eq. (2.2)) between coefficients in ˆM and ˆe, we can also write Eq. (3.1) as u · ˆM 2 = u2 a 1 − e2 a + u2 b 1 − e2 b + u2 c 1 − e2 c − 2uaubeaeb − 2ubucebec − 2uauceaec , (3.2a) and v · ˆM 2 = v2 a 1 − e2 a + v2 b 1 − e2 b + v2 c 1 − e2 c − 2vavbeaeb − 2vbvcebec − 2vavceaec . (3.2b) 3.3 Solution for sin β As you might expect, the expansion of Eq. (2.9)a becomes extensive and messy, so we’ll do it in several steps. 9
  • 10. 3.3.1 Expansion of u · ˆM v · ˆM 2 After considerable simplification, using the expressions developed in Section 3.1 for u · ˆM and v · ˆM, u · ˆM v · ˆM 2 = ˆaˆb (uavb − ubva) m2 ab + (ubvc − ucvb) mabmbc + (uavc − ucva) mabmac ] + ˆbˆc (ubvc − ucvb) m2 bc + (uavb − ubva) mabmbc + (uavc − ucva) mbcmac ] + ˆaˆc (uavc − ucva) m2 ac + (uavb − ubva) mabmac + (ubvc − ucvb) mbcmac ] . (3.3) 3.3.2 Expansion of ˆM −1 u · ˆM v · ˆM 2 Surprisingly, left-multiplying the expression for u · ˆM v · ˆM 2 (Eq. (3.3)) by ˆM −1 gives a comparatively simple result. The inverse of a unit bivector is just the negative of that bivector, so ˆM −1 = − ˆM = −ˆaˆbmab − ˆbˆcmbc − ˆaˆcmac. After expanding, carrying out massive cancellations, and using the fact that m2 ab + m2 bc + m2 ac = 1, ˆM −1 u · ˆM v · ˆM 2 = (uavb − ubva) mab + (ubvc − ucvb) mbc + (uavc − ucva) mac. (3.4) Does our answer make sense? The expression on the right-hand side of Eq. (3.4) will be the numerator of the final expression for sin β. We should stop here to ask ourselves whether that expression makes sense. For example, does it behave as it should, given the physical situation for which it’s been derived? One thing we know is that if the vectors u and v are reversed, then angle β will remain the same in magnitude, but will change algebraic sign. The same is true for the right-hand side of Eq. (3.4), so in this respect, at least, it does make sense. We also note that if u = v, then the right-hand side of Eq. (3.4) is zero, as it should be, because when u = v, β = 0. 3.3.3 Final result for sin β Using our result from Eq. (3.4) sin β = (uavb − ubva) mab + (ubvc − ucvb) mbc + (uavc − ucva) mac u · ˆM v · ˆM , (3.5) 10
  • 11. where u · ˆM and v · ˆM are the square roots of the expressions on the right-hand side of Eqs. (3.1). Using the correspondence (Eq. (2.2)) between coefficients in ˆM and ˆe, we can also write Eq. (3.5) as sin β = (uavb − ubva) ec + (ubvc − ucvb) ea − (uavc − ucva) eb u · ˆM v · ˆM . (3.6) 3.4 Solution for cos β The work needed to derive the expression for cos β is much less extensive than was needed for sin β, so we will omit many of the details. The expansion of u · ˆM v · ˆM 0 reduces to u · ˆM v · ˆM 0 = uava 1 − m2 bc + ubvb 1 − m2 ac + ucvc 1 − m2 ab − (uavc + ucva) mabmbc + (ubvc + ucvb) mabmac + (uavb + ubva) mbcmac. (3.7) Then, according to Eq. (2.9), cos β is the right-hand side of Eq. (3.7), divided by the product u · ˆM v · ˆM (from Eqs. (3.1)). Using the correspondence (Eq. (2.2)) between coefficients in ˆM and ˆe, we can also write Eq. (3.7) as u · ˆM v · ˆM 0 = uava 1 − e2 a + ubvb 1 − e2 b + ucvc 1 − e2 c − (uavc + ucva) eaec − (ubvc + ucvb) ebec − (uavb + ubva) eaeb. (3.8) Does our answer make sense?Once again, we should ask whether our answer makes sense. For example, does interchanging the vectors u and v leave the result unchanged, as it should? Yes. In addition, if u = v, then u · ˆM v · ˆM 0 reduces to the expression that we found for u · ˆM 2 (Eqs. (3.1)). This result, too, is as it should be. We could also, more laboriously, verify that sin2 β + cos2 β = 1. 4 Testing the Formulas that We’ve Derived Fig. 5 shows an interactive GeoGebra construction (Reference [3]) that compares the calculated and actual values of sin β and cos β. 11
  • 12. Figure 5: An interactive GeoGebra construction (Reference [3]) that tests the formulas derived herein by comparing the calculated and actual values of sin β and cos β. 5 Conclusions, and Summary of the Formulas Derived Herein The key idea in these derivations was that because the vectors u · ˆM ˆM −1 and v · ˆM ˆM −1 are parallel to ˆM, we can calculate the sine and cosine of β from the product u · ˆM v · ˆM , rather than having to calculate them from the product u · ˆM ˆM −1 v · ˆM ˆM −1 . Writing u, v, and ˆe, and ˆM, as • u = ˆaua + ˆbub + ˆcuc, • v = ˆava + ˆbvb + ˆcvc, • e = ˆaea + ˆbeb + ˆcec, and • ˆM = ˆaˆbmab + ˆbˆcmbc + ˆaˆcmac = ˆaˆbec + ˆbˆcea − ˆaˆceb , we found that (Eqs. (3.5) and (3.6)) sin β = (uavb − ubva) mab + (ubvc − ucvb) mbc + (uavc − ucva) mac u · ˆM v · ˆM , = (uavb − ubva) ec + (ubvc − ucvb) ea − (uavc − ucva) eb u · ˆM v · ˆM , 12
  • 13. where u · ˆM and v · ˆM are the square roots of the expressions on the right-hand side of Eqs. (3.1). WE also find that (Eqs. (3.7) and (3.8)) cos β = u · ˆM v · ˆM 0 u · ˆM v · ˆM , where u · ˆM v · ˆM 0 = uava 1 − m2 bc + ubvb 1 − m2 ac + ucvc 1 − m2 ab − (uavc + ucva) mabmbc + (ubvc + ucvb) mabmac + (uavb + ubva) mbcmac, = uava 1 − e2 a + ubvb 1 − e2 b + ucvc 1 − e2 c − (uavc + ucva) eaec − (ubvc + ucvb) ebec − (uavb + ubva) eaeb. References [1] D. Hestenes, 1999, New Foundations for Classical Mechanics, (Second Edition), Kluwer Academic Publishers (Dordrecht/Boston/London). [2] A. Macdonald, Linear and Geometric Algebra (First Edition) p. 126, CreateSpace Independent Publishing Platform (Lexington, 2012). [3] J. A. Smith, 2018, “Angle Between Projections of Vectors via Geom. Alge- bra” (a GeoGebra construction), https://www.geogebra.org/m/Zpsxygxy. [4] J. A. Smith, 2017, “Some Solution Strategies for Equations that Arise in Geometric (Clifford) Algebra”, http://vixra.org/abs/1610.0054 . 6 Appendix: Calculating the Unit Bivector ˆM of a Plane Whose Dual is the Vector ˆe As may be inferred from a study of References [1] (p. (56, 63) and [2] (pp. 106-108) , the bivector ˆM that we seek is the one whose dual is ˆe. That is, ˆM must satisfy the condition ˆe = ˆMI−1 3 ; ∴ ˆM = ˆeI3. (6.1) Although we won’t use that fact here, I−1 3 is I3’s negative: I−1 3 = −ˆaˆbˆc. where I3 is the right-handed pseudoscalar for G3 . That pseudoscalar is the product, written in right-handed order, of our orthonormal reference frame’s 13
  • 14. basis vectors: I3 = ˆaˆbˆc (and is also ˆbˆcˆa and ˆcˆaˆb). Therefore, writing ˆM as ˆM = ˆaea + ˆbeb + ˆcec, ˆM = ˆeI3 = ˆaea + ˆbeb + ˆcec ˆaˆbˆc = ˆaˆaˆbˆcea + ˆbˆaˆbˆceb + ˆcˆaˆbˆcec = ˆaˆbec + ˆbˆcea − ˆaˆceb. (6.2) To make this simplification, we use the following facts: • The product of two perpendicular vectors (such as ˆa and ˆb) is a bivector; • Therefore, for any two perpendicular vectors p and q, qp = −qp; and • (Of course) for any unit vector ˆp, ˆpˆp = 1. See also Ref. [4]. In writing that last result, we’ve followed [2]’s convention (p. 82) of using ˆaˆb, ˆbˆc, and ˆaˆc as our bivector basis. Examining Eq. (6.2) we can see that if we write ˆM in the form ˆM = ˆaˆbmab + ˆbˆcmbc + ˆaˆcmac , then mab = ec, mbc = ea, mac = −eb. (6.3) 14