SlideShare una empresa de Scribd logo
1 de 45
Distribuciones Espectrales de Energía de Galaxias Hiperluminosas en el Infrarrojo Ángel Ruiz 1   Francisco J. Carrera 1 , Francesca Panessa 2 , Giovanni Miniutt i 3 1: Instituto de Física de Cantabria (CSIC-UC) 2: INAF/IASF – Roma 3: Laboratoire APC - Paris 7 de Julio de 2008  –  VIII Reunion Científica de la SEA –  Santander
Coevolución AGN-galaxia ,[object Object]
MIR-FIR-submm : radiación mas energética absorbida y reemitida en el IR.
Radio ,[object Object],[object Object]
Los modelos de sintesis del fondo cósmico de rayos X requieren que la mayoria de AGNs del Universo sean absorbidos   (Gilli et al. 1999)   ,[object Object]
Radio
[object Object]
MIR-FIR-submm : radiación mas energética absorbida y reemitida en el IR.
Radio ,[object Object],[object Object]
Los modelos de sintesis del fondo cósmico de rayos X requieren que la mayoria de AGNs del Universo sean absorbidos   (Gilli et al. 1999)   ,[object Object]
Radio Coevolución AGN-galaxia Matrimonio feliz entre la astronomía X y la IR:  coincidencia en el tiempo de Chandra, XMM-Newton, Suzaku, Spitzer, Akari, Herschel...
Observando la coevolución de AGNs y galaxias en rayos X y MIR-FIR ,[object Object]
Observaciones MIR de fuentes de rayos X: ,[object Object],[object Object],[object Object]
Galaxias Hiperluminosas en el IR (HLIRGs) (Ruiz et al. 2007)
¿Por qué HLIRGs? ,[object Object]
Fracción de AGNs aumenta con la luminosidad IR (Veilleux et al. 1999)
La mayoría se encuentran en sistemas en interacción (Farrah et al. 2001)
Muestras rayos X: compuestas, dominadas por STB (Franceschini et al. 2003; Teng et al. 2005) ,[object Object],[object Object]
Solo algunos en interacción (~30%)   (Farrah et al. 2002b) ,[object Object],[object Object]
[object Object]
Fracción de AGNs aumenta con la luminosidad IR (Veilleux et al. 1999)
La mayoría se encuentran en sistemas en interacción (Farrah et al. 2001)
Muestras rayos X: compuestas, dominadas por STB (Franceschini et al. 2003; Teng et al. 2005) ,[object Object],[object Object]
Solo algunos en interacción (~30%)   (Farrah et al. 2002b) ,[object Object],[object Object],¿Por qué HLIRGs? ,[object Object],[object Object]
Alta fraccion de AGNs ,[object Object],[object Object]
¿Fase transitoria en la evolución de los AGNs?
....
Estudio de HLIRGs con XMM-Newton: Sample ,[object Object]
Datos propios de XMM-Newton (AO-5)
z < ~2: evitamos sesgos por QSO a alto redshift ,[object Object],[object Object]
8 4 2 X 0.6 /0.4 0.323 QSO 1.5 IRAS 14026+4341 X 0.7 /0.3 0.36 QSO IRAS 13279+3401 X 0.6 /0.4 0.780 QSO IRAS F12509+3122 X 1 /0 2.038 QSO PG 1247+267 X 0.6 /0.4 0.292 Starburst IRAS 07380-2342  0.5/0.5 0.575 Starburst IRAS F00235+1024 X 1 /0 1.158 QSO PG 1206+459 X 0.8 /0.2 1.334 QSO IRAS 16347+7037 X 0.2/ 0.8 1.21 QSO IRAS F14218+3845 X 0.6 /0.4 0.297 QSO IRAS 18216+6418  0.7 /0.3 0.926 Seyfert 2 IRAS F15307+3252  0.4/ 0.6 0.3 Seyfert 2 IRAS 12514+1027  1 /0 0.442 QSO 2 IRAS 09104+4109  0.35/ 0.65 0.327 QSO 2 IRAS 00182-7112 CT? AGN / STB (IR SED fitting) z Tipo (opt) Fuente
X <42.6 - 3 σ  upper limit IRAS 14026+4341 X <42.2 - 3 σ  upper limit IRAS 13279+3401 X 44.3 43.8 “ thermal”+direct IRAS F12509+3122 X 45.9 45.5 “ thermal”+direct PG 1247+267 X <42.5 - 3 σ  upper limit IRAS 07380-2342  <42.4 - 3 σ  upper limit IRAS F00235+1024 X 45.1 <44.0 direct PG 1206+459 X 46.0 45.7 “ thermal”+direct IRAS 16347+7037 X 44.6 <43.8 direct IRAS F14218+3845 X 45.6 45.1 “ thermal”+direct IRAS 18216+6418  43.7  45.5 <43.1 “ direct” IRAS F15307+3252  43.3 42.2 thermal+absorbed direct (4x10 23 ) IRAS 12514+1027  45.3 44.2 “ thermal”+reflected+narrow line IRAS 09104+4109  44.8 <41.9 reflected+narrow line (0.8keV) IRAS 00182-7112 CT? l og  L 2-10 log  L 0.5-2 Modelo Fuente No detectadas por XMM-Newton
X <42.6 - 3 σ  upper limit IRAS 14026+4341 X <42.2 - 3 σ  upper limit IRAS 13279+3401 X 44.3 43.8 “ thermal”+direct IRAS F12509+3122 X 45.9 45.5 “ thermal”+direct PG 1247+267 X <42.5 - 3 σ  upper limit IRAS 07380-2342  <42.4 - 3 σ  upper limit IRAS F00235+1024 X 45.1 <44.0 direct PG 1206+459 X 46.0 45.7 “ thermal”+direct IRAS 16347+7037 X 44.6 <43.8 direct IRAS F14218+3845 X 45.6 45.1 “ thermal”+direct IRAS 18216+6418  43.7  45.5 <43.1 “ direct” IRAS F15307+3252  43.3 42.2 thermal+absorbed direct (4x10 23 ) IRAS 12514+1027  45.3 44.2 “ thermal”+reflected+narrow line IRAS 09104+4109  44.8 <41.9 reflected+narrow line (0.8keV) IRAS 00182-7112 CT? l og  L 2-10 log  L 0.5-2 Model Source Fuerte absorcion o sin continuo directo
X <42.6 - 3 σ  upper limit IRAS 14026+4341 X <42.2 - 3 σ  upper limit IRAS 13279+3401 X 44.3 43.8 “ thermal”+direct IRAS F12509+3122 X 45.9 45.5 “ thermal”+direct PG 1247+267 X <42.5 - 3 σ  upper limit IRAS 07380-2342  <42.4 - 3 σ  upper limit IRAS F00235+1024 X 45.1 <44.0 direct PG 1206+459 X 46.0 45.7 “ thermal”+direct IRAS 16347+7037 X 44.6 <43.8 direct IRAS F14218+3845 X 45.6 45.1 “ thermal”+direct IRAS 18216+6418  43.7  45.5 <43.1 “ direct” IRAS F15307+3252  43.3 42.2 thermal+absorbed direct (4x10 23 ) IRAS 12514+1027  45.3 44.2 “ thermal”+reflected+narrow line IRAS 09104+4109  44.8 <41.9 reflected+narrow line (0.8keV) IRAS 00182-7112 CT? l og  L 2-10 log  L 0.5-2 Model Source Soft excess: demasiado brillante para STB
X <42.6 - 3 σ  upper limit IRAS 14026+4341 X <42.2 - 3 σ  upper limit IRAS 13279+3401 X 44.3 43.8 “ thermal”+direct IRAS F12509+3122 X 45.9 45.5 “ thermal”+direct PG 1247+267 X <42.5 - 3 σ  upper limit IRAS 07380-2342  <42.4 - 3 σ  upper limit IRAS F00235+1024 X 45.1 <44.0 direct PG 1206+459 X 46.0 45.7 “ thermal”+direct IRAS 16347+7037 X 44.6 <43.8 direct IRAS F14218+3845 X 45.6 45.1 “ thermal”+direct IRAS 18216+6418  43.7  45.5 <43.1 “ direct” IRAS F15307+3252  43.3 42.2 thermal+absorbed direct (4x10 23 ) IRAS 12514+1027  45.3 44.2 “ thermal”+reflected+narrow line IRAS 09104+4109  44.8 <41.9 reflected+narrow line (0.8keV) IRAS 00182-7112 CT? l og  L 2-10 log  L 0.5-2 Model Source Sólo una fuente con emisión térmica de STB
Risaliti & Elvis
Risaliti & Elvis AGN
Risaliti & Elvis STARBURST AGN
Risaliti & Elvis STARBURST AGN AGN-dominated ULIRG
Risaliti & Elvis STARBURST AGN STB-dominated ULIRG AGN-dominated ULIRG
Risaliti & Elvis STARBURST AGN STB-dominated ULIRG AGN-dominated ULIRG High-z HLIRGS
Risaliti & Elvis STARBURST AGN STB-dominated ULIRG AGN-dominated ULIRG High-z HLIRGS AGN-dominated HLIRG
Risaliti & Elvis STARBURST AGN STB-dominated ULIRG AGN-dominated ULIRG High-z HLIRGS AGN-dominated HLIRG “ Mixed”
Risaliti & Elvis STARBURST AGN STB-dominated ULIRG AGN-dominated ULIRG High-z HLIRGS AGN-dominated HLIRG STB-dominated HLIRG “ Mixed”
IRAS 14026+4341 H b  compatible con z = 0.32 Risaliti & Elvis STARBURST AGN STB-dominated ULIRG AGN-dominated ULIRG High-z HLIRGS AGN-dominated HLIRG STB-dominated HLIRG “ Mixed”

Más contenido relacionado

Similar a Distribuciones Espectrales de Energía de Galaxias Hiperluminosas en el Infrarrojo

Bol2_Radiacion solar y terrestre.ppt
Bol2_Radiacion solar y terrestre.pptBol2_Radiacion solar y terrestre.ppt
Bol2_Radiacion solar y terrestre.pptJosueAnca
 
Examen fisica 2 erick gil
Examen fisica 2 erick gilExamen fisica 2 erick gil
Examen fisica 2 erick gilErick Gil
 
Eci 2010 Talk Alec Fischer
Eci 2010 Talk   Alec FischerEci 2010 Talk   Alec Fischer
Eci 2010 Talk Alec FischerAlec Fischer
 
Lhc new
Lhc newLhc new
Lhc newFrnnd0
 
DETERMINACIÓN EXPERIMENTAL DE LA EFICIENCIA Y DE LA CURVA CARACTERÍSTICA DE P...
DETERMINACIÓN EXPERIMENTAL DE LA EFICIENCIA Y DE LA CURVA CARACTERÍSTICA DE P...DETERMINACIÓN EXPERIMENTAL DE LA EFICIENCIA Y DE LA CURVA CARACTERÍSTICA DE P...
DETERMINACIÓN EXPERIMENTAL DE LA EFICIENCIA Y DE LA CURVA CARACTERÍSTICA DE P...Ricardo Palma Esparza
 
Presentación espectroscopía 2
Presentación  espectroscopía 2Presentación  espectroscopía 2
Presentación espectroscopía 2maricelalemus
 
entorno espacial.pdf
entorno espacial.pdfentorno espacial.pdf
entorno espacial.pdfNildaRecalde
 
Presentacion instrumentacion
Presentacion instrumentacionPresentacion instrumentacion
Presentacion instrumentacionNaoko Konichiiwa
 
3.-ir-espectroscopia (1).ppt PARA ESTUDIANTES
3.-ir-espectroscopia (1).ppt PARA ESTUDIANTES3.-ir-espectroscopia (1).ppt PARA ESTUDIANTES
3.-ir-espectroscopia (1).ppt PARA ESTUDIANTESl22211712
 
Radiactividad 4to de secundaria
Radiactividad 4to de secundariaRadiactividad 4to de secundaria
Radiactividad 4to de secundariaCharles Stanford
 
Proyecto espectro
Proyecto espectroProyecto espectro
Proyecto espectroRene Cantu
 
Radiacion termica e_mera
Radiacion termica e_meraRadiacion termica e_mera
Radiacion termica e_meraEduardo Mera
 
Alberto CarramiñAna Altas Energias
Alberto CarramiñAna Altas EnergiasAlberto CarramiñAna Altas Energias
Alberto CarramiñAna Altas EnergiasCarlos Raul
 

Similar a Distribuciones Espectrales de Energía de Galaxias Hiperluminosas en el Infrarrojo (20)

Termografia
TermografiaTermografia
Termografia
 
Bol2_Radiacion solar y terrestre.ppt
Bol2_Radiacion solar y terrestre.pptBol2_Radiacion solar y terrestre.ppt
Bol2_Radiacion solar y terrestre.ppt
 
Examen fisica 2 erick gil
Examen fisica 2 erick gilExamen fisica 2 erick gil
Examen fisica 2 erick gil
 
Eci 2010 Talk Alec Fischer
Eci 2010 Talk   Alec FischerEci 2010 Talk   Alec Fischer
Eci 2010 Talk Alec Fischer
 
Manual de Energia Solar Termica
Manual de Energia Solar TermicaManual de Energia Solar Termica
Manual de Energia Solar Termica
 
Lhc new
Lhc newLhc new
Lhc new
 
Ley cuadrado inversoooo
Ley cuadrado inversooooLey cuadrado inversoooo
Ley cuadrado inversoooo
 
DETERMINACIÓN EXPERIMENTAL DE LA EFICIENCIA Y DE LA CURVA CARACTERÍSTICA DE P...
DETERMINACIÓN EXPERIMENTAL DE LA EFICIENCIA Y DE LA CURVA CARACTERÍSTICA DE P...DETERMINACIÓN EXPERIMENTAL DE LA EFICIENCIA Y DE LA CURVA CARACTERÍSTICA DE P...
DETERMINACIÓN EXPERIMENTAL DE LA EFICIENCIA Y DE LA CURVA CARACTERÍSTICA DE P...
 
Teledeteccion
TeledeteccionTeledeteccion
Teledeteccion
 
Rutherford
RutherfordRutherford
Rutherford
 
Clase 9
Clase 9Clase 9
Clase 9
 
Presentación espectroscopía 2
Presentación  espectroscopía 2Presentación  espectroscopía 2
Presentación espectroscopía 2
 
Tema 5 PQ 317 2020-1 RMN (1).pdf
Tema 5 PQ 317 2020-1 RMN (1).pdfTema 5 PQ 317 2020-1 RMN (1).pdf
Tema 5 PQ 317 2020-1 RMN (1).pdf
 
entorno espacial.pdf
entorno espacial.pdfentorno espacial.pdf
entorno espacial.pdf
 
Presentacion instrumentacion
Presentacion instrumentacionPresentacion instrumentacion
Presentacion instrumentacion
 
3.-ir-espectroscopia (1).ppt PARA ESTUDIANTES
3.-ir-espectroscopia (1).ppt PARA ESTUDIANTES3.-ir-espectroscopia (1).ppt PARA ESTUDIANTES
3.-ir-espectroscopia (1).ppt PARA ESTUDIANTES
 
Radiactividad 4to de secundaria
Radiactividad 4to de secundariaRadiactividad 4to de secundaria
Radiactividad 4to de secundaria
 
Proyecto espectro
Proyecto espectroProyecto espectro
Proyecto espectro
 
Radiacion termica e_mera
Radiacion termica e_meraRadiacion termica e_mera
Radiacion termica e_mera
 
Alberto CarramiñAna Altas Energias
Alberto CarramiñAna Altas EnergiasAlberto CarramiñAna Altas Energias
Alberto CarramiñAna Altas Energias
 

Más de Angel Ruiz Camuñas

Multiwavelength studies of AGN: HyLIRG and red quasars
Multiwavelength studies of AGN: HyLIRG and red quasarsMultiwavelength studies of AGN: HyLIRG and red quasars
Multiwavelength studies of AGN: HyLIRG and red quasarsAngel Ruiz Camuñas
 
Multiwavelength properties of hyperluminous infrared galaxies
Multiwavelength properties of hyperluminous infrared galaxiesMultiwavelength properties of hyperluminous infrared galaxies
Multiwavelength properties of hyperluminous infrared galaxiesAngel Ruiz Camuñas
 
Red quasars in the 2XMMi/SDSS-DR7 cross-correlation
Red quasars in the 2XMMi/SDSS-DR7 cross-correlationRed quasars in the 2XMMi/SDSS-DR7 cross-correlation
Red quasars in the 2XMMi/SDSS-DR7 cross-correlationAngel Ruiz Camuñas
 
Red quasars in the 2XMMi/SDSS-DR7 cross-correlation
Red quasars in the 2XMMi/SDSS-DR7 cross-correlationRed quasars in the 2XMMi/SDSS-DR7 cross-correlation
Red quasars in the 2XMMi/SDSS-DR7 cross-correlationAngel Ruiz Camuñas
 
Spectral energy distributions of hyperluminous infrared galaxies
Spectral energy distributions of hyperluminous infrared galaxiesSpectral energy distributions of hyperluminous infrared galaxies
Spectral energy distributions of hyperluminous infrared galaxiesAngel Ruiz Camuñas
 

Más de Angel Ruiz Camuñas (6)

Multiwavelength studies of AGN: HyLIRG and red quasars
Multiwavelength studies of AGN: HyLIRG and red quasarsMultiwavelength studies of AGN: HyLIRG and red quasars
Multiwavelength studies of AGN: HyLIRG and red quasars
 
Multiwavelength properties of hyperluminous infrared galaxies
Multiwavelength properties of hyperluminous infrared galaxiesMultiwavelength properties of hyperluminous infrared galaxies
Multiwavelength properties of hyperluminous infrared galaxies
 
Red quasars in the 2XMMi/SDSS-DR7 cross-correlation
Red quasars in the 2XMMi/SDSS-DR7 cross-correlationRed quasars in the 2XMMi/SDSS-DR7 cross-correlation
Red quasars in the 2XMMi/SDSS-DR7 cross-correlation
 
Red quasars in the 2XMMi/SDSS-DR7 cross-correlation
Red quasars in the 2XMMi/SDSS-DR7 cross-correlationRed quasars in the 2XMMi/SDSS-DR7 cross-correlation
Red quasars in the 2XMMi/SDSS-DR7 cross-correlation
 
Spectral energy distributions of hyperluminous infrared galaxies
Spectral energy distributions of hyperluminous infrared galaxiesSpectral energy distributions of hyperluminous infrared galaxies
Spectral energy distributions of hyperluminous infrared galaxies
 
HLIRGS, An X-ray view
HLIRGS, An X-ray viewHLIRGS, An X-ray view
HLIRGS, An X-ray view
 

Distribuciones Espectrales de Energía de Galaxias Hiperluminosas en el Infrarrojo

  • 1. Distribuciones Espectrales de Energía de Galaxias Hiperluminosas en el Infrarrojo Ángel Ruiz 1 Francisco J. Carrera 1 , Francesca Panessa 2 , Giovanni Miniutt i 3 1: Instituto de Física de Cantabria (CSIC-UC) 2: INAF/IASF – Roma 3: Laboratoire APC - Paris 7 de Julio de 2008 – VIII Reunion Científica de la SEA – Santander
  • 2.
  • 3. MIR-FIR-submm : radiación mas energética absorbida y reemitida en el IR.
  • 4.
  • 5.
  • 7.
  • 8. MIR-FIR-submm : radiación mas energética absorbida y reemitida en el IR.
  • 9.
  • 10.
  • 11. Radio Coevolución AGN-galaxia Matrimonio feliz entre la astronomía X y la IR: coincidencia en el tiempo de Chandra, XMM-Newton, Suzaku, Spitzer, Akari, Herschel...
  • 12.
  • 13.
  • 14. Galaxias Hiperluminosas en el IR (HLIRGs) (Ruiz et al. 2007)
  • 15.
  • 16. Fracción de AGNs aumenta con la luminosidad IR (Veilleux et al. 1999)
  • 17. La mayoría se encuentran en sistemas en interacción (Farrah et al. 2001)
  • 18.
  • 19.
  • 20.
  • 21. Fracción de AGNs aumenta con la luminosidad IR (Veilleux et al. 1999)
  • 22. La mayoría se encuentran en sistemas en interacción (Farrah et al. 2001)
  • 23.
  • 24.
  • 25.
  • 26. ¿Fase transitoria en la evolución de los AGNs?
  • 27. ....
  • 28.
  • 29. Datos propios de XMM-Newton (AO-5)
  • 30.
  • 31. 8 4 2 X 0.6 /0.4 0.323 QSO 1.5 IRAS 14026+4341 X 0.7 /0.3 0.36 QSO IRAS 13279+3401 X 0.6 /0.4 0.780 QSO IRAS F12509+3122 X 1 /0 2.038 QSO PG 1247+267 X 0.6 /0.4 0.292 Starburst IRAS 07380-2342  0.5/0.5 0.575 Starburst IRAS F00235+1024 X 1 /0 1.158 QSO PG 1206+459 X 0.8 /0.2 1.334 QSO IRAS 16347+7037 X 0.2/ 0.8 1.21 QSO IRAS F14218+3845 X 0.6 /0.4 0.297 QSO IRAS 18216+6418  0.7 /0.3 0.926 Seyfert 2 IRAS F15307+3252  0.4/ 0.6 0.3 Seyfert 2 IRAS 12514+1027  1 /0 0.442 QSO 2 IRAS 09104+4109  0.35/ 0.65 0.327 QSO 2 IRAS 00182-7112 CT? AGN / STB (IR SED fitting) z Tipo (opt) Fuente
  • 32. X <42.6 - 3 σ upper limit IRAS 14026+4341 X <42.2 - 3 σ upper limit IRAS 13279+3401 X 44.3 43.8 “ thermal”+direct IRAS F12509+3122 X 45.9 45.5 “ thermal”+direct PG 1247+267 X <42.5 - 3 σ upper limit IRAS 07380-2342  <42.4 - 3 σ upper limit IRAS F00235+1024 X 45.1 <44.0 direct PG 1206+459 X 46.0 45.7 “ thermal”+direct IRAS 16347+7037 X 44.6 <43.8 direct IRAS F14218+3845 X 45.6 45.1 “ thermal”+direct IRAS 18216+6418  43.7  45.5 <43.1 “ direct” IRAS F15307+3252  43.3 42.2 thermal+absorbed direct (4x10 23 ) IRAS 12514+1027  45.3 44.2 “ thermal”+reflected+narrow line IRAS 09104+4109  44.8 <41.9 reflected+narrow line (0.8keV) IRAS 00182-7112 CT? l og L 2-10 log L 0.5-2 Modelo Fuente No detectadas por XMM-Newton
  • 33. X <42.6 - 3 σ upper limit IRAS 14026+4341 X <42.2 - 3 σ upper limit IRAS 13279+3401 X 44.3 43.8 “ thermal”+direct IRAS F12509+3122 X 45.9 45.5 “ thermal”+direct PG 1247+267 X <42.5 - 3 σ upper limit IRAS 07380-2342  <42.4 - 3 σ upper limit IRAS F00235+1024 X 45.1 <44.0 direct PG 1206+459 X 46.0 45.7 “ thermal”+direct IRAS 16347+7037 X 44.6 <43.8 direct IRAS F14218+3845 X 45.6 45.1 “ thermal”+direct IRAS 18216+6418  43.7  45.5 <43.1 “ direct” IRAS F15307+3252  43.3 42.2 thermal+absorbed direct (4x10 23 ) IRAS 12514+1027  45.3 44.2 “ thermal”+reflected+narrow line IRAS 09104+4109  44.8 <41.9 reflected+narrow line (0.8keV) IRAS 00182-7112 CT? l og L 2-10 log L 0.5-2 Model Source Fuerte absorcion o sin continuo directo
  • 34. X <42.6 - 3 σ upper limit IRAS 14026+4341 X <42.2 - 3 σ upper limit IRAS 13279+3401 X 44.3 43.8 “ thermal”+direct IRAS F12509+3122 X 45.9 45.5 “ thermal”+direct PG 1247+267 X <42.5 - 3 σ upper limit IRAS 07380-2342  <42.4 - 3 σ upper limit IRAS F00235+1024 X 45.1 <44.0 direct PG 1206+459 X 46.0 45.7 “ thermal”+direct IRAS 16347+7037 X 44.6 <43.8 direct IRAS F14218+3845 X 45.6 45.1 “ thermal”+direct IRAS 18216+6418  43.7  45.5 <43.1 “ direct” IRAS F15307+3252  43.3 42.2 thermal+absorbed direct (4x10 23 ) IRAS 12514+1027  45.3 44.2 “ thermal”+reflected+narrow line IRAS 09104+4109  44.8 <41.9 reflected+narrow line (0.8keV) IRAS 00182-7112 CT? l og L 2-10 log L 0.5-2 Model Source Soft excess: demasiado brillante para STB
  • 35. X <42.6 - 3 σ upper limit IRAS 14026+4341 X <42.2 - 3 σ upper limit IRAS 13279+3401 X 44.3 43.8 “ thermal”+direct IRAS F12509+3122 X 45.9 45.5 “ thermal”+direct PG 1247+267 X <42.5 - 3 σ upper limit IRAS 07380-2342  <42.4 - 3 σ upper limit IRAS F00235+1024 X 45.1 <44.0 direct PG 1206+459 X 46.0 45.7 “ thermal”+direct IRAS 16347+7037 X 44.6 <43.8 direct IRAS F14218+3845 X 45.6 45.1 “ thermal”+direct IRAS 18216+6418  43.7  45.5 <43.1 “ direct” IRAS F15307+3252  43.3 42.2 thermal+absorbed direct (4x10 23 ) IRAS 12514+1027  45.3 44.2 “ thermal”+reflected+narrow line IRAS 09104+4109  44.8 <41.9 reflected+narrow line (0.8keV) IRAS 00182-7112 CT? l og L 2-10 log L 0.5-2 Model Source Sólo una fuente con emisión térmica de STB
  • 38. Risaliti & Elvis STARBURST AGN
  • 39. Risaliti & Elvis STARBURST AGN AGN-dominated ULIRG
  • 40. Risaliti & Elvis STARBURST AGN STB-dominated ULIRG AGN-dominated ULIRG
  • 41. Risaliti & Elvis STARBURST AGN STB-dominated ULIRG AGN-dominated ULIRG High-z HLIRGS
  • 42. Risaliti & Elvis STARBURST AGN STB-dominated ULIRG AGN-dominated ULIRG High-z HLIRGS AGN-dominated HLIRG
  • 43. Risaliti & Elvis STARBURST AGN STB-dominated ULIRG AGN-dominated ULIRG High-z HLIRGS AGN-dominated HLIRG “ Mixed”
  • 44. Risaliti & Elvis STARBURST AGN STB-dominated ULIRG AGN-dominated ULIRG High-z HLIRGS AGN-dominated HLIRG STB-dominated HLIRG “ Mixed”
  • 45. IRAS 14026+4341 H b compatible con z = 0.32 Risaliti & Elvis STARBURST AGN STB-dominated ULIRG AGN-dominated ULIRG High-z HLIRGS AGN-dominated HLIRG STB-dominated HLIRG “ Mixed”
  • 46. IRAS 13279+3401 QSO; z ~ 0.3 Rowan-Robinson 2002 Risaliti & Elvis STARBURST AGN STB-dominated ULIRG AGN-dominated ULIRG High-z HLIRGS AGN-dominated HLIRG STB-dominated HLIRG “ Mixed”
  • 47. IRAS 13279+3401 QSO; z ~ 0.3 Rowan-Robinson 2002 Espectro MIR (IRS-Spitzer) Observed frame: 10 m m absorption feature Forma de Starburst ( Nardini et al. 2008) Risaliti & Elvis STARBURST AGN STB-dominated ULIRG AGN-dominated ULIRG High-z HLIRGS AGN-dominated HLIRG STB-dominated HLIRG “ Mixed”
  • 48. IRAS 13279+3401 QSO; z ~ 0.3 Rowan-Robinson 2002 ¡¡¡Luminosidad sobreestimada!!! Indicios claros de que IRAS13279+3401 NO es un HLIRG Risaliti & Elvis STARBURST AGN STB-dominated ULIRG AGN-dominated ULIRG High-z HLIRGS AGN-dominated HLIRG STB-dominated HLIRG “ Mixed”
  • 49. Risaliti & Elvis STARBURST AGN STB-dominated ULIRG AGN-dominated ULIRG High-z HLIRGS AGN-dominated HLIRG STB-dominated HLIRG “ Mixed”
  • 50.
  • 52.
  • 53.
  • 55.
  • 56.
  • 57.
  • 58.
  • 59.
  • 60.
  • 61.
  • 62.
  • 63.
  • 64.
  • 65. Ajustes sin datos X X 0.3 / 0.7 46.8 IRAS 14026+4341 X 1 / 0 47.4 IRAS F12509+3122 X 1 / 0 49.2 PG 1247+267 X 1 / 0 46.6 IRAS 07380-2342  1 / 0 46.0 AGN3 IRAS F00235+1024 X 1 / 0 48.4 PG 1206+459 X 1 / 0 48.9 IRAS 16347+7037 X 1 /0 47.0 IRAS F14218+3845 X 0.8 / 0.2 47.4 IRAS 18216+6418  0.2 / 0.8 47.0 IRAS F15307+3252  0.9 / 0.1 46.4 IRAS 12514+1027  0.9 / 0.1 47.0 IRAS 09104+4109  1 / 0 46.5 IRAS 00182-7112 CT? AGN / STB log L BOL Best fit Source AGN3 AGN3 AGN3 AGN3 AGN1 AGN1 AGN1 AGN1 AGN1 AGN1 AGN1 AGN1 STB4 STB4 STB1 STB4 STB1
  • 66. Ajustes con datos X X 0 / 1 46.8 IRAS 14026+4341 X 1 / 0 47.4 IRAS F12509+3122 X 1 / 0 49.2 PG 1247+267 X 0 / 1 46.2 IRAS 07380-2342  0 / 1 45.6 IRAS F00235+1024 X 1 / 0 48.4 PG 1206+459 X 1 / 0 48.9 IRAS 16347+7037 X 1 /0 47.0 IRAS F14218+3845 X 0.7 / 0.3 47.5 IRAS 18216+6418  0.8 / 0.2 47.0 IRAS F15307+3252  0.5 / 0.5 47.2 IRAS 12514+1027  0.6 / 0.4 46.9 IRAS 09104+4109  0 / 1 46.1 IRAS 00182-7112 CT? AGN / STB log L BOL Best fit Source AGN3 AGN5 AGN5 AGN1 AGN1 AGN1 AGN1 AGN1 AGN1 STB4 STB1 STB1 STB1 STB2 STB4 STB4 STB1
  • 67. X 0 / 1 46.8 IRAS 14026+4341 X 1 / 0 47.4 IRAS F12509+3122 X 1 / 0 49.2 PG 1247+267 X 0 / 1 46.2 IRAS 07380-2342  0 / 1 45.6 IRAS F00235+1024 X 1 / 0 48.4 PG 1206+459 X 1 / 0 48.9 IRAS 16347+7037 X 1 /0 47.0 IRAS F14218+3845 X 0.7 / 0.3 47.5 IRAS 18216+6418  0.8 / 0.2 47.0 IRAS F15307+3252  0.5 / 0.5 47.2 IRAS 12514+1027  0.6 / 0.4 46.9 IRAS 09104+4109  0 / 1 46.1 IRAS 00182-7112 CT? AGN / STB log L BOL Best fit Source AGN3 AGN5 AGN5 AGN1 AGN1 AGN1 AGN1 AGN1 AGN1 STB4 STB1 STB1 STB1 STB2 STB4 STB4 STB1 Compton Thick
  • 68. X 0 / 1 46.8 IRAS 14026+4341 X 1 / 0 47.4 IRAS F12509+3122 X 1 / 0 49.2 PG 1247+267 X 0 / 1 46.2 IRAS 07380-2342  0 / 1 45.6 IRAS F00235+1024 X 1 / 0 48.4 PG 1206+459 X 1 / 0 48.9 IRAS 16347+7037 X 1 /0 47.0 IRAS F14218+3845 X 0.7 / 0.3 47.5 IRAS 18216+6418  0.8 / 0.2 47.0 IRAS F15307+3252  0.5 / 0.5 47.2 IRAS 12514+1027  0.6 / 0.4 46.9 IRAS 09104+4109  0 / 1 46.1 IRAS 00182-7112 CT? AGN / STB log L BOL Best fit Source AGN3 AGN5 AGN5 AGN1 AGN1 AGN1 AGN1 AGN1 AGN1 STB4 STB1 STB1 STB1 STB2 STB4 STB4 STB1 Sólo AGN: 5 fuentes
  • 69. X 0 / 1 46.8 IRAS 14026+4341 X 1 / 0 47.4 IRAS F12509+3122 X 1 / 0 49.2 PG 1247+267 X 0 / 1 46.2 IRAS 07380-2342  0 / 1 45.6 IRAS F00235+1024 X 1 / 0 48.4 PG 1206+459 X 1 / 0 48.9 IRAS 16347+7037 X 1 /0 47.0 IRAS F14218+3845 X 0.7 / 0.3 47.5 IRAS 18216+6418  0.8 / 0.2 47.0 IRAS F15307+3252  0.5 / 0.5 47.2 IRAS 12514+1027  0.6 / 0.4 46.9 IRAS 09104+4109  0 / 1 46.1 IRAS 00182-7112 CT? AGN / STB log L BOL Best fit Source AGN3 AGN5 AGN5 AGN1 AGN1 AGN1 AGN1 AGN1 AGN1 STB4 STB1 STB1 STB1 STB2 STB4 STB4 STB1 Sólo STB: 4 fuentes
  • 70. X 0 / 1 46.8 IRAS 14026+4341 X 1 / 0 47.4 IRAS F12509+3122 X 1 / 0 49.2 PG 1247+267 X 0 / 1 46.2 IRAS 07380-2342  0 / 1 45.6 IRAS F00235+1024 X 1 / 0 48.4 PG 1206+459 X 1 / 0 48.9 IRAS 16347+7037 X 1 /0 47.0 IRAS F14218+3845 X 0.7 / 0.3 47.5 IRAS 18216+6418  0.8 / 0.2 47.0 IRAS F15307+3252  0.5 / 0.5 47.2 IRAS 12514+1027  0.6 / 0.4 46.9 IRAS 09104+4109  0 / 1 46.1 IRAS 00182-7112 CT? AGN / STB log L BOL Best fit Source AGN3 AGN5 AGN5 AGN1 AGN1 AGN1 AGN1 AGN1 AGN1 STB4 STB1 STB1 STB1 STB2 STB4 STB4 STB1 Composite: 4 sources
  • 71. Luminosidad bolométrica dominada por la emisión del AGN X 0 / 1 46.8 IRAS 14026+4341 X 1 / 0 47.4 IRAS F12509+3122 X 1 / 0 49.2 PG 1247+267 X 0 / 1 46.2 IRAS 07380-2342  0 / 1 45.6 IRAS F00235+1024 X 1 / 0 48.4 PG 1206+459 X 1 / 0 48.9 IRAS 16347+7037 X 1 /0 47.0 IRAS F14218+3845 X 0.7 / 0.3 47.5 IRAS 18216+6418  0.8 / 0.2 47.0 IRAS F15307+3252  0.5 / 0.5 47.2 IRAS 12514+1027  0.6 / 0.4 46.9 IRAS 09104+4109  0 / 1 46.1 IRAS 00182-7112 CT? AGN / STB log L BOL Best fit Source AGN3 AGN5 AGN5 AGN1 AGN1 AGN1 AGN1 AGN1 AGN1 STB4 STB1 STB1 STB1 STB2 STB4 STB4 STB1
  • 72.
  • 73.
  • 74.
  • 75.
  • 76. La SED de los AGN tipo 1 son compatibles con una SED dependiente de la luminosidad .

Notas del editor

  1. In the last years strong evidences have been found supporting the hypothesis that Active Galactic Nuclei and galaxy formation and evolution are closely related, that is, there is a connection between the growth of the central supermassive black hole and the spheroid of the galaxy. So, how can we study this relationship? On the one hand, star formation takes place in heavily obscured environment, so we need penetrating radiation, like the X-rays, or the MIR-FIR-submm. On the other hand, BH growth produces AGN activity, and X-ray emission is its signature. However, most of this radiation is absorbed and re-radiated in MIR-FIR bands. We see that IR and X-ray observations are essential to understand the star formation and AGN phenomena. Fortunately, at this time we have powerful tools to observe the Universe in either ranges, like XMM, Chandra, Spitzer, etc.
  2. In the last years strong evidences have been found supporting the hypothesis that Active Galactic Nuclei and galaxy formation and evolution are closely related, that is, there is a connection between the growth of the central supermassive black hole and the spheroid of the galaxy. So, how can we study this relationship? On the one hand, star formation takes place in heavily obscured environment, so we need penetrating radiation, like the X-rays, or the MIR-FIR-submm. On the other hand, BH growth produces AGN activity, and X-ray emission is its signature. However, most of this radiation is absorbed and re-radiated in MIR-FIR bands. We see that IR and X-ray observations are essential to understand the star formation and AGN phenomena. Fortunately, at this time we have powerful tools to observe the Universe in either ranges, like XMM, Chandra, Spitzer, etc.
  3. We can observe the AGN-galaxy co-evolution with differents methods, for instance, through targeted MIR observation of X-ray sources, or by multi-wavelength surveys, or, through targeted X-ray observations of MIR-FIR sources, like the Ultraluminous or the Hyperluminous infrared galaxies, the core of thid talk.
  4. ULIRGs are sources with an infrared luminosity between 10 to the 12 and 10 to the 13 solar luminosities. IR and X-rays studies suggest that they are composite sources, powered by starburst and/or ANG, most of them being starburst dominated. Most are in interacting systems, that is, they are triggered by galaxy mergers. HLIRGs present an infrared luminosity greater than 10 to the 13 solar luminosities. IR and optical observations support that most harbour and AGN, although the main power source is still controversial. Only about a third are located in interacting system, so we cannot just classified them as the high luminosity end of ULIRGs. A few have been studied in X-rays, some of them been heavily obscured. HLIRGs present strong star formation and high AGN fraction, so they are excellent labs to investigate the connection between extreme star formation and BH growth.
  5. ULIRGs are sources with an infrared luminosity between 10 to the 12 and 10 to the 13 solar luminosities. IR and X-rays studies suggest that they are composite sources, powered by starburst and/or ANG, most of them being starburst dominated. Most are in interacting systems, that is, they are triggered by galaxy mergers. HLIRGs present an infrared luminosity greater than 10 to the 13 solar luminosities. IR and optical observations support that most harbour and AGN, although the main power source is still controversial. Only about a third are located in interacting system, so we cannot just classified them as the high luminosity end of ULIRGs. A few have been studied in X-rays, some of them been heavily obscured. HLIRGs present strong star formation and high AGN fraction, so they are excellent labs to investigate the connection between extreme star formation and BH growth.
  6. We have done the first systematic study of HLIRGs in the X-ray band. We choose those HLIRGs of the Rowan-Robinson sample with public XMM data as of December 2004, and we added our own XMM data. We limited this sample to sources with redshift less than 2, to avoid biasing towards high redshift quasars. We have fourteen objects in the final sample, all of them with SED fitting in the infrared.
  7. This is the final sample. In accord with their optical spectra, we have two starburst galaxies, 4 type 2 and 8 type 1 AGNs, either seyfert and quasars. Previous results suggest that 5 of this objects are Compton Thick candidates.
  8. 4 sources were not detected by XMM. We calculated three sigma upper limits for them. All the detected sources present an AGN-dominated X-ray spectrum.
  9. Three sources are strongly absorbed or even they have no direct continuum, just a reflection component.
  10. We found a thermal component in 5 sources too bright to come from a starburst, but consistent with the soft excess associated with AGNs.
  11. Only one source present thermal emission truly consistent with a starburst origin.
  12. This plot shows the hard X-ray versus the FIR luminosity. This line represents the expected X-ray luminosity of a starburst galaxy given its FIR luminosity. And this area is the same for AGNs, taking account the intrinsic dispersion in the spectral energy distribution of AGNs. We have included a comparison sample of high redshift HLIRGs, and a sample of ULIRG studied in X-rays. These are AGN dominated objects, and these are SB dominated. Most of our HLIRGs, and the high-z sample, lie in the AGN-zone, although they are systematically underluminous in X-rays with respect to the mean value. The non detected sources are consistent with starburst luminosity. There are also two composite objects, that is, nor SB or AGN alone can explain their X-ray luminosites. Among these SB dominated HLIRGs are the sources optically classified as starburst, but also two type 1 QSO. They are quasars extremely underluminous in X-rays.
  13. This plot shows the hard X-ray versus the FIR luminosity. This line represents the expected X-ray luminosity of a starburst galaxy given its FIR luminosity. And this area is the same for AGNs, taking account the intrinsic dispersion in the spectral energy distribution of AGNs. We have included a comparison sample of high redshift HLIRGs, and a sample of ULIRG studied in X-rays. These are AGN dominated objects, and these are SB dominated. Most of our HLIRGs, and the high-z sample, lie in the AGN-zone, although they are systematically underluminous in X-rays with respect to the mean value. The non detected sources are consistent with starburst luminosity. There are also two composite objects, that is, nor SB or AGN alone can explain their X-ray luminosites. Among these SB dominated HLIRGs are the sources optically classified as starburst, but also two type 1 QSO. They are quasars extremely underluminous in X-rays.
  14. This plot shows the hard X-ray versus the FIR luminosity. This line represents the expected X-ray luminosity of a starburst galaxy given its FIR luminosity. And this area is the same for AGNs, taking account the intrinsic dispersion in the spectral energy distribution of AGNs. We have included a comparison sample of high redshift HLIRGs, and a sample of ULIRG studied in X-rays. These are AGN dominated objects, and these are SB dominated. Most of our HLIRGs, and the high-z sample, lie in the AGN-zone, although they are systematically underluminous in X-rays with respect to the mean value. The non detected sources are consistent with starburst luminosity. There are also two composite objects, that is, nor SB or AGN alone can explain their X-ray luminosites. Among these SB dominated HLIRGs are the sources optically classified as starburst, but also two type 1 QSO. They are quasars extremely underluminous in X-rays.
  15. This plot shows the hard X-ray versus the FIR luminosity. This line represents the expected X-ray luminosity of a starburst galaxy given its FIR luminosity. And this area is the same for AGNs, taking account the intrinsic dispersion in the spectral energy distribution of AGNs. We have included a comparison sample of high redshift HLIRGs, and a sample of ULIRG studied in X-rays. These are AGN dominated objects, and these are SB dominated. Most of our HLIRGs, and the high-z sample, lie in the AGN-zone, although they are systematically underluminous in X-rays with respect to the mean value. The non detected sources are consistent with starburst luminosity. There are also two composite objects, that is, nor SB or AGN alone can explain their X-ray luminosites. Among these SB dominated HLIRGs are the sources optically classified as starburst, but also two type 1 QSO. They are quasars extremely underluminous in X-rays.
  16. This plot shows the hard X-ray versus the FIR luminosity. This line represents the expected X-ray luminosity of a starburst galaxy given its FIR luminosity. And this area is the same for AGNs, taking account the intrinsic dispersion in the spectral energy distribution of AGNs. We have included a comparison sample of high redshift HLIRGs, and a sample of ULIRG studied in X-rays. These are AGN dominated objects, and these are SB dominated. Most of our HLIRGs, and the high-z sample, lie in the AGN-zone, although they are systematically underluminous in X-rays with respect to the mean value. The non detected sources are consistent with starburst luminosity. There are also two composite objects, that is, nor SB or AGN alone can explain their X-ray luminosites. Among these SB dominated HLIRGs are the sources optically classified as starburst, but also two type 1 QSO. They are quasars extremely underluminous in X-rays.
  17. This plot shows the hard X-ray versus the FIR luminosity. This line represents the expected X-ray luminosity of a starburst galaxy given its FIR luminosity. And this area is the same for AGNs, taking account the intrinsic dispersion in the spectral energy distribution of AGNs. We have included a comparison sample of high redshift HLIRGs, and a sample of ULIRG studied in X-rays. These are AGN dominated objects, and these are SB dominated. Most of our HLIRGs, and the high-z sample, lie in the AGN-zone, although they are systematically underluminous in X-rays with respect to the mean value. The non detected sources are consistent with starburst luminosity. There are also two composite objects, that is, nor SB or AGN alone can explain their X-ray luminosites. Among these SB dominated HLIRGs are the sources optically classified as starburst, but also two type 1 QSO. They are quasars extremely underluminous in X-rays.
  18. This plot shows the hard X-ray versus the FIR luminosity. This line represents the expected X-ray luminosity of a starburst galaxy given its FIR luminosity. And this area is the same for AGNs, taking account the intrinsic dispersion in the spectral energy distribution of AGNs. We have included a comparison sample of high redshift HLIRGs, and a sample of ULIRG studied in X-rays. These are AGN dominated objects, and these are SB dominated. Most of our HLIRGs, and the high-z sample, lie in the AGN-zone, although they are systematically underluminous in X-rays with respect to the mean value. The non detected sources are consistent with starburst luminosity. There are also two composite objects, that is, nor SB or AGN alone can explain their X-ray luminosites. Among these SB dominated HLIRGs are the sources optically classified as starburst, but also two type 1 QSO. They are quasars extremely underluminous in X-rays.
  19. This plot shows the hard X-ray versus the FIR luminosity. This line represents the expected X-ray luminosity of a starburst galaxy given its FIR luminosity. And this area is the same for AGNs, taking account the intrinsic dispersion in the spectral energy distribution of AGNs. We have included a comparison sample of high redshift HLIRGs, and a sample of ULIRG studied in X-rays. These are AGN dominated objects, and these are SB dominated. Most of our HLIRGs, and the high-z sample, lie in the AGN-zone, although they are systematically underluminous in X-rays with respect to the mean value. The non detected sources are consistent with starburst luminosity. There are also two composite objects, that is, nor SB or AGN alone can explain their X-ray luminosites. Among these SB dominated HLIRGs are the sources optically classified as starburst, but also two type 1 QSO. They are quasars extremely underluminous in X-rays.
  20. This plot shows the hard X-ray versus the FIR luminosity. This line represents the expected X-ray luminosity of a starburst galaxy given its FIR luminosity. And this area is the same for AGNs, taking account the intrinsic dispersion in the spectral energy distribution of AGNs. We have included a comparison sample of high redshift HLIRGs, and a sample of ULIRG studied in X-rays. These are AGN dominated objects, and these are SB dominated. Most of our HLIRGs, and the high-z sample, lie in the AGN-zone, although they are systematically underluminous in X-rays with respect to the mean value. The non detected sources are consistent with starburst luminosity. There are also two composite objects, that is, nor SB or AGN alone can explain their X-ray luminosites. Among these SB dominated HLIRGs are the sources optically classified as starburst, but also two type 1 QSO. They are quasars extremely underluminous in X-rays.
  21. This plot shows the hard X-ray versus the FIR luminosity. This line represents the expected X-ray luminosity of a starburst galaxy given its FIR luminosity. And this area is the same for AGNs, taking account the intrinsic dispersion in the spectral energy distribution of AGNs. We have included a comparison sample of high redshift HLIRGs, and a sample of ULIRG studied in X-rays. These are AGN dominated objects, and these are SB dominated. Most of our HLIRGs, and the high-z sample, lie in the AGN-zone, although they are systematically underluminous in X-rays with respect to the mean value. The non detected sources are consistent with starburst luminosity. There are also two composite objects, that is, nor SB or AGN alone can explain their X-ray luminosites. Among these SB dominated HLIRGs are the sources optically classified as starburst, but also two type 1 QSO. They are quasars extremely underluminous in X-rays.
  22. This plot shows the hard X-ray versus the FIR luminosity. This line represents the expected X-ray luminosity of a starburst galaxy given its FIR luminosity. And this area is the same for AGNs, taking account the intrinsic dispersion in the spectral energy distribution of AGNs. We have included a comparison sample of high redshift HLIRGs, and a sample of ULIRG studied in X-rays. These are AGN dominated objects, and these are SB dominated. Most of our HLIRGs, and the high-z sample, lie in the AGN-zone, although they are systematically underluminous in X-rays with respect to the mean value. The non detected sources are consistent with starburst luminosity. There are also two composite objects, that is, nor SB or AGN alone can explain their X-ray luminosites. Among these SB dominated HLIRGs are the sources optically classified as starburst, but also two type 1 QSO. They are quasars extremely underluminous in X-rays.
  23. This plot shows the hard X-ray versus the FIR luminosity. This line represents the expected X-ray luminosity of a starburst galaxy given its FIR luminosity. And this area is the same for AGNs, taking account the intrinsic dispersion in the spectral energy distribution of AGNs. We have included a comparison sample of high redshift HLIRGs, and a sample of ULIRG studied in X-rays. These are AGN dominated objects, and these are SB dominated. Most of our HLIRGs, and the high-z sample, lie in the AGN-zone, although they are systematically underluminous in X-rays with respect to the mean value. The non detected sources are consistent with starburst luminosity. There are also two composite objects, that is, nor SB or AGN alone can explain their X-ray luminosites. Among these SB dominated HLIRGs are the sources optically classified as starburst, but also two type 1 QSO. They are quasars extremely underluminous in X-rays.
  24. This plot shows the hard X-ray versus the FIR luminosity. This line represents the expected X-ray luminosity of a starburst galaxy given its FIR luminosity. And this area is the same for AGNs, taking account the intrinsic dispersion in the spectral energy distribution of AGNs. We have included a comparison sample of high redshift HLIRGs, and a sample of ULIRG studied in X-rays. These are AGN dominated objects, and these are SB dominated. Most of our HLIRGs, and the high-z sample, lie in the AGN-zone, although they are systematically underluminous in X-rays with respect to the mean value. The non detected sources are consistent with starburst luminosity. There are also two composite objects, that is, nor SB or AGN alone can explain their X-ray luminosites. Among these SB dominated HLIRGs are the sources optically classified as starburst, but also two type 1 QSO. They are quasars extremely underluminous in X-rays.
  25. This plot shows the hard X-ray versus the FIR luminosity. This line represents the expected X-ray luminosity of a starburst galaxy given its FIR luminosity. And this area is the same for AGNs, taking account the intrinsic dispersion in the spectral energy distribution of AGNs. We have included a comparison sample of high redshift HLIRGs, and a sample of ULIRG studied in X-rays. These are AGN dominated objects, and these are SB dominated. Most of our HLIRGs, and the high-z sample, lie in the AGN-zone, although they are systematically underluminous in X-rays with respect to the mean value. The non detected sources are consistent with starburst luminosity. There are also two composite objects, that is, nor SB or AGN alone can explain their X-ray luminosites. Among these SB dominated HLIRGs are the sources optically classified as starburst, but also two type 1 QSO. They are quasars extremely underluminous in X-rays.
  26. We have seen that most HIRGS in our sample present a systematic IR excess with respect to the mean AGN value. This could be due to X-ray obscuration, or starburst emission, or may be an intrinsic difference between the SED of AGN in HLIRGs and the SED of local QSO. Moreover, we are interested in the relative contribution of the starburst and AGN to the total bolometric output. Then, to solve this question, we have built and modelled the SED of every source in our sample.
  27. We have seen that most HIRGS in our sample present a systematic IR excess with respect to the mean AGN value. This could be due to X-ray obscuration, or starburst emission, or may be an intrinsic difference between the SED of AGN in HLIRGs and the SED of local QSO. Moreover, we are interested in the relative contribution of the starburst and AGN to the total bolometric output. Then, to solve this question, we have built and modelled the SED of every source in our sample.
  28. To model the HLIRGs SED, we used as templates the observed SED of standard starbursts and AGNs. As starburst templates, we employed the SED of these four objects.
  29. We have used 6 AGN templates: the radio quiet and radio loud mean quasar SED, and the SEDs of 4 type 2 sources, with column densities from 10 to de 22 to greater than 10 to the 25.
  30. We have used 6 AGN templates: the radio quiet and radio loud mean quasar SED, and the SEDs of 4 type 2 sources, with column densities from 10 to de 22 to greater than 10 to the 25.
  31. These are the SED and their best fit for the HLIRGs optically classified as starburst...
  32. These are the SED and their best fit for the HLIRGs optically classified as starburst...
  33. These are the SED and their best fit for the HLIRGs optically classified as starburst...
  34. These are the SED and their best fit for the HLIRGs optically classified as starburst...
  35. ... for the type 1..
  36. ... for the type 1..
  37. Most of CT candidates have a CT template in their models.
  38. Most of CT candidates have a CT template in their models.
  39. Most of CT candidates have a CT template in their models.
  40. 5 sources can be well fitted with just an AGN template,
  41. And 4 sources with just a starburst template. The preferred templates for starburst are young and dusty bursts.
  42. In 5 sources both components are needed. In total, 10 out of 14 sources need an AGN component. The bolometric luminosity of these objects are clearly AGN dominated.
  43. In 5 sources both components are needed. In total, 10 out of 14 sources need an AGN component. The bolometric luminosity of these objects are clearly AGN dominated.