SlideShare una empresa de Scribd logo
1 de 82
Descargar para leer sin conexión
© Fronius 2004
INFORMACION SOBRE
SOLDADURA ORBITAL TIG
FRONIUS International GmbH
Division Schweißtechnik
Produktmanagement Automation
Buxbaumstraße 2
A-4600 Wels
© Fronius 2004
Que es soldadura orbital?
Se conoce como “SOLDADURA ORBITAL““SOLDADURA ORBITAL“ el proceso de
soldar circularmente una pieza cilíndrica fija o fijada en un
soporte (conductos, tuberías, etc).
Para este propósito, la antorcha se desplaza sobre una
guía y recorre la pieza de manera circular.
Esta es la razón por la cual el proceso recibe su nombre,
pues la palabra „Orbit “ viene del Latín y se refiere al
movimiento de la luna alrededor de la tierra.
Con esta técnica se esperan resultados reproducibles y de
alta calidad, por esta razón normalmente se emplea el
método de soldadura TIG (WIG).
© Fronius 2004
Que es soldadura orbital?
Uno de los obstáculos a
superar es la acción de la
fuerza de la gravedad en el
baño de fusión.
Esto se logra con la
adecuada programación del
equipo orbital.
Con el proceso de soldadura
orbital, todas las posiciones
son posibles
© Fronius 2004
Que es soldadura orbital?
Resultados con la tecnología TIG pulsado
Sin ajuste de parámetros
Con ajuste de parámetros
© Fronius 2004
Que es soldadura orbital?
Gas
Corriente
Movimiento giratorio
Velocidad del hilo
AVC
OSC
© Fronius 2004
Ventajas de la soldadura orbital
manual
Orbital
ComparaciondelprocesoTIGmanualyautomatizado
Diámetro del tubo [mm]
t [seg.]
© Fronius 2004
Ventajas de la soldadura orbital
Alta calidad en el cordón
Alta seguridad del método
Resultados totalmente reproducibles
No hay necesidad de un soldador calificado
Rentabilidad gracias al método automatizado
Tiempos de producción cortos
Posible en espacios de difícil acceso, que probablemente
serian imposibles para una soldadora manual
Mínima contaminación debido a las condiciones del medio
ambiente
Mínima (ó cero) aparición de oxido
Documentación del proceso
Adecuado para construcciones exteriores
© Fronius 2004
En que consiste un sistema orbital
© Fronius 2004
Factores principales que influyen en el cordón
durante la soldadura orbital:
Preparación de las superficies a soldar
Gas de protección y depurador
Electrodo de tungsteno (Wólfram)
Tobera
Distancia entre el electrodo de tungsteno y la pieza
Centrado del dispositivo de depurado
Condiciones ambientales (temperatura, lugar)
© Fronius 2004
Que se debe tener en cuenta en la soldadura orbital?
Distribución del espacio al soldar tuberías con codos
© Fronius 2004
Que se debe tener en cuenta en la soldadura orbital?
Distribución del espacio al soldar tuberías con codos
Diámetro exterior del tubo (d1)
Espesor de las paredes (e1)
Distancia entre los tubos (a1)
Distancia hasta el próximo obstáculo
Longitud de la parte recta del tubo(L1)
Longitud de la parte recta del codo(L2)
Altura del delantal (H)
© Fronius 2004
Que se debe tener en cuenta en la soldadura orbital?
Distribución del espacio al soldar tuberías con superficies
planas
© Fronius 2004
Que se debe tener en cuenta en la soldadura orbital?
Diámetro exterior del tubo
Espesor de las paredes
Cantidad de tubos
Espesor de la superficie
Separación entre las perforaciones (X)
Distribución (Y)
Planos exactos de la superficie
Distancia entre el eje del tubo y el
borde de la superficie
Distribución del espacio al soldar tuberías y superficies
planas A ras Atrasado
Sobresaliente
Soldadura
fondo
© Fronius 2004
Que se debe tener en cuenta en la soldadura orbital?
Preparación y adecuación de los materiales
Angulo del flanco
Radio de
la raíz
Altura de la
garganta en la
raizLongitud lateral
de la garganta en
la raiz
Espesor
del tubo
Longitud de la
expansión interna
Altura del
flanco
Angulo de
expansión interna
© Fronius 2004
Que se debe tener en cuenta en la soldadura orbital?
Preparación y adecuación de los materiales
I
V
Y
U
ID
I-Naht / square-butt weld
Stumpf-Naht / butt weld
V-Naht / single V-butt weld
Y-Naht / Y-butt weld
U-Naht / single U-butt weld
Rohrinnendurchmesser / pipe- inner diameter
Fugenform/
seam preparation
Symbol Bezeichnung/ Description
© Fronius 2004
Que se debe tener en cuenta en la soldadura orbital?
Ejemplo de preparación del material (acero inoxidable)
Preparación del borde de acuerdo al
espesor de las paredes del tubo
© Fronius 2004
Que se debe tener en cuenta en la soldadura orbital?
Tipo de soldadura
TIG con material de
aportación+ AVC +
Movimiento pendular
TIG con material de
aportación
TIG sin material de
aportación
© Fronius 2004
Que se debe tener en cuenta en la soldadura orbital?
Pulir adecuadamente el electrodo de tunsteno
El pulimento exacto del electrodo de tunsteno es una condición
básica para un resultado optimo y de calidad del cordón.
Mediante una alta calidad en el área de la punta del electrodo de
tunsteno será garantizada la exacta reproducción de los parámetros
de la soldadura.
© Fronius 2004
Que se debe tener en cuenta en la soldadura orbital?
Gases
Gas protector
Gas protector Material
Argón, Helio,
Ar/He mezclado
Todo tipo de material
Ar/H2 mezclado Acero austenítico al manganeso
© Fronius 2004
Que se debe tener en cuenta en la soldadura orbital?
Gases
Gases depuradores
Gas protector Material
Argon, Helio,
Ar/He mezclado
Todo tipo de material
Ar/H2 mezclado Acero austenítico al manganeso, Ni y
materiales basados en Ni
N2/H2 mezclado Acero austenítico al manganeso (no
estabilizados con Ti)
N2 Acero austenítico al CrNi, acero duplex y
súper duplex
© Fronius 2004
Que se debe tener en cuenta en la soldadura orbital?
Depuración
© Fronius 2004
Que se debe tener en cuenta en la soldadura orbital?
Sin depuraciónSin depuración Con depuraciónCon depuración
Una gran ventaja es proteger el cordón desde la parte interior
de la tubería a través del proceso de “depuración“, para evitar la
formación de capaz de oxido y el color de revenido.
Esto se logra evitando la presencia del oxigeno en el interior
(contenido en el aire).
(p. Ej..: Acero al CrNi, Titanio, Metales no férreos)
Depuración
© Fronius 2004
Que se debe tener en cuenta en la soldadura orbital?
Depuración
Oxidación / Color de revenido :
Argon 12Vppm Oxigeno Argon 80 Vppm Oxigeno Argon 0,1 Vol.-% Oxigeno(*)
(*) 0,1 Vol.-% Oxigeno corresponde a aprox. 1000 Vppm
© Fronius 2004
Que se debe tener en cuenta en la soldadura orbital?
Ayuda para la depuración
© Fronius 2004
Que se debe tener en cuenta en la soldadura orbital?
Dispositivo de centrado y tensión
© Fronius 2004
Que se debe tener en cuenta en la soldadura orbital?
Calidad asegurada a través de pruebas y documentación
Prueba visual de todas los cordones
Cumplimiento de las normas correspondientes (FDA, GMP)
Pruebas de resistencia en la costura
Inspección de la parte interna del cordón a través de video
endoscopia, para la detección de errores y color de revenido
en la tubería
Control del cordón con prueba de color contra errores
adicionales
Documentación de cada proceso de acuerdo a la norma
estandar ISO
© Fronius 2004
Que se debe tener en cuenta en la soldadura orbital?
Errores debidos a una mala preparación de los materiales
Alineamiento de los extremos del tubo !Fijado deficiente !
© Fronius 2004
Materiales
Acero
Acero inoxidable
Titanio
Aluminio
Metales basados en Níquel
(Inconel)
Cobre
Duplex
© Fronius 2004
Campos de aplicación
Sector
Microelectrónica
Farmacéutico/Bioquímico
Industria alimenticia
Químico
Refrigeración
Energía
Centrales de Energía
Aviación
Instrumentación y control
Soportes y plataformas
Construcciones Navieras
© Fronius 2004
Soldadura orbital en la industria farmacéutica
Mercados que exigen una calidad similar en el proceso :
Exigencias básicas de un sistema de tubería
Industria de semiconductores
Industria química y bioquímica
Industria alimenticia
El nivel de contaminación debido a las condiciones del medio
ambiente, p.Ej.. Humedad, en la tubería debe ser mantenido muy
bajo o nulo.
La soldadura debe satisfacer las correspondientes normas básicas
de la planta.
© Fronius 2004
Soldadura orbital en la industria farmacéutica
Ordenamiento de los tubos de acuerdo a su objetivo de utilización
Tuberías de contacto primario (Purificación de vapor, de agua,
tuberías de productos, de ventilación, extractores, asi como filtros
de esterilización y dispositivos de almacenamiento)
Tuberías de contacto secundario
(tuberías de ventilación y extracción de aire, filtros de
esterilización hasta sistemas de almacenamiento a presión)
Otros conductos
(Conductos de vapor, de condensación,de refrigeración, de
desagüe)
© Fronius 2004
Soldadura orbital en la industria farmacéutica
Puntos a tener en cuenta
Selección del material (propiedades del material ante la corrosión)
Calidad del material (tipo de acabado, superficies, tolerancias)
Técnica para la juntura (solo se permite junturas soldadas)
Garantía de calidad a través de pruebas y documentación
(documentación de cada proceso, prueba visual, endoscopia)
Soldadura en válvula con derivaciones
© Fronius 2004
Soldadura orbital en la industria farmacéutica
Técnica de la juntura (I):
Ubicación y alineamiento de la tuberías lo mas exacto posible
Calidad en las uniones de la tubería: máx.. desalineación: 10%
del espesor de la tubería
Puntos de sujetación con Ar 4.8 o Ar/H2 : puntos de sujetacion
pequeños e invisibles desde la parte interior
Los tiempos del pre-flujo y post-flujo de gas (protector y de
depuración) deben corresponder a las especificaciones de la
soldadura
© Fronius 2004
Soldadura orbital en la industria farmacéutica
Técnica de la juntura (II) – Criterio para la costura
Geometría del cordón (acabado, Ej.: una raíz poco elevada)
Grosor del cordón (la sección transversal del cordón debe cubrir
el ancho de las paredes)
Método para hacer la raíz (raíz sin caída interior)
Ausencia de grietas y poros en el área del cordón
Color de revenido (evidencias de oxidación) - máx. coloración
(amarillo pálido)
© Fronius 2004
Soldadura orbital en la industria farmacéutica
Cumplimiento de los criterios del cordón
© Fronius 2004
Soldadura orbital en la industria farmacéutica
Técnica de la juntura (III) – Ventajas de la soldadura orbital
Pinzas cerradas de soldadura para una protección optima con gas
(para evitar el color de revenido)
Control exacto de todos los parámetros básicos de soldadura
Mínima elevación en el lado interno del cordón
Mínimo recalentamiento de la pieza, gracias a la técnica de
pulsado
Desde el punto de vista metalúrgico, el cordón presenta una
calidad muy alta
© Fronius 2004
Soldadura orbital en las industrias purificadoras
Utilización de la soldadura orbital en el
mercado:
Sistemas de transporte y distribución
de sustancias liquidas
Sistemas para el procesamiento de
gases y su distribución
Elaboración de paneles de gas
Soportes
Construcción de tuberías en salones
purificados
© Fronius 2004
Soldadura orbital en las industrias purificadoras
Clases para purificación de salones :
CLASS 10,000 Satélite
CLASS 1,000 Producción y soldado de válvulas
CLASS 100 Típico en la industria de semiconductores
CLASS 10 Limpieza y empaque de los productos soldados
terminados
CLASS 1* aplicaciones especiales 2 o 3 en los Estados Unidos
*: CLASS 1 = 1 µm Partícula por 10,000 cu.ft (aprox. 370 m3)
© Fronius 2004
Soldadura orbital en las industrias purificadoras
Industrias en las cuales la producción exige un salón o
espacio purificado:
Electrónica
Medica
Farmacéutica
Aérea y aeroespacial
Alimenticia
© Fronius 2004
Soldadura orbital en las industrias purificadoras
Tasa de error (factores de influencia)
Medio ambiente > 20 %
Energía > 10 %
Temperatura > 2 %
Alteraciones en el Proceso > 20 %
Usuario > 20 %
Equipo > 20 %
© Fronius 2004
Soldadura orbital en las industrias purificadoras
UHP 250 –Para una
optima integración en
el acabado de
paneles
UHP 250-protección de
gas para instalaciones
con dimensiones
pequeñas
Soldadura orbital en la construcción de centrales de
energía
© Fronius 2004
© Fronius 2004
Soldadura orbital en la construcción de centrales de
energía
© Fronius 2004
Soldadura orbital en la construcción de centrales de
energía
© Fronius 2004
Soldadura orbital en la construcción de centrales de
energía
© Fronius 2004
Soldadura orbital en la construcción de centrales de
energía
Soldadura de tubos
© Fronius 2004
Soldadura orbital en la construcción de centrales de
energía
Soldadura de tubos
© Fronius 2004
Soldadura orbital en la construcción de centrales de
energía
Grietas
Soldadura orbital en la construcción de centrales de
energía
© Fronius 2004
Soldadura orbital en la construcción de centrales de
energía
© Fronius 2004
© Fronius 2004
Soldadura orbital en la construcción de centrales de
energía
TS 25:TS 25:
•• Sistema de tensión para elSistema de tensión para el
posicionamiento y fijación de la antorchaposicionamiento y fijación de la antorcha
•• Cámara de soldado cerrada paraCámara de soldado cerrada para
materiales de rápidomateriales de rápido oxidamentooxidamento
•• Soldadura sin material de aportaciónSoldadura sin material de aportación
•• Desde I.D. 7 mmDesde I.D. 7 mm -- A.D. 25,4 mmA.D. 25,4 mm
Soldadura orbital en la construcción de centrales de
energía
••TS 60:TS 60:
•• Sistema de alimentación deSistema de alimentación de
hilo integradohilo integrado
•• AVC (Opción)AVC (Opción)
•• De ID 8De ID 8 -- 60 mm60 mm
© Fronius 2004
Soldadura orbital en la construcción de centrales de
energía
TS 73:TS 73:
•• Sistema de alimentaciónSistema de alimentación
de hilo exteriorde hilo exterior
•• Fácil manejoFácil manejo
•• RobustoRobusto
•• De ID 8De ID 8 -- 60 mm60 mm
© Fronius 2004
© Fronius 2004
Soldadura orbital en la construcción de centrales de
energía
•• Una aplicación con 3 antorchas:Una aplicación con 3 antorchas:
TP 60 conectadas en paraleloTP 60 conectadas en paralelo
•• Sistema de tensión ySistema de tensión y
posicionamientoposicionamiento
•• Componentes flotantesComponentes flotantes
•• Refrigeración y depuración en elRefrigeración y depuración en el
lado posterior de la costuralado posterior de la costura
© Fronius 2004
Soldadura orbital en la construcción de centrales de
energía
- Utilización: Construcción de un
intercambiador de calor Hudson
- Material: Acero inoxidable, Duplex y acero
al carbón
- Dimensión:
Fondo: 3200 x 438 x 207 mm
Espesor del fondo delantero: 32 mm
Espesor del fondo trasero: 30-55 mm
Diámetro del tubo: 25,4 – 32 – 38,4 mm
- Cabezal: TS 60
Soldadura orbital en la construcción de centrales de
energía
© Fronius 2004
Soldadura orbital en la construcción de centrales de
energía
- Material: Acero súper DUPLEX
- Hilo: ZERON 100
- Diámetro: 280 mm
- Capas: 12
- Duración: 1h 10 min.
© Fronius 2004
© Fronius 2004
Soldadura orbital en la construcción de centrales de
energía
- Utilización: Tubos de refrigeracion
(Industrias procesamiento de Basuras)
- Material: ST 37.8
- Proceso: Orbital-TIG-Hilo frío
- Hilo: DMO-IG 0,8 mm
- Diámetro: 38 mm
- Espesor de los muros: 3 mm
- Capas: 2
© Fronius 2004
Soldadura orbital en la industria aérea y aeroespacial
Utilización :
Material: Titanio, Aluminio
Diámetro: (Titanio) 50x1 mm
(Alu) 45x0,8/1,0 mm
Cabezal: MU IV 19/ 80
Gas protector: Argon
© Fronius 2004
Soldadura orbital en la industria aérea y aeroespacial
Antorcha especial conAntorcha especial con
facilidades de ajuste yfacilidades de ajuste y
posicionamiento paraposicionamiento para
soldadura de soportes sinsoldadura de soportes sin
fijación previafijación previa
© Fronius 2004
Antorcha especial conAntorcha especial con
facilidades de ajuste yfacilidades de ajuste y
posicionamiento antes deposicionamiento antes de
empezar a soldarempezar a soldar
Soldadura orbital en la industria aérea y aeroespacial
Soldadura orbital en la industria naviera - plataformas
marinas
Diámetro: hasta 100 mm
Material: Acero austenitico y duplex
© Fronius 2004
© Fronius 2004
Soldadura orbital en la industria naviera -
plataformas marinas
Utilización: Plataformas-tuberías-reubicación
Material: Acero inoxidable duplex
Diámetro: 168 mm
Espesor de los muros: 11 mm
Proceso: TIG-Hilo frío, separacion (gap) minima
Capas : 8
Duración del ciclo: 52 min.
Preparación de la costura: J solo para la capa
final con oscilacion
© Fronius 2004
Soldadura orbital en la industria química
Utilización: Intercambiador de calor
Material: X2 CrNi N 22.5 3 (Duplex)
Inox 1.4948 – 304/ 308
Diámetro: Tubo: 38 mm
Lamina: 2000 y 2800 mm
Espesor: Tubo: 2,3 mm
Lamina: 35 mm
Cabezal : TS 60 con accesorio especial y
sujetador neumático
Construcción de maquinas y unidades de
almacenamiento
Utilización: Regulación de
válvulas e
instrumentación
© Fronius 2004
Construcción de maquinas y unidades de
almacenamiento
Utilización : Soldadura en la fabrica
© Fronius 2004
© Fronius 2004
Soldadura orbital en procesos energéticos
Utilización: Soldadura de conductos
hidráulicos
Material: Acero bajo en aleación
Cabezal : TIG 20/ 160
Diametro: ¾ “ – 1 ¼ “
Espesor de la pared : 2,5 – 4,5 mm
Soldadura orbital – Construcción de maquinas y
unidades de almacenamiento
© Fronius 2004
© Fronius 2004
Soldadura orbital – Construcción de tuberías
© Fronius 2004
Soldadura orbital en procesos energéticos
Utilización : Construcción de
sistemas de
calefacción
© Fronius 2004
Productos
© Fronius 2004
En compañía de la pinzas orbitales es de aplicación
universal para conexiones tubo-tubo, tubo-brida y
tubo-fondo de tubo
Fuente inversora integrada 200A DC
Refrigeración integrada (agua)
Alimentación controlada con microcontrolador
Ciclo de soldadura ajustado con control remoto
Memoria Interna para 16 Programas
Memo-Card para salvar y cargar programas
Control del eje de rotación, del cabezal y del
alimentador del hilo
Set de parámetros definibles libremente por sector
10 Sectores por costura (360°)
Datos de soldadura y documentación
Impresora de puntos incluida, con 20 caracteres por
renglón
SISTEMA REGULADO FPA 2000 ORBITAL
PM Automation
© Fronius 2004
En compañía de la pinzas orbitales es de aplicación
universal para conexiones tubo-tubo, tubo-brida y
tubo-fondo de tubo
SPS-Regulado
Fácil programación
Regulación y control total de todos los parámetros a
través del control remoto FPA 2003-RC
Memoria interna programable de hasta 200 programas
Set de parámetros definibles libremente por sector
9 sectores por costura (360°)
PC-Software „FPA-Manager“ para programación,
documentación, resp. almacenamiento (opcional)
Termo impresora y unidad para disquete (opcional)
SISTEMA REGULADO FPA 2003 ORBITAL
PM Automation
© Fronius 2004
Especial para soldadura a tope de tubo con espesor
delgado sin material de aporte
Utilizable en tubos con diámetro exterior entre 1,6
hasta 170 mm (dependiendo del tipo de pinza) y
paredes con espesor máximo de 3,5 mm
Cámara de protección para evitar el color de revenido
Direccionamiento especial del gas para evitar la
emisión de partículas
Intervalos largos de soldado gracias a la refrigeración
por agua
Sistema de cucharas tensoras Solid-Flex
PINZAS CERRADAS DE SOLDADURA UHP/ MW/ K
PM Automation
© Fronius 2004
Especial para la soldadura de tubo-fondo de tubo con
o sin material de aporte
Intervalos largos de soldado gracias a la refrigeración
por agua
Principio de colector para la alimentación de la
antorcha giratoria sin fin
sistema modular TS 2000 :
con / sin AVC
con sistema de alimentación de hilo integrado
con sistema de alimentación de hilo externo
con sistema de tensión neumático
Apropiado para tubos con diámetro exterior de 8 hasta
60 mm (dependiendo del tipo de cabezal)
Estribo sujetador giratorio para balanceo
CABEZAL DE SOLDADURA ABIERTA TS 25/ TS 2000
PM Automation
© Fronius 2004
Para soldadura de unión tubo-tubo
Sistema de sujetacion y centrado con pinzas de ajuste
continuo
Fácil adaptación en diferentes geometrías tubulares
Concepto modular (unidad de material de aporte, de
AVC, de OSC)
Antorcha giratoria 0° bis 40° (bridas)
Exploración mecánica de la altura
Ajuste mecánico de precisión para correcciones
laterales +/- 2,5 mm
Intervalos largos de soldado gracias a la refrigeración
por agua
PINZAS ABIERTAS DE SOLDADURA MU IV P
PM Automation
© Fronius 2004
Bastidor de ruedas orbital para la mayoría de trabajos
de soldadura en la fabricación de tuberías
Método de soldadura:
TIG con material de aporte y capas multiples
Diámetro exterior del tubo desde 114 mm
Espesor máx.. de la pare del tubo 200 mm
Sistema de alimentación del hilo integrado, 5 rodillos
0,8 (ranura trapezoidal)
Generador de impulsos de recorrido integrado para la
regulación de la velocidad
Sistema motorizado de carro cruzado (carros AVC y
OSC)
Unidad especial de alimentación del hilo con 2 ejes
Rango de graduación de la antorcha +/ - 45°
Velocidad de desplazamiento 20 – 400 mm/min.
Corriente de soldadura máx.. 300 A/ 500 A
BASTIDOR DE RUEDAS ORBITAL POLYCAR 60/
POLYCAR 130
PM Automation
© Fronius 2004
Acondicionamiento de los extremos del tubo en la fase
de preparación del área a soldar
Modo de operación con aire presurizado o con sistema
eléctrico
Herramientas para el sistema de tensión
Potencia y uso del sistema de alimentación mejorado
Accesorios para el pulimento de la capa protectora
Diámetro interno del tubo hasta hasta 111 mm
Diámetro externo del tubo hasta hasta 114,3 mm
Accesorios para herramientas multiuso, adecuado
para diferente tipos de uniones
Recomendado tanto para aceros sin aleaciones como
para tuberías de acero inoxidable
MAQUINAS PARA TRATAMIENTO Y ACABADO DE
LA TUBERIA REB/ BRB
PM Automation
© Fronius 2004
Especial para el corte y la preparación simultanea del
tubo
Rango del diámetro exterior de tubo entre 10 bis 325
mm
Rango del diámetro interior de tubo entre 7 – 193 mm
Espesor de la pared del tubo 0,5 bis 10 mm
Regulación electrónica de la velocidad de giro
Amplia numero de puntos para la tensión del tubo
Sujetador ideal en solo un parte del tubo
Dirección del proceso de adentro hacia afuera del tubo
Adecuado para soldadura de alto rendimiento como:
Titanio, Acero de alta aleación, Cobre, Aluminio, Acero
al carbono
ROHRTRENN- UND ANFASMASCHINE RA/ RA H
PM Automation
© Fronius 2004
Diámetro interno del tubo 13 - 215 mm
Total aislamiento es garantizado gracias a su
construcción con tres discos en cada extremo
Distribuidor de gas nuevo, patentado (Modo de trabajo
de acuerdo al principio pistón-desplazamiento)
Aprobado contra los rayos ultravioletas
Aprobado térmicamente hasta 340°C
Posicionamiento rápido y fácil, ideal para posiciones
difíciles
Eficiente y rentable:
Tiempo de depuración extremadamente corto
Consumo mínimo de gas
Posicionamiento rápido
CILINDRO DE DEPURACION SC PROFI
PM Automation
© Fronius 2004
Administración de datos de soldadura para un
PC/ Laptop conectado al sistema de regulación
FPA 2003
Funciones
Visualización, generación, almacenamiento
de todos los parámetros
Documentación de los parámetros
Captura de datos en modo On-Line (FPA-
AVR)
Transferencia de datos desde PC al sistema
de regulación FPA 2003 en modo On-Line a
través de una interfase o Off-Line a través
de un disquete
SOFTWARE “ FPA-MANAGER “
PM Automation
© Fronius 2004
www.fronius.com

Más contenido relacionado

La actualidad más candente

Thermodynamic Chapter 4 Second Law Of Thermodynamics
Thermodynamic Chapter 4 Second Law Of ThermodynamicsThermodynamic Chapter 4 Second Law Of Thermodynamics
Thermodynamic Chapter 4 Second Law Of ThermodynamicsMuhammad Surahman
 
Mecanismos de transmisión de calor (conduccion, conveccion, radiacion)
Mecanismos de transmisión de calor (conduccion, conveccion, radiacion)Mecanismos de transmisión de calor (conduccion, conveccion, radiacion)
Mecanismos de transmisión de calor (conduccion, conveccion, radiacion)Gilberto Mireles
 
Curso electricidad básica
Curso electricidad básicaCurso electricidad básica
Curso electricidad básicajuanca_astudillo
 
Diseño de un intercambiador de calor termodinamica
Diseño de un intercambiador de calor termodinamicaDiseño de un intercambiador de calor termodinamica
Diseño de un intercambiador de calor termodinamicaFrancisco Torrealba
 
Refrigeracion domestica-manual-tecnico-25679
Refrigeracion domestica-manual-tecnico-25679Refrigeracion domestica-manual-tecnico-25679
Refrigeracion domestica-manual-tecnico-25679El Tunel Del Tiempo
 
Conferencia expofrio 2014 sistemas de refrigeraciòn
Conferencia expofrio 2014 sistemas de refrigeraciònConferencia expofrio 2014 sistemas de refrigeraciòn
Conferencia expofrio 2014 sistemas de refrigeraciònErnesto Sanguinetti R.
 
Pirometro de radiacion
Pirometro de radiacionPirometro de radiacion
Pirometro de radiacionmertu
 
Medidores de nivel
Medidores de nivelMedidores de nivel
Medidores de nivelSara Ortiz
 
Los Sistema de refrigeración
Los Sistema de refrigeraciónLos Sistema de refrigeración
Los Sistema de refrigeracióneleazarbautista35
 
Termómetro de gas de Volumen constante
Termómetro de gas de Volumen constanteTermómetro de gas de Volumen constante
Termómetro de gas de Volumen constantelucasyondaime
 
Mecanismos de transferencia de calor
Mecanismos de transferencia de calorMecanismos de transferencia de calor
Mecanismos de transferencia de calordaszemog
 
Tema 4. intercambiadores de calor mejorado
Tema 4. intercambiadores de calor mejoradoTema 4. intercambiadores de calor mejorado
Tema 4. intercambiadores de calor mejoradomahulig
 
Prinsip Kerja Sistem Pengendalian Tekanan pada Scrubber PV-3700
Prinsip Kerja Sistem Pengendalian Tekanan pada Scrubber PV-3700Prinsip Kerja Sistem Pengendalian Tekanan pada Scrubber PV-3700
Prinsip Kerja Sistem Pengendalian Tekanan pada Scrubber PV-3700Fany Mardiyanti
 
Transformación del calor
Transformación del calorTransformación del calor
Transformación del calorDavid Torres
 
Fundamentos de refrigeración.
Fundamentos de refrigeración.Fundamentos de refrigeración.
Fundamentos de refrigeración.WJC HVAC
 
Intercambiadores de calor
Intercambiadores de calorIntercambiadores de calor
Intercambiadores de calorDante Arizmendi
 

La actualidad más candente (20)

Thermodynamic Chapter 4 Second Law Of Thermodynamics
Thermodynamic Chapter 4 Second Law Of ThermodynamicsThermodynamic Chapter 4 Second Law Of Thermodynamics
Thermodynamic Chapter 4 Second Law Of Thermodynamics
 
Refrigeracion domestica
Refrigeracion domesticaRefrigeracion domestica
Refrigeracion domestica
 
Mecanismos de transmisión de calor (conduccion, conveccion, radiacion)
Mecanismos de transmisión de calor (conduccion, conveccion, radiacion)Mecanismos de transmisión de calor (conduccion, conveccion, radiacion)
Mecanismos de transmisión de calor (conduccion, conveccion, radiacion)
 
Curso electricidad básica
Curso electricidad básicaCurso electricidad básica
Curso electricidad básica
 
Diseño de un intercambiador de calor termodinamica
Diseño de un intercambiador de calor termodinamicaDiseño de un intercambiador de calor termodinamica
Diseño de un intercambiador de calor termodinamica
 
Refrigeracion domestica-manual-tecnico-25679
Refrigeracion domestica-manual-tecnico-25679Refrigeracion domestica-manual-tecnico-25679
Refrigeracion domestica-manual-tecnico-25679
 
Conferencia expofrio 2014 sistemas de refrigeraciòn
Conferencia expofrio 2014 sistemas de refrigeraciònConferencia expofrio 2014 sistemas de refrigeraciòn
Conferencia expofrio 2014 sistemas de refrigeraciòn
 
Teknik refrigerasi
Teknik refrigerasiTeknik refrigerasi
Teknik refrigerasi
 
Pirometro de radiacion
Pirometro de radiacionPirometro de radiacion
Pirometro de radiacion
 
Medidores de nivel
Medidores de nivelMedidores de nivel
Medidores de nivel
 
Los Sistema de refrigeración
Los Sistema de refrigeraciónLos Sistema de refrigeración
Los Sistema de refrigeración
 
Termómetro de gas de Volumen constante
Termómetro de gas de Volumen constanteTermómetro de gas de Volumen constante
Termómetro de gas de Volumen constante
 
Mecanismos de transferencia de calor
Mecanismos de transferencia de calorMecanismos de transferencia de calor
Mecanismos de transferencia de calor
 
Tema 4. intercambiadores de calor mejorado
Tema 4. intercambiadores de calor mejoradoTema 4. intercambiadores de calor mejorado
Tema 4. intercambiadores de calor mejorado
 
Prinsip Kerja Sistem Pengendalian Tekanan pada Scrubber PV-3700
Prinsip Kerja Sistem Pengendalian Tekanan pada Scrubber PV-3700Prinsip Kerja Sistem Pengendalian Tekanan pada Scrubber PV-3700
Prinsip Kerja Sistem Pengendalian Tekanan pada Scrubber PV-3700
 
Transformación del calor
Transformación del calorTransformación del calor
Transformación del calor
 
Distribucion del vapor
Distribucion del vaporDistribucion del vapor
Distribucion del vapor
 
Fundamentos de refrigeración.
Fundamentos de refrigeración.Fundamentos de refrigeración.
Fundamentos de refrigeración.
 
Doc 20181110-wa0013
Doc 20181110-wa0013Doc 20181110-wa0013
Doc 20181110-wa0013
 
Intercambiadores de calor
Intercambiadores de calorIntercambiadores de calor
Intercambiadores de calor
 

Similar a Presentation orbital spa

Soldadura de espárragos
Soldadura de espárragos Soldadura de espárragos
Soldadura de espárragos Claudio Antonio
 
Curso de procesos_de_soldadura_y_corte_t
Curso de procesos_de_soldadura_y_corte_tCurso de procesos_de_soldadura_y_corte_t
Curso de procesos_de_soldadura_y_corte_tbellota1246
 
Curso de cañerías industriales.pdf
Curso de cañerías industriales.pdfCurso de cañerías industriales.pdf
Curso de cañerías industriales.pdfElibertoValenzuela1
 
Curso de tuberias industriales
Curso de tuberias industrialesCurso de tuberias industriales
Curso de tuberias industrialesPoncho Rmz
 
Curso de tuberias industriales Piping
Curso de tuberias industriales PipingCurso de tuberias industriales Piping
Curso de tuberias industriales Pipingdiegott81
 
Curso de Tuberias Industriales.pdf
Curso de Tuberias Industriales.pdfCurso de Tuberias Industriales.pdf
Curso de Tuberias Industriales.pdfMarcoMejaTorres
 
Uniones de tuberias acero (1)
Uniones de tuberias acero (1)Uniones de tuberias acero (1)
Uniones de tuberias acero (1)Cleyby Davila
 
Uniones de tuberias acero (1)
Uniones de tuberias acero (1)Uniones de tuberias acero (1)
Uniones de tuberias acero (1)Cleyby Davila
 
Icot pro-cc-000 - procedimiento de ultrasonido industrial - asme sec viii 201...
Icot pro-cc-000 - procedimiento de ultrasonido industrial - asme sec viii 201...Icot pro-cc-000 - procedimiento de ultrasonido industrial - asme sec viii 201...
Icot pro-cc-000 - procedimiento de ultrasonido industrial - asme sec viii 201...Jonathan Espinoza
 
API 1104 u2jpbr2bq4uz6jtpdcbs-signature-3b9445df659de0c9fef231145f3a651b4ec5e...
API 1104 u2jpbr2bq4uz6jtpdcbs-signature-3b9445df659de0c9fef231145f3a651b4ec5e...API 1104 u2jpbr2bq4uz6jtpdcbs-signature-3b9445df659de0c9fef231145f3a651b4ec5e...
API 1104 u2jpbr2bq4uz6jtpdcbs-signature-3b9445df659de0c9fef231145f3a651b4ec5e...RobertDiaz196995
 
138334395-1-mig-mag-Modo-de-compatibilidad-pdf.pdf
138334395-1-mig-mag-Modo-de-compatibilidad-pdf.pdf138334395-1-mig-mag-Modo-de-compatibilidad-pdf.pdf
138334395-1-mig-mag-Modo-de-compatibilidad-pdf.pdfsandy413087
 
Operaciones con Tubería flexible
Operaciones con Tubería flexibleOperaciones con Tubería flexible
Operaciones con Tubería flexibleManuel Hernandez
 
Soldadura porarco con electrodo de tungteno (tig) xxxxxx
Soldadura porarco con electrodo de tungteno (tig) xxxxxxSoldadura porarco con electrodo de tungteno (tig) xxxxxx
Soldadura porarco con electrodo de tungteno (tig) xxxxxxkatheurdaneta
 
JORNADA TÉCNICA SOBRE CANALIZACIONES DE HORMIGÓN ARMADO (I)
JORNADA TÉCNICA SOBRE CANALIZACIONES DE HORMIGÓN ARMADO (I)JORNADA TÉCNICA SOBRE CANALIZACIONES DE HORMIGÓN ARMADO (I)
JORNADA TÉCNICA SOBRE CANALIZACIONES DE HORMIGÓN ARMADO (I)ANDECE
 

Similar a Presentation orbital spa (20)

Soldadura de espárragos
Soldadura de espárragos Soldadura de espárragos
Soldadura de espárragos
 
Curso de procesos_de_soldadura_y_corte_t
Curso de procesos_de_soldadura_y_corte_tCurso de procesos_de_soldadura_y_corte_t
Curso de procesos_de_soldadura_y_corte_t
 
Curso de cañerías industriales.pdf
Curso de cañerías industriales.pdfCurso de cañerías industriales.pdf
Curso de cañerías industriales.pdf
 
Curso de tuberias industriales
Curso de tuberias industrialesCurso de tuberias industriales
Curso de tuberias industriales
 
Golpe de ariete
Golpe de arieteGolpe de ariete
Golpe de ariete
 
Curso de tuberias industriales Piping
Curso de tuberias industriales PipingCurso de tuberias industriales Piping
Curso de tuberias industriales Piping
 
Curso de Tuberias Industriales.pdf
Curso de Tuberias Industriales.pdfCurso de Tuberias Industriales.pdf
Curso de Tuberias Industriales.pdf
 
Uniones de tuberias acero (1)
Uniones de tuberias acero (1)Uniones de tuberias acero (1)
Uniones de tuberias acero (1)
 
Uniones de tuberias acero (1)
Uniones de tuberias acero (1)Uniones de tuberias acero (1)
Uniones de tuberias acero (1)
 
Presentación de soldadura T.I.G.
Presentación de soldadura T.I.G.Presentación de soldadura T.I.G.
Presentación de soldadura T.I.G.
 
Icot pro-cc-000 - procedimiento de ultrasonido industrial - asme sec viii 201...
Icot pro-cc-000 - procedimiento de ultrasonido industrial - asme sec viii 201...Icot pro-cc-000 - procedimiento de ultrasonido industrial - asme sec viii 201...
Icot pro-cc-000 - procedimiento de ultrasonido industrial - asme sec viii 201...
 
API 1104 u2jpbr2bq4uz6jtpdcbs-signature-3b9445df659de0c9fef231145f3a651b4ec5e...
API 1104 u2jpbr2bq4uz6jtpdcbs-signature-3b9445df659de0c9fef231145f3a651b4ec5e...API 1104 u2jpbr2bq4uz6jtpdcbs-signature-3b9445df659de0c9fef231145f3a651b4ec5e...
API 1104 u2jpbr2bq4uz6jtpdcbs-signature-3b9445df659de0c9fef231145f3a651b4ec5e...
 
proceso FCAW.pdf
proceso FCAW.pdfproceso FCAW.pdf
proceso FCAW.pdf
 
138334395-1-mig-mag-Modo-de-compatibilidad-pdf.pdf
138334395-1-mig-mag-Modo-de-compatibilidad-pdf.pdf138334395-1-mig-mag-Modo-de-compatibilidad-pdf.pdf
138334395-1-mig-mag-Modo-de-compatibilidad-pdf.pdf
 
Soldadura de esparragos
Soldadura de esparragosSoldadura de esparragos
Soldadura de esparragos
 
Operaciones con Tubería flexible
Operaciones con Tubería flexibleOperaciones con Tubería flexible
Operaciones con Tubería flexible
 
Soldadura porarco con electrodo de tungteno (tig) xxxxxx
Soldadura porarco con electrodo de tungteno (tig) xxxxxxSoldadura porarco con electrodo de tungteno (tig) xxxxxx
Soldadura porarco con electrodo de tungteno (tig) xxxxxx
 
JORNADA TÉCNICA SOBRE CANALIZACIONES DE HORMIGÓN ARMADO (I)
JORNADA TÉCNICA SOBRE CANALIZACIONES DE HORMIGÓN ARMADO (I)JORNADA TÉCNICA SOBRE CANALIZACIONES DE HORMIGÓN ARMADO (I)
JORNADA TÉCNICA SOBRE CANALIZACIONES DE HORMIGÓN ARMADO (I)
 
Soldaduras (1)
Soldaduras (1)Soldaduras (1)
Soldaduras (1)
 
2935 4937 40 catalogo airnet español
2935 4937 40 catalogo airnet español2935 4937 40 catalogo airnet español
2935 4937 40 catalogo airnet español
 

Más de arleto

Fittings
FittingsFittings
Fittingsarleto
 
Ansi+b+16 9+tolerancias+rc
Ansi+b+16 9+tolerancias+rcAnsi+b+16 9+tolerancias+rc
Ansi+b+16 9+tolerancias+rcarleto
 
Ansi+b+16 9+tolerancias
Ansi+b+16 9+toleranciasAnsi+b+16 9+tolerancias
Ansi+b+16 9+toleranciasarleto
 
Ansi+b+16 9+tee-reducciones
Ansi+b+16 9+tee-reduccionesAnsi+b+16 9+tee-reducciones
Ansi+b+16 9+tee-reduccionesarleto
 
Ansi+b+16 9+tee-normal
Ansi+b+16 9+tee-normalAnsi+b+16 9+tee-normal
Ansi+b+16 9+tee-normalarleto
 
Ansi+b+16 9+reducciones
Ansi+b+16 9+reduccionesAnsi+b+16 9+reducciones
Ansi+b+16 9+reduccionesarleto
 
Ansi+b+16 9+codo+90º+rl
Ansi+b+16 9+codo+90º+rlAnsi+b+16 9+codo+90º+rl
Ansi+b+16 9+codo+90º+rlarleto
 
Ansi+b+16 9+codo+45º+rl
Ansi+b+16 9+codo+45º+rlAnsi+b+16 9+codo+45º+rl
Ansi+b+16 9+codo+45º+rlarleto
 
1033+8
1033+81033+8
1033+8arleto
 
Guía de-privacidad-de-facebook
Guía de-privacidad-de-facebookGuía de-privacidad-de-facebook
Guía de-privacidad-de-facebookarleto
 
Trazado de plantilla_para_tubos
Trazado de plantilla_para_tubosTrazado de plantilla_para_tubos
Trazado de plantilla_para_tubosarleto
 
Manual.de.plomeria.el.libro.azul
Manual.de.plomeria.el.libro.azulManual.de.plomeria.el.libro.azul
Manual.de.plomeria.el.libro.azularleto
 
pdf soldadura
pdf soldadurapdf soldadura
pdf soldaduraarleto
 
Soldadura universidad nuevo leon
Soldadura universidad nuevo leonSoldadura universidad nuevo leon
Soldadura universidad nuevo leonarleto
 
Soldadura tig
Soldadura tigSoldadura tig
Soldadura tigarleto
 
Materiales ytipos de soladaura a usar
Materiales ytipos de soladaura a usarMateriales ytipos de soladaura a usar
Materiales ytipos de soladaura a usararleto
 
Manual para soldador_tig_venetool.145161323
Manual para soldador_tig_venetool.145161323Manual para soldador_tig_venetool.145161323
Manual para soldador_tig_venetool.145161323arleto
 
Manual soldador 1parte
Manual soldador 1parteManual soldador 1parte
Manual soldador 1partearleto
 
Manual de soldadura contenidos de apoyo
Manual de soldadura contenidos de apoyoManual de soldadura contenidos de apoyo
Manual de soldadura contenidos de apoyoarleto
 
File 2182 manual de soldadura indura 2007
File 2182 manual de soldadura indura 2007File 2182 manual de soldadura indura 2007
File 2182 manual de soldadura indura 2007arleto
 

Más de arleto (20)

Fittings
FittingsFittings
Fittings
 
Ansi+b+16 9+tolerancias+rc
Ansi+b+16 9+tolerancias+rcAnsi+b+16 9+tolerancias+rc
Ansi+b+16 9+tolerancias+rc
 
Ansi+b+16 9+tolerancias
Ansi+b+16 9+toleranciasAnsi+b+16 9+tolerancias
Ansi+b+16 9+tolerancias
 
Ansi+b+16 9+tee-reducciones
Ansi+b+16 9+tee-reduccionesAnsi+b+16 9+tee-reducciones
Ansi+b+16 9+tee-reducciones
 
Ansi+b+16 9+tee-normal
Ansi+b+16 9+tee-normalAnsi+b+16 9+tee-normal
Ansi+b+16 9+tee-normal
 
Ansi+b+16 9+reducciones
Ansi+b+16 9+reduccionesAnsi+b+16 9+reducciones
Ansi+b+16 9+reducciones
 
Ansi+b+16 9+codo+90º+rl
Ansi+b+16 9+codo+90º+rlAnsi+b+16 9+codo+90º+rl
Ansi+b+16 9+codo+90º+rl
 
Ansi+b+16 9+codo+45º+rl
Ansi+b+16 9+codo+45º+rlAnsi+b+16 9+codo+45º+rl
Ansi+b+16 9+codo+45º+rl
 
1033+8
1033+81033+8
1033+8
 
Guía de-privacidad-de-facebook
Guía de-privacidad-de-facebookGuía de-privacidad-de-facebook
Guía de-privacidad-de-facebook
 
Trazado de plantilla_para_tubos
Trazado de plantilla_para_tubosTrazado de plantilla_para_tubos
Trazado de plantilla_para_tubos
 
Manual.de.plomeria.el.libro.azul
Manual.de.plomeria.el.libro.azulManual.de.plomeria.el.libro.azul
Manual.de.plomeria.el.libro.azul
 
pdf soldadura
pdf soldadurapdf soldadura
pdf soldadura
 
Soldadura universidad nuevo leon
Soldadura universidad nuevo leonSoldadura universidad nuevo leon
Soldadura universidad nuevo leon
 
Soldadura tig
Soldadura tigSoldadura tig
Soldadura tig
 
Materiales ytipos de soladaura a usar
Materiales ytipos de soladaura a usarMateriales ytipos de soladaura a usar
Materiales ytipos de soladaura a usar
 
Manual para soldador_tig_venetool.145161323
Manual para soldador_tig_venetool.145161323Manual para soldador_tig_venetool.145161323
Manual para soldador_tig_venetool.145161323
 
Manual soldador 1parte
Manual soldador 1parteManual soldador 1parte
Manual soldador 1parte
 
Manual de soldadura contenidos de apoyo
Manual de soldadura contenidos de apoyoManual de soldadura contenidos de apoyo
Manual de soldadura contenidos de apoyo
 
File 2182 manual de soldadura indura 2007
File 2182 manual de soldadura indura 2007File 2182 manual de soldadura indura 2007
File 2182 manual de soldadura indura 2007
 

Presentation orbital spa

  • 1. © Fronius 2004 INFORMACION SOBRE SOLDADURA ORBITAL TIG FRONIUS International GmbH Division Schweißtechnik Produktmanagement Automation Buxbaumstraße 2 A-4600 Wels
  • 2. © Fronius 2004 Que es soldadura orbital? Se conoce como “SOLDADURA ORBITAL““SOLDADURA ORBITAL“ el proceso de soldar circularmente una pieza cilíndrica fija o fijada en un soporte (conductos, tuberías, etc). Para este propósito, la antorcha se desplaza sobre una guía y recorre la pieza de manera circular. Esta es la razón por la cual el proceso recibe su nombre, pues la palabra „Orbit “ viene del Latín y se refiere al movimiento de la luna alrededor de la tierra. Con esta técnica se esperan resultados reproducibles y de alta calidad, por esta razón normalmente se emplea el método de soldadura TIG (WIG).
  • 3. © Fronius 2004 Que es soldadura orbital? Uno de los obstáculos a superar es la acción de la fuerza de la gravedad en el baño de fusión. Esto se logra con la adecuada programación del equipo orbital. Con el proceso de soldadura orbital, todas las posiciones son posibles
  • 4. © Fronius 2004 Que es soldadura orbital? Resultados con la tecnología TIG pulsado Sin ajuste de parámetros Con ajuste de parámetros
  • 5. © Fronius 2004 Que es soldadura orbital? Gas Corriente Movimiento giratorio Velocidad del hilo AVC OSC
  • 6. © Fronius 2004 Ventajas de la soldadura orbital manual Orbital ComparaciondelprocesoTIGmanualyautomatizado Diámetro del tubo [mm] t [seg.]
  • 7. © Fronius 2004 Ventajas de la soldadura orbital Alta calidad en el cordón Alta seguridad del método Resultados totalmente reproducibles No hay necesidad de un soldador calificado Rentabilidad gracias al método automatizado Tiempos de producción cortos Posible en espacios de difícil acceso, que probablemente serian imposibles para una soldadora manual Mínima contaminación debido a las condiciones del medio ambiente Mínima (ó cero) aparición de oxido Documentación del proceso Adecuado para construcciones exteriores
  • 8. © Fronius 2004 En que consiste un sistema orbital
  • 9. © Fronius 2004 Factores principales que influyen en el cordón durante la soldadura orbital: Preparación de las superficies a soldar Gas de protección y depurador Electrodo de tungsteno (Wólfram) Tobera Distancia entre el electrodo de tungsteno y la pieza Centrado del dispositivo de depurado Condiciones ambientales (temperatura, lugar)
  • 10. © Fronius 2004 Que se debe tener en cuenta en la soldadura orbital? Distribución del espacio al soldar tuberías con codos
  • 11. © Fronius 2004 Que se debe tener en cuenta en la soldadura orbital? Distribución del espacio al soldar tuberías con codos Diámetro exterior del tubo (d1) Espesor de las paredes (e1) Distancia entre los tubos (a1) Distancia hasta el próximo obstáculo Longitud de la parte recta del tubo(L1) Longitud de la parte recta del codo(L2) Altura del delantal (H)
  • 12. © Fronius 2004 Que se debe tener en cuenta en la soldadura orbital? Distribución del espacio al soldar tuberías con superficies planas
  • 13. © Fronius 2004 Que se debe tener en cuenta en la soldadura orbital? Diámetro exterior del tubo Espesor de las paredes Cantidad de tubos Espesor de la superficie Separación entre las perforaciones (X) Distribución (Y) Planos exactos de la superficie Distancia entre el eje del tubo y el borde de la superficie Distribución del espacio al soldar tuberías y superficies planas A ras Atrasado Sobresaliente Soldadura fondo
  • 14. © Fronius 2004 Que se debe tener en cuenta en la soldadura orbital? Preparación y adecuación de los materiales Angulo del flanco Radio de la raíz Altura de la garganta en la raizLongitud lateral de la garganta en la raiz Espesor del tubo Longitud de la expansión interna Altura del flanco Angulo de expansión interna
  • 15. © Fronius 2004 Que se debe tener en cuenta en la soldadura orbital? Preparación y adecuación de los materiales I V Y U ID I-Naht / square-butt weld Stumpf-Naht / butt weld V-Naht / single V-butt weld Y-Naht / Y-butt weld U-Naht / single U-butt weld Rohrinnendurchmesser / pipe- inner diameter Fugenform/ seam preparation Symbol Bezeichnung/ Description
  • 16. © Fronius 2004 Que se debe tener en cuenta en la soldadura orbital? Ejemplo de preparación del material (acero inoxidable) Preparación del borde de acuerdo al espesor de las paredes del tubo
  • 17. © Fronius 2004 Que se debe tener en cuenta en la soldadura orbital? Tipo de soldadura TIG con material de aportación+ AVC + Movimiento pendular TIG con material de aportación TIG sin material de aportación
  • 18. © Fronius 2004 Que se debe tener en cuenta en la soldadura orbital? Pulir adecuadamente el electrodo de tunsteno El pulimento exacto del electrodo de tunsteno es una condición básica para un resultado optimo y de calidad del cordón. Mediante una alta calidad en el área de la punta del electrodo de tunsteno será garantizada la exacta reproducción de los parámetros de la soldadura.
  • 19. © Fronius 2004 Que se debe tener en cuenta en la soldadura orbital? Gases Gas protector Gas protector Material Argón, Helio, Ar/He mezclado Todo tipo de material Ar/H2 mezclado Acero austenítico al manganeso
  • 20. © Fronius 2004 Que se debe tener en cuenta en la soldadura orbital? Gases Gases depuradores Gas protector Material Argon, Helio, Ar/He mezclado Todo tipo de material Ar/H2 mezclado Acero austenítico al manganeso, Ni y materiales basados en Ni N2/H2 mezclado Acero austenítico al manganeso (no estabilizados con Ti) N2 Acero austenítico al CrNi, acero duplex y súper duplex
  • 21. © Fronius 2004 Que se debe tener en cuenta en la soldadura orbital? Depuración
  • 22. © Fronius 2004 Que se debe tener en cuenta en la soldadura orbital? Sin depuraciónSin depuración Con depuraciónCon depuración Una gran ventaja es proteger el cordón desde la parte interior de la tubería a través del proceso de “depuración“, para evitar la formación de capaz de oxido y el color de revenido. Esto se logra evitando la presencia del oxigeno en el interior (contenido en el aire). (p. Ej..: Acero al CrNi, Titanio, Metales no férreos) Depuración
  • 23. © Fronius 2004 Que se debe tener en cuenta en la soldadura orbital? Depuración Oxidación / Color de revenido : Argon 12Vppm Oxigeno Argon 80 Vppm Oxigeno Argon 0,1 Vol.-% Oxigeno(*) (*) 0,1 Vol.-% Oxigeno corresponde a aprox. 1000 Vppm
  • 24. © Fronius 2004 Que se debe tener en cuenta en la soldadura orbital? Ayuda para la depuración
  • 25. © Fronius 2004 Que se debe tener en cuenta en la soldadura orbital? Dispositivo de centrado y tensión
  • 26. © Fronius 2004 Que se debe tener en cuenta en la soldadura orbital? Calidad asegurada a través de pruebas y documentación Prueba visual de todas los cordones Cumplimiento de las normas correspondientes (FDA, GMP) Pruebas de resistencia en la costura Inspección de la parte interna del cordón a través de video endoscopia, para la detección de errores y color de revenido en la tubería Control del cordón con prueba de color contra errores adicionales Documentación de cada proceso de acuerdo a la norma estandar ISO
  • 27. © Fronius 2004 Que se debe tener en cuenta en la soldadura orbital? Errores debidos a una mala preparación de los materiales Alineamiento de los extremos del tubo !Fijado deficiente !
  • 28. © Fronius 2004 Materiales Acero Acero inoxidable Titanio Aluminio Metales basados en Níquel (Inconel) Cobre Duplex
  • 29. © Fronius 2004 Campos de aplicación Sector Microelectrónica Farmacéutico/Bioquímico Industria alimenticia Químico Refrigeración Energía Centrales de Energía Aviación Instrumentación y control Soportes y plataformas Construcciones Navieras
  • 30. © Fronius 2004 Soldadura orbital en la industria farmacéutica Mercados que exigen una calidad similar en el proceso : Exigencias básicas de un sistema de tubería Industria de semiconductores Industria química y bioquímica Industria alimenticia El nivel de contaminación debido a las condiciones del medio ambiente, p.Ej.. Humedad, en la tubería debe ser mantenido muy bajo o nulo. La soldadura debe satisfacer las correspondientes normas básicas de la planta.
  • 31. © Fronius 2004 Soldadura orbital en la industria farmacéutica Ordenamiento de los tubos de acuerdo a su objetivo de utilización Tuberías de contacto primario (Purificación de vapor, de agua, tuberías de productos, de ventilación, extractores, asi como filtros de esterilización y dispositivos de almacenamiento) Tuberías de contacto secundario (tuberías de ventilación y extracción de aire, filtros de esterilización hasta sistemas de almacenamiento a presión) Otros conductos (Conductos de vapor, de condensación,de refrigeración, de desagüe)
  • 32. © Fronius 2004 Soldadura orbital en la industria farmacéutica Puntos a tener en cuenta Selección del material (propiedades del material ante la corrosión) Calidad del material (tipo de acabado, superficies, tolerancias) Técnica para la juntura (solo se permite junturas soldadas) Garantía de calidad a través de pruebas y documentación (documentación de cada proceso, prueba visual, endoscopia) Soldadura en válvula con derivaciones
  • 33. © Fronius 2004 Soldadura orbital en la industria farmacéutica Técnica de la juntura (I): Ubicación y alineamiento de la tuberías lo mas exacto posible Calidad en las uniones de la tubería: máx.. desalineación: 10% del espesor de la tubería Puntos de sujetación con Ar 4.8 o Ar/H2 : puntos de sujetacion pequeños e invisibles desde la parte interior Los tiempos del pre-flujo y post-flujo de gas (protector y de depuración) deben corresponder a las especificaciones de la soldadura
  • 34. © Fronius 2004 Soldadura orbital en la industria farmacéutica Técnica de la juntura (II) – Criterio para la costura Geometría del cordón (acabado, Ej.: una raíz poco elevada) Grosor del cordón (la sección transversal del cordón debe cubrir el ancho de las paredes) Método para hacer la raíz (raíz sin caída interior) Ausencia de grietas y poros en el área del cordón Color de revenido (evidencias de oxidación) - máx. coloración (amarillo pálido)
  • 35. © Fronius 2004 Soldadura orbital en la industria farmacéutica Cumplimiento de los criterios del cordón
  • 36. © Fronius 2004 Soldadura orbital en la industria farmacéutica Técnica de la juntura (III) – Ventajas de la soldadura orbital Pinzas cerradas de soldadura para una protección optima con gas (para evitar el color de revenido) Control exacto de todos los parámetros básicos de soldadura Mínima elevación en el lado interno del cordón Mínimo recalentamiento de la pieza, gracias a la técnica de pulsado Desde el punto de vista metalúrgico, el cordón presenta una calidad muy alta
  • 37. © Fronius 2004 Soldadura orbital en las industrias purificadoras Utilización de la soldadura orbital en el mercado: Sistemas de transporte y distribución de sustancias liquidas Sistemas para el procesamiento de gases y su distribución Elaboración de paneles de gas Soportes Construcción de tuberías en salones purificados
  • 38. © Fronius 2004 Soldadura orbital en las industrias purificadoras Clases para purificación de salones : CLASS 10,000 Satélite CLASS 1,000 Producción y soldado de válvulas CLASS 100 Típico en la industria de semiconductores CLASS 10 Limpieza y empaque de los productos soldados terminados CLASS 1* aplicaciones especiales 2 o 3 en los Estados Unidos *: CLASS 1 = 1 µm Partícula por 10,000 cu.ft (aprox. 370 m3)
  • 39. © Fronius 2004 Soldadura orbital en las industrias purificadoras Industrias en las cuales la producción exige un salón o espacio purificado: Electrónica Medica Farmacéutica Aérea y aeroespacial Alimenticia
  • 40. © Fronius 2004 Soldadura orbital en las industrias purificadoras Tasa de error (factores de influencia) Medio ambiente > 20 % Energía > 10 % Temperatura > 2 % Alteraciones en el Proceso > 20 % Usuario > 20 % Equipo > 20 %
  • 41. © Fronius 2004 Soldadura orbital en las industrias purificadoras UHP 250 –Para una optima integración en el acabado de paneles UHP 250-protección de gas para instalaciones con dimensiones pequeñas
  • 42. Soldadura orbital en la construcción de centrales de energía © Fronius 2004
  • 43. © Fronius 2004 Soldadura orbital en la construcción de centrales de energía
  • 44. © Fronius 2004 Soldadura orbital en la construcción de centrales de energía
  • 45. © Fronius 2004 Soldadura orbital en la construcción de centrales de energía
  • 46. © Fronius 2004 Soldadura orbital en la construcción de centrales de energía Soldadura de tubos
  • 47. © Fronius 2004 Soldadura orbital en la construcción de centrales de energía Soldadura de tubos
  • 48. © Fronius 2004 Soldadura orbital en la construcción de centrales de energía Grietas
  • 49. Soldadura orbital en la construcción de centrales de energía © Fronius 2004
  • 50. Soldadura orbital en la construcción de centrales de energía © Fronius 2004
  • 51. © Fronius 2004 Soldadura orbital en la construcción de centrales de energía TS 25:TS 25: •• Sistema de tensión para elSistema de tensión para el posicionamiento y fijación de la antorchaposicionamiento y fijación de la antorcha •• Cámara de soldado cerrada paraCámara de soldado cerrada para materiales de rápidomateriales de rápido oxidamentooxidamento •• Soldadura sin material de aportaciónSoldadura sin material de aportación •• Desde I.D. 7 mmDesde I.D. 7 mm -- A.D. 25,4 mmA.D. 25,4 mm
  • 52. Soldadura orbital en la construcción de centrales de energía ••TS 60:TS 60: •• Sistema de alimentación deSistema de alimentación de hilo integradohilo integrado •• AVC (Opción)AVC (Opción) •• De ID 8De ID 8 -- 60 mm60 mm © Fronius 2004
  • 53. Soldadura orbital en la construcción de centrales de energía TS 73:TS 73: •• Sistema de alimentaciónSistema de alimentación de hilo exteriorde hilo exterior •• Fácil manejoFácil manejo •• RobustoRobusto •• De ID 8De ID 8 -- 60 mm60 mm © Fronius 2004
  • 54. © Fronius 2004 Soldadura orbital en la construcción de centrales de energía •• Una aplicación con 3 antorchas:Una aplicación con 3 antorchas: TP 60 conectadas en paraleloTP 60 conectadas en paralelo •• Sistema de tensión ySistema de tensión y posicionamientoposicionamiento •• Componentes flotantesComponentes flotantes •• Refrigeración y depuración en elRefrigeración y depuración en el lado posterior de la costuralado posterior de la costura
  • 55. © Fronius 2004 Soldadura orbital en la construcción de centrales de energía - Utilización: Construcción de un intercambiador de calor Hudson - Material: Acero inoxidable, Duplex y acero al carbón - Dimensión: Fondo: 3200 x 438 x 207 mm Espesor del fondo delantero: 32 mm Espesor del fondo trasero: 30-55 mm Diámetro del tubo: 25,4 – 32 – 38,4 mm - Cabezal: TS 60
  • 56. Soldadura orbital en la construcción de centrales de energía © Fronius 2004
  • 57. Soldadura orbital en la construcción de centrales de energía - Material: Acero súper DUPLEX - Hilo: ZERON 100 - Diámetro: 280 mm - Capas: 12 - Duración: 1h 10 min. © Fronius 2004
  • 58. © Fronius 2004 Soldadura orbital en la construcción de centrales de energía - Utilización: Tubos de refrigeracion (Industrias procesamiento de Basuras) - Material: ST 37.8 - Proceso: Orbital-TIG-Hilo frío - Hilo: DMO-IG 0,8 mm - Diámetro: 38 mm - Espesor de los muros: 3 mm - Capas: 2
  • 59. © Fronius 2004 Soldadura orbital en la industria aérea y aeroespacial Utilización : Material: Titanio, Aluminio Diámetro: (Titanio) 50x1 mm (Alu) 45x0,8/1,0 mm Cabezal: MU IV 19/ 80 Gas protector: Argon
  • 60. © Fronius 2004 Soldadura orbital en la industria aérea y aeroespacial Antorcha especial conAntorcha especial con facilidades de ajuste yfacilidades de ajuste y posicionamiento paraposicionamiento para soldadura de soportes sinsoldadura de soportes sin fijación previafijación previa
  • 61. © Fronius 2004 Antorcha especial conAntorcha especial con facilidades de ajuste yfacilidades de ajuste y posicionamiento antes deposicionamiento antes de empezar a soldarempezar a soldar Soldadura orbital en la industria aérea y aeroespacial
  • 62. Soldadura orbital en la industria naviera - plataformas marinas Diámetro: hasta 100 mm Material: Acero austenitico y duplex © Fronius 2004
  • 63. © Fronius 2004 Soldadura orbital en la industria naviera - plataformas marinas Utilización: Plataformas-tuberías-reubicación Material: Acero inoxidable duplex Diámetro: 168 mm Espesor de los muros: 11 mm Proceso: TIG-Hilo frío, separacion (gap) minima Capas : 8 Duración del ciclo: 52 min. Preparación de la costura: J solo para la capa final con oscilacion
  • 64. © Fronius 2004 Soldadura orbital en la industria química Utilización: Intercambiador de calor Material: X2 CrNi N 22.5 3 (Duplex) Inox 1.4948 – 304/ 308 Diámetro: Tubo: 38 mm Lamina: 2000 y 2800 mm Espesor: Tubo: 2,3 mm Lamina: 35 mm Cabezal : TS 60 con accesorio especial y sujetador neumático
  • 65. Construcción de maquinas y unidades de almacenamiento Utilización: Regulación de válvulas e instrumentación © Fronius 2004
  • 66. Construcción de maquinas y unidades de almacenamiento Utilización : Soldadura en la fabrica © Fronius 2004
  • 67. © Fronius 2004 Soldadura orbital en procesos energéticos Utilización: Soldadura de conductos hidráulicos Material: Acero bajo en aleación Cabezal : TIG 20/ 160 Diametro: ¾ “ – 1 ¼ “ Espesor de la pared : 2,5 – 4,5 mm
  • 68. Soldadura orbital – Construcción de maquinas y unidades de almacenamiento © Fronius 2004
  • 69. © Fronius 2004 Soldadura orbital – Construcción de tuberías
  • 70. © Fronius 2004 Soldadura orbital en procesos energéticos Utilización : Construcción de sistemas de calefacción
  • 72. © Fronius 2004 En compañía de la pinzas orbitales es de aplicación universal para conexiones tubo-tubo, tubo-brida y tubo-fondo de tubo Fuente inversora integrada 200A DC Refrigeración integrada (agua) Alimentación controlada con microcontrolador Ciclo de soldadura ajustado con control remoto Memoria Interna para 16 Programas Memo-Card para salvar y cargar programas Control del eje de rotación, del cabezal y del alimentador del hilo Set de parámetros definibles libremente por sector 10 Sectores por costura (360°) Datos de soldadura y documentación Impresora de puntos incluida, con 20 caracteres por renglón SISTEMA REGULADO FPA 2000 ORBITAL PM Automation
  • 73. © Fronius 2004 En compañía de la pinzas orbitales es de aplicación universal para conexiones tubo-tubo, tubo-brida y tubo-fondo de tubo SPS-Regulado Fácil programación Regulación y control total de todos los parámetros a través del control remoto FPA 2003-RC Memoria interna programable de hasta 200 programas Set de parámetros definibles libremente por sector 9 sectores por costura (360°) PC-Software „FPA-Manager“ para programación, documentación, resp. almacenamiento (opcional) Termo impresora y unidad para disquete (opcional) SISTEMA REGULADO FPA 2003 ORBITAL PM Automation
  • 74. © Fronius 2004 Especial para soldadura a tope de tubo con espesor delgado sin material de aporte Utilizable en tubos con diámetro exterior entre 1,6 hasta 170 mm (dependiendo del tipo de pinza) y paredes con espesor máximo de 3,5 mm Cámara de protección para evitar el color de revenido Direccionamiento especial del gas para evitar la emisión de partículas Intervalos largos de soldado gracias a la refrigeración por agua Sistema de cucharas tensoras Solid-Flex PINZAS CERRADAS DE SOLDADURA UHP/ MW/ K PM Automation
  • 75. © Fronius 2004 Especial para la soldadura de tubo-fondo de tubo con o sin material de aporte Intervalos largos de soldado gracias a la refrigeración por agua Principio de colector para la alimentación de la antorcha giratoria sin fin sistema modular TS 2000 : con / sin AVC con sistema de alimentación de hilo integrado con sistema de alimentación de hilo externo con sistema de tensión neumático Apropiado para tubos con diámetro exterior de 8 hasta 60 mm (dependiendo del tipo de cabezal) Estribo sujetador giratorio para balanceo CABEZAL DE SOLDADURA ABIERTA TS 25/ TS 2000 PM Automation
  • 76. © Fronius 2004 Para soldadura de unión tubo-tubo Sistema de sujetacion y centrado con pinzas de ajuste continuo Fácil adaptación en diferentes geometrías tubulares Concepto modular (unidad de material de aporte, de AVC, de OSC) Antorcha giratoria 0° bis 40° (bridas) Exploración mecánica de la altura Ajuste mecánico de precisión para correcciones laterales +/- 2,5 mm Intervalos largos de soldado gracias a la refrigeración por agua PINZAS ABIERTAS DE SOLDADURA MU IV P PM Automation
  • 77. © Fronius 2004 Bastidor de ruedas orbital para la mayoría de trabajos de soldadura en la fabricación de tuberías Método de soldadura: TIG con material de aporte y capas multiples Diámetro exterior del tubo desde 114 mm Espesor máx.. de la pare del tubo 200 mm Sistema de alimentación del hilo integrado, 5 rodillos 0,8 (ranura trapezoidal) Generador de impulsos de recorrido integrado para la regulación de la velocidad Sistema motorizado de carro cruzado (carros AVC y OSC) Unidad especial de alimentación del hilo con 2 ejes Rango de graduación de la antorcha +/ - 45° Velocidad de desplazamiento 20 – 400 mm/min. Corriente de soldadura máx.. 300 A/ 500 A BASTIDOR DE RUEDAS ORBITAL POLYCAR 60/ POLYCAR 130 PM Automation
  • 78. © Fronius 2004 Acondicionamiento de los extremos del tubo en la fase de preparación del área a soldar Modo de operación con aire presurizado o con sistema eléctrico Herramientas para el sistema de tensión Potencia y uso del sistema de alimentación mejorado Accesorios para el pulimento de la capa protectora Diámetro interno del tubo hasta hasta 111 mm Diámetro externo del tubo hasta hasta 114,3 mm Accesorios para herramientas multiuso, adecuado para diferente tipos de uniones Recomendado tanto para aceros sin aleaciones como para tuberías de acero inoxidable MAQUINAS PARA TRATAMIENTO Y ACABADO DE LA TUBERIA REB/ BRB PM Automation
  • 79. © Fronius 2004 Especial para el corte y la preparación simultanea del tubo Rango del diámetro exterior de tubo entre 10 bis 325 mm Rango del diámetro interior de tubo entre 7 – 193 mm Espesor de la pared del tubo 0,5 bis 10 mm Regulación electrónica de la velocidad de giro Amplia numero de puntos para la tensión del tubo Sujetador ideal en solo un parte del tubo Dirección del proceso de adentro hacia afuera del tubo Adecuado para soldadura de alto rendimiento como: Titanio, Acero de alta aleación, Cobre, Aluminio, Acero al carbono ROHRTRENN- UND ANFASMASCHINE RA/ RA H PM Automation
  • 80. © Fronius 2004 Diámetro interno del tubo 13 - 215 mm Total aislamiento es garantizado gracias a su construcción con tres discos en cada extremo Distribuidor de gas nuevo, patentado (Modo de trabajo de acuerdo al principio pistón-desplazamiento) Aprobado contra los rayos ultravioletas Aprobado térmicamente hasta 340°C Posicionamiento rápido y fácil, ideal para posiciones difíciles Eficiente y rentable: Tiempo de depuración extremadamente corto Consumo mínimo de gas Posicionamiento rápido CILINDRO DE DEPURACION SC PROFI PM Automation
  • 81. © Fronius 2004 Administración de datos de soldadura para un PC/ Laptop conectado al sistema de regulación FPA 2003 Funciones Visualización, generación, almacenamiento de todos los parámetros Documentación de los parámetros Captura de datos en modo On-Line (FPA- AVR) Transferencia de datos desde PC al sistema de regulación FPA 2003 en modo On-Line a través de una interfase o Off-Line a través de un disquete SOFTWARE “ FPA-MANAGER “ PM Automation