SlideShare una empresa de Scribd logo
1 de 47
Tema 1 LA TIERRA EN EL UNIVERSO
1.1 EL UNIVERSO La civilización sumeria fue la primera hacia el 4000 a.C. en observar sistemáticamente los cielos llegando a elaborar un calendario agrícola basado en la regularidad de los movimientos celestes En la Grecia clásica surgió una teoría clásica acerca del ordenamiento y funcionamiento de los astros. Aristóteles  planteó un modelo del universo basado en un sistema de 55 esferas , en cuyo centro se situaba la Tierra
El universo geocéntrico fue el modelo más ampliamente aceptado y sirvió para que Ptolomeo ( siglo II) realizara un modelo mecánico celeste muy coherente matemáticamente y que se mantuvo durante 14 siglos A principios del siglo XVI Nicolás Copérnico demostró que los movimientos planetarios se explican mejor atribuyendo una posición central al Sol y no a la tierra
Tras la invención del telescopio en 1609, Galileo construyó un pequeño telescopio y comenzó a realizar experimentos , demostrando que la Tierra gira alrededor del Sol La obra de Galileo influye en un joven científico alemán, Johannes Kepler , el cual aprovechando las observaciones de Tycho Brahe, elaboró las tres leyes sobre el movimiento planetario aun hoy vigentes
Isaac Newton utilizando el método iniciado por Galileo formuló las tres leyes que constituyen el fundamento de la mecánica y posteriormente dedujo la ley de la Gravitación universal  En el siglo XX se enuncia la teoría del big-bang o gran explosión acerca del origen y evolución del universo Según esta teoría toda la energía del Universo se hallaba en el origen concentrada en un punto de tamaño infinitesimal  que explotó  alejándose en todas las direcciones  ya a medida que se enfriaba , la energía fur transformándose en materia  dando origen a las partículas elementales (Electrones, Positrones, Mesones, Bariones, Neutrinos, Fotones y un largo etcétera hasta más de 89 partículas conocidas hoy en día)
La interacción de dichas partículas produjo los primeros núcleos atómicos( 3 minutos después) y cientos de miles de años más tarde cuando la temperatura era de 3000 K , los núcleos interaccionaron con los electrones para formar átomos. Los átomos más sencillos son el hidrógeno y el helio ( más abundantes del universo)
Mientras la expansión proseguía su desarrollo , los átomos atraídos por la fuerza gravitatoria , fueron poco a poco concentrándose , originando nubes de materia más densa de las cuales surgirían las estrellas, las galaxias, los planetas y todos los cuerpos celestes
Efecto dopler El efecto Doppler es el cambio de frecuencia de las ondas, ya sean sonoras, luminosas o de cualquier otro tipo, cuando el emisor de las ondas se acerca o se aleja del observador Las ondas de luz emitidas por las galaxias presentan una desviación hacia el rojo, lo que indica que se alejan de nosotros. Las pruebas del “BIG BANG”
Enfriamiento del Universo En 1948, Alpert, Herman y Gamow calcularon la temperatura del universo en 3ºK En 1965 Penzias y Wilson descubrieron con una antena, la radiación cósmica de fondo, una radiación electromagnética correspondiente a un cuerpo que se encuentra , precisamente, a 3ºK Esta radiación cósmica de fondo es responsable de la mala recepción en la señal de televisión ocasionalmente.
La edad estimada del Universo es de 15000 millones de años.La expansión todavía continúa….. Pero … ¿Hasta cuándo? Densidad del universo mayor que la densidad crítica Durante muchos años, teoría y observación favorecieron el escenario del “Big Crunch” Se trataría de un Big Bang a la inversa Al terminar la época de expansión, el Universo volvería a contraerse y calentarse El Universo se expandirá sin límite, hasta dejar a la Vía Láctea aislada en el centro del Universo observable.  Nos quedaremos solos Densidad  del universo igual que la densidad crítica
El descubrimiento de la aceleración cósmica elimina la posibilidad del Big Crunch El Universo se expandirá sin límite, a mayor velocidad cada vez. Llegaremos al Big Rip Densidad del universo menor que la densidad crítica
Se ha demostrado que si sumamos toda la materia existente en el universo no podríamos explicar la teoría del big-bang. De este modo se llegó a la conclusión de que más del 90% de la materia que hay en el universo  es materia oscura cuyas características aún no han sido desveladas Además el ritmo de expansión del universo no es constante por tanto debe existir una fuente de esa aceleración a la que se ha denominado energía oscura  cuyo origen y naturaleza tampoco ha sido descubierta Se establece entonces que la composición del universo es: - 65% de energía oscura - 30% de materia oscura - 5 % de materia visible ( estrellas planetas…)
Cada cuerpo emite una radiación cuya energía depende de su temperatura , por ello los científicos se sirven de diferentes instrumentos para detectar y catalogar los cuerpos estelares: - Radioastronomía : detecta las radiaciones menos energéticas ( mayor longitud de onda).  Permite la observación de radiogalaxias( galaxias activas) , púlsares ( estrellas de neutrones) y radiación cósmica de fondo debido a la energía del big-bang)
[object Object],[object Object],[object Object]
Estructura del universo
 
2.-estrellas Son masas de gases, principalmente hidrógeno y helio, que emiten luz. Se encuentran a temperaturas muy elevadas. En su interior hay reacciones nucleares  Clasificación  Según las  dimensiones : Supergigantes, gigantes, medianas, pequeñas y estrellas enanas. Según la  temperatura : (De caliente a frío) Azules, blancas, amarillas y rojas. Se nombran  combinando las dos: gigantes rojas, enanas blancas,  ...
[object Object],[object Object],[object Object],Desde ese momento se irá acumulando cada vez más materia en el centro de la nube   hasta formar un núcleo suficientemente denso y estable como para ser denominado protoestrella . Ésta seguirá acumulando materia  y se eleva la presión y la temperatura
Debido a la gravedad, los átomos se van acercando cada vez más en el interior de la estrella aumentando el número de choques entre ellos. Llega un momento en el que los núcleos de dos átomos de hidrógeno se unen para formar helio generando luz y calor Cuando el núcleo de la estrella consume el hidrógeno, la gravedad la comprime aumentando su temperatura  y haciendo que los núcleos de helio se fusiones para dar carbono (gigante roja) . Este proceso puede durar 10000millones de años b) Muerte de una estrella 1.-Si la masa de la estrella es pequeña una vez que la estrella quema todo el helio , no se producirán más reacciones, entonces se enfría y palidece se convierte en una enana negra
2.-Si la estrella tiene mucha masa, la inmensa fuerza de atracción gravitatoria será suficiente para que las reacciones de fusión  continúen produciendo elemento cada vez más pesados. Cada vez que agota un combustible se produce una nueva contracción que eleva  la temperatura lo suficiente para quemar el producto de la fusión anterior y generar otro. El hierro  es el producto final ya que la fusión de éste no produce energía sino que absorbe. Como consecuencia el núcleo de la estrella se contrae bruscamente  produciéndose el colapso (implosión) que dará lugar a la explosión como una  supernova , dejando como resto objetos muy densos, como  estrellas de neutrones  o agujeros negros
Un esquema de la evolución estelar Contracción Secuencia principal Gigante roja Nebulosa planetaria Enana blanca Supergigante Supernova Estrella de neutrones  o agujero negro 0.75 M Sol  <  M *  < 5 M Sol M *  > 5 M Sol M *  < 1.4 M Sol
3.- origen del sistema solar El sistema Solar presenta una serie de características bien definidas: ,[object Object],[object Object],[object Object],[object Object]
Se distinguen dos tipos de teorías que tratan de explicar el origen del sistema solar: las catastrofistas (proceso violento) y las evolutivas (proceso continuo) - Buffon en 1745 afirma que el Sistema solar era la consecuencia de un choque entre el sol  y otro cuerpo parecido al Sol al que llamó cometa A finales de 1796 Laplace propuso la teoría conocida como hipótesis nebular según la cual en el origen existía una nube de gas  y polvo en lenta rotación, debido a la fuerza de atracción gravitatoria fue contrayéndose a la vez que aumentaba la velocidad
El núcleo central se condenó en un protosol mientras que en las partes exteriores  de la nube la velocidad era tan grande  que provocó la expulsión de un anillo de gas  que continúo girando independientemente. Al proseguir la contracción , el proceso se repitió varias veces emitiendo varios anillos de gas  que con el tiempo se condensaron dando lugar a los planetas A finales del siglo XIX un análisis matemático realizado por James Maxwell demuestra que esta teoría no puede ser cierta
En 1905 dos científicos estadounidenses,  Thomas Chrowder Chamberlin  (1843-1928) y  Forest Ray Moulton  (1872-1952   proponen la hipótesis planetesimal según la cual el paso de una estrella cerca del Sol arrancó parte de la materia  que quedo girando alrededor suyo originando con el tiempo masas sólidas (planetesimales) . Nuevamente un análisis matemático de la teoría hizo que ésta fuera rechazada Posteriormente se vuelve a la hipótesis nebular pero asumiendo que las partículas giran según órbitas elípticas con diferente velocidad ( más rápido cuanto más cerca del núcleo) , lo que originaba remolinos y contrarremolinos  que sí permitían la condensación de las partículas para formar los planetas Actualmente la teoría ha sido mejorada por Hoyle con la introducción de fuerzas magnéticas y es la más aceptada hoy en día
En la nube de gas y polvo en rotación los materiales más densos se acumularon  hacia el interior de la nube  quedando los más ligeros en el exterior. Por eso los denominados planetas exteriores (Júpiter, Saturno, Urano, y Neptuno  )  son gaseosos y ricos en elementos ligeros mientras que los planetas interiores( Mercurio, Venus , Tierra y Marte)  son sólidos Este principio también se aplica a la Tierra en formación; los elementos más pesados ( hierro y niquel ) quedan en el núcleo , en la corteza elemento más ligeros como el silicio y los más ligeros ( gaseosos) en la atmósfera
[object Object],[object Object],[object Object],[object Object],[object Object],Los continentes no terminan en el mar sino que se extienden hasta ciento de kilómetros bajo los océanos en la denominada plataforma continental que termina en una pendiente más o menos brusca (talud continental)
La corteza oceánica resulta muy diferente de la continental presenta un grosor muy inferior (unos 7 Km) de composición basáltica y y resultan significativamente más jóvenes que las continentales Los primeros datos directos de las capas internas de los Tierra fueron aportados por el estudio de las ondas sísmicas y su mecanismo de transmisión
- Primeras teorías Otra teoría  atribuía la formación de los continentes a la acción de corrientes convectivas en el manto terrestre: Las corrientes del manto arrastran a los materiales situados por encima La mayoría de los científicos apostaron por la teoría del enfriamiento-contracción. Según esta teoría expuesta a finales del siglo XIX, la Tierra, al enfriarse se contrae y esta contracción provoca  que su superficie  se agriete (fallas)  y se pliegue ( montañas)
[object Object],[object Object],[object Object],[object Object]
¿Por qué aparecen fósiles de la misma especie en lugares aislados entre sí? Los científicos hablaban de puentes intercontinentales ya desaparecidos
- enigmas geográficos: Los continentes encajan como las piezas de un puzzle, siendo el encaje más perfecto si se añade la plataforma continental  ,[object Object],[object Object],[object Object],[object Object],[object Object]
b) Hipótesis de la deriva continental Teoría propuesta por Alfred Wegener : Todos los continentes estaban unidos en uno sólo : El Pangea Hace 200 m.a. se rompió el Pangea. Los continentes empezaron a moverse: Deriva continental Su teoría respondía bien a la mayoría de los enigmas anteriormente comentados La teoría no fue bien acogida, pues Wegener no pudo explicar el “motor” del movimiento de los continentes
[object Object],[object Object],Los compuestos con elementos férricos en su composición, cuando se enfrían, los orientan hacia el polo Norte Magnético. El estudio de los minerales indica la posición del polo Norte en distintas épocas. Estos estudios muestran orientaciones que sólo son posibles si los continentes  se han movido
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
c) Hipótesis  de la expansión del fondo oceánico :Harry Hess (1960) Las coorrientes convectivas ascendentes del manto chocaban con la corteza oceánica  empujándola verticalmente y creando las dorsales Se crea suelo oceánico nuevo. Pero el magma en fusión sigue derramándose continuamente, empujando los fragmentos de la antigua placa. El frente de la placa, a su vez, baja nuevamente hacia el manto, en las fosas oceánicas, siendo destruida por el magma en fusión y realimentando las corrientes de convección LA CORTEZA OCEÁNICA SE CREA EN LAS DORSALES Y SE DESTRUYE EN LAS FOSAS
La gran prueba de la expansión del fondo oceánica viene dada por el paleomagnetismo La tierra sufre inversiones periódicas del campo magnético.  Los elementos férricos de las lavas solidificadas en cada uno de estos periodos señalan hacia el polo N (situación en ese momento). A ambos lados de las dorsales se observan bandas alternas de lavas con polaridad normal alternándose con otras de polaridad invertida. Esto indica: La corteza se crea hacia ambos lados de la dorsal y a medida que se enfría se registra la polaridad que tenía la Tierra en ese momento
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
La corteza terrestre está dividida en placas. Los límites de las placas son: Las dorsales oceánicas.  Las fosas tectónicas. Las fallas transformantes. En las dorsales se crea nueva corteza En las fosas se destruye la corteza En los bordes laterales de las placas ni se crea ni se destruye la corteza
Las causas del movimiento de las placas se explican según 3 modelos diferentes a)  Corrientes de convección: El material asciende, arrastra las placas y cuando se enfría (aumento de densidad) se hunde de nuevo. b) Arrastre de las placas El material recién formado está caliente y es menos denso que el material que se aleja de la dorsal. Este último material, más frío y denso tiende a hundirse arrastrando al resto de la placa Material recién salido Material viejo más frío y denso
c) Empuje de placas: Las dorsales son zonas elevadas; la gravedad y el empuje de la nueva corteza en formación originan el desplazamiento hacia las zonas más profundas del fondo marino Material elevado La gravedad hunde la placa
Las placas se suelen dividir en función de su tamaño; Placas grandes ( 7) africana y la euroasiátiva Tamaño Medio( Nazca , caribe Placas pequeñas como la ibérica Según la composición: oceánicas, continentales y mixtas
[object Object],[object Object],[object Object],[object Object],[object Object]
b) Bordes convergentes: las dos placas chocan . En ellos se destruye corteza al subducir una placa bajo la otra fundiéndose en la astenosfera Pueden ser de tres tipos 1.-Choque de placa oceánica contra oceánica. La placa más densa ( las más alejada de las dorsales ) subduce por debajo de la más ligera. Se forman profundas fosas submarinas como la de las Marianas Da lugar a la aparición de arcos de islas como consecuencia de la actividad volcánica originada por la fusión de la corteza que subduce
2.-Choque de placa oceánica contra continental. La placa oceánica (más densa) subduce por debajo de la continental. La fusión de los materiales origina la llamada orogenia andina  en la que se forman cordilleras ceca de las costas
3. Choque de placa continental contra continental. La colisión de dos masas continentales recibe el nombre de obducción Los sedimentos situados entre las dos placas se pliegan y elevan ( orogenia alpina) como en el Himalaya . No hay actividad volcánica
c) Bordes transformantes En ellas se produce un desplazamiento lateral de las placas. No se crea ni se destruye litosfera por lo que se les llama bordes pasivos o conservativos Dos tipos: a) Las que cortan transversalmente una dorsal b) Las que conectan dos límites de placas ( falla de San Andrés) No tienen vulcanismo asociado sin embargo los terremotos son frecuentes

Más contenido relacionado

La actualidad más candente

La actualidad más candente (19)

Ambientes virtuales ii
Ambientes virtuales iiAmbientes virtuales ii
Ambientes virtuales ii
 
Universo origen
Universo origenUniverso origen
Universo origen
 
Clase01
Clase01Clase01
Clase01
 
El origen del_universo[1]
El origen del_universo[1]El origen del_universo[1]
El origen del_universo[1]
 
T1 - Nuestro lugar en el universo.
T1 - Nuestro lugar en el universo.T1 - Nuestro lugar en el universo.
T1 - Nuestro lugar en el universo.
 
Origen del universo
Origen del universoOrigen del universo
Origen del universo
 
1. El origen del universo
1. El origen del universo1. El origen del universo
1. El origen del universo
 
el origen
el origenel origen
el origen
 
200601081527590.el origen del universo 2
200601081527590.el origen del universo 2200601081527590.el origen del universo 2
200601081527590.el origen del universo 2
 
Origen y evolucion del universo
Origen y evolucion del universoOrigen y evolucion del universo
Origen y evolucion del universo
 
Teorías actuales del universo
Teorías actuales del universoTeorías actuales del universo
Teorías actuales del universo
 
Santander 2005
Santander 2005Santander 2005
Santander 2005
 
Origen y formacion de las galaxias
Origen y formacion de las galaxiasOrigen y formacion de las galaxias
Origen y formacion de las galaxias
 
Universo
UniversoUniverso
Universo
 
Un poco de Astronomía
Un poco de AstronomíaUn poco de Astronomía
Un poco de Astronomía
 
El origen del universo
El origen del universoEl origen del universo
El origen del universo
 
Trabajo completo 1
Trabajo completo 1Trabajo completo 1
Trabajo completo 1
 
La evolución del universo
La evolución del universoLa evolución del universo
La evolución del universo
 
Portada 11
Portada 11Portada 11
Portada 11
 

Destacado

Lécuyer innovation béton : Bassins de rétention
Lécuyer innovation béton : Bassins de rétention  Lécuyer innovation béton : Bassins de rétention
Lécuyer innovation béton : Bassins de rétention Caroline Henri
 
Tribune 1 check.30 avril 2015
Tribune 1 check.30 avril 2015Tribune 1 check.30 avril 2015
Tribune 1 check.30 avril 2015Nathalie PLASSART
 
Si Tú Te Encuentras Con Él Ahora 1
Si Tú Te Encuentras Con Él Ahora 1Si Tú Te Encuentras Con Él Ahora 1
Si Tú Te Encuentras Con Él Ahora 1Vince Jack
 
Work in Progress
Work in ProgressWork in Progress
Work in ProgressThinnkers
 
Présentation : Maison de la France
Présentation : Maison de la FrancePrésentation : Maison de la France
Présentation : Maison de la Franceemilieroy
 
Evaluation de l'utilite sociale des festivals de Bretagne
Evaluation de l'utilite sociale des festivals de BretagneEvaluation de l'utilite sociale des festivals de Bretagne
Evaluation de l'utilite sociale des festivals de BretagneHélène Duclos
 
Création publicitaire
Création publicitaireCréation publicitaire
Création publicitaireBENMADJ
 
organizacion y biodiversidad
organizacion y biodiversidadorganizacion y biodiversidad
organizacion y biodiversidadJulio Sanchez
 
LA TELEFONIA
LA TELEFONIALA TELEFONIA
LA TELEFONIAzahidel
 
Cabines téléphoniques
Cabines téléphoniques Cabines téléphoniques
Cabines téléphoniques ciffer louis
 
Petits mots de voisins
Petits mots de voisinsPetits mots de voisins
Petits mots de voisinsciffer louis
 

Destacado (20)

Lécuyer innovation béton : Bassins de rétention
Lécuyer innovation béton : Bassins de rétention  Lécuyer innovation béton : Bassins de rétention
Lécuyer innovation béton : Bassins de rétention
 
Tribune 1 check.30 avril 2015
Tribune 1 check.30 avril 2015Tribune 1 check.30 avril 2015
Tribune 1 check.30 avril 2015
 
Documentation 1CHECK
Documentation 1CHECKDocumentation 1CHECK
Documentation 1CHECK
 
Si Tú Te Encuentras Con Él Ahora 1
Si Tú Te Encuentras Con Él Ahora 1Si Tú Te Encuentras Con Él Ahora 1
Si Tú Te Encuentras Con Él Ahora 1
 
Tema 10
Tema 10Tema 10
Tema 10
 
Work in Progress
Work in ProgressWork in Progress
Work in Progress
 
Prague
PraguePrague
Prague
 
Fascismo y nazismo esquemas
Fascismo y nazismo  esquemasFascismo y nazismo  esquemas
Fascismo y nazismo esquemas
 
Química organica
Química organicaQuímica organica
Química organica
 
Présentation : Maison de la France
Présentation : Maison de la FrancePrésentation : Maison de la France
Présentation : Maison de la France
 
Tema 9 ii gm (esquema)
Tema 9 ii gm (esquema)Tema 9 ii gm (esquema)
Tema 9 ii gm (esquema)
 
Evaluation de l'utilite sociale des festivals de Bretagne
Evaluation de l'utilite sociale des festivals de BretagneEvaluation de l'utilite sociale des festivals de Bretagne
Evaluation de l'utilite sociale des festivals de Bretagne
 
Création publicitaire
Création publicitaireCréation publicitaire
Création publicitaire
 
Transcripts
TranscriptsTranscripts
Transcripts
 
organizacion y biodiversidad
organizacion y biodiversidadorganizacion y biodiversidad
organizacion y biodiversidad
 
Tema 2 ampliado
Tema 2 ampliadoTema 2 ampliado
Tema 2 ampliado
 
LA TELEFONIA
LA TELEFONIALA TELEFONIA
LA TELEFONIA
 
Cabines téléphoniques
Cabines téléphoniques Cabines téléphoniques
Cabines téléphoniques
 
Petits mots de voisins
Petits mots de voisinsPetits mots de voisins
Petits mots de voisins
 
Tema 20
Tema 20Tema 20
Tema 20
 

Similar a Tema 1cmc

Desde el origen de la TIerra hasta la aparición del hombre
Desde el origen de la TIerra hasta la aparición del hombreDesde el origen de la TIerra hasta la aparición del hombre
Desde el origen de la TIerra hasta la aparición del hombreLii Ishi
 
Tema 1 el origen del universo. el sistema solar
Tema 1 el origen del universo. el sistema solarTema 1 el origen del universo. el sistema solar
Tema 1 el origen del universo. el sistema solarISIDRAGUZMAN
 
La teoría del big bang es la explicación científica predominante sobre el ori...
La teoría del big bang es la explicación científica predominante sobre el ori...La teoría del big bang es la explicación científica predominante sobre el ori...
La teoría del big bang es la explicación científica predominante sobre el ori...MelanieCasa
 
Cmc...
Cmc...Cmc...
Cmc...itziar
 
Unidad 2 La Tierra Y El Sistema Solar
Unidad 2 La Tierra Y El Sistema SolarUnidad 2 La Tierra Y El Sistema Solar
Unidad 2 La Tierra Y El Sistema SolarEskijadron
 
El origen del universo
El origen del universoEl origen del universo
El origen del universocamilopardo
 
Cmc antonio y andrea 1ºb
Cmc antonio y andrea 1ºbCmc antonio y andrea 1ºb
Cmc antonio y andrea 1ºbantoniovalero94
 
Un lugar en el universo - Línea del tiempo desde el Big Bang hasta la aparici...
Un lugar en el universo - Línea del tiempo desde el Big Bang hasta la aparici...Un lugar en el universo - Línea del tiempo desde el Big Bang hasta la aparici...
Un lugar en el universo - Línea del tiempo desde el Big Bang hasta la aparici...Silver Four
 
Semana de 5 al 10 de diciembre geografia
Semana de 5 al 10 de diciembre geografiaSemana de 5 al 10 de diciembre geografia
Semana de 5 al 10 de diciembre geografiaDelfina Moroyoqui
 
El origen del universo 2
El origen del universo 2El origen del universo 2
El origen del universo 2St George
 
Tierra en universo
Tierra en universoTierra en universo
Tierra en universomisabelsan
 
Tema1.3.origen del-sistma-solar-y-la-tierra
Tema1.3.origen del-sistma-solar-y-la-tierraTema1.3.origen del-sistma-solar-y-la-tierra
Tema1.3.origen del-sistma-solar-y-la-tierrapedrohp20
 
Nuestro lugar en el universo
Nuestro lugar en el universoNuestro lugar en el universo
Nuestro lugar en el universoInés Hevia
 

Similar a Tema 1cmc (20)

Desde el origen de la TIerra hasta la aparición del hombre
Desde el origen de la TIerra hasta la aparición del hombreDesde el origen de la TIerra hasta la aparición del hombre
Desde el origen de la TIerra hasta la aparición del hombre
 
Tema 1 el universo (ii)
Tema 1  el universo (ii)Tema 1  el universo (ii)
Tema 1 el universo (ii)
 
Tema 1 el origen del universo. el sistema solar
Tema 1 el origen del universo. el sistema solarTema 1 el origen del universo. el sistema solar
Tema 1 el origen del universo. el sistema solar
 
La teoría del big bang es la explicación científica predominante sobre el ori...
La teoría del big bang es la explicación científica predominante sobre el ori...La teoría del big bang es la explicación científica predominante sobre el ori...
La teoría del big bang es la explicación científica predominante sobre el ori...
 
Astronomía
AstronomíaAstronomía
Astronomía
 
Cmc...
Cmc...Cmc...
Cmc...
 
Unidad 2 La Tierra Y El Sistema Solar
Unidad 2 La Tierra Y El Sistema SolarUnidad 2 La Tierra Y El Sistema Solar
Unidad 2 La Tierra Y El Sistema Solar
 
00076369
0007636900076369
00076369
 
El origen del universo
El origen del universoEl origen del universo
El origen del universo
 
Origendeluniverso
OrigendeluniversoOrigendeluniverso
Origendeluniverso
 
El universo
El  universoEl  universo
El universo
 
Cmc antonio y andrea 1ºb
Cmc antonio y andrea 1ºbCmc antonio y andrea 1ºb
Cmc antonio y andrea 1ºb
 
Un lugar en el universo - Línea del tiempo desde el Big Bang hasta la aparici...
Un lugar en el universo - Línea del tiempo desde el Big Bang hasta la aparici...Un lugar en el universo - Línea del tiempo desde el Big Bang hasta la aparici...
Un lugar en el universo - Línea del tiempo desde el Big Bang hasta la aparici...
 
Semana de 5 al 10 de diciembre geografia
Semana de 5 al 10 de diciembre geografiaSemana de 5 al 10 de diciembre geografia
Semana de 5 al 10 de diciembre geografia
 
El origen del universo 2
El origen del universo 2El origen del universo 2
El origen del universo 2
 
Tierra en universo
Tierra en universoTierra en universo
Tierra en universo
 
Tema1.3.origen del-sistma-solar-y-la-tierra
Tema1.3.origen del-sistma-solar-y-la-tierraTema1.3.origen del-sistma-solar-y-la-tierra
Tema1.3.origen del-sistma-solar-y-la-tierra
 
The Universe
The UniverseThe Universe
The Universe
 
el universo
el universoel universo
el universo
 
Nuestro lugar en el universo
Nuestro lugar en el universoNuestro lugar en el universo
Nuestro lugar en el universo
 

Más de Julio Sanchez (20)

Tema 13
Tema 13Tema 13
Tema 13
 
Tema 7
Tema 7Tema 7
Tema 7
 
Tema 6
Tema 6Tema 6
Tema 6
 
Tema 5
Tema 5Tema 5
Tema 5
 
Tema 4
Tema 4Tema 4
Tema 4
 
Tema 3
Tema 3Tema 3
Tema 3
 
Tema 2
Tema 2Tema 2
Tema 2
 
Tema 16
Tema 16Tema 16
Tema 16
 
Tema 15
Tema 15Tema 15
Tema 15
 
Tema 7
Tema 7Tema 7
Tema 7
 
Tema 5
Tema 5Tema 5
Tema 5
 
Tema 4
Tema 4Tema 4
Tema 4
 
Tema 4 2ªevaluación
Tema 4 2ªevaluaciónTema 4 2ªevaluación
Tema 4 2ªevaluación
 
Tema 14
Tema 14Tema 14
Tema 14
 
Tema 6
Tema 6Tema 6
Tema 6
 
Tema 3
Tema 3Tema 3
Tema 3
 
Tema 13
Tema 13Tema 13
Tema 13
 
Tema 2
Tema 2Tema 2
Tema 2
 
Sistemas de relacion en vegetales
Sistemas de relacion en vegetalesSistemas de relacion en vegetales
Sistemas de relacion en vegetales
 
Nutricionvegetal 101214115109-phpapp01
Nutricionvegetal 101214115109-phpapp01Nutricionvegetal 101214115109-phpapp01
Nutricionvegetal 101214115109-phpapp01
 

Tema 1cmc

  • 1. Tema 1 LA TIERRA EN EL UNIVERSO
  • 2. 1.1 EL UNIVERSO La civilización sumeria fue la primera hacia el 4000 a.C. en observar sistemáticamente los cielos llegando a elaborar un calendario agrícola basado en la regularidad de los movimientos celestes En la Grecia clásica surgió una teoría clásica acerca del ordenamiento y funcionamiento de los astros. Aristóteles planteó un modelo del universo basado en un sistema de 55 esferas , en cuyo centro se situaba la Tierra
  • 3. El universo geocéntrico fue el modelo más ampliamente aceptado y sirvió para que Ptolomeo ( siglo II) realizara un modelo mecánico celeste muy coherente matemáticamente y que se mantuvo durante 14 siglos A principios del siglo XVI Nicolás Copérnico demostró que los movimientos planetarios se explican mejor atribuyendo una posición central al Sol y no a la tierra
  • 4. Tras la invención del telescopio en 1609, Galileo construyó un pequeño telescopio y comenzó a realizar experimentos , demostrando que la Tierra gira alrededor del Sol La obra de Galileo influye en un joven científico alemán, Johannes Kepler , el cual aprovechando las observaciones de Tycho Brahe, elaboró las tres leyes sobre el movimiento planetario aun hoy vigentes
  • 5. Isaac Newton utilizando el método iniciado por Galileo formuló las tres leyes que constituyen el fundamento de la mecánica y posteriormente dedujo la ley de la Gravitación universal En el siglo XX se enuncia la teoría del big-bang o gran explosión acerca del origen y evolución del universo Según esta teoría toda la energía del Universo se hallaba en el origen concentrada en un punto de tamaño infinitesimal que explotó alejándose en todas las direcciones ya a medida que se enfriaba , la energía fur transformándose en materia dando origen a las partículas elementales (Electrones, Positrones, Mesones, Bariones, Neutrinos, Fotones y un largo etcétera hasta más de 89 partículas conocidas hoy en día)
  • 6. La interacción de dichas partículas produjo los primeros núcleos atómicos( 3 minutos después) y cientos de miles de años más tarde cuando la temperatura era de 3000 K , los núcleos interaccionaron con los electrones para formar átomos. Los átomos más sencillos son el hidrógeno y el helio ( más abundantes del universo)
  • 7. Mientras la expansión proseguía su desarrollo , los átomos atraídos por la fuerza gravitatoria , fueron poco a poco concentrándose , originando nubes de materia más densa de las cuales surgirían las estrellas, las galaxias, los planetas y todos los cuerpos celestes
  • 8. Efecto dopler El efecto Doppler es el cambio de frecuencia de las ondas, ya sean sonoras, luminosas o de cualquier otro tipo, cuando el emisor de las ondas se acerca o se aleja del observador Las ondas de luz emitidas por las galaxias presentan una desviación hacia el rojo, lo que indica que se alejan de nosotros. Las pruebas del “BIG BANG”
  • 9. Enfriamiento del Universo En 1948, Alpert, Herman y Gamow calcularon la temperatura del universo en 3ºK En 1965 Penzias y Wilson descubrieron con una antena, la radiación cósmica de fondo, una radiación electromagnética correspondiente a un cuerpo que se encuentra , precisamente, a 3ºK Esta radiación cósmica de fondo es responsable de la mala recepción en la señal de televisión ocasionalmente.
  • 10. La edad estimada del Universo es de 15000 millones de años.La expansión todavía continúa….. Pero … ¿Hasta cuándo? Densidad del universo mayor que la densidad crítica Durante muchos años, teoría y observación favorecieron el escenario del “Big Crunch” Se trataría de un Big Bang a la inversa Al terminar la época de expansión, el Universo volvería a contraerse y calentarse El Universo se expandirá sin límite, hasta dejar a la Vía Láctea aislada en el centro del Universo observable. Nos quedaremos solos Densidad del universo igual que la densidad crítica
  • 11. El descubrimiento de la aceleración cósmica elimina la posibilidad del Big Crunch El Universo se expandirá sin límite, a mayor velocidad cada vez. Llegaremos al Big Rip Densidad del universo menor que la densidad crítica
  • 12. Se ha demostrado que si sumamos toda la materia existente en el universo no podríamos explicar la teoría del big-bang. De este modo se llegó a la conclusión de que más del 90% de la materia que hay en el universo es materia oscura cuyas características aún no han sido desveladas Además el ritmo de expansión del universo no es constante por tanto debe existir una fuente de esa aceleración a la que se ha denominado energía oscura cuyo origen y naturaleza tampoco ha sido descubierta Se establece entonces que la composición del universo es: - 65% de energía oscura - 30% de materia oscura - 5 % de materia visible ( estrellas planetas…)
  • 13. Cada cuerpo emite una radiación cuya energía depende de su temperatura , por ello los científicos se sirven de diferentes instrumentos para detectar y catalogar los cuerpos estelares: - Radioastronomía : detecta las radiaciones menos energéticas ( mayor longitud de onda). Permite la observación de radiogalaxias( galaxias activas) , púlsares ( estrellas de neutrones) y radiación cósmica de fondo debido a la energía del big-bang)
  • 14.
  • 16.  
  • 17. 2.-estrellas Son masas de gases, principalmente hidrógeno y helio, que emiten luz. Se encuentran a temperaturas muy elevadas. En su interior hay reacciones nucleares Clasificación Según las dimensiones : Supergigantes, gigantes, medianas, pequeñas y estrellas enanas. Según la temperatura : (De caliente a frío) Azules, blancas, amarillas y rojas. Se nombran combinando las dos: gigantes rojas, enanas blancas, ...
  • 18.
  • 19. Debido a la gravedad, los átomos se van acercando cada vez más en el interior de la estrella aumentando el número de choques entre ellos. Llega un momento en el que los núcleos de dos átomos de hidrógeno se unen para formar helio generando luz y calor Cuando el núcleo de la estrella consume el hidrógeno, la gravedad la comprime aumentando su temperatura y haciendo que los núcleos de helio se fusiones para dar carbono (gigante roja) . Este proceso puede durar 10000millones de años b) Muerte de una estrella 1.-Si la masa de la estrella es pequeña una vez que la estrella quema todo el helio , no se producirán más reacciones, entonces se enfría y palidece se convierte en una enana negra
  • 20. 2.-Si la estrella tiene mucha masa, la inmensa fuerza de atracción gravitatoria será suficiente para que las reacciones de fusión continúen produciendo elemento cada vez más pesados. Cada vez que agota un combustible se produce una nueva contracción que eleva la temperatura lo suficiente para quemar el producto de la fusión anterior y generar otro. El hierro es el producto final ya que la fusión de éste no produce energía sino que absorbe. Como consecuencia el núcleo de la estrella se contrae bruscamente produciéndose el colapso (implosión) que dará lugar a la explosión como una supernova , dejando como resto objetos muy densos, como estrellas de neutrones o agujeros negros
  • 21. Un esquema de la evolución estelar Contracción Secuencia principal Gigante roja Nebulosa planetaria Enana blanca Supergigante Supernova Estrella de neutrones o agujero negro 0.75 M Sol < M * < 5 M Sol M * > 5 M Sol M * < 1.4 M Sol
  • 22.
  • 23. Se distinguen dos tipos de teorías que tratan de explicar el origen del sistema solar: las catastrofistas (proceso violento) y las evolutivas (proceso continuo) - Buffon en 1745 afirma que el Sistema solar era la consecuencia de un choque entre el sol y otro cuerpo parecido al Sol al que llamó cometa A finales de 1796 Laplace propuso la teoría conocida como hipótesis nebular según la cual en el origen existía una nube de gas y polvo en lenta rotación, debido a la fuerza de atracción gravitatoria fue contrayéndose a la vez que aumentaba la velocidad
  • 24. El núcleo central se condenó en un protosol mientras que en las partes exteriores de la nube la velocidad era tan grande que provocó la expulsión de un anillo de gas que continúo girando independientemente. Al proseguir la contracción , el proceso se repitió varias veces emitiendo varios anillos de gas que con el tiempo se condensaron dando lugar a los planetas A finales del siglo XIX un análisis matemático realizado por James Maxwell demuestra que esta teoría no puede ser cierta
  • 25. En 1905 dos científicos estadounidenses, Thomas Chrowder Chamberlin (1843-1928) y Forest Ray Moulton (1872-1952 proponen la hipótesis planetesimal según la cual el paso de una estrella cerca del Sol arrancó parte de la materia que quedo girando alrededor suyo originando con el tiempo masas sólidas (planetesimales) . Nuevamente un análisis matemático de la teoría hizo que ésta fuera rechazada Posteriormente se vuelve a la hipótesis nebular pero asumiendo que las partículas giran según órbitas elípticas con diferente velocidad ( más rápido cuanto más cerca del núcleo) , lo que originaba remolinos y contrarremolinos que sí permitían la condensación de las partículas para formar los planetas Actualmente la teoría ha sido mejorada por Hoyle con la introducción de fuerzas magnéticas y es la más aceptada hoy en día
  • 26. En la nube de gas y polvo en rotación los materiales más densos se acumularon hacia el interior de la nube quedando los más ligeros en el exterior. Por eso los denominados planetas exteriores (Júpiter, Saturno, Urano, y Neptuno ) son gaseosos y ricos en elementos ligeros mientras que los planetas interiores( Mercurio, Venus , Tierra y Marte) son sólidos Este principio también se aplica a la Tierra en formación; los elementos más pesados ( hierro y niquel ) quedan en el núcleo , en la corteza elemento más ligeros como el silicio y los más ligeros ( gaseosos) en la atmósfera
  • 27.
  • 28. La corteza oceánica resulta muy diferente de la continental presenta un grosor muy inferior (unos 7 Km) de composición basáltica y y resultan significativamente más jóvenes que las continentales Los primeros datos directos de las capas internas de los Tierra fueron aportados por el estudio de las ondas sísmicas y su mecanismo de transmisión
  • 29. - Primeras teorías Otra teoría atribuía la formación de los continentes a la acción de corrientes convectivas en el manto terrestre: Las corrientes del manto arrastran a los materiales situados por encima La mayoría de los científicos apostaron por la teoría del enfriamiento-contracción. Según esta teoría expuesta a finales del siglo XIX, la Tierra, al enfriarse se contrae y esta contracción provoca que su superficie se agriete (fallas) y se pliegue ( montañas)
  • 30.
  • 31. ¿Por qué aparecen fósiles de la misma especie en lugares aislados entre sí? Los científicos hablaban de puentes intercontinentales ya desaparecidos
  • 32.
  • 33. b) Hipótesis de la deriva continental Teoría propuesta por Alfred Wegener : Todos los continentes estaban unidos en uno sólo : El Pangea Hace 200 m.a. se rompió el Pangea. Los continentes empezaron a moverse: Deriva continental Su teoría respondía bien a la mayoría de los enigmas anteriormente comentados La teoría no fue bien acogida, pues Wegener no pudo explicar el “motor” del movimiento de los continentes
  • 34.
  • 35.
  • 36. c) Hipótesis de la expansión del fondo oceánico :Harry Hess (1960) Las coorrientes convectivas ascendentes del manto chocaban con la corteza oceánica empujándola verticalmente y creando las dorsales Se crea suelo oceánico nuevo. Pero el magma en fusión sigue derramándose continuamente, empujando los fragmentos de la antigua placa. El frente de la placa, a su vez, baja nuevamente hacia el manto, en las fosas oceánicas, siendo destruida por el magma en fusión y realimentando las corrientes de convección LA CORTEZA OCEÁNICA SE CREA EN LAS DORSALES Y SE DESTRUYE EN LAS FOSAS
  • 37. La gran prueba de la expansión del fondo oceánica viene dada por el paleomagnetismo La tierra sufre inversiones periódicas del campo magnético. Los elementos férricos de las lavas solidificadas en cada uno de estos periodos señalan hacia el polo N (situación en ese momento). A ambos lados de las dorsales se observan bandas alternas de lavas con polaridad normal alternándose con otras de polaridad invertida. Esto indica: La corteza se crea hacia ambos lados de la dorsal y a medida que se enfría se registra la polaridad que tenía la Tierra en ese momento
  • 38.
  • 39. La corteza terrestre está dividida en placas. Los límites de las placas son: Las dorsales oceánicas. Las fosas tectónicas. Las fallas transformantes. En las dorsales se crea nueva corteza En las fosas se destruye la corteza En los bordes laterales de las placas ni se crea ni se destruye la corteza
  • 40. Las causas del movimiento de las placas se explican según 3 modelos diferentes a) Corrientes de convección: El material asciende, arrastra las placas y cuando se enfría (aumento de densidad) se hunde de nuevo. b) Arrastre de las placas El material recién formado está caliente y es menos denso que el material que se aleja de la dorsal. Este último material, más frío y denso tiende a hundirse arrastrando al resto de la placa Material recién salido Material viejo más frío y denso
  • 41. c) Empuje de placas: Las dorsales son zonas elevadas; la gravedad y el empuje de la nueva corteza en formación originan el desplazamiento hacia las zonas más profundas del fondo marino Material elevado La gravedad hunde la placa
  • 42. Las placas se suelen dividir en función de su tamaño; Placas grandes ( 7) africana y la euroasiátiva Tamaño Medio( Nazca , caribe Placas pequeñas como la ibérica Según la composición: oceánicas, continentales y mixtas
  • 43.
  • 44. b) Bordes convergentes: las dos placas chocan . En ellos se destruye corteza al subducir una placa bajo la otra fundiéndose en la astenosfera Pueden ser de tres tipos 1.-Choque de placa oceánica contra oceánica. La placa más densa ( las más alejada de las dorsales ) subduce por debajo de la más ligera. Se forman profundas fosas submarinas como la de las Marianas Da lugar a la aparición de arcos de islas como consecuencia de la actividad volcánica originada por la fusión de la corteza que subduce
  • 45. 2.-Choque de placa oceánica contra continental. La placa oceánica (más densa) subduce por debajo de la continental. La fusión de los materiales origina la llamada orogenia andina en la que se forman cordilleras ceca de las costas
  • 46. 3. Choque de placa continental contra continental. La colisión de dos masas continentales recibe el nombre de obducción Los sedimentos situados entre las dos placas se pliegan y elevan ( orogenia alpina) como en el Himalaya . No hay actividad volcánica
  • 47. c) Bordes transformantes En ellas se produce un desplazamiento lateral de las placas. No se crea ni se destruye litosfera por lo que se les llama bordes pasivos o conservativos Dos tipos: a) Las que cortan transversalmente una dorsal b) Las que conectan dos límites de placas ( falla de San Andrés) No tienen vulcanismo asociado sin embargo los terremotos son frecuentes