SlideShare una empresa de Scribd logo
1 de 11
 <br />ALGUNOS DATOS PARA DISEÑAR, CONSTRUIR Y PONER A FUNCIONAR AEROGENERADORES<br />Este artículo es una traducción hecha con permiso, bajo el título original “Tips For Designing, Building And Flying Wind Generators”, de la gente de otherpower.com<br />Poner a funcionar una máquina de viento es una grata experiencia. Si el viento la arranca de su base el espectáculo bien vale el valor de la entrada además de la experiencia que este accidente nos deja.<br />¿DÓNDE COMENZAR?<br />Primeramente determine el tamaño del generador que quiere encarar, bien sea comercial o hecho en casa. Sólo existe una media importante asociada al tamaño de los molinos: El área de recorrido. Esto es el número de metros cuadrados que las aspas del molino cubren en una vuelta. La fórmula para calcularla es Pi r^2, donde Pi = 3.1416 y r es el radio del rotor. La potencia obtenible del viento aumenta dramáticamente a medida que aumenta el área de recorrido....y simultáneamente las tensiones en la torre, aspas, municioneras y cola. A medida que las tensiones aumentan se requiere más trabajo de ingeniería y materiales más robustos, así como también equipos misceláneos asociados más complejos. Todo esto concluye en un proyecto mucho mayor, complicado y costoso.<br />Los molinos que tienen aspas de 48 pulgadas de diámetro son fáciles de diseñar, construir y manejar. Cuando llegamos al rango de 84 a 96 pulgadas se requieren estructuras muy robustas. Para 120 pulgadas las necesidades son profesionales. Como en nuestra experiencia hemos visto muchos molinos salir volando le recomendamos que se estrene con uno pequeño, tal como el A-X, y lo trate como su tesis de grado.<br />Seguidamente, busque fuentes de información y opiniones sobre el tema. En nuestras páginas encontrará bastante ayuda. Además le ofrecemos direcciones de la Web de otros aficionados y profesionales que le pueden resultar útiles.<br />Para terminar, a seguidas le ofrecemos datos sobre muchos de los aspectos referidos al diseño, construcción, poner en funcionamiento y destrucción de generadores. Estamos atentos a consejos y sugerencias, contáctenos.<br />EL SITIO<br />Ubicación. Determine de dónde proceden los vientos más reinantes en la zona donde piensa colocar el molino. Esto resulta relativamente fácil: Observe la dirección en que case la lluvia o en que mecen los árboles. El desplazamiento de sus ramas en determinada dirección indica bastante bien la dirección más frecuente del viento. Es conveniente el uso de un anemómetro, un aparato que resulta caro. <br />Altura. Colocar un molino a baja altura es como tratar de aprovechar el sol a la sombra. Un molino debe estar por lo menos a ocho metros de altura y a 100 metros de la obstrucción más cercana. Aunque hay ser prácticos respecto de estas recomendaciones, recuerde que hay un fenómeno llamado turbulencia, causado por las obstrucciones y que le restan grandes cantidades de potencia a una máquina de viento, sin tomar en cuenta las tensiones a que las somete. Si no puede elevar su máquina, trate al menos de que esté libre de obstrucciones.<br />Distancia. La distancia entre sus baterías y el alternador pueden ser causa de problemas. Mientras más cercanas a él estén mucho mejor. Así evitará pérdidas causadas por los cables largos y podrá tener cables más delgados y menos costosos. Los transformadores son buenos para mantener los voltajes altos, pero su uso añade complicaciones y pérdidas de potencia.<br />LA TORRE<br />Visite nuestra página. Allí le ofrecemos soluciones hechas en casa que son baratas y fáciles de fabricar y erigir. Existen bastantes detalles y fotografías.<br />La torre debe ser extremadamente robusta, estar bien anclada al piso y lo suficientemente alta para superar las obstrucciones. Hemos visto tubos de 1 ½” doblarse como un serpentín en vientos de 75 KPH soportando máquinas con un rotor de 96 pulgadas. Algunas reglas de construcción de torres indican que se debe gastar por lo menos lo mismo en la torre que en el generador.<br />¿Le gusta escalar?. Existen dos tipos de torre: la erigible y la estacionaria. La estacionaria es la más robusta y menos propensa a tener problemas. Para erigir una torre estacionaria hay que tener mucho cuidado o usar una grúa. Si no le gusta escalar torres, las erigibles son una buena solución, pues permiten hacerles mantenimiento en el piso tanto a la torre como a la maquinaria.<br />Montaje en el techo. No le recomendamos que use el techo de su casa para colocar un generador. Hemos observado vibraciones y ruidos en dos instalaciones de este tipo que son fácilmente reconocibles e irritantes. La gran mayoría de los alternadores comerciales no hacen mucho ruido, pero su vibración es inevitable por la naturaleza misma de los imanes permanentes. Escuche, presionando aquí, el ruido de uno de nuestros generadores de 84 pulgadas. Esto explica por qué no recomendamos el montaje de alternadores en el techo. Esta grabación fue hecha colocando el micrófono contra el mástil del alternador. El zumbido es causado por los imanes. El golpeteo es la torre misma.<br />ANEMÓMETROS<br />Es muy importante saber la velocidad del viento de cualquier instalación de viento, bien sea comercial o hecha en casa. Los anemómetros son costosos, de manera que le recomendamos que fabrique el suyo. Véalo aquí. Toma nota de la frecuencia con un circuito electrónico muy sencillo y hasta se puede acoplar a equipos de recopilación de información anemométrica.<br />Existen unos equipos que venden desarmados en Australia que son bastante complejos para su precio, pues la data que recopilan puede ser alimentada a un computador. Estamos armando uno que puede ver aquí.<br />ALTERNADORES Y GENERADORES<br />Expresiones. Nosotros tratamos de emplear la expresión Generador para describir la máquina que genera corriente directa (DC). La expresión alternador la empleamos cuando hablamos de la que genera corriente alterna (AC). Ahora bien, la expresión Generador describe genéricamente cualquier equipo que produzca electricidad al rotar su eje.<br />Opciones. Un alternador o generador es el corazón de la máquina de viento. Por lo tanto debe ser del tamaño adecuado y generar el tipo de electricidad adecuado para satisfacer sus necesidades. Las opciones para ello incluyen las máquinas de imanes permanentes (IP) comerciales y las hechas en casa, los motores de inducción convertidos con IP, motores de IP de DC sin escobillas, alternadores de vehículos y motores de inducción.<br />Estas opciones son comentadas en un artículo específico sobre el tema publicado en nuestra página web.<br />Aplicación. La electricidad generada con viento puede ser empleada para cargar baterías, generación de calor y para ser conectada a una red eléctrica. Todos nuestros diseños son para cargar baterías ya que estamos ubicados a más de 20 KM del poste más cercano.<br />Una Fase o Tres Fases. Los alternadores de IP de tres fases tienen ciertamente algunas pequeñas ventajas tales como mejor uso del espacio disponible, menor vibración y menores pérdidas por los cables. Mucha gente sólo fabrica máquinas trifásicas. Nuestra experiencia nos dice que resulta sumamente difícil instalar con seguridad un paquete de tres juegos de bobinas en un estator atiborrado y lograr un salto de aire entre los imanes y las laminillas detrás de las bobinas. Los alternadores de una fase funcionan casi igual que los trifásicos y la facilidad de su construcción más que compensa sus desventajas. Este es un tema sobre el que se discute constantemente.<br />Velocidad. La velocidad  del eje es crítica en cualquier tipo de alternador o generador. La unidad tiene que generar mayor voltaje a bajas RPM o no sirve. Esta es una verdad que aplica a todos los alternadores o generadores no importa cuál sea la opción escogida. Sus resultados deben medirse en una relación de velocidad y voltaje. Vea nuestro artículo donde hacemos esas comparaciones.<br />Velocidad de Corte. Un generador no comienza a cargar la batería hasta que su voltaje supera el de la misma. En ese momento ocurre la llamada velocidad de corte. Como es natural, esta velocidad ocurrirá dependiendo de los factores que afecta el rendimiento del molino, tales como el diseño de sus  aspas, su configuración y el comportamiento del viento.<br />Voltaje. No es necesario emplear controles de voltaje en molinos de viento empleados para cargar baterías hasta que ello ocurre. Aún en un alternador que genere 90 voltios de circuito abierto, las baterías mantendrán el voltaje a su nivel. Esto afecta la velocidad de corte. El alternador que corta a 300 RPM en un banco de baterías de 12 voltios sólo cortará a 600 RPM  en un banco de baterías de 24 voltios. Sin embargo, esta misma máquina generará la mitad de su potencia a mayores velocidades alimentando una batería de 24 voltios que a otra de 12 voltios. Esto es debido a<br />Ineficiencias. Todo generador tiene una velocidad que llamaremos de crucero. Pero como el viento no es constante es difícil lograr y luego mantener  esa velocidad. A medida que la velocidad del viento aumenta su fuerza escapa a la velocidad que el generador puede usar y comienzan a producirse ineficiencias. Esta fuerza puede recalentar las bobinas, ya que nuestros alternadores, por no disponer de campos bobinados no pueden ajustar su flujo magnético. Un alternador de bobinas de muchas vueltas de alambre delgado tendrá mayor eficiencia a baja velocidad que otro de pocas vueltas de alambre grueso, pero también tendrá mayor resistencia interna. Esto significa que se tornará ineficiente más rápidamente al producir mayor amperaje a medida que aumenta la velocidad del viento.<br />Qué significa esto en la práctica. Compare la eficiencia del alternador de Disco de Freno Volvo con la del  Motor de Inducción Convertido . El Volvo tiene una resistencia de ¼ de ohmio mientras que la del motor es 4 ohmios.  Este último logra 12 voltios a muy bajas RPM de corte, pero a 10 amperios de  salida genera 400 vatios de calor y carga baterías a 130 vatios. El Volvo a esos mismo 10 amperios disipa 25 vatios de calor y a 50 amperios disipa 625 vatios cargando 600 vatios. Allí se torna ineficiente.<br />DISEÑOS DE ALTERNADORES<br />Hechos. Fabricar alternadores en casa es casi arte de brujería. Hay muchos factores a considerar y que comentamos más adelante, pero aún nos queda el diseño del rotor y sus aspas. Dicho esto lo que nos queda por asentar es que no nos dedicamos a efectuar investigaciones insondables. Nos dedicamos a hacer, cometer y corregir errores y logramos un producto razonable corrigiendo una variable por vez.<br />Municioneras. La palabra es Robustas. Además de tener que tolerar vibración y altas velocidades de rotación, existen tensiones laterales a causa del viento. Estas tensiones aumentan en sentido geométrico a medida que la fuerza del viento aumenta. Por eso recomendamos el uso de municioneras de automóvil en nuestros diseños. Su diseño biselado les permite tolerar altas tensiones laterales y colocadas en un alternador su duración es prácticamente eterna.<br />Número de Polos. Mientras más rápidamente se desplacen los polos norte y sur de los imanes frente a las bobinas, mayor voltaje se obtendrá. Es evidente la ventaja de muchos imanes y muchas bobinas. El problema es que cada bobina plantea una resistencia individual, que sumada a la de las demás afecta la eficiencia para lograr altas velocidades. Si a pesar de ello lográramos la velocidad de corte al conectar esas bobinas en paralelo podemos reducir la resistencia total. Más adelante tratamos este tema. Por supuesto que el número de imanes y polos afectará el tamaño de la unidad.<br />Conexión en Serie o Paralela. Al conectar las bobinas en serie aumenta el voltaje generado, pero también la resistencia. Las conexiones en paralelo no aumentan el voltaje, pero sí el amperaje. La resistencia disminuye. Como muchos son los factores a considerar, nuestro generador Volvo tiene la mitad de las bobinas conectadas en serie y la otra mitad en paralelo y luego las dos mitades están conectadas en paralelo.. En máquinas trifásicas esas configuraciones con conocidas como Delta (Serie)  y Estrella (Paralelo). Una gran solución sería disponer de una unidad que arranque configurada en serie para lograr la velocidad de corte rápidamente y luego, al aumentar la velocidad de giro, se cambie a paralelo. Estos aparatos se han fabricado aunque nosotros no los usamos. Preferimos sacrificar Alguna eficiencia a cambio de más sencillez y confiabilidad en nuestras máquinas.<br />Imanes.  Mientras más fuertes, mejor. A mayores y fuertes imanes le sigue mayor de capacidad de generación en un aparato menor. Existe una nueva generación de imanes de una aleación de neodimio, hierro y boro (“tierra suave”. NdFeB) que son los fuertes que el hombre conoce y que son ideales para la construcción de alternadores de IP. Hay diseños que emplean imanes de cerámica, pero es por cuestión de precio. Nosotros vendemos los imanes de NdFeB en nuestra página de PRODUCTOS. Estos imanes tienen una capacidad no menor a 4 veces la de un imán de cerámica equivalente en tamaño. ALERTA: los imanes grandes de NdFeB son muy poderosos y pueden causar daños a la piel si la pinchan. Un inducido con 20 de estos imanes tiene la suficiente fuerza de atracción para cortarle los dedos si llegara a adherirse a otra pieza metálica. Estos imanes son fácilmente fracturables y se quebrarán si chocan entre sí, despidiendo partículas filosas a alta velocidad. Al manejar estos imanes, use guantes, lentes protectores y mucha concentración.<br />Alambre. El alambre recubierto es el que debe emplearse en las bobinas de los alternadores. Su aislamiento es muy delgado y resiste al calor, lo que a su vez permite fabricar bobinas pequeñas de muchas vueltas. Es difícil de pelar, por lo que recomendamos usar hojillas o papel de lija. El grosor del alambre es otro aspecto a considerar. El reducido permite más vueltas por bobina y mayor voltaje para una baja velocidad de corte. Pero este alambre proporciona mayor resistencia y la unidad de torna ineficiente a altas RPM. Nuestros alternadores más grandes usan alambres de un grosor en el rango de 14 a 16 y los más pequeños de 18 a 22.<br />Espacio vacío o salto de aire. Este es la distancia entre los imanes y las laminillas detrás de las bobinas. A menor distancia, mayor eficiencia. Esto significa que las bobinas deben ser tan planas como sea posible y que el inducido ajuste muy cerca del estator. Si la cercanía de estos elementos no está a plomo, las distancia cambiarán en los diferentes lados de los elementos y la eficiencia total de la unidad quedará reducida.<br />Laminillas. Las laminillas terminan el circuito magnético que se inicia en los imanes y aumentan la generación en forma dramática sobre los diseños que no las tienen. Cada trozo de laminilla debe quedar aislado del que está a su lado para evitar corrientes parasíticas entre ellas, que reducen la velocidad del alternador y disipan potencia. Nuestra experiencia nos indica usar delgadas láminas de acero. Lo importante es que sean difíciles de magnetizar. Hemos probado con hojas de sierra y con fleje para empacar, pero no nos han dado buenos resultados. Lo mejor que nos ha funcionado han sido láminas de acero prensado en frío sobrante en cantidades en las fábricas de artefactos de cocina (No refrigeradoras). <br />LOS ROTORES<br />Un generador de viento toma fuerza al tratar de detener el viento. Las aspas le reducen la velocidad y al girar el alternador genera electricidad. Tanto el alternador como sus aspas debe complementarse para trabajar eficientemente. No somos expertos en el diseño de aspas. Nosotros empezamos con un diseño funcional y le fuimos haciendo cambios. En realidad nuestras necesidades se reducen incluso a un juego de aspas con una caída de 5 grados de punta a punta con la seguridad de que trabajará bien. Ahora bien, si lo que queremos es maximizar la eficiencia de nuestras aspas es bueno conocer algunas cosas útiles sobre ellas que nos proporcionarán más comodidad. <br />El Sr. Hugh Pigott  dispone de excelente información sobre el tema. En su portal se puede encontrar un archivo sobre el diseño de aspas y diagramas. Otro portal es el de WindStuffnow.com y por último el de Chuck Morrison.<br />Material de las aspas. La madera es el mejor material. Es muy fuerte para su peso, fácil de tallar, barata y resiste esfuerzos. Trate de conseguir la más derecha, fuerte y libre de nudos. Las maderas duras son muy densas y pesadas. Las aspas de aluminio y acero sufren de fatiga y las de lámina representan un peligro, pues al quebrarse por causa de la fatiga al metal salen disparadas como un proyectil. Las aspas de fibra de vidrio son muy resistentes y son las que se emplean en los generadores comerciales. Su problema es que se requieren moldes para cada tipo y no creemos que su robustez supera a las de madera, que se fabrican en horas.<br />Diámetro.  Las aspas cortas fijadas a un alternador grande nunca llegarán a impulsarlo a su velocidad de crucero. Inversamente, las aspas excesivamente grandes para un alternador lo pueden destruir en vientos fuertes.<br />Número de aspas. El generador de viento tiene un número infinito de aspas infinitamente delgadas. En el mundo real, a mayor  número de aspas menor número de vueltas, pero mayor torque. Los alternadores requieren de velocidades relativamente altas para lograr la velocidad de corte. Los rotores de dos aspas son muy rápidos y fáciles de construir, pero sufren de golpeteos al desplazarse por causa de fuerzas no balanceadas sobre sus aspas. Los rotores de tres aspas son muy comunes y son una buena selección. Son algo más difíciles de construir que los de dos aspas. Más de tres aspas presentan una cantidad de complicaciones tales como robustez de los materiales en aspas delgadas.<br />Proporción de la velocidad de la punta del aspa (TSR). Este número identifica, por diseño, cuán más rápidamente se desplazan las puntas de las aspas con respecto al viento. La mayor eficiencia se obtiene a la velocidad de diseño, aunque tampoco se pierde totalmente en un rango de RPM cercanas a las de diseño. La TSR ideal depende en: diámetro del rotor, espesor del aspa, caída o ataque del aspa, RPM requeridas por el alternador y velocidad del viento. Lo que sabemos es que la TSR mayor le es útil a alternadores del altas RPM, pero el resto de las variables resulta tan complicado de manejar que es preferible tomar un diseño que se sabe que trabaja e ir modificándolo con vista a resultados obtenidos.<br />Bisel. La generalidad de las aspas de generador son más anchas en la base que en la punta, ya que en la base la cantidad de aire usado es relativamente pequeña. Este bisel le añade resistencia al aspa en el sitio donde la tensión es mayor y la impulsa mejor al arrancar. El bisel ideal puede ser calculado y cambia dependiendo del número de aspas y la TSR deseada. Nuevamente nos referimos a los portales del Sr. Pigott, WindtSuffNow.com y al Sr. Morrison. <br />Caída e Inclinación. Como ya lo hemos dicho, un generador sencillo con un aspa recta que tenga una caída de cinco grados nos proporcionará una eficiencia adecuada. Pero la inclinación y el bisel proporcionan ciertas ventajas, ya que ambas ayudan a arrancar el generador y menor caída en las puntas incrementa las RPM. Un diseño propio que nos ha dado excelentes resultados es un aspa que tiene 10 grados de caída en la base y 5 en la punta.<br />Tallado de la madera. Nuestro procedimiento es muy sencillo. Luego de marcar el perfil del aspa en la punta y en el eje, ambos puntos son unidos con una línea. A veces hacemos tajos a cierta profundidad de la longitud del aspa con un formón. Estos tajos nos indicarán la profundidad alcanzada cuando le pasemos la lijadora eléctrica al aspa.<br />Balanceo de las aspas. Las aspas deben estar muy bien balanceadas para evitar vibraciones. Esto es más fácil de lograr con un rotor de dos aspas que con uno de tres. Lo conveniente es hacer que todas las aspas pesen lo mismo y que todas tenga el mismo centro de gravedad. Lo más sencillo es tomar el centro exacto del aspa y rebajar material de su lado más pesado.<br />SISTEMAS DE MOVIMIENTO DE Y SUSPENSIÓN DEL SERVICIO<br />Sistemas de Movimiento (Oscilación y Rotación). Este sistema se refiere a un mecanismo que pone el rotor a un ángulo fuera del viento, bien sea horizontal o verticalmente para proteger la máquina en vientos muy intensos. Nosotros no tratamos de usar esos mecanismos en nuestras construcciones (las fabricamos lo más robustas que podemos)  y si el viento toma características huracanadas simplemente cortamos la alimentación de corriente. Los sistemas de suspensión de servicio por oscilación o rotación son que no disponemos de electricidad mientras dure el incidente. Por otra parte, esos mecanismos se diseñan para vientos promedio y cualquier viento que exceda ese promedio podría causar graves daños a la unidad. Pero vamos a describir los sistemas:<br />Ataque variable. El mejor pero más complicado de los sistemas. A medida que varía la velocidad del viento las aspas cambian su ángulo de ataque hasta dejarlo pasar totalmente. Los grandes generadores comerciales son los que disponen de este sistema.<br />Retroceso. En esos sistemas el cuerpo del generador está articulado con bisagras justo en su base. Cuando la velocidad del viento es muy alta el generador se retrae. Al disminuir la velocidad del viento el generador regresa a su posición horizontal por medio de resortes que lo halan.<br />Cola oscilante. En este sistema tanto el generador como su cola están colocados, si bien a nivel, excéntricamente en su base. La cola dispone de una bisagra y resortes que el viento vence haciéndola colocarse paralela al viento. Esto obliga al generador a ponerse paralelo al viento.<br />Aspas oscilantes. El método es semejante al anterior, excepto que la oscilación ahora se produce en las aspas.<br />Frenos de aire. Ruidoso pero efectivo. Consiste de copas metálicas que se disparan con la fuerza centrífuga que ocasionan los vientos fuertes frenando el rotor. Al disminuir el viento se retraen liberándolo.<br />Suspensión del Servicio. Se trata de un control manual que cierra el generador. Simplemente impide que gire y puede ser eléctrico o mecánico.<br />Suspensión eléctrica. En una máquina de IP es relativamente fácil: basta con unir los polos principales de AC. Esto impedirá que gire. Este sistema puede activarse con un interruptor en un momento en que los vientos fuertes se interrumpan por algún momento, pues intentarlo durante las ráfagas fuertes puede fundir las bobinas.<br />Suspensión mecánica. Estos sistemas frenan físicamente el generador o lo obligan a colocarse en posición paralela al viento. Generalmente consisten en un cable que hala el conjunto para llevarlo y mantenerlo en la posición deseada.<br />REGULADORES DE VOLTAJE<br />Los generadores que se emplean para dar carga a baterías son regulados por las baterías mismas hasta que se cargan. Pero una vez que las baterías queden cargadas el voltaje aumentará rápidamente y habrá que hacer algo en el exceso de electricidad que estamos generado. No basta con desconectar las baterías, pues ello permitirá que el generador gire a velocidades excesivas que lo llevarán a su destrucción.<br />Encienda algunas luces. Este es el método más viejo y confiable de regulación de corriente. El problema es que uno tiene que estar allí para encender las luces.<br />Reguladores de voltaje. Estos sistemas detectan el voltaje de la batería y desvían el excedente a tierra u otros elementos que consuman electricidad (Un calentador de agua, por ejemplo). En otro artículo discutiremos el tema.<br />Rectificadores. Como los alternadores generan corriente alterna y las baterías almacenan corriente directa, hay que hacer una conversión. Un rectificador  es un juego de diodos que se acoplan entre el alternador y la batería. En la generalidad de los casos los nuestros tienen 4 diodos, aunque los hay más complejos. Un rectificador debe ser colocado sobre un disipador de calor.<br />
Datos disenarconstruir
Datos disenarconstruir
Datos disenarconstruir
Datos disenarconstruir
Datos disenarconstruir
Datos disenarconstruir
Datos disenarconstruir
Datos disenarconstruir
Datos disenarconstruir
Datos disenarconstruir

Más contenido relacionado

La actualidad más candente

TRABAJO ENERGIA EOLICA
TRABAJO ENERGIA EOLICATRABAJO ENERGIA EOLICA
TRABAJO ENERGIA EOLICAFranci Garcia
 
Diseã±o de aerogeneradores
Diseã±o de aerogeneradoresDiseã±o de aerogeneradores
Diseã±o de aerogeneradoresUxmal Amezquita
 
Diseño de Aerogenerador de Energía Eólica
Diseño de Aerogenerador de Energía EólicaDiseño de Aerogenerador de Energía Eólica
Diseño de Aerogenerador de Energía EólicaLuis Gonzalez
 
Catalogo de motores monofásicos
Catalogo de motores monofásicosCatalogo de motores monofásicos
Catalogo de motores monofásicosLoreana Gómez
 
Motores monofasicos de induccion
Motores monofasicos de induccion Motores monofasicos de induccion
Motores monofasicos de induccion nardopesantezm
 
Wacker demolicion
Wacker demolicionWacker demolicion
Wacker demolicionJose Miguel
 
Wacker planchas-vibradoras
Wacker planchas-vibradorasWacker planchas-vibradoras
Wacker planchas-vibradorasJose Miguel
 
Presentación1 lorena polo a tierra
Presentación1 lorena polo a tierraPresentación1 lorena polo a tierra
Presentación1 lorena polo a tierralorenaaguacate12
 

La actualidad más candente (11)

TRABAJO ENERGIA EOLICA
TRABAJO ENERGIA EOLICATRABAJO ENERGIA EOLICA
TRABAJO ENERGIA EOLICA
 
Diseã±o de aerogeneradores
Diseã±o de aerogeneradoresDiseã±o de aerogeneradores
Diseã±o de aerogeneradores
 
Diseño de Aerogenerador de Energía Eólica
Diseño de Aerogenerador de Energía EólicaDiseño de Aerogenerador de Energía Eólica
Diseño de Aerogenerador de Energía Eólica
 
Catalogo de motores monofásicos
Catalogo de motores monofásicosCatalogo de motores monofásicos
Catalogo de motores monofásicos
 
Unidad 1
Unidad 1Unidad 1
Unidad 1
 
Motores monofasicos de induccion
Motores monofasicos de induccion Motores monofasicos de induccion
Motores monofasicos de induccion
 
Wacker demolicion
Wacker demolicionWacker demolicion
Wacker demolicion
 
Proyecto del motor monofasico
Proyecto del motor monofasicoProyecto del motor monofasico
Proyecto del motor monofasico
 
Wacker planchas-vibradoras
Wacker planchas-vibradorasWacker planchas-vibradoras
Wacker planchas-vibradoras
 
Presentación1 lorena polo a tierra
Presentación1 lorena polo a tierraPresentación1 lorena polo a tierra
Presentación1 lorena polo a tierra
 
Aerogeneradores
AerogeneradoresAerogeneradores
Aerogeneradores
 

Destacado (9)

Híbrido solar eólico bio combustión
Híbrido solar eólico bio combustiónHíbrido solar eólico bio combustión
Híbrido solar eólico bio combustión
 
Generador eolico pequeño
Generador eolico pequeñoGenerador eolico pequeño
Generador eolico pequeño
 
Calcular potencia grupo electrógeno
Calcular potencia grupo electrógenoCalcular potencia grupo electrógeno
Calcular potencia grupo electrógeno
 
Imanes y circuitos magneticos
Imanes y circuitos magneticosImanes y circuitos magneticos
Imanes y circuitos magneticos
 
Imanes permanentes
Imanes permanentesImanes permanentes
Imanes permanentes
 
Generador sincronico aux9_el4001
Generador sincronico aux9_el4001Generador sincronico aux9_el4001
Generador sincronico aux9_el4001
 
Partes de la máquina síncrona
Partes de la máquina síncronaPartes de la máquina síncrona
Partes de la máquina síncrona
 
Generadores sincronos
Generadores sincronosGeneradores sincronos
Generadores sincronos
 
Maquinas Eléctricas sincronas o sincrónicas - Universidad Nacional de Loja
Maquinas Eléctricas sincronas o sincrónicas - Universidad Nacional de LojaMaquinas Eléctricas sincronas o sincrónicas - Universidad Nacional de Loja
Maquinas Eléctricas sincronas o sincrónicas - Universidad Nacional de Loja
 

Similar a Datos disenarconstruir

Weg seleccion-y-aplicacion-de-motores-electricos-articulo-tecnico-espanol
Weg seleccion-y-aplicacion-de-motores-electricos-articulo-tecnico-espanolWeg seleccion-y-aplicacion-de-motores-electricos-articulo-tecnico-espanol
Weg seleccion-y-aplicacion-de-motores-electricos-articulo-tecnico-espanolDavid Aquino A.
 
Weg seleccion-y-aplicacion-de-motores-electricos-articulo-tecnico-espanol (1)
Weg seleccion-y-aplicacion-de-motores-electricos-articulo-tecnico-espanol (1)Weg seleccion-y-aplicacion-de-motores-electricos-articulo-tecnico-espanol (1)
Weg seleccion-y-aplicacion-de-motores-electricos-articulo-tecnico-espanol (1)Jorge Miguel
 
Generador Eolico Paso a Paso.pptx
Generador Eolico Paso a Paso.pptxGenerador Eolico Paso a Paso.pptx
Generador Eolico Paso a Paso.pptxcharl44
 
Proyecto motores-electricos-tipo-jaula-de-ardilla
Proyecto motores-electricos-tipo-jaula-de-ardillaProyecto motores-electricos-tipo-jaula-de-ardilla
Proyecto motores-electricos-tipo-jaula-de-ardillaEnrrique Fernandez Silva
 
Catalogo motores monofasicos ca/ Motores Sincronos y Asincronos
Catalogo motores monofasicos ca/ Motores Sincronos y AsincronosCatalogo motores monofasicos ca/ Motores Sincronos y Asincronos
Catalogo motores monofasicos ca/ Motores Sincronos y AsincronosOscar Morales
 
ppt Energía Eólica
ppt Energía Eólicappt Energía Eólica
ppt Energía EólicaJuan Spain
 
Cinco galones cubo hidroeléctrica generador construir manual
Cinco galones cubo hidroeléctrica generador construir manualCinco galones cubo hidroeléctrica generador construir manual
Cinco galones cubo hidroeléctrica generador construir manualDerli Fernandez Rimarachin
 
Maquinas electricas 1
Maquinas electricas 1Maquinas electricas 1
Maquinas electricas 1selts
 
Los motores universales son motores en serie de potencia fraccional
Los motores universales son motores en serie de potencia fraccionalLos motores universales son motores en serie de potencia fraccional
Los motores universales son motores en serie de potencia fraccional23298173
 
491278125-cuestionario-6.pdf
491278125-cuestionario-6.pdf491278125-cuestionario-6.pdf
491278125-cuestionario-6.pdfRaquelCorrales9
 
Generador Eólico. Ampair Pacific 100.pdf
Generador Eólico. Ampair Pacific 100.pdfGenerador Eólico. Ampair Pacific 100.pdf
Generador Eólico. Ampair Pacific 100.pdfpilatasigjeferson08
 
Motores eléctricos
Motores eléctricosMotores eléctricos
Motores eléctricosEduardoCP
 
apuntes aerogenerador cdchja
apuntes aerogenerador cdchjaapuntes aerogenerador cdchja
apuntes aerogenerador cdchjaelias villa
 
Wind 25.3+ manual v1.5
Wind 25.3+ manual v1.5Wind 25.3+ manual v1.5
Wind 25.3+ manual v1.5Jorge Moreno
 
2. motores de alta eficiencia
2. motores de alta eficiencia2. motores de alta eficiencia
2. motores de alta eficienciaSaw12
 

Similar a Datos disenarconstruir (20)

Weg seleccion-y-aplicacion-de-motores-electricos-articulo-tecnico-espanol
Weg seleccion-y-aplicacion-de-motores-electricos-articulo-tecnico-espanolWeg seleccion-y-aplicacion-de-motores-electricos-articulo-tecnico-espanol
Weg seleccion-y-aplicacion-de-motores-electricos-articulo-tecnico-espanol
 
Weg seleccion-y-aplicacion-de-motores-electricos-articulo-tecnico-espanol (1)
Weg seleccion-y-aplicacion-de-motores-electricos-articulo-tecnico-espanol (1)Weg seleccion-y-aplicacion-de-motores-electricos-articulo-tecnico-espanol (1)
Weg seleccion-y-aplicacion-de-motores-electricos-articulo-tecnico-espanol (1)
 
Generador Eolico Paso a Paso.pptx
Generador Eolico Paso a Paso.pptxGenerador Eolico Paso a Paso.pptx
Generador Eolico Paso a Paso.pptx
 
Proyecto motores-electricos-tipo-jaula-de-ardilla
Proyecto motores-electricos-tipo-jaula-de-ardillaProyecto motores-electricos-tipo-jaula-de-ardilla
Proyecto motores-electricos-tipo-jaula-de-ardilla
 
Catalogo motores monofasicos ca/ Motores Sincronos y Asincronos
Catalogo motores monofasicos ca/ Motores Sincronos y AsincronosCatalogo motores monofasicos ca/ Motores Sincronos y Asincronos
Catalogo motores monofasicos ca/ Motores Sincronos y Asincronos
 
ppt Energía Eólica
ppt Energía Eólicappt Energía Eólica
ppt Energía Eólica
 
Cinco galones cubo hidroeléctrica generador construir manual
Cinco galones cubo hidroeléctrica generador construir manualCinco galones cubo hidroeléctrica generador construir manual
Cinco galones cubo hidroeléctrica generador construir manual
 
Maquinas electricas 1
Maquinas electricas 1Maquinas electricas 1
Maquinas electricas 1
 
Los motores universales son motores en serie de potencia fraccional
Los motores universales son motores en serie de potencia fraccionalLos motores universales son motores en serie de potencia fraccional
Los motores universales son motores en serie de potencia fraccional
 
Probattery inversores faq
Probattery inversores faqProbattery inversores faq
Probattery inversores faq
 
491278125-cuestionario-6.pdf
491278125-cuestionario-6.pdf491278125-cuestionario-6.pdf
491278125-cuestionario-6.pdf
 
Generador Eólico. Ampair Pacific 100.pdf
Generador Eólico. Ampair Pacific 100.pdfGenerador Eólico. Ampair Pacific 100.pdf
Generador Eólico. Ampair Pacific 100.pdf
 
Crear un dron
Crear un dronCrear un dron
Crear un dron
 
Energia Eolica II
Energia Eolica IIEnergia Eolica II
Energia Eolica II
 
Motores eléctricos
Motores eléctricosMotores eléctricos
Motores eléctricos
 
Motores j
Motores jMotores j
Motores j
 
Ca
CaCa
Ca
 
apuntes aerogenerador cdchja
apuntes aerogenerador cdchjaapuntes aerogenerador cdchja
apuntes aerogenerador cdchja
 
Wind 25.3+ manual v1.5
Wind 25.3+ manual v1.5Wind 25.3+ manual v1.5
Wind 25.3+ manual v1.5
 
2. motores de alta eficiencia
2. motores de alta eficiencia2. motores de alta eficiencia
2. motores de alta eficiencia
 

Más de luis goldenberg

Ficha clínica de auriculoterapia
Ficha clínica de auriculoterapiaFicha clínica de auriculoterapia
Ficha clínica de auriculoterapialuis goldenberg
 
Articles 97403 contrato-agricolapermanente
Articles 97403 contrato-agricolapermanenteArticles 97403 contrato-agricolapermanente
Articles 97403 contrato-agricolapermanenteluis goldenberg
 
Articles 97403 contrato-aprendizaje(2)
Articles 97403 contrato-aprendizaje(2)Articles 97403 contrato-aprendizaje(2)
Articles 97403 contrato-aprendizaje(2)luis goldenberg
 
Articles 97403 contrato-trato
Articles 97403 contrato-tratoArticles 97403 contrato-trato
Articles 97403 contrato-tratoluis goldenberg
 
Articles 97403 contrato-temporada(2)
Articles 97403 contrato-temporada(2)Articles 97403 contrato-temporada(2)
Articles 97403 contrato-temporada(2)luis goldenberg
 
Articles 97403 construccion
Articles 97403 construccionArticles 97403 construccion
Articles 97403 construccionluis goldenberg
 
Preparacion+e+interpretacion+flujo+de+caja
Preparacion+e+interpretacion+flujo+de+cajaPreparacion+e+interpretacion+flujo+de+caja
Preparacion+e+interpretacion+flujo+de+cajaluis goldenberg
 

Más de luis goldenberg (9)

Biodigestor rotoplas(1)
Biodigestor rotoplas(1)Biodigestor rotoplas(1)
Biodigestor rotoplas(1)
 
Ficha clínica de auriculoterapia
Ficha clínica de auriculoterapiaFicha clínica de auriculoterapia
Ficha clínica de auriculoterapia
 
Articles 97403 contrato-agricolapermanente
Articles 97403 contrato-agricolapermanenteArticles 97403 contrato-agricolapermanente
Articles 97403 contrato-agricolapermanente
 
Articles 97403 contrato-aprendizaje(2)
Articles 97403 contrato-aprendizaje(2)Articles 97403 contrato-aprendizaje(2)
Articles 97403 contrato-aprendizaje(2)
 
Articles 97403 promotor
Articles 97403 promotorArticles 97403 promotor
Articles 97403 promotor
 
Articles 97403 contrato-trato
Articles 97403 contrato-tratoArticles 97403 contrato-trato
Articles 97403 contrato-trato
 
Articles 97403 contrato-temporada(2)
Articles 97403 contrato-temporada(2)Articles 97403 contrato-temporada(2)
Articles 97403 contrato-temporada(2)
 
Articles 97403 construccion
Articles 97403 construccionArticles 97403 construccion
Articles 97403 construccion
 
Preparacion+e+interpretacion+flujo+de+caja
Preparacion+e+interpretacion+flujo+de+cajaPreparacion+e+interpretacion+flujo+de+caja
Preparacion+e+interpretacion+flujo+de+caja
 

Datos disenarconstruir

  • 1.  <br />ALGUNOS DATOS PARA DISEÑAR, CONSTRUIR Y PONER A FUNCIONAR AEROGENERADORES<br />Este artículo es una traducción hecha con permiso, bajo el título original “Tips For Designing, Building And Flying Wind Generators”, de la gente de otherpower.com<br />Poner a funcionar una máquina de viento es una grata experiencia. Si el viento la arranca de su base el espectáculo bien vale el valor de la entrada además de la experiencia que este accidente nos deja.<br />¿DÓNDE COMENZAR?<br />Primeramente determine el tamaño del generador que quiere encarar, bien sea comercial o hecho en casa. Sólo existe una media importante asociada al tamaño de los molinos: El área de recorrido. Esto es el número de metros cuadrados que las aspas del molino cubren en una vuelta. La fórmula para calcularla es Pi r^2, donde Pi = 3.1416 y r es el radio del rotor. La potencia obtenible del viento aumenta dramáticamente a medida que aumenta el área de recorrido....y simultáneamente las tensiones en la torre, aspas, municioneras y cola. A medida que las tensiones aumentan se requiere más trabajo de ingeniería y materiales más robustos, así como también equipos misceláneos asociados más complejos. Todo esto concluye en un proyecto mucho mayor, complicado y costoso.<br />Los molinos que tienen aspas de 48 pulgadas de diámetro son fáciles de diseñar, construir y manejar. Cuando llegamos al rango de 84 a 96 pulgadas se requieren estructuras muy robustas. Para 120 pulgadas las necesidades son profesionales. Como en nuestra experiencia hemos visto muchos molinos salir volando le recomendamos que se estrene con uno pequeño, tal como el A-X, y lo trate como su tesis de grado.<br />Seguidamente, busque fuentes de información y opiniones sobre el tema. En nuestras páginas encontrará bastante ayuda. Además le ofrecemos direcciones de la Web de otros aficionados y profesionales que le pueden resultar útiles.<br />Para terminar, a seguidas le ofrecemos datos sobre muchos de los aspectos referidos al diseño, construcción, poner en funcionamiento y destrucción de generadores. Estamos atentos a consejos y sugerencias, contáctenos.<br />EL SITIO<br />Ubicación. Determine de dónde proceden los vientos más reinantes en la zona donde piensa colocar el molino. Esto resulta relativamente fácil: Observe la dirección en que case la lluvia o en que mecen los árboles. El desplazamiento de sus ramas en determinada dirección indica bastante bien la dirección más frecuente del viento. Es conveniente el uso de un anemómetro, un aparato que resulta caro. <br />Altura. Colocar un molino a baja altura es como tratar de aprovechar el sol a la sombra. Un molino debe estar por lo menos a ocho metros de altura y a 100 metros de la obstrucción más cercana. Aunque hay ser prácticos respecto de estas recomendaciones, recuerde que hay un fenómeno llamado turbulencia, causado por las obstrucciones y que le restan grandes cantidades de potencia a una máquina de viento, sin tomar en cuenta las tensiones a que las somete. Si no puede elevar su máquina, trate al menos de que esté libre de obstrucciones.<br />Distancia. La distancia entre sus baterías y el alternador pueden ser causa de problemas. Mientras más cercanas a él estén mucho mejor. Así evitará pérdidas causadas por los cables largos y podrá tener cables más delgados y menos costosos. Los transformadores son buenos para mantener los voltajes altos, pero su uso añade complicaciones y pérdidas de potencia.<br />LA TORRE<br />Visite nuestra página. Allí le ofrecemos soluciones hechas en casa que son baratas y fáciles de fabricar y erigir. Existen bastantes detalles y fotografías.<br />La torre debe ser extremadamente robusta, estar bien anclada al piso y lo suficientemente alta para superar las obstrucciones. Hemos visto tubos de 1 ½” doblarse como un serpentín en vientos de 75 KPH soportando máquinas con un rotor de 96 pulgadas. Algunas reglas de construcción de torres indican que se debe gastar por lo menos lo mismo en la torre que en el generador.<br />¿Le gusta escalar?. Existen dos tipos de torre: la erigible y la estacionaria. La estacionaria es la más robusta y menos propensa a tener problemas. Para erigir una torre estacionaria hay que tener mucho cuidado o usar una grúa. Si no le gusta escalar torres, las erigibles son una buena solución, pues permiten hacerles mantenimiento en el piso tanto a la torre como a la maquinaria.<br />Montaje en el techo. No le recomendamos que use el techo de su casa para colocar un generador. Hemos observado vibraciones y ruidos en dos instalaciones de este tipo que son fácilmente reconocibles e irritantes. La gran mayoría de los alternadores comerciales no hacen mucho ruido, pero su vibración es inevitable por la naturaleza misma de los imanes permanentes. Escuche, presionando aquí, el ruido de uno de nuestros generadores de 84 pulgadas. Esto explica por qué no recomendamos el montaje de alternadores en el techo. Esta grabación fue hecha colocando el micrófono contra el mástil del alternador. El zumbido es causado por los imanes. El golpeteo es la torre misma.<br />ANEMÓMETROS<br />Es muy importante saber la velocidad del viento de cualquier instalación de viento, bien sea comercial o hecha en casa. Los anemómetros son costosos, de manera que le recomendamos que fabrique el suyo. Véalo aquí. Toma nota de la frecuencia con un circuito electrónico muy sencillo y hasta se puede acoplar a equipos de recopilación de información anemométrica.<br />Existen unos equipos que venden desarmados en Australia que son bastante complejos para su precio, pues la data que recopilan puede ser alimentada a un computador. Estamos armando uno que puede ver aquí.<br />ALTERNADORES Y GENERADORES<br />Expresiones. Nosotros tratamos de emplear la expresión Generador para describir la máquina que genera corriente directa (DC). La expresión alternador la empleamos cuando hablamos de la que genera corriente alterna (AC). Ahora bien, la expresión Generador describe genéricamente cualquier equipo que produzca electricidad al rotar su eje.<br />Opciones. Un alternador o generador es el corazón de la máquina de viento. Por lo tanto debe ser del tamaño adecuado y generar el tipo de electricidad adecuado para satisfacer sus necesidades. Las opciones para ello incluyen las máquinas de imanes permanentes (IP) comerciales y las hechas en casa, los motores de inducción convertidos con IP, motores de IP de DC sin escobillas, alternadores de vehículos y motores de inducción.<br />Estas opciones son comentadas en un artículo específico sobre el tema publicado en nuestra página web.<br />Aplicación. La electricidad generada con viento puede ser empleada para cargar baterías, generación de calor y para ser conectada a una red eléctrica. Todos nuestros diseños son para cargar baterías ya que estamos ubicados a más de 20 KM del poste más cercano.<br />Una Fase o Tres Fases. Los alternadores de IP de tres fases tienen ciertamente algunas pequeñas ventajas tales como mejor uso del espacio disponible, menor vibración y menores pérdidas por los cables. Mucha gente sólo fabrica máquinas trifásicas. Nuestra experiencia nos dice que resulta sumamente difícil instalar con seguridad un paquete de tres juegos de bobinas en un estator atiborrado y lograr un salto de aire entre los imanes y las laminillas detrás de las bobinas. Los alternadores de una fase funcionan casi igual que los trifásicos y la facilidad de su construcción más que compensa sus desventajas. Este es un tema sobre el que se discute constantemente.<br />Velocidad. La velocidad del eje es crítica en cualquier tipo de alternador o generador. La unidad tiene que generar mayor voltaje a bajas RPM o no sirve. Esta es una verdad que aplica a todos los alternadores o generadores no importa cuál sea la opción escogida. Sus resultados deben medirse en una relación de velocidad y voltaje. Vea nuestro artículo donde hacemos esas comparaciones.<br />Velocidad de Corte. Un generador no comienza a cargar la batería hasta que su voltaje supera el de la misma. En ese momento ocurre la llamada velocidad de corte. Como es natural, esta velocidad ocurrirá dependiendo de los factores que afecta el rendimiento del molino, tales como el diseño de sus aspas, su configuración y el comportamiento del viento.<br />Voltaje. No es necesario emplear controles de voltaje en molinos de viento empleados para cargar baterías hasta que ello ocurre. Aún en un alternador que genere 90 voltios de circuito abierto, las baterías mantendrán el voltaje a su nivel. Esto afecta la velocidad de corte. El alternador que corta a 300 RPM en un banco de baterías de 12 voltios sólo cortará a 600 RPM en un banco de baterías de 24 voltios. Sin embargo, esta misma máquina generará la mitad de su potencia a mayores velocidades alimentando una batería de 24 voltios que a otra de 12 voltios. Esto es debido a<br />Ineficiencias. Todo generador tiene una velocidad que llamaremos de crucero. Pero como el viento no es constante es difícil lograr y luego mantener esa velocidad. A medida que la velocidad del viento aumenta su fuerza escapa a la velocidad que el generador puede usar y comienzan a producirse ineficiencias. Esta fuerza puede recalentar las bobinas, ya que nuestros alternadores, por no disponer de campos bobinados no pueden ajustar su flujo magnético. Un alternador de bobinas de muchas vueltas de alambre delgado tendrá mayor eficiencia a baja velocidad que otro de pocas vueltas de alambre grueso, pero también tendrá mayor resistencia interna. Esto significa que se tornará ineficiente más rápidamente al producir mayor amperaje a medida que aumenta la velocidad del viento.<br />Qué significa esto en la práctica. Compare la eficiencia del alternador de Disco de Freno Volvo con la del Motor de Inducción Convertido . El Volvo tiene una resistencia de ¼ de ohmio mientras que la del motor es 4 ohmios. Este último logra 12 voltios a muy bajas RPM de corte, pero a 10 amperios de salida genera 400 vatios de calor y carga baterías a 130 vatios. El Volvo a esos mismo 10 amperios disipa 25 vatios de calor y a 50 amperios disipa 625 vatios cargando 600 vatios. Allí se torna ineficiente.<br />DISEÑOS DE ALTERNADORES<br />Hechos. Fabricar alternadores en casa es casi arte de brujería. Hay muchos factores a considerar y que comentamos más adelante, pero aún nos queda el diseño del rotor y sus aspas. Dicho esto lo que nos queda por asentar es que no nos dedicamos a efectuar investigaciones insondables. Nos dedicamos a hacer, cometer y corregir errores y logramos un producto razonable corrigiendo una variable por vez.<br />Municioneras. La palabra es Robustas. Además de tener que tolerar vibración y altas velocidades de rotación, existen tensiones laterales a causa del viento. Estas tensiones aumentan en sentido geométrico a medida que la fuerza del viento aumenta. Por eso recomendamos el uso de municioneras de automóvil en nuestros diseños. Su diseño biselado les permite tolerar altas tensiones laterales y colocadas en un alternador su duración es prácticamente eterna.<br />Número de Polos. Mientras más rápidamente se desplacen los polos norte y sur de los imanes frente a las bobinas, mayor voltaje se obtendrá. Es evidente la ventaja de muchos imanes y muchas bobinas. El problema es que cada bobina plantea una resistencia individual, que sumada a la de las demás afecta la eficiencia para lograr altas velocidades. Si a pesar de ello lográramos la velocidad de corte al conectar esas bobinas en paralelo podemos reducir la resistencia total. Más adelante tratamos este tema. Por supuesto que el número de imanes y polos afectará el tamaño de la unidad.<br />Conexión en Serie o Paralela. Al conectar las bobinas en serie aumenta el voltaje generado, pero también la resistencia. Las conexiones en paralelo no aumentan el voltaje, pero sí el amperaje. La resistencia disminuye. Como muchos son los factores a considerar, nuestro generador Volvo tiene la mitad de las bobinas conectadas en serie y la otra mitad en paralelo y luego las dos mitades están conectadas en paralelo.. En máquinas trifásicas esas configuraciones con conocidas como Delta (Serie) y Estrella (Paralelo). Una gran solución sería disponer de una unidad que arranque configurada en serie para lograr la velocidad de corte rápidamente y luego, al aumentar la velocidad de giro, se cambie a paralelo. Estos aparatos se han fabricado aunque nosotros no los usamos. Preferimos sacrificar Alguna eficiencia a cambio de más sencillez y confiabilidad en nuestras máquinas.<br />Imanes. Mientras más fuertes, mejor. A mayores y fuertes imanes le sigue mayor de capacidad de generación en un aparato menor. Existe una nueva generación de imanes de una aleación de neodimio, hierro y boro (“tierra suave”. NdFeB) que son los fuertes que el hombre conoce y que son ideales para la construcción de alternadores de IP. Hay diseños que emplean imanes de cerámica, pero es por cuestión de precio. Nosotros vendemos los imanes de NdFeB en nuestra página de PRODUCTOS. Estos imanes tienen una capacidad no menor a 4 veces la de un imán de cerámica equivalente en tamaño. ALERTA: los imanes grandes de NdFeB son muy poderosos y pueden causar daños a la piel si la pinchan. Un inducido con 20 de estos imanes tiene la suficiente fuerza de atracción para cortarle los dedos si llegara a adherirse a otra pieza metálica. Estos imanes son fácilmente fracturables y se quebrarán si chocan entre sí, despidiendo partículas filosas a alta velocidad. Al manejar estos imanes, use guantes, lentes protectores y mucha concentración.<br />Alambre. El alambre recubierto es el que debe emplearse en las bobinas de los alternadores. Su aislamiento es muy delgado y resiste al calor, lo que a su vez permite fabricar bobinas pequeñas de muchas vueltas. Es difícil de pelar, por lo que recomendamos usar hojillas o papel de lija. El grosor del alambre es otro aspecto a considerar. El reducido permite más vueltas por bobina y mayor voltaje para una baja velocidad de corte. Pero este alambre proporciona mayor resistencia y la unidad de torna ineficiente a altas RPM. Nuestros alternadores más grandes usan alambres de un grosor en el rango de 14 a 16 y los más pequeños de 18 a 22.<br />Espacio vacío o salto de aire. Este es la distancia entre los imanes y las laminillas detrás de las bobinas. A menor distancia, mayor eficiencia. Esto significa que las bobinas deben ser tan planas como sea posible y que el inducido ajuste muy cerca del estator. Si la cercanía de estos elementos no está a plomo, las distancia cambiarán en los diferentes lados de los elementos y la eficiencia total de la unidad quedará reducida.<br />Laminillas. Las laminillas terminan el circuito magnético que se inicia en los imanes y aumentan la generación en forma dramática sobre los diseños que no las tienen. Cada trozo de laminilla debe quedar aislado del que está a su lado para evitar corrientes parasíticas entre ellas, que reducen la velocidad del alternador y disipan potencia. Nuestra experiencia nos indica usar delgadas láminas de acero. Lo importante es que sean difíciles de magnetizar. Hemos probado con hojas de sierra y con fleje para empacar, pero no nos han dado buenos resultados. Lo mejor que nos ha funcionado han sido láminas de acero prensado en frío sobrante en cantidades en las fábricas de artefactos de cocina (No refrigeradoras). <br />LOS ROTORES<br />Un generador de viento toma fuerza al tratar de detener el viento. Las aspas le reducen la velocidad y al girar el alternador genera electricidad. Tanto el alternador como sus aspas debe complementarse para trabajar eficientemente. No somos expertos en el diseño de aspas. Nosotros empezamos con un diseño funcional y le fuimos haciendo cambios. En realidad nuestras necesidades se reducen incluso a un juego de aspas con una caída de 5 grados de punta a punta con la seguridad de que trabajará bien. Ahora bien, si lo que queremos es maximizar la eficiencia de nuestras aspas es bueno conocer algunas cosas útiles sobre ellas que nos proporcionarán más comodidad. <br />El Sr. Hugh Pigott dispone de excelente información sobre el tema. En su portal se puede encontrar un archivo sobre el diseño de aspas y diagramas. Otro portal es el de WindStuffnow.com y por último el de Chuck Morrison.<br />Material de las aspas. La madera es el mejor material. Es muy fuerte para su peso, fácil de tallar, barata y resiste esfuerzos. Trate de conseguir la más derecha, fuerte y libre de nudos. Las maderas duras son muy densas y pesadas. Las aspas de aluminio y acero sufren de fatiga y las de lámina representan un peligro, pues al quebrarse por causa de la fatiga al metal salen disparadas como un proyectil. Las aspas de fibra de vidrio son muy resistentes y son las que se emplean en los generadores comerciales. Su problema es que se requieren moldes para cada tipo y no creemos que su robustez supera a las de madera, que se fabrican en horas.<br />Diámetro. Las aspas cortas fijadas a un alternador grande nunca llegarán a impulsarlo a su velocidad de crucero. Inversamente, las aspas excesivamente grandes para un alternador lo pueden destruir en vientos fuertes.<br />Número de aspas. El generador de viento tiene un número infinito de aspas infinitamente delgadas. En el mundo real, a mayor número de aspas menor número de vueltas, pero mayor torque. Los alternadores requieren de velocidades relativamente altas para lograr la velocidad de corte. Los rotores de dos aspas son muy rápidos y fáciles de construir, pero sufren de golpeteos al desplazarse por causa de fuerzas no balanceadas sobre sus aspas. Los rotores de tres aspas son muy comunes y son una buena selección. Son algo más difíciles de construir que los de dos aspas. Más de tres aspas presentan una cantidad de complicaciones tales como robustez de los materiales en aspas delgadas.<br />Proporción de la velocidad de la punta del aspa (TSR). Este número identifica, por diseño, cuán más rápidamente se desplazan las puntas de las aspas con respecto al viento. La mayor eficiencia se obtiene a la velocidad de diseño, aunque tampoco se pierde totalmente en un rango de RPM cercanas a las de diseño. La TSR ideal depende en: diámetro del rotor, espesor del aspa, caída o ataque del aspa, RPM requeridas por el alternador y velocidad del viento. Lo que sabemos es que la TSR mayor le es útil a alternadores del altas RPM, pero el resto de las variables resulta tan complicado de manejar que es preferible tomar un diseño que se sabe que trabaja e ir modificándolo con vista a resultados obtenidos.<br />Bisel. La generalidad de las aspas de generador son más anchas en la base que en la punta, ya que en la base la cantidad de aire usado es relativamente pequeña. Este bisel le añade resistencia al aspa en el sitio donde la tensión es mayor y la impulsa mejor al arrancar. El bisel ideal puede ser calculado y cambia dependiendo del número de aspas y la TSR deseada. Nuevamente nos referimos a los portales del Sr. Pigott, WindtSuffNow.com y al Sr. Morrison. <br />Caída e Inclinación. Como ya lo hemos dicho, un generador sencillo con un aspa recta que tenga una caída de cinco grados nos proporcionará una eficiencia adecuada. Pero la inclinación y el bisel proporcionan ciertas ventajas, ya que ambas ayudan a arrancar el generador y menor caída en las puntas incrementa las RPM. Un diseño propio que nos ha dado excelentes resultados es un aspa que tiene 10 grados de caída en la base y 5 en la punta.<br />Tallado de la madera. Nuestro procedimiento es muy sencillo. Luego de marcar el perfil del aspa en la punta y en el eje, ambos puntos son unidos con una línea. A veces hacemos tajos a cierta profundidad de la longitud del aspa con un formón. Estos tajos nos indicarán la profundidad alcanzada cuando le pasemos la lijadora eléctrica al aspa.<br />Balanceo de las aspas. Las aspas deben estar muy bien balanceadas para evitar vibraciones. Esto es más fácil de lograr con un rotor de dos aspas que con uno de tres. Lo conveniente es hacer que todas las aspas pesen lo mismo y que todas tenga el mismo centro de gravedad. Lo más sencillo es tomar el centro exacto del aspa y rebajar material de su lado más pesado.<br />SISTEMAS DE MOVIMIENTO DE Y SUSPENSIÓN DEL SERVICIO<br />Sistemas de Movimiento (Oscilación y Rotación). Este sistema se refiere a un mecanismo que pone el rotor a un ángulo fuera del viento, bien sea horizontal o verticalmente para proteger la máquina en vientos muy intensos. Nosotros no tratamos de usar esos mecanismos en nuestras construcciones (las fabricamos lo más robustas que podemos) y si el viento toma características huracanadas simplemente cortamos la alimentación de corriente. Los sistemas de suspensión de servicio por oscilación o rotación son que no disponemos de electricidad mientras dure el incidente. Por otra parte, esos mecanismos se diseñan para vientos promedio y cualquier viento que exceda ese promedio podría causar graves daños a la unidad. Pero vamos a describir los sistemas:<br />Ataque variable. El mejor pero más complicado de los sistemas. A medida que varía la velocidad del viento las aspas cambian su ángulo de ataque hasta dejarlo pasar totalmente. Los grandes generadores comerciales son los que disponen de este sistema.<br />Retroceso. En esos sistemas el cuerpo del generador está articulado con bisagras justo en su base. Cuando la velocidad del viento es muy alta el generador se retrae. Al disminuir la velocidad del viento el generador regresa a su posición horizontal por medio de resortes que lo halan.<br />Cola oscilante. En este sistema tanto el generador como su cola están colocados, si bien a nivel, excéntricamente en su base. La cola dispone de una bisagra y resortes que el viento vence haciéndola colocarse paralela al viento. Esto obliga al generador a ponerse paralelo al viento.<br />Aspas oscilantes. El método es semejante al anterior, excepto que la oscilación ahora se produce en las aspas.<br />Frenos de aire. Ruidoso pero efectivo. Consiste de copas metálicas que se disparan con la fuerza centrífuga que ocasionan los vientos fuertes frenando el rotor. Al disminuir el viento se retraen liberándolo.<br />Suspensión del Servicio. Se trata de un control manual que cierra el generador. Simplemente impide que gire y puede ser eléctrico o mecánico.<br />Suspensión eléctrica. En una máquina de IP es relativamente fácil: basta con unir los polos principales de AC. Esto impedirá que gire. Este sistema puede activarse con un interruptor en un momento en que los vientos fuertes se interrumpan por algún momento, pues intentarlo durante las ráfagas fuertes puede fundir las bobinas.<br />Suspensión mecánica. Estos sistemas frenan físicamente el generador o lo obligan a colocarse en posición paralela al viento. Generalmente consisten en un cable que hala el conjunto para llevarlo y mantenerlo en la posición deseada.<br />REGULADORES DE VOLTAJE<br />Los generadores que se emplean para dar carga a baterías son regulados por las baterías mismas hasta que se cargan. Pero una vez que las baterías queden cargadas el voltaje aumentará rápidamente y habrá que hacer algo en el exceso de electricidad que estamos generado. No basta con desconectar las baterías, pues ello permitirá que el generador gire a velocidades excesivas que lo llevarán a su destrucción.<br />Encienda algunas luces. Este es el método más viejo y confiable de regulación de corriente. El problema es que uno tiene que estar allí para encender las luces.<br />Reguladores de voltaje. Estos sistemas detectan el voltaje de la batería y desvían el excedente a tierra u otros elementos que consuman electricidad (Un calentador de agua, por ejemplo). En otro artículo discutiremos el tema.<br />Rectificadores. Como los alternadores generan corriente alterna y las baterías almacenan corriente directa, hay que hacer una conversión. Un rectificador es un juego de diodos que se acoplan entre el alternador y la batería. En la generalidad de los casos los nuestros tienen 4 diodos, aunque los hay más complejos. Un rectificador debe ser colocado sobre un disipador de calor.<br />