SlideShare una empresa de Scribd logo
LAGUNA DE ESTABILIZACION ANTECEDENTES El diseño de lagunas consiste no solamente en determinar la superficie y profundidad sino, particularmente en resolver un sinnúmero de detalles de construcción y especificaciones que asegurarán un funcionamiento y estabilidad adecuado de la unidad a lo largo de su vida útil.  Muchos informes acerca de lagunas existentes demuestran una serie de defectos en su funcionamiento, averías en las estructuras y molestias de una pobre ingeniería.Un buen diseño minimiza malos funcionamientos tales como manchas anaeróbicas en una laguna facultativa, carencia de efluente por infiltración excesiva hacia el fondo, diques erosionados, crecimiento excesivo de maleza, proliferación resultantes de mosquitos, débil efecto de mezcla inducido por el viento, acumulación de sedimentos alrededor de la entrada y otras penosas circunstancias.  Además, una buena ingeniería trae como consecuencia, casi siempre, la reducción en los costos por la minimización en el revestimiento y la optimización de la excavación y el relleno. Hay muchas buenas razones para no descuidar la ingeniería y detalles de construcción. Estructuras de ingresos Existe bastante controversia en cuanto si la tubería de entrada a una laguna debe ir sumergida o sobre el nivel del agua. Los argumentos a favor de las tuberías sumergidas son su bajo costo y sencillos métodos de construcción. Los argumentos en su contra son: el asentamiento de lodo en caudales bajos con la consecuente obstrucción de la tubería y la aparición de material asentado alrededor de la desembocadura.  Los argumentos a favor de las tuberías elevadas son la ausencia de obstrucciones con caudales bajos porque se aseguran velocidades mínimas mediante secciones de flujo parcial, mientras que los canales sumergidos están siempre llenos. El efecto de mezcla y las condiciones de dispersión del afluente en el cuerpo de agua se aseguran debido a la turbulencia originada por la caída del afluente. El control visual de los caudales aproximados es posible desde cualquier punto de la coronación del dique. Los argumentos en contra son: costos más altos debido a los soportes para las tuberías (por ejemplo pilares de albañilería) y exposición al vandalismo. Las tuberías de entrada, tanto sumergidas como elevadas, deberán distar de los bordes. En lagunas cuadradas la tubería de entrada generalmente termina en el centro. En lagunas rectangulares termina en un punto de la línea central más larga, equidistante de tres de los lados. Esto evita que las aguas crudas lleguen hasta los bordes. Algunos autores recomiendan tuberías de entrada sumergidas terminando en una pequeña pieza vertical apuntada hacia arriba a fin de que la boca no tome contacto con el material sedimentado. Esta práctica ofrece mayor riesgo de obstrucción.  Otros indican que es preferible colocar la tubería al nivel del suelo, prolongándola unos 2 m o más por encima de una depresión circular, de 0.5 m de profundidad y 10 m o más de diámetro, donde se acumulará la arena por muchos años sin interferir con la boca del canal. Con frecuencia las tuberías de entrada descargan sobre una losa de concreto de aproximadamente 1 m de diámetro cuando van sumergidas y en el caso ingresos sobre el nivel del agua descarga sobre un revestimiento de piedra de aproximadamente 1 x 2 m justo debajo de la boca de la tubería para evitar la socavación del fondo de la laguna durante la fase de llenado Estructuras de salida La estructura de salida de una laguna determina el nivel del agua dentro de ella y podrá colocarse en cualquier punto del borde, ordinariamente al pie del dique y opuesto a la tubería de entrada. Hay muchos tipos de salidas. La mayoría contempla el tendido de una tubería en el fondo de la laguna que atraviesa el dique. Esto permite vaciar completamente la laguna en caso necesario. El dispositivo de salida más sencillo consta de una tubería vertical cuyo extremo superior alcanza el punto del nivel de agua deseado. El extremo inferior se conecta a la tubería de descarga. Las tuberías de descarga que atraviesan los diques deberán instalarse con anterioridad a la construcción de los mismos a fin de evitar cortes y rellenos en una obra recién construida, corriéndose el peligro de debilitar algún punto. Las estructuras salida más convenientes son con dispositivos para variar el nivel del agua con fines operativos.  Por ejemplo, disminuyendo el nivel en 0.50 m se facilitará enormemente la eliminación de maleza y reparación de los taludes erosionados por el choque de las olas. Tal dispositivo de salida puede consistir simplemente de una caja cuadrada vertical cuya base repose sobre el fondo, al pie del dique, y su extremo superior sobresalga sobre el nivel del agua. Uno de los lados de esta caja se construye parcialmente y se colocan planchas de contención, que pueden ponerse o quitarse a voluntad, a manera de un vertedero de altura variable. Actualmente se recomienda la instalación de una pantalla alrededor del dispositivo de salida para impedir que penetre materia flotante y espuma en el efluente y la consiguiente salida de huevos y quistes de parásitos.  Una laguna de estabilización es una estructura simple para embalsar aguas residuales con el objeto de mejorar sus características sanitarias. Las lagunas de estabilización se construyen de poca profundidad (2 a 4 m) y con períodos de retención relativamente grandes (por, lo general de varios días). Cuando las aguas residuales son descargadas en lagunas de estabilización se realiza en las mismas, en forma espontánea, un proceso conocido como autodepuración o estabilización natural, en el que ocurren fenómenos de tipo físico, químico, bioquímico y biológico. Este proceso se lleva a cabo en casi todas las aguas estancadas con alto contenido de materia orgánica putrescible o biodegradable. Los parámetros mas utilizados para evaluar el comportamiento de las lagunas de estabilización de aguas residuales y la calidad de sus efluentes son la demanda bioquímica de oxígeno (DBO), que caracteriza la carga orgánica; y el número mas probable de coliformes fecales (NMP CF/100ml), que caracteriza la contaminación microbiológica. También tienen importancia los sólidos totales sedimentables, en suspensión y disueltos. Generalmente, cuando la carga orgánica aplicada a las lagunas es baja (<300 Kg de DBO/ha/día), y la temperatura ambiente varía entre 15 y 30 OC estrato superior de la laguna suelen desarrollarse poblaciones de algas microscópicas (clorelas, euglenas, etc) que, en presencia de la luz solar, producen grandes cantidades de oxígeno, haciendo que haya una alta concentración de oxígeno disuelto, que en muchos casos llega a valores de sobresaturación. La parte inferior de estas lagunas suele estar en condi ciones anaerobias. Estas lagunas con cargas orgánicas bajas reciben el nombre de facultativas. Cuando la carga orgánica es muy grande, la DBO excede la producción de oxígeno de las algas (y de la aeración superficial) y la laguna se torna totalmente anaerobia. Conviene que las lagunas de estabilización trabajen bajo condiciones definidamente facultativas o definidamente anaeróbicas ya que el oxígeno es un tóxico para las bacterias anaerobias que realizan el proceso de degradación de la materia orgánica; y la falta de oxígeno hace que desaparezcan las bacterias aerobias que realizan este proceso. Por consiguiente, se recomienda diseñar las lagunas facultativas (a 20 °C) para cargas orgánicas menores de 300 Kg DBO/ha/día y las lagunas anaerobias para cargas orgánic as mayores de 1000 Kg de DBO/ha/día. Cuando la carga orgánica aplicada se encuentra entre los dos límites antes mencionados se pueden presentar problemas con malos olores y la presencia de bacterias formadoras de sulfuros. El límite de carga para las lagunas facultativas aumenta con la temperatura.Las lagunas de estabilización con una gran relación largo ancho (Largo/Ancho >5) reciben el nombre de lagunas alargadas. Estas lagunas son muy eficientes en la remoción de carga orgánica y bacterias patógenas, pero deben ser precedidas por dos o más lagunas primarias que retengan los sólidos sedimentables. Estas lagunas primarias evitan tener que sacar de operación a las lagunas alargadas para llevar a cabo la remoción periódica de lodos. Las lagunas que reciben agua residual cruda son lagunas primarias. Las lagunas que reciben el efluente de una primaria se llaman secundarias; y así sucesivamente las lagunas de estabilización se pueden llamar terciarias, cuaternarias, quintenarias, etc. A las lagunas de grado más allá del segundo también se les suele llamar lagunas de acabado, maduración o pulimento. Siempre se deben construir por lo menos dos lagunas primarias (en paralelo) con el objeto de que una se mantenga en operación mientras se hace la limpieza de los lodos de la otra. El proceso que se lleva a cabo en las lagunas facultativas es diferente del que ocurre en las lagunas anaerobias. Sin embargo, ambos son útiles y efectivos en la estabilización de la materia orgánica y en la reducción de los organismos patógenos originalmente presentes en as aguas residuales. La estabilización de la materia orgánica se lleva a cabo a través de la acción de organismos aerobios cuando hay oxígeno disuelto; éstos últimos aprovechan el oxígeno originalmente presente en las moléculas de la mater ia orgánica que están degradando. Existen algunos organismos con capacidad de adaptación a ambos ambientes, los cuales reciben el nombre de facultativos. La estabilización de la materia orgánica presente en las aguas residuales se puede realizar en forma aeróbica o anaeróbica según haya o no la presencia de oxígeno disuelto en el agua.  PROCESO AEROBIO El proceso aerobio se caracteriza porque la descomposición de la materia orgánica se lleva a cabo en una masa de agua que contiene oxígeno disuelto. En este proceso, en el que participan bacterias aerobias o facultativas, se originan compuestos inorgánicos que sirven de nutrientes a las algas, las cuales a su vez producen más oxígeno que facilita la actividad de las bacterias aerobias. Existe pues una simbiosis entre bacteria y algas que facilita la estabilización aerobia de la materia orgánica. El desdoblamiento de la materia orgánica se lleva a cabo con intervención de enzimas producidas por las bacterias en sus procesos vitales. A través de estos procesos bioquímicos en presencia de oxígeno disuelto las bacterias logran el desdoblamiento aerobio de la materia orgánica. El oxígeno consumido es parte de la demanda bioquímica de oxígeno (DBO).Las algas logran, a través de procesos inversos a los anteriores, en presencia de la luz solar, utilizar los compuestos inorgánicos para sintetizar materia orgánica que incorporan a su protoplasma. A través de este proceso, conocido como fotosíntesis, las algas generan gran cantidad de oxígeno disuelto. Como resultado final, en el estrado aerobio de una laguna facultativa se lleva a cabo la estabilización de la materia orgánica putrescible (muerta) originalmente presente en las aguas residuales, la cual se transforma en materia orgánica (viva) incorporada protoplasma de las algas. En las lagunas de estabilización el agua residual no se clarifica como en las plantas de tratamiento convencional pero se estabiliza, pues las algas son materia orgánica viva que no ejerce DBO.  PROCESO ANAEROBIO Las reacciones anaerobias son más lentas y los productos de las pueden originar malos olores. Las condiciones anaerobias se establecen cuando el consumo de oxígeno disuelto es mayor que la incorporación del mismo a la masa de agua por la fotosíntesis de las algas y el oxígeno disuelto y que la laguna se torne de color gris oscuro. El desdoblamiento de la materia orgánica sucede en una forma más lenta y se generan malos olores por la producción de sulfuro de hidrógeno. En la etapa final del proceso anaerobio se presentan las cinéticas conocidas como acetogénica y metanogénica.  ROL DEL PLANKTON EN LAS LAGUNAS DE ESTABILIZACION FACUTATIVAS Las algas tienen un rol sumamente importante en el proceso biológico de las lagunas de estabilización, pues son los organismos responsables de la producción de oxígeno molecular, elemento vital para las bacterias que participan en la oxidación bioquímica de la materia orgánica. La presencia de las algas en niveles adecuados, asegura el funcionamiento de la fase aerobia de las lagunas, cuando se pierde el equilibrio ecológico se corre con el riesgo de producir el predominio de la fase anaerobia, que trae como consecuencia una reducción de la eficiencia del sistema. En las lagunas primarias facultativas predominan las algas flageladas, (Euglena, Pyrobotrys, Chlamydomonas), en lagunas secundarias se incrementa el número de géneros y la densidad de algas, predominan las algas verdes (Chlorella, Scenedesmmus).En lagunas terciarias se presenta un mayor número de géneros de algas, entre las cuales predominan las algas verdes (Chlorella, Scenedesmus, Ankistrodesmus, Microactiniums).En muchos casos, se ha observado la predominancia de algas verdes-azules (Rao, 1980, Uhlman 1971). La predominancia de géneros varía según la temperatura estacional. El zooplackton de las lagunas de estabilización está conformado por cuatro Grupos Mayores; ciliados, rotíferos, copédodos, y cladoceros. Ocasionalmente se presentan amebas de vida libre, ostracodos, ácaros, turbelarios, larvas y pupas de dípteros. La mayoría de individuos de estos grupos sólo están en las lagunas de estabilización durante algún estadio evolutivo, raramente tienen importancia cualitativa. Los rotíferos predominan durante los meses de verano, dentro de este grupo, el género Brachionus se presenta con mayor frecuencia, siendo el más resistente aún en condiciones extremas. Cuando el número de rotíferos se incrementa a niveles superiores a los normales se observa un efecto negativo en la calidad del agua, ocasionando un aumento de los niveles de amonio, ortofosfato soluble, nitratos, y nitritos. Asimismo, la presencia de un gran número de estos organismos, que consumen algas, disminuye la cantidad de oxígeno disuelto en el agua a niveles de riesgo. Los géneros predominantes de cladoceros son Moína y Daphnia y en los ciliados son Pleuronema y Vorticella. BIBLIOGRAFIA Aramburú, P.; 1994 Las diarreas y la protección de alimentos. Revista INPPAZ, 1 (2), 1-3.  Bartone, C., Castro de Esparza, M.L., Mayo, C. de Rojas, O., Vitko, T,; 1985 San Juan Lagoons Supporting aquaculture; Integrated Recovery Project. The World Bank, Washington, D.C., CEPIS/PAHO, Lima.  Binnie, Y; 1971. Informe sobre la disposición de aguas servidas de la gran Lima. Londres, Gran Bretaña.  Buras, N., Duek, L., Niv, S., Hepher, B., Sandbank, E.; 1987 Microbiological aspects of fish grown in treated wastewater. Water Research, 21 (1): 1-10.  Castro de Esparza, M.L., León, G.; 1992 Estudio Preliminar de la Remoción de Vibrio cholerae en Lagunas de Estabilización - San Juan de Miraflores, Lima - Perú. Informe Técnico 387, CEPIS, Lima.  Castro de Esparza, M.L., Sáenz Forero, Rodolfo; 1990 Evaluación de los Riesgos para la Salud por el Uso de las Aguas Residuales en Agricultura. CEPIS, Lima.  Craig, N & Faust, E; 1970. Clinical Parasitology. E.E Faust, P.F, Russel and R. Lea. Philadelphia.  Graham, H.; 1981. The Land Aplication of Sewage Sludge Report No 110. Ontario, Canada.  Instituto Mexicano de Tecnología del Agua; 1993 Memoria del Taller Regional para las Américas sobre Aspectos de Salud. Agricultura y Ambiente Vinculados al Uso de Aguas Residuales, Jiutepec, Morelos, México, 8 al 12 de noviembre 1993.  Liebman; 1965. Advances in Water Pollution Research. DE. J.K. Bears, Pergamon Press. Oxford.  OMS, 1989 Directrices Sanitarias sobre el Uso de Aguas Residuales en Agricultura y Acuicultura. Ginebra, Serie de Informes Técnicos. 778.  Moscoso, J., Florez, A.; 1991 Reuso en Acuicultura de las Aguas Residuales Tratadas en las Lagunas de Estabilización de San Juan, Sección I: Resumen Ejecutivo. CEPIS, Lima.  Moscoso, J., León, G., Gil, E.; 1991 Reuso en Acuicultura de las Aguas Residuales Tratadas en Lagunas de San Juan, Sección II: Tratamiento de las Aguas Residuales y Aspectos Sanitarios. CEPIS, Lima.
Lagunas De Estabilizacion
Lagunas De Estabilizacion
Lagunas De Estabilizacion
Lagunas De Estabilizacion
Lagunas De Estabilizacion

Más contenido relacionado

La actualidad más candente

Lecho bacteriano.pdf
Lecho bacteriano.pdfLecho bacteriano.pdf
Lecho bacteriano.pdf
EstebanGonzalez556002
 
Natural treatment system
Natural treatment systemNatural treatment system
Natural treatment system
Jenson Samraj
 
Diseño de planta de tratamiento lagunas anae facul madur (1)
Diseño de planta de tratamiento   lagunas anae facul madur (1)Diseño de planta de tratamiento   lagunas anae facul madur (1)
Diseño de planta de tratamiento lagunas anae facul madur (1)
GUEVARABERNARDOARIAN
 
Unidad 4-captacion
Unidad 4-captacionUnidad 4-captacion
Unidad 4-captacion
Luis Miguel Reyes
 
diseño y calculo de letrinas, según normas venezolanas
diseño y calculo de letrinas, según normas venezolanas diseño y calculo de letrinas, según normas venezolanas
diseño y calculo de letrinas, según normas venezolanas
yohanet
 
Pozo septico
Pozo septicoPozo septico
Pozo septico
eugeniolopez70
 
EL PROCESO DE DESARENADO
EL PROCESO DE DESARENADOEL PROCESO DE DESARENADO
EL PROCESO DE DESARENADO
Emily Daniela Mendoza Carlos
 
INFORME DE EVALUACION HIDRAULICA DE UN POZO.pdf
INFORME DE EVALUACION HIDRAULICA DE UN POZO.pdfINFORME DE EVALUACION HIDRAULICA DE UN POZO.pdf
INFORME DE EVALUACION HIDRAULICA DE UN POZO.pdf
LuisCondoriLuca
 
tratamiento de aguas residuales mediante humedales artificiales
 tratamiento de aguas residuales mediante humedales artificiales tratamiento de aguas residuales mediante humedales artificiales
tratamiento de aguas residuales mediante humedales artificiales
Dicson Campos
 
Tanque imhoff
Tanque imhoffTanque imhoff
Baños moviles, letrinas, cisternas y tinacos
Baños moviles, letrinas, cisternas y tinacosBaños moviles, letrinas, cisternas y tinacos
Baños moviles, letrinas, cisternas y tinacos
Jose Antonio Estevez Tejeda
 
Sistema tratamiento a base de pozo septico
Sistema tratamiento a base de pozo septicoSistema tratamiento a base de pozo septico
Sistema tratamiento a base de pozo septico
Carlos Arias
 
MANUAL DE OPERACIÓN PLANTA DE TRATAMIENTO DE AGUAS RESIDUALES.pdf
MANUAL DE OPERACIÓN PLANTA DE TRATAMIENTO DE AGUAS RESIDUALES.pdfMANUAL DE OPERACIÓN PLANTA DE TRATAMIENTO DE AGUAS RESIDUALES.pdf
MANUAL DE OPERACIÓN PLANTA DE TRATAMIENTO DE AGUAS RESIDUALES.pdf
Ingenieria en Aguas SAS
 
camara de carga central hidroeléctrica de pasada
camara de carga central hidroeléctrica de pasada camara de carga central hidroeléctrica de pasada
camara de carga central hidroeléctrica de pasada
Angel Fuentealba
 
Sistemas aerobios y anaerobios.
Sistemas aerobios y anaerobios.Sistemas aerobios y anaerobios.
Sistemas aerobios y anaerobios.
Cesar Renteria
 
Waste water treatment
Waste water treatmentWaste water treatment
Waste water treatment
Divya Goel
 
Tratamiento de aguas domesticas expo
Tratamiento de aguas domesticas expoTratamiento de aguas domesticas expo
Tratamiento de aguas domesticas expoKarla I. Molar Morgan
 
Adriana electiva 5 letrinas
Adriana electiva 5 letrinasAdriana electiva 5 letrinas
Adriana electiva 5 letrinas
Adriana Lopez
 
Modulo vi relleno sanitario
Modulo vi  relleno sanitarioModulo vi  relleno sanitario
Modulo vi relleno sanitarioVanessa Valdés
 

La actualidad más candente (20)

Lecho bacteriano.pdf
Lecho bacteriano.pdfLecho bacteriano.pdf
Lecho bacteriano.pdf
 
Natural treatment system
Natural treatment systemNatural treatment system
Natural treatment system
 
Diseño de planta de tratamiento lagunas anae facul madur (1)
Diseño de planta de tratamiento   lagunas anae facul madur (1)Diseño de planta de tratamiento   lagunas anae facul madur (1)
Diseño de planta de tratamiento lagunas anae facul madur (1)
 
Unidad 4-captacion
Unidad 4-captacionUnidad 4-captacion
Unidad 4-captacion
 
diseño y calculo de letrinas, según normas venezolanas
diseño y calculo de letrinas, según normas venezolanas diseño y calculo de letrinas, según normas venezolanas
diseño y calculo de letrinas, según normas venezolanas
 
Pozo septico
Pozo septicoPozo septico
Pozo septico
 
EL PROCESO DE DESARENADO
EL PROCESO DE DESARENADOEL PROCESO DE DESARENADO
EL PROCESO DE DESARENADO
 
INFORME DE EVALUACION HIDRAULICA DE UN POZO.pdf
INFORME DE EVALUACION HIDRAULICA DE UN POZO.pdfINFORME DE EVALUACION HIDRAULICA DE UN POZO.pdf
INFORME DE EVALUACION HIDRAULICA DE UN POZO.pdf
 
tratamiento de aguas residuales mediante humedales artificiales
 tratamiento de aguas residuales mediante humedales artificiales tratamiento de aguas residuales mediante humedales artificiales
tratamiento de aguas residuales mediante humedales artificiales
 
Diseño de desarenador
Diseño de desarenadorDiseño de desarenador
Diseño de desarenador
 
Tanque imhoff
Tanque imhoffTanque imhoff
Tanque imhoff
 
Baños moviles, letrinas, cisternas y tinacos
Baños moviles, letrinas, cisternas y tinacosBaños moviles, letrinas, cisternas y tinacos
Baños moviles, letrinas, cisternas y tinacos
 
Sistema tratamiento a base de pozo septico
Sistema tratamiento a base de pozo septicoSistema tratamiento a base de pozo septico
Sistema tratamiento a base de pozo septico
 
MANUAL DE OPERACIÓN PLANTA DE TRATAMIENTO DE AGUAS RESIDUALES.pdf
MANUAL DE OPERACIÓN PLANTA DE TRATAMIENTO DE AGUAS RESIDUALES.pdfMANUAL DE OPERACIÓN PLANTA DE TRATAMIENTO DE AGUAS RESIDUALES.pdf
MANUAL DE OPERACIÓN PLANTA DE TRATAMIENTO DE AGUAS RESIDUALES.pdf
 
camara de carga central hidroeléctrica de pasada
camara de carga central hidroeléctrica de pasada camara de carga central hidroeléctrica de pasada
camara de carga central hidroeléctrica de pasada
 
Sistemas aerobios y anaerobios.
Sistemas aerobios y anaerobios.Sistemas aerobios y anaerobios.
Sistemas aerobios y anaerobios.
 
Waste water treatment
Waste water treatmentWaste water treatment
Waste water treatment
 
Tratamiento de aguas domesticas expo
Tratamiento de aguas domesticas expoTratamiento de aguas domesticas expo
Tratamiento de aguas domesticas expo
 
Adriana electiva 5 letrinas
Adriana electiva 5 letrinasAdriana electiva 5 letrinas
Adriana electiva 5 letrinas
 
Modulo vi relleno sanitario
Modulo vi  relleno sanitarioModulo vi  relleno sanitario
Modulo vi relleno sanitario
 

Similar a Lagunas De Estabilizacion

Introduccion de lagunas de estabilizacion
Introduccion de lagunas de estabilizacionIntroduccion de lagunas de estabilizacion
Introduccion de lagunas de estabilizacionHansen Rosales Palacios
 
EQUIPO EXPOSICION TEMA 1.pptx
EQUIPO EXPOSICION TEMA 1.pptxEQUIPO EXPOSICION TEMA 1.pptx
EQUIPO EXPOSICION TEMA 1.pptx
alexis987275
 
Tratamiento de aguas residuales
Tratamiento de aguas residualesTratamiento de aguas residuales
Tratamiento de aguas residuales
EnriqueRussbelFlores
 
Potabilización del agua
Potabilización del aguaPotabilización del agua
Potabilización del aguaJessica Guardia
 
Osmosis inversa
Osmosis inversaOsmosis inversa
Quimica proyecto
Quimica proyectoQuimica proyecto
Quimica proyecto
Franklin Tuco Villavicencio
 
Galerías filtrantes (2da ed.)
Galerías filtrantes (2da ed.)Galerías filtrantes (2da ed.)
Galerías filtrantes (2da ed.)
COLPOS
 
Lagunas de estabilizacion
Lagunas de estabilizacionLagunas de estabilizacion
Lagunas de estabilizaciondorith perales
 
192 13 controldeaguassuperficialesysubterraneas
192 13 controldeaguassuperficialesysubterraneas192 13 controldeaguassuperficialesysubterraneas
192 13 controldeaguassuperficialesysubterraneas
raineiro sanchez cuzcano
 
Procesos biológicos aplicados al tratamiento de aguas residuales
Procesos biológicos aplicados al tratamiento de aguas residualesProcesos biológicos aplicados al tratamiento de aguas residuales
Procesos biológicos aplicados al tratamiento de aguas residualesgjra1982
 
Pozos artesianos- ABASTECIMIENTO DE AGUA
Pozos artesianos- ABASTECIMIENTO DE AGUAPozos artesianos- ABASTECIMIENTO DE AGUA
Pozos artesianos- ABASTECIMIENTO DE AGUA
Adriano Arellano
 
Tratamiento terciario plantas residuales
Tratamiento terciario plantas residuales Tratamiento terciario plantas residuales
Tratamiento terciario plantas residuales
wilson1116
 
Planta de sediemntacion
Planta de  sediemntacionPlanta de  sediemntacion
Planta de sediemntacionMarco Rojas
 
Unidad 2.pptx
Unidad 2.pptxUnidad 2.pptx
Unidad 2.pptx
alexis987275
 
Ingenieria sanitaria a4_capitulo_06_tratamiento_de_aguas
Ingenieria sanitaria a4_capitulo_06_tratamiento_de_aguasIngenieria sanitaria a4_capitulo_06_tratamiento_de_aguas
Ingenieria sanitaria a4_capitulo_06_tratamiento_de_aguas
Roly Ivan Bautista Nuñez
 
Bocatomas EXPO GRUPO 4.pptx
Bocatomas EXPO GRUPO 4.pptxBocatomas EXPO GRUPO 4.pptx
Bocatomas EXPO GRUPO 4.pptx
AnthonyZelada4
 
Yactzice tanque septico electiva 5
Yactzice tanque septico electiva 5Yactzice tanque septico electiva 5
Yactzice tanque septico electiva 5
Yacsizet Rojas
 
Sistemas agua
Sistemas aguaSistemas agua
Sistemas agua
Natalia Lopez
 
Acueductos Alcantarillados II Tratamiento Terciario
Acueductos Alcantarillados II Tratamiento TerciarioAcueductos Alcantarillados II Tratamiento Terciario
Acueductos Alcantarillados II Tratamiento Terciario
Robert Sanchez
 
Proceso de potabilizacion o riana viloria
Proceso de potabilizacion o riana viloriaProceso de potabilizacion o riana viloria
Proceso de potabilizacion o riana viloria
OrianaV95
 

Similar a Lagunas De Estabilizacion (20)

Introduccion de lagunas de estabilizacion
Introduccion de lagunas de estabilizacionIntroduccion de lagunas de estabilizacion
Introduccion de lagunas de estabilizacion
 
EQUIPO EXPOSICION TEMA 1.pptx
EQUIPO EXPOSICION TEMA 1.pptxEQUIPO EXPOSICION TEMA 1.pptx
EQUIPO EXPOSICION TEMA 1.pptx
 
Tratamiento de aguas residuales
Tratamiento de aguas residualesTratamiento de aguas residuales
Tratamiento de aguas residuales
 
Potabilización del agua
Potabilización del aguaPotabilización del agua
Potabilización del agua
 
Osmosis inversa
Osmosis inversaOsmosis inversa
Osmosis inversa
 
Quimica proyecto
Quimica proyectoQuimica proyecto
Quimica proyecto
 
Galerías filtrantes (2da ed.)
Galerías filtrantes (2da ed.)Galerías filtrantes (2da ed.)
Galerías filtrantes (2da ed.)
 
Lagunas de estabilizacion
Lagunas de estabilizacionLagunas de estabilizacion
Lagunas de estabilizacion
 
192 13 controldeaguassuperficialesysubterraneas
192 13 controldeaguassuperficialesysubterraneas192 13 controldeaguassuperficialesysubterraneas
192 13 controldeaguassuperficialesysubterraneas
 
Procesos biológicos aplicados al tratamiento de aguas residuales
Procesos biológicos aplicados al tratamiento de aguas residualesProcesos biológicos aplicados al tratamiento de aguas residuales
Procesos biológicos aplicados al tratamiento de aguas residuales
 
Pozos artesianos- ABASTECIMIENTO DE AGUA
Pozos artesianos- ABASTECIMIENTO DE AGUAPozos artesianos- ABASTECIMIENTO DE AGUA
Pozos artesianos- ABASTECIMIENTO DE AGUA
 
Tratamiento terciario plantas residuales
Tratamiento terciario plantas residuales Tratamiento terciario plantas residuales
Tratamiento terciario plantas residuales
 
Planta de sediemntacion
Planta de  sediemntacionPlanta de  sediemntacion
Planta de sediemntacion
 
Unidad 2.pptx
Unidad 2.pptxUnidad 2.pptx
Unidad 2.pptx
 
Ingenieria sanitaria a4_capitulo_06_tratamiento_de_aguas
Ingenieria sanitaria a4_capitulo_06_tratamiento_de_aguasIngenieria sanitaria a4_capitulo_06_tratamiento_de_aguas
Ingenieria sanitaria a4_capitulo_06_tratamiento_de_aguas
 
Bocatomas EXPO GRUPO 4.pptx
Bocatomas EXPO GRUPO 4.pptxBocatomas EXPO GRUPO 4.pptx
Bocatomas EXPO GRUPO 4.pptx
 
Yactzice tanque septico electiva 5
Yactzice tanque septico electiva 5Yactzice tanque septico electiva 5
Yactzice tanque septico electiva 5
 
Sistemas agua
Sistemas aguaSistemas agua
Sistemas agua
 
Acueductos Alcantarillados II Tratamiento Terciario
Acueductos Alcantarillados II Tratamiento TerciarioAcueductos Alcantarillados II Tratamiento Terciario
Acueductos Alcantarillados II Tratamiento Terciario
 
Proceso de potabilizacion o riana viloria
Proceso de potabilizacion o riana viloriaProceso de potabilizacion o riana viloria
Proceso de potabilizacion o riana viloria
 

Último

Mario Mendoza Marichal Perspectivas Empresariales para México 2024 .pdf
Mario Mendoza Marichal  Perspectivas Empresariales para México 2024 .pdfMario Mendoza Marichal  Perspectivas Empresariales para México 2024 .pdf
Mario Mendoza Marichal Perspectivas Empresariales para México 2024 .pdf
Mario Mendoza Marichal
 
niif 15 ejemplos esenciales para su entendimiento
niif 15 ejemplos esenciales para su entendimientoniif 15 ejemplos esenciales para su entendimiento
niif 15 ejemplos esenciales para su entendimiento
crimaldonado
 
U1. C2. TIPOS DE INSTITUCIONES FINANCIERAS.pptx
U1. C2. TIPOS DE INSTITUCIONES FINANCIERAS.pptxU1. C2. TIPOS DE INSTITUCIONES FINANCIERAS.pptx
U1. C2. TIPOS DE INSTITUCIONES FINANCIERAS.pptx
fernfre15
 
LINEA DE CARRERA Y MODELO DE PLAN DE CARRERA
LINEA DE CARRERA Y MODELO DE PLAN DE CARRERALINEA DE CARRERA Y MODELO DE PLAN DE CARRERA
LINEA DE CARRERA Y MODELO DE PLAN DE CARRERA
Mario Cesar Huallanca Contreras
 
MODELO CONS1 NOTA1.pptx.....................................................
MODELO CONS1 NOTA1.pptx.....................................................MODELO CONS1 NOTA1.pptx.....................................................
MODELO CONS1 NOTA1.pptx.....................................................
75254036
 
SESION N° 01.pptx GESTION PROYECTOS UCV 2024
SESION N° 01.pptx GESTION PROYECTOS UCV 2024SESION N° 01.pptx GESTION PROYECTOS UCV 2024
SESION N° 01.pptx GESTION PROYECTOS UCV 2024
auyawilly
 
El Pitch Deck de Facebook que Facebook utilizó para levantar su ronda de semi...
El Pitch Deck de Facebook que Facebook utilizó para levantar su ronda de semi...El Pitch Deck de Facebook que Facebook utilizó para levantar su ronda de semi...
El Pitch Deck de Facebook que Facebook utilizó para levantar su ronda de semi...
dntstartups
 
MICRO BIT, LUCES Y CÓDIGOS. SERGIO LOZANO
MICRO BIT, LUCES Y CÓDIGOS. SERGIO LOZANOMICRO BIT, LUCES Y CÓDIGOS. SERGIO LOZANO
MICRO BIT, LUCES Y CÓDIGOS. SERGIO LOZANO
sergioandreslozanogi
 
Karla_Meza_Catedra_Morazanica_TEC18NOV_CAP_3.pptx
Karla_Meza_Catedra_Morazanica_TEC18NOV_CAP_3.pptxKarla_Meza_Catedra_Morazanica_TEC18NOV_CAP_3.pptx
Karla_Meza_Catedra_Morazanica_TEC18NOV_CAP_3.pptx
LibreriaOrellana1
 
capitulo-5-libro-contabilidad-costo-volumen-utilidad.pdf
capitulo-5-libro-contabilidad-costo-volumen-utilidad.pdfcapitulo-5-libro-contabilidad-costo-volumen-utilidad.pdf
capitulo-5-libro-contabilidad-costo-volumen-utilidad.pdf
cessarvargass23
 
Solicitud de cambio de un producto, a nivel empresarial.
Solicitud de cambio de un producto, a nivel empresarial.Solicitud de cambio de un producto, a nivel empresarial.
Solicitud de cambio de un producto, a nivel empresarial.
femayormisleidys
 
SMEs as Backbone of the Economies, INCAE Business Review 2010
SMEs as Backbone of the Economies, INCAE Business Review 2010SMEs as Backbone of the Economies, INCAE Business Review 2010
SMEs as Backbone of the Economies, INCAE Business Review 2010
Anna Lucia Alfaro Dardón - Ana Lucía Alfaro
 
CATALOGO 2024 ABRATOOLS - ABRASIVOS Y MAQUINTARIA
CATALOGO 2024 ABRATOOLS - ABRASIVOS Y MAQUINTARIACATALOGO 2024 ABRATOOLS - ABRASIVOS Y MAQUINTARIA
CATALOGO 2024 ABRATOOLS - ABRASIVOS Y MAQUINTARIA
Fernando Tellado
 
Presentación Óxido Cuproso Nordox 75 WG.pptx
Presentación Óxido Cuproso Nordox 75 WG.pptxPresentación Óxido Cuproso Nordox 75 WG.pptx
Presentación Óxido Cuproso Nordox 75 WG.pptx
endophytsanidad
 
STEEPLE/PESTEL - Análisis de cada Factor
STEEPLE/PESTEL - Análisis de cada FactorSTEEPLE/PESTEL - Análisis de cada Factor
STEEPLE/PESTEL - Análisis de cada Factor
bauldecuentosec
 
DDF Luis GIl Diagrama de flujo (1).pptx
DDF Luis GIl Diagrama de flujo  (1).pptxDDF Luis GIl Diagrama de flujo  (1).pptx
DDF Luis GIl Diagrama de flujo (1).pptx
giltoledoluis123
 
Normas internacionales de informacion financiera16 Arrendamientos.pdf
Normas internacionales de informacion financiera16 Arrendamientos.pdfNormas internacionales de informacion financiera16 Arrendamientos.pdf
Normas internacionales de informacion financiera16 Arrendamientos.pdf
MaraDosil
 
Informe del banco centra de Honduras trabajo de estudiantes
Informe del banco centra de Honduras trabajo de estudiantesInforme del banco centra de Honduras trabajo de estudiantes
Informe del banco centra de Honduras trabajo de estudiantes
LibreriaOrellana1
 
VISIÓN MISIÓN VALORES EMPRESARIALES EN EL
VISIÓN MISIÓN VALORES EMPRESARIALES EN ELVISIÓN MISIÓN VALORES EMPRESARIALES EN EL
VISIÓN MISIÓN VALORES EMPRESARIALES EN EL
LilianBaosMedina
 
SESIaN N° 03.pptx GESTION PROYECTOS UCV 2024
SESIaN N° 03.pptx GESTION PROYECTOS UCV 2024SESIaN N° 03.pptx GESTION PROYECTOS UCV 2024
SESIaN N° 03.pptx GESTION PROYECTOS UCV 2024
auyawilly
 

Último (20)

Mario Mendoza Marichal Perspectivas Empresariales para México 2024 .pdf
Mario Mendoza Marichal  Perspectivas Empresariales para México 2024 .pdfMario Mendoza Marichal  Perspectivas Empresariales para México 2024 .pdf
Mario Mendoza Marichal Perspectivas Empresariales para México 2024 .pdf
 
niif 15 ejemplos esenciales para su entendimiento
niif 15 ejemplos esenciales para su entendimientoniif 15 ejemplos esenciales para su entendimiento
niif 15 ejemplos esenciales para su entendimiento
 
U1. C2. TIPOS DE INSTITUCIONES FINANCIERAS.pptx
U1. C2. TIPOS DE INSTITUCIONES FINANCIERAS.pptxU1. C2. TIPOS DE INSTITUCIONES FINANCIERAS.pptx
U1. C2. TIPOS DE INSTITUCIONES FINANCIERAS.pptx
 
LINEA DE CARRERA Y MODELO DE PLAN DE CARRERA
LINEA DE CARRERA Y MODELO DE PLAN DE CARRERALINEA DE CARRERA Y MODELO DE PLAN DE CARRERA
LINEA DE CARRERA Y MODELO DE PLAN DE CARRERA
 
MODELO CONS1 NOTA1.pptx.....................................................
MODELO CONS1 NOTA1.pptx.....................................................MODELO CONS1 NOTA1.pptx.....................................................
MODELO CONS1 NOTA1.pptx.....................................................
 
SESION N° 01.pptx GESTION PROYECTOS UCV 2024
SESION N° 01.pptx GESTION PROYECTOS UCV 2024SESION N° 01.pptx GESTION PROYECTOS UCV 2024
SESION N° 01.pptx GESTION PROYECTOS UCV 2024
 
El Pitch Deck de Facebook que Facebook utilizó para levantar su ronda de semi...
El Pitch Deck de Facebook que Facebook utilizó para levantar su ronda de semi...El Pitch Deck de Facebook que Facebook utilizó para levantar su ronda de semi...
El Pitch Deck de Facebook que Facebook utilizó para levantar su ronda de semi...
 
MICRO BIT, LUCES Y CÓDIGOS. SERGIO LOZANO
MICRO BIT, LUCES Y CÓDIGOS. SERGIO LOZANOMICRO BIT, LUCES Y CÓDIGOS. SERGIO LOZANO
MICRO BIT, LUCES Y CÓDIGOS. SERGIO LOZANO
 
Karla_Meza_Catedra_Morazanica_TEC18NOV_CAP_3.pptx
Karla_Meza_Catedra_Morazanica_TEC18NOV_CAP_3.pptxKarla_Meza_Catedra_Morazanica_TEC18NOV_CAP_3.pptx
Karla_Meza_Catedra_Morazanica_TEC18NOV_CAP_3.pptx
 
capitulo-5-libro-contabilidad-costo-volumen-utilidad.pdf
capitulo-5-libro-contabilidad-costo-volumen-utilidad.pdfcapitulo-5-libro-contabilidad-costo-volumen-utilidad.pdf
capitulo-5-libro-contabilidad-costo-volumen-utilidad.pdf
 
Solicitud de cambio de un producto, a nivel empresarial.
Solicitud de cambio de un producto, a nivel empresarial.Solicitud de cambio de un producto, a nivel empresarial.
Solicitud de cambio de un producto, a nivel empresarial.
 
SMEs as Backbone of the Economies, INCAE Business Review 2010
SMEs as Backbone of the Economies, INCAE Business Review 2010SMEs as Backbone of the Economies, INCAE Business Review 2010
SMEs as Backbone of the Economies, INCAE Business Review 2010
 
CATALOGO 2024 ABRATOOLS - ABRASIVOS Y MAQUINTARIA
CATALOGO 2024 ABRATOOLS - ABRASIVOS Y MAQUINTARIACATALOGO 2024 ABRATOOLS - ABRASIVOS Y MAQUINTARIA
CATALOGO 2024 ABRATOOLS - ABRASIVOS Y MAQUINTARIA
 
Presentación Óxido Cuproso Nordox 75 WG.pptx
Presentación Óxido Cuproso Nordox 75 WG.pptxPresentación Óxido Cuproso Nordox 75 WG.pptx
Presentación Óxido Cuproso Nordox 75 WG.pptx
 
STEEPLE/PESTEL - Análisis de cada Factor
STEEPLE/PESTEL - Análisis de cada FactorSTEEPLE/PESTEL - Análisis de cada Factor
STEEPLE/PESTEL - Análisis de cada Factor
 
DDF Luis GIl Diagrama de flujo (1).pptx
DDF Luis GIl Diagrama de flujo  (1).pptxDDF Luis GIl Diagrama de flujo  (1).pptx
DDF Luis GIl Diagrama de flujo (1).pptx
 
Normas internacionales de informacion financiera16 Arrendamientos.pdf
Normas internacionales de informacion financiera16 Arrendamientos.pdfNormas internacionales de informacion financiera16 Arrendamientos.pdf
Normas internacionales de informacion financiera16 Arrendamientos.pdf
 
Informe del banco centra de Honduras trabajo de estudiantes
Informe del banco centra de Honduras trabajo de estudiantesInforme del banco centra de Honduras trabajo de estudiantes
Informe del banco centra de Honduras trabajo de estudiantes
 
VISIÓN MISIÓN VALORES EMPRESARIALES EN EL
VISIÓN MISIÓN VALORES EMPRESARIALES EN ELVISIÓN MISIÓN VALORES EMPRESARIALES EN EL
VISIÓN MISIÓN VALORES EMPRESARIALES EN EL
 
SESIaN N° 03.pptx GESTION PROYECTOS UCV 2024
SESIaN N° 03.pptx GESTION PROYECTOS UCV 2024SESIaN N° 03.pptx GESTION PROYECTOS UCV 2024
SESIaN N° 03.pptx GESTION PROYECTOS UCV 2024
 

Lagunas De Estabilizacion

  • 1. LAGUNA DE ESTABILIZACION ANTECEDENTES El diseño de lagunas consiste no solamente en determinar la superficie y profundidad sino, particularmente en resolver un sinnúmero de detalles de construcción y especificaciones que asegurarán un funcionamiento y estabilidad adecuado de la unidad a lo largo de su vida útil. Muchos informes acerca de lagunas existentes demuestran una serie de defectos en su funcionamiento, averías en las estructuras y molestias de una pobre ingeniería.Un buen diseño minimiza malos funcionamientos tales como manchas anaeróbicas en una laguna facultativa, carencia de efluente por infiltración excesiva hacia el fondo, diques erosionados, crecimiento excesivo de maleza, proliferación resultantes de mosquitos, débil efecto de mezcla inducido por el viento, acumulación de sedimentos alrededor de la entrada y otras penosas circunstancias. Además, una buena ingeniería trae como consecuencia, casi siempre, la reducción en los costos por la minimización en el revestimiento y la optimización de la excavación y el relleno. Hay muchas buenas razones para no descuidar la ingeniería y detalles de construcción. Estructuras de ingresos Existe bastante controversia en cuanto si la tubería de entrada a una laguna debe ir sumergida o sobre el nivel del agua. Los argumentos a favor de las tuberías sumergidas son su bajo costo y sencillos métodos de construcción. Los argumentos en su contra son: el asentamiento de lodo en caudales bajos con la consecuente obstrucción de la tubería y la aparición de material asentado alrededor de la desembocadura. Los argumentos a favor de las tuberías elevadas son la ausencia de obstrucciones con caudales bajos porque se aseguran velocidades mínimas mediante secciones de flujo parcial, mientras que los canales sumergidos están siempre llenos. El efecto de mezcla y las condiciones de dispersión del afluente en el cuerpo de agua se aseguran debido a la turbulencia originada por la caída del afluente. El control visual de los caudales aproximados es posible desde cualquier punto de la coronación del dique. Los argumentos en contra son: costos más altos debido a los soportes para las tuberías (por ejemplo pilares de albañilería) y exposición al vandalismo. Las tuberías de entrada, tanto sumergidas como elevadas, deberán distar de los bordes. En lagunas cuadradas la tubería de entrada generalmente termina en el centro. En lagunas rectangulares termina en un punto de la línea central más larga, equidistante de tres de los lados. Esto evita que las aguas crudas lleguen hasta los bordes. Algunos autores recomiendan tuberías de entrada sumergidas terminando en una pequeña pieza vertical apuntada hacia arriba a fin de que la boca no tome contacto con el material sedimentado. Esta práctica ofrece mayor riesgo de obstrucción. Otros indican que es preferible colocar la tubería al nivel del suelo, prolongándola unos 2 m o más por encima de una depresión circular, de 0.5 m de profundidad y 10 m o más de diámetro, donde se acumulará la arena por muchos años sin interferir con la boca del canal. Con frecuencia las tuberías de entrada descargan sobre una losa de concreto de aproximadamente 1 m de diámetro cuando van sumergidas y en el caso ingresos sobre el nivel del agua descarga sobre un revestimiento de piedra de aproximadamente 1 x 2 m justo debajo de la boca de la tubería para evitar la socavación del fondo de la laguna durante la fase de llenado Estructuras de salida La estructura de salida de una laguna determina el nivel del agua dentro de ella y podrá colocarse en cualquier punto del borde, ordinariamente al pie del dique y opuesto a la tubería de entrada. Hay muchos tipos de salidas. La mayoría contempla el tendido de una tubería en el fondo de la laguna que atraviesa el dique. Esto permite vaciar completamente la laguna en caso necesario. El dispositivo de salida más sencillo consta de una tubería vertical cuyo extremo superior alcanza el punto del nivel de agua deseado. El extremo inferior se conecta a la tubería de descarga. Las tuberías de descarga que atraviesan los diques deberán instalarse con anterioridad a la construcción de los mismos a fin de evitar cortes y rellenos en una obra recién construida, corriéndose el peligro de debilitar algún punto. Las estructuras salida más convenientes son con dispositivos para variar el nivel del agua con fines operativos. Por ejemplo, disminuyendo el nivel en 0.50 m se facilitará enormemente la eliminación de maleza y reparación de los taludes erosionados por el choque de las olas. Tal dispositivo de salida puede consistir simplemente de una caja cuadrada vertical cuya base repose sobre el fondo, al pie del dique, y su extremo superior sobresalga sobre el nivel del agua. Uno de los lados de esta caja se construye parcialmente y se colocan planchas de contención, que pueden ponerse o quitarse a voluntad, a manera de un vertedero de altura variable. Actualmente se recomienda la instalación de una pantalla alrededor del dispositivo de salida para impedir que penetre materia flotante y espuma en el efluente y la consiguiente salida de huevos y quistes de parásitos. Una laguna de estabilización es una estructura simple para embalsar aguas residuales con el objeto de mejorar sus características sanitarias. Las lagunas de estabilización se construyen de poca profundidad (2 a 4 m) y con períodos de retención relativamente grandes (por, lo general de varios días). Cuando las aguas residuales son descargadas en lagunas de estabilización se realiza en las mismas, en forma espontánea, un proceso conocido como autodepuración o estabilización natural, en el que ocurren fenómenos de tipo físico, químico, bioquímico y biológico. Este proceso se lleva a cabo en casi todas las aguas estancadas con alto contenido de materia orgánica putrescible o biodegradable. Los parámetros mas utilizados para evaluar el comportamiento de las lagunas de estabilización de aguas residuales y la calidad de sus efluentes son la demanda bioquímica de oxígeno (DBO), que caracteriza la carga orgánica; y el número mas probable de coliformes fecales (NMP CF/100ml), que caracteriza la contaminación microbiológica. También tienen importancia los sólidos totales sedimentables, en suspensión y disueltos. Generalmente, cuando la carga orgánica aplicada a las lagunas es baja (<300 Kg de DBO/ha/día), y la temperatura ambiente varía entre 15 y 30 OC estrato superior de la laguna suelen desarrollarse poblaciones de algas microscópicas (clorelas, euglenas, etc) que, en presencia de la luz solar, producen grandes cantidades de oxígeno, haciendo que haya una alta concentración de oxígeno disuelto, que en muchos casos llega a valores de sobresaturación. La parte inferior de estas lagunas suele estar en condi ciones anaerobias. Estas lagunas con cargas orgánicas bajas reciben el nombre de facultativas. Cuando la carga orgánica es muy grande, la DBO excede la producción de oxígeno de las algas (y de la aeración superficial) y la laguna se torna totalmente anaerobia. Conviene que las lagunas de estabilización trabajen bajo condiciones definidamente facultativas o definidamente anaeróbicas ya que el oxígeno es un tóxico para las bacterias anaerobias que realizan el proceso de degradación de la materia orgánica; y la falta de oxígeno hace que desaparezcan las bacterias aerobias que realizan este proceso. Por consiguiente, se recomienda diseñar las lagunas facultativas (a 20 °C) para cargas orgánicas menores de 300 Kg DBO/ha/día y las lagunas anaerobias para cargas orgánic as mayores de 1000 Kg de DBO/ha/día. Cuando la carga orgánica aplicada se encuentra entre los dos límites antes mencionados se pueden presentar problemas con malos olores y la presencia de bacterias formadoras de sulfuros. El límite de carga para las lagunas facultativas aumenta con la temperatura.Las lagunas de estabilización con una gran relación largo ancho (Largo/Ancho >5) reciben el nombre de lagunas alargadas. Estas lagunas son muy eficientes en la remoción de carga orgánica y bacterias patógenas, pero deben ser precedidas por dos o más lagunas primarias que retengan los sólidos sedimentables. Estas lagunas primarias evitan tener que sacar de operación a las lagunas alargadas para llevar a cabo la remoción periódica de lodos. Las lagunas que reciben agua residual cruda son lagunas primarias. Las lagunas que reciben el efluente de una primaria se llaman secundarias; y así sucesivamente las lagunas de estabilización se pueden llamar terciarias, cuaternarias, quintenarias, etc. A las lagunas de grado más allá del segundo también se les suele llamar lagunas de acabado, maduración o pulimento. Siempre se deben construir por lo menos dos lagunas primarias (en paralelo) con el objeto de que una se mantenga en operación mientras se hace la limpieza de los lodos de la otra. El proceso que se lleva a cabo en las lagunas facultativas es diferente del que ocurre en las lagunas anaerobias. Sin embargo, ambos son útiles y efectivos en la estabilización de la materia orgánica y en la reducción de los organismos patógenos originalmente presentes en as aguas residuales. La estabilización de la materia orgánica se lleva a cabo a través de la acción de organismos aerobios cuando hay oxígeno disuelto; éstos últimos aprovechan el oxígeno originalmente presente en las moléculas de la mater ia orgánica que están degradando. Existen algunos organismos con capacidad de adaptación a ambos ambientes, los cuales reciben el nombre de facultativos. La estabilización de la materia orgánica presente en las aguas residuales se puede realizar en forma aeróbica o anaeróbica según haya o no la presencia de oxígeno disuelto en el agua. PROCESO AEROBIO El proceso aerobio se caracteriza porque la descomposición de la materia orgánica se lleva a cabo en una masa de agua que contiene oxígeno disuelto. En este proceso, en el que participan bacterias aerobias o facultativas, se originan compuestos inorgánicos que sirven de nutrientes a las algas, las cuales a su vez producen más oxígeno que facilita la actividad de las bacterias aerobias. Existe pues una simbiosis entre bacteria y algas que facilita la estabilización aerobia de la materia orgánica. El desdoblamiento de la materia orgánica se lleva a cabo con intervención de enzimas producidas por las bacterias en sus procesos vitales. A través de estos procesos bioquímicos en presencia de oxígeno disuelto las bacterias logran el desdoblamiento aerobio de la materia orgánica. El oxígeno consumido es parte de la demanda bioquímica de oxígeno (DBO).Las algas logran, a través de procesos inversos a los anteriores, en presencia de la luz solar, utilizar los compuestos inorgánicos para sintetizar materia orgánica que incorporan a su protoplasma. A través de este proceso, conocido como fotosíntesis, las algas generan gran cantidad de oxígeno disuelto. Como resultado final, en el estrado aerobio de una laguna facultativa se lleva a cabo la estabilización de la materia orgánica putrescible (muerta) originalmente presente en las aguas residuales, la cual se transforma en materia orgánica (viva) incorporada protoplasma de las algas. En las lagunas de estabilización el agua residual no se clarifica como en las plantas de tratamiento convencional pero se estabiliza, pues las algas son materia orgánica viva que no ejerce DBO. PROCESO ANAEROBIO Las reacciones anaerobias son más lentas y los productos de las pueden originar malos olores. Las condiciones anaerobias se establecen cuando el consumo de oxígeno disuelto es mayor que la incorporación del mismo a la masa de agua por la fotosíntesis de las algas y el oxígeno disuelto y que la laguna se torne de color gris oscuro. El desdoblamiento de la materia orgánica sucede en una forma más lenta y se generan malos olores por la producción de sulfuro de hidrógeno. En la etapa final del proceso anaerobio se presentan las cinéticas conocidas como acetogénica y metanogénica. ROL DEL PLANKTON EN LAS LAGUNAS DE ESTABILIZACION FACUTATIVAS Las algas tienen un rol sumamente importante en el proceso biológico de las lagunas de estabilización, pues son los organismos responsables de la producción de oxígeno molecular, elemento vital para las bacterias que participan en la oxidación bioquímica de la materia orgánica. La presencia de las algas en niveles adecuados, asegura el funcionamiento de la fase aerobia de las lagunas, cuando se pierde el equilibrio ecológico se corre con el riesgo de producir el predominio de la fase anaerobia, que trae como consecuencia una reducción de la eficiencia del sistema. En las lagunas primarias facultativas predominan las algas flageladas, (Euglena, Pyrobotrys, Chlamydomonas), en lagunas secundarias se incrementa el número de géneros y la densidad de algas, predominan las algas verdes (Chlorella, Scenedesmmus).En lagunas terciarias se presenta un mayor número de géneros de algas, entre las cuales predominan las algas verdes (Chlorella, Scenedesmus, Ankistrodesmus, Microactiniums).En muchos casos, se ha observado la predominancia de algas verdes-azules (Rao, 1980, Uhlman 1971). La predominancia de géneros varía según la temperatura estacional. El zooplackton de las lagunas de estabilización está conformado por cuatro Grupos Mayores; ciliados, rotíferos, copédodos, y cladoceros. Ocasionalmente se presentan amebas de vida libre, ostracodos, ácaros, turbelarios, larvas y pupas de dípteros. La mayoría de individuos de estos grupos sólo están en las lagunas de estabilización durante algún estadio evolutivo, raramente tienen importancia cualitativa. Los rotíferos predominan durante los meses de verano, dentro de este grupo, el género Brachionus se presenta con mayor frecuencia, siendo el más resistente aún en condiciones extremas. Cuando el número de rotíferos se incrementa a niveles superiores a los normales se observa un efecto negativo en la calidad del agua, ocasionando un aumento de los niveles de amonio, ortofosfato soluble, nitratos, y nitritos. Asimismo, la presencia de un gran número de estos organismos, que consumen algas, disminuye la cantidad de oxígeno disuelto en el agua a niveles de riesgo. Los géneros predominantes de cladoceros son Moína y Daphnia y en los ciliados son Pleuronema y Vorticella. BIBLIOGRAFIA Aramburú, P.; 1994 Las diarreas y la protección de alimentos. Revista INPPAZ, 1 (2), 1-3. Bartone, C., Castro de Esparza, M.L., Mayo, C. de Rojas, O., Vitko, T,; 1985 San Juan Lagoons Supporting aquaculture; Integrated Recovery Project. The World Bank, Washington, D.C., CEPIS/PAHO, Lima. Binnie, Y; 1971. Informe sobre la disposición de aguas servidas de la gran Lima. Londres, Gran Bretaña. Buras, N., Duek, L., Niv, S., Hepher, B., Sandbank, E.; 1987 Microbiological aspects of fish grown in treated wastewater. Water Research, 21 (1): 1-10. Castro de Esparza, M.L., León, G.; 1992 Estudio Preliminar de la Remoción de Vibrio cholerae en Lagunas de Estabilización - San Juan de Miraflores, Lima - Perú. Informe Técnico 387, CEPIS, Lima. Castro de Esparza, M.L., Sáenz Forero, Rodolfo; 1990 Evaluación de los Riesgos para la Salud por el Uso de las Aguas Residuales en Agricultura. CEPIS, Lima. Craig, N & Faust, E; 1970. Clinical Parasitology. E.E Faust, P.F, Russel and R. Lea. Philadelphia. Graham, H.; 1981. The Land Aplication of Sewage Sludge Report No 110. Ontario, Canada. Instituto Mexicano de Tecnología del Agua; 1993 Memoria del Taller Regional para las Américas sobre Aspectos de Salud. Agricultura y Ambiente Vinculados al Uso de Aguas Residuales, Jiutepec, Morelos, México, 8 al 12 de noviembre 1993. Liebman; 1965. Advances in Water Pollution Research. DE. J.K. Bears, Pergamon Press. Oxford. OMS, 1989 Directrices Sanitarias sobre el Uso de Aguas Residuales en Agricultura y Acuicultura. Ginebra, Serie de Informes Técnicos. 778. Moscoso, J., Florez, A.; 1991 Reuso en Acuicultura de las Aguas Residuales Tratadas en las Lagunas de Estabilización de San Juan, Sección I: Resumen Ejecutivo. CEPIS, Lima. Moscoso, J., León, G., Gil, E.; 1991 Reuso en Acuicultura de las Aguas Residuales Tratadas en Lagunas de San Juan, Sección II: Tratamiento de las Aguas Residuales y Aspectos Sanitarios. CEPIS, Lima.