SlideShare una empresa de Scribd logo
1 de 57
Current Status of BNI Research at JIRCAS
GV Subbarao
JIRCAS, Japan
A Collaborative effort with CIAT, ICRISAT and CIMMYT
Collaborators
CIAT
CIMMYT
ICRISAT
Tottori University
Scottish Crops Research Institute
Colleagues contributed from JIRCAS
1. T. Ando
2. K. Nakahara
3. T. Yoshihashi
4. T. Watanabe
5. T. Ishikawa
6. Y. Yamanaka
7. H. Y. Wang (PDF)
8. S. Gopalakrishnan (PDF)
9. Stuart Pearse (PDF)
10. A.K.M. Hussain (PDF)
11. Yiyong Zhu (PDF)
12. Zhu Yiyong (PDF)
13. T. Tsehaye (PDF)
Nearly 70% of the N fertilizer applied is lost to the environment
Amounts to a direct annual economic loss of
US$ 90 billion*
[*based on - a) world annual N fertilizer production is 150 million Mg; b) 0.45 US$ kg-1 urea]
Nitrogen fertilizer consumed in 1930s - < 1.0 Tg (million metric tons)
Nitrogen fertilizer consumed in 1960s – 10 Tg
Nitrogen fertilizer consumption worldwide in 2010 – 150 Tg (million metric tons)
Energy cost of nitrogen fertilizer – 1.8 to 2 L diesel oil per kg N fertilizer
To produce 150 million metric tons of Nitrogen fertilizer requires
1.70 billion barrels of diesel oil (energy equivalent)
Nitrogen fertilizers – Some facts
Year
1950 1960 1970 1980 1990 2000 2010 2020
Nitrogenefficiencyincerealproduction
(megatonnescerealgrain/megatonnsfertilizerapplied)
20
30
40
50
60
70
80
Trends in N-fertilization efficiency in cereal production
(annual global cereal production divided by annual global application of N-fertilizer) (Source: FAO 2012)
Global food production has tripled during this period, but N-fertilizer
applications have increased 10-fold (Tilman et al., 2001)
Why NUE is <30% in most agricultural systems?
Nitrification and denitrification processes associated with uncontrolled
rapid nitrification are largely responsible for the massive N leakage
(>70% of the N fertilizers) and for the low-NUE
Nitrogen Cycle in Typical Agricultural Systems
Soil
OM
Organic N
NH4
+
Microbial
N
NO3
-
>95% of the total soil
inorganic N pool
Plant N uptake &
Assimilation
Mineralization
Nitrification
Inorganic
N
Crop
Residues
N
Fertilizer
Soil incubation period in days
0 10 20 30 40
Nitrification(%)
0
20
40
60
80
100
120
Intensively managed
Alfisols
Watersheds
Conservatively managed Alfisols
Alfisol fields at ICRISAT
WS HP
Nitrificationrate(gNO3
-g-1soild-1)
0
1
2
3
4
5
Alfisol fields at ICRISAT
WS HP
Nitrificationrate(gNO3
-g-1soild-1)
0
1
2
3
4
5
Conservatively managed
Watershed Alfisols
Intensively managed
High-precision Alfisols
Agricultural intensification led to acceleration
of nitrification in intensively-managed
production systems
How to achieve low-nitrifying agricultural soils?
Switch to low-nitrifying agricultural systems
Ammonium
(NH4
+)
Nitrite
(NO2
-)
 Leaching
Nitrate
(NO3
-)
 N2O, NO, N2
 Greenhouse gases
 Global warming
 Nitrification
OM
mineralization  Denitrification
Ammonia-oxidizing Bacteria Nitrite-oxidizing Bacteria
Biological Nitrification Inhibition (BNI)
Brachiaria spp.
root-produced
nitrification
inhibitors
Microbial
Immobilization
of NH4
+
Low-Nitrifying Natural Ecosystems High-Nitrifying Modern Agricultural Systems
BL
BL
BL
BL
BL
BL
BL
BL
BL
BL
BL
NFertilizer
BNI Function and its potential impacts to N-cycling
How to detect and quantify nitrification inhibitors ?
pHLUX20
9763 bp
(Bg/II/
BamHl)
kat
Trrn
Phao
luxAB
PstI
(BamHI/Bg/II) PstI
PstI
BamHI
Physical map of pHLUX20
(source: Iizumi et al. 1998)
OM
IM
NH2OH + H2O NO2
- + 5H+ + 4e-
NH3 + O2
HAO
c554 c554
UQ
UQH2
NAD(P)H + H+ NAD(P)+
FMNH2FMN
H2O
hv RCOOH
RCHO
O2
Luciferase
NAD(P)+
reductase
Cytaa3
oxidase
NAD(P)H-FMN
AMO
oxidoreductase
Hypothetical model of interaction between the
electron transfer pathways and the luciferase
reaction in N. europaea (source Iizumi et al. 1998)
BNI activity is expressd in
‘ATU’
Inhibitory effect from 0.28
M AT is defined as one
ATU
Pasture grasses
0 1 2 3 4 5 6 7
BNI-activityreleasedfromroots
(ATUg
-1
rootdrywt.d
-1
)
0
2
4
6
8
10
12
14
16
18
1. B. humidicola
2. M. minutiflora
3. P. maximum
4. L. perenne
5. A. gayanus
6. B. brizantha
BNI capacity of pastures
JIRCAS-CIAT partnership
Plants release two categories of BNIs
Hydrophobic Hydrophilic
BNI Activity
Mostly confined to
Rhizosphere
May move out of
Rhizosphere
Plant -root
produced
nitrification
inhibitors
BL
BL
BL
BL
BL
BL
BL
BL
BL
BL
BL
BL
BL
BLBL
BL
BL
BL
BL
Plant Species
BH Sorghum Wheat
BNIactiviity(%oftotalBNIactivity)
0
20
40
60
80
100
Hydrophobic-BNI
Hydrophilic-BNI
Relative importance of hydrophobic- and
hydrophilic- BNI activity in three plant species
at 8 d old plants
40 d old plants
8 d old plants
BNI activity added to the soil (AT g-1 soil)
0 5 10 15 20 25
NO3concentrationinsoil(ppm)
0
50
100
150
200
250
Threshold
Releases about 200 to 400 ATU hydrophilic BNI d-1
BNIs provide stable inhibitory effect on
soil nitrification
55 d soil incubation
14
A bioassay-guided purification of BNI activity led to isolation of
Brachialactone,
identified as the major nitrification inhibitor
released from the roots of B. humidicola.
Atricyclic terpenoid with a unique
5-8-5 ring system and a g-lactone ring
Similar 5-8-5 ringsystem
Fusicoccins are produced
in some fungi
(Geranylgeranyl diphosphate)
Patented by JIRCAS
GGDPis a precursorin thebiosynthesisof
terpenoids;also thisis theprecursorfor thesynthesis
ofcarotenoids, gibberllinsand chlorophylls in plants
11
Subbarao G V et al. PNAS 2009;106:17302-17307
©2009 by National Academy of Sciences
0.0 2.5 5.0 7.5 10.0 12.5 15.0 min
0
5000
10000
15000
20000
25000
30000
35000
40000
45000
uV
sample: brachialactone standard (mixture of a and b), 75 μg
column: TSK gel super ODS (4.6 x 100 mm)
mobile phase: water (A) – acetonitrile (B)
flow rate: 1.0 ml/min
gradient program: 23% - 43%B (10 min), 43% - 48%B (8 min)
Time (min)
Detectorresponse
Brachialactone b
Purified Brachialactone HPLC chromatogram
GC-MS-SIM based brachialactone quantification
16
Progesterone (IS:1 ppm)
Brachialactone (48 ppm)
19.78min
Identification: m/z 334
Quantification: m/z 137
18.65min
Identification: m/z 314
Quantification: m/z 314
Quantification & identification was achieved.
Brachialactone showed 2 peaks,
which might be caused by keto-enol
tautomerism.
‘Keto’form ‘Enol’form
GC-MS-SIM based analytical methodology can have major
implications to genetic improvement efforts directed at
brachialactone-trait into root systems of Brachiaria sp.
Brachialactone is detected in root tissues and quantification using GC-
MS-SIM analysis could be a possibility in future
Preliminary results suggest brachialactone concentration in root tissues
can be as high as 0.27  0.01% (dry weight basis)
Brachialactone levels in root tissues could be up to 10 times higher
than in root exudates (i.e. about 10% of brachialactone in the root
tissues may be released per day from exudation)
GC-MS-SIM analysis improves the detection thresholds for
brachialatone levels in the samples and may give better quantification in
root tissues and root exudates.
Brachialactone release is highly influenced by
growing season
Spring season in Japan appears to have a major influence on brachialactone release in B. humidicola
020004000600080001000012000
11.01.04(No.31)
11.01.18(No.32)
11.02.01(No.33)
11.02.14(No.34)
11.03.03(No.35)
11.03.23(No.36)
11.03.26(No.36…
11.04.01(A-1)
11.04.05…
11.04.11(A-3)
11.04.14(A-5)
11.04.18(A-6)
11.04.21(A-7)
11.04.25(A-8)
11.05.10(May-1)
11.05.17(May-2)
11.05.25(May-3)
11.06.07(No.37)
11.06.21(No.38)
11.07.06(No.39)
11.07.25(No.40)
11.08.08(No.41)
11.08.23(No.42)
11.09.08(No.43)
11.09.26(No.44)
11.10.11(No.45)
11.10.24(No.46)
11.11.07(No.47)
11.11.25(No.48)
11.12.05(No.49)
11.12.19(No.50)
12.01.04(No.51)
12.01.16(No.52)
12.01.30(No.53)
12.02.16(No.54)
12.02.27(No.55)
12.03.05(Marc…
12.03.14(Marc…
12.03.21(Marc…
12.03.26(Marc…
12.04.02(April-1)
12.04.09(April-2)
12.04.13(April-3)
12.04.18(April-4)
12.04.23(April-5)
12.05.8(May-1)
12.05.18(May-2)
12.05.29(May-3)
12.06.05(june-1)
12.06.05(june-2)
12.06.18(june-3)
12.06.25(june-4)
12.07.06(july-1)
12.07.24(july-2)
12.08.06(aug-1)
12.08.20(aug-2)
12.09.03(sep-1)
12.09.18(sep-2)
12.10.11(oct-1)
12.10.16(oct-2)
12.11.06(nov-1)
12.11.19(nov-2)
12.12.03(dec-1)
12.12.18(dec-2)
13.01.07(jan-1)
13.01.22(jan-2)
13.02.04(feb-1)
13.02.18(feb-2)
13.03.05(mar-1)
13.03.18(mar-2)
13.03.25(mar-3)
13.04.01(apr-1)
13.04.08(apr-2)
13.04.22(apr-3)
13.05.08(may-1)
13.05.20(may-2)
13.06.03(jun-1)
13.06.17(jun-2)
13.07.01(july-1)
13.07.16(july-2)
13.07.22(july-3)
13.08.20(aug-1)
13.09.03(sep-1)
13.09.17(sep-2)
peakarea
mAU*sec.
date
Annualfluctuationrootexdate
standardBH
highBNIBH
2011 20132012
We need to understand whether these seasonal influence on brachialactone release from
root due to production in root tissues or only release from roots is influenced?
Brachialactone’s mode of inhibitory action on
Nitrosomonas
Compound
Concentration in the
in vitro assay, mM AMO pathway HAO pathway
Crude-root exudate
(methanol extract) 63.4 + 0.8 63.8 + 0.8
Brachialactone 5.0 59.7 + 0.9 37.7 + 0.9
Nitrapyrin 3.0 82.3 + 1.5 8.1 + 1.2
Inhibition (%)
Outer Membrane
Inner Membrane
Periplasm
Nitrosomonas
Regulating factors for the Release of BNIs from roots
BNI synthesis and release from roots requires presence of NH4
+
N treatment (NO3-N vs NH4-N grown plants)
NO3-grown NH4-grown
BNIactivityoftheroottissue(ATunitsg-1rootdrywt)
0
50
100
150
200
Root tissue from RE-water treatment
Root tissue from RE-NH4 treatment
Nitrogen treatment (i.e. NH4-N vs. NO3) of the plants
NO3-grown NH4-grown
TotalBNIactivityreleasedduring10dperiod(ATunits)
0
200
400
600
800
1000
RE-collected using distilled water
RE-collected using 1 NH4Cl (1 mM)
Functional link between NH4
+-uptake and BNI release
A hypothesis
NH4
+
Cytoplasm
pH >7
NH4
+ NH4
+
H+
H+
ATP
ADP + Pi
BNIn-
BNIn-
BNI
Glutamine + H+
glutamate
Is there potential for genetic
improvement of BNI capacity in pastures?
Genetic variability is the primary requirement for genetic
improvement in trait/s of interest using traditional breeding
Is there a genetic variability for BNI capacity?
High-BNI and low-BNI genetic stocks in B. humidicola
B. humidicola
Accession
BNI released
ATU g-1 root dry wt. d-1
CIAT 26159 46.3
CIAT 26427 31.6
CIAT 26430 24.1
CIAT 679 17.5
CIAT 26438 6.5
CIAT 26149 7.1
CIAT 682 7.5
Panicum maximum 0.1
LSD (0.05) 6.0
Based on evaluation of
40 germplasm accessions
in B.humidicola
CIAT’s Collaboration
Note
11 sexuals from a total of
40 germplasm accessions
were evaluated for BNI
capacity; Most sexuals
evaluated have BNI
capacity similar to the
CIAT 679.
A bi-parental population using high-BNI (CIAT 16888) and low-BNI (CIAT 26146)
has been developed to identify genetic regions associated with BNI-function using a
mapping population derived from crosse between apomictic and sexual germplasm
accession of BH that differ in BNI-capacity – CIAT-JIRCAS ongoing collaboration
Date of Root exudate collection during Spring 2012
2nd March 3rd March 4th March 1st April
Brachialactonereleaseperplant
(peakarea)
0
2000
4000
6000
8000
10000
12000
CIAT 679
CIAT 26159
CIAT26159
CIAT679
Genetic differences in
Brachialactone release capacity
High-BNI genotype releases several times higher
brachialactone than standard cultivar
25
Parental lines of RIL population
PVK 801 296-B
BNIactivity/Sorgoleonereleaseperplant
0
10
20
30
40
50
BNI activity (ATU)
Sorgoleone (g)
Total BNI activity and sorgoleone levels in root-DCM wash after 8 d growth
in root boxes with hydroponic system
(based on 6 times evaluation of 20 seed lings each over a 6 month period)
Parental lines of RIL population characterization
JIRCAS-ICRISAT
partnership
HPLC chromatogram of purified sorgoleone
BNI activity detected only in this peak
NO BNI activity detected in any of these peaks
O
O
OH
O
Chemical structure of sorgoleone, Molecular Weight - 358
a P-benzoquinone exuded from sorghum roots
BNI activity released from
sorghum roots
Hydrophobic BNIs
Hydrophilic BNIs
Isolation of the major BNI constituent
of hydrophobic BNI activity
ED80 = 1.0 ppm
Adroplet of sorgoleone
exuding from root tip
296B PVK 801
Sorgoleone-phenotyping system is now developed
JIRCAS-ICRISAT
partnership
Bi-Parental Sorghum RIL population (PVK 801 x 296B)
0 50 100 150 200
Sorgoleoneproduced(gplant-1)
0
10
20
30
40
50
PVK801
296B
RIL phenotyping for sorgoleone levels in root-DCM wash
JIRCAS-ICRISAT partnership
Introducing high-BNI capacity into wheat
Is it possible or feasible?
JIRCAS-CIMMYT
partnership
Plant species
0 1 2 3 4
BNIactivityreleasedfromroots
(ATUg-1rootdrywt.d-1)
0
5
10
15
20
25
30
35
NH4-N grown
NO3-N grown
Nobeoka Chinese Spring
L. racemosus
Releases about 150 to 200 AT units of
BNI da-1 under optimum conditions
Wild-wheat has high-BNI capacity
JIRCAS-CIMMYT
partnership
Leymus racemosus
2N=4X =28;
genome Ns NsXmXm
Triticum aestivum L.
cv. Chinese Spring
2N=6X =42;
genome AABBDD
F1 hybrid Triticum aestivum L.
cv. Chinese Spring
2N=6X =42;
genome AABBDD
BC1F1 hybrid
BC7F1 hybrid
Production of wheat-Leymus racemosus-addition lines
Two Lr#n L. racemosus chromosomes in wheat detected by florescence in
situ hybridization with probe of L. racemosus genomic DNA (green color)
3.9LSD (0.05)
4.97Lr-1-2DtA7Lr-1-2
6.47Lr-1-1DtA7Lr-1-1
6.65Lr-1DA5Lr-1
3.22Lr-1DA2Lr-1
3.7Lr-HDALr-H
4.1Lr-FDALr-F
5.5Lr-kDALr-k
6.4Lr-1DALr-1
13.0Lr-IDALr-I
13.5Lr-jDALr-j
24.6Lr-nDALr-n
BNI released
(ATU g-1 root dry
wt d-1)
L. racemosus
chromosome
introduced
Genetic Stock
3.9LSD (0.05)
4.97Lr-1-2DtA7Lr-1-2
6.47Lr-1-1DtA7Lr-1-1
6.65Lr-1DA5Lr-1
3.22Lr-1DA2Lr-1
3.7Lr-HDALr-H
4.1Lr-FDALr-F
5.5Lr-kDALr-k
6.4Lr-1DALr-1
13.0Lr-IDALr-I
13.5Lr-jDALr-j
24.6Lr-nDALr-n
BNI released
(ATU g-1 root dry
wt d-1)
L. racemosus
chromosome
introduced
Genetic Stock
BNI released from Chromosome-addition lines derived from
L. racemosus and cultivated wheat (Chinese Spring)
Can the high-BNI capacity of wild-wheat be
Transferred/Expressed in cultivated wheat?
Would this be the first step to develop low-nitrifying and low-N2O
emitting wheat production systems?
BA
JIRCAS-CIMMYT
partnership
Lr#nS.3BL
Lr#nS.7BL
Leymus chromosome ‘N’
The short-arm of the Leymus ‘N’ chromosome is translocated to
either 7B or 3B wheat chromosome (short-arm) for BNI evaluations
Short arm
long arm
centromere
Courtesy - Kishi
Courtesy - Kishi
JIRCAS-CIMMYT
partnership
Lr#n addition
Lr#nS.3BL
Wheat-Leymus genetic stocks
CS N - add N - sub-3A N - Tr-3B N - Tr-7B
BNIactivityreleasedfromroots
(ATUg-1rootdrywt.d-1)
0
100
200
300
400
500
RE-NH4
+
BNI activity release from roots in the presence of
NH4
+ in the collection solutions
Courtesy - Kishi
Courtesy - Kishi
BNI activity release is two-fold higher in Lr#N addition and
Lr#N translocation line (on 3B wheat chromosome)
compared to Chinese Spring
The above results strongly confirm that BNI-capacity in Leymus is
controlled by Lr#N and expressed in wheat background; further the
BNI-trait is controlled by short-arm of Lr#n chromosome and its
expression depends on the translocation position on wheat
JIRCAS-CIMMYT
partnership
Can the BNI function be effective to
control nitrification and nitrous oxide
emissions under field conditions?
JIRCAS-CIAT partnership
Roots of B. humidicola release a powerful
nitrification inhibitor
Brachialactone
Ammonium
(NH4
+)
Nitrite
(NO2
-)
Nitrate
(NO3
-)Ammonia-oxidizing Bacteria Nitrite-oxidizing Bacteria
BL
BL
BL BL
Microbial-N
Immobilization
Mineralization
By blocking the Nitrosomonas function, B.
humidicola facilitates NH4
+ to move into
mocrobial pool and to remain in the soil
system and act as a slow-releasing nitrogen
source for Brachiaria growth
Estimations for the BNIs release from B. humidicola
• Active root biomass in a long-term BH pasture being 1.5 Mg ha-1
•(Root mass up to 9.0 Mg ha-1 has been reported in BH pastures)
• BNI release rates can be 17 to 50 ATU g-1 root dry wt. d-1
• Estimated BNI activity release d-1 could be 2.6 x 106 to 7.5 x 106
ATU
(CIAT 679) (CIAT 26159)
•1 ATU being equal to 0.6 g of nitrapyrin
• This amounts to an inhibitory potential equivalent to the
application of 6.2 to 18 kg of nitrapyrin application ha-1 yr-1
38
Soil ammonium oxidation rates (mg of NO2− N per kg of soil per day) in field plots
planted with tropical pasture grasses (differing in BNI capacity) and soybean
(lacking BNI capacity in roots) [over 3 years from establishment of pastures
(September 2004 to November 2007); for soybean, two planting seasons every year
and after six seasons of cultivation]
Brachiaria pastures suppressed soil ammonium oxidation
Subbarao G V et al. PNAS 2009;106:17302-17307
©2009 by National Academy of Sciences
JIRCAS-CIATpartnership
CIAT-Palmira field study 2004-2007
0
0.5
1
1.5
2
2.5
3
3.5
4
Control - Bare soil BH- 16888
ppmofnitrateproducedday-1
CIAT-Palmira field study 2013
39
Cumulative N2O emissions (mg of N2O N per m2 per year) from field plots of tropical pasture grasses
(monitored monthly over a 3-year period, from September 2004 to November 2007)
Subbarao G V et al. PNAS 2009;106:17302-17307
©2009 by National Academy of Sciences
Brachiaria pastures suppressed N2O emissions from the field
Can BNI function in plants be exploited to develop low-N2O emitting systems then?
JIRCAS-CIATpartnership
BNI capacity of the species (ATU g-1 root dry wt. d-1)
0 10 20 30 40 50 60
CumulativeN2Oemission
(mgN2O-Nm2y-1)
0
100
200
300
400
500
Con
Soy
PM
BHM
BH-679
BH-16888
High BNI capacity leads to low-N2O
emitting systems?
A 3-year field study with soybean and pasture grasses with varying BNI capacities
Can we develop low-nitrifying and
low-N2O emitting pasture-production
systems through genetic exploitation
of BNI trait?
The new MAFF-BNI project (starts from 2014) will test this hypothesis further using
genetic stocks of B. humidicola with diverse BNI capacity in root systems
JIRCAS-CIATpartnership
Photo: J. W. Miles Exploitation of BNI function in BH for the sustainable agro-pastoral systems?
Characterization of residual effect of BNI from
B. humidicola pasture on maize productivity and
Nitrogen use efficiency
Ongoing
JIRCAS-CIAT partnership
How long the BNI-suppressive effect on nitrification persists?
Ongoing
JIRCAS-CIAT partnership
Land Management
0 1 2
Nitrificationrate
(mgNO2-Nkg-1soild-1)
0.00
0.02
0.04
0.06
0.08
0.10
0.12
Native savanna
BH
Cultivated fields
Maize
BH-BNI effect
Time in years
0 1 2 3 4 5 6
Ammoniumoxidationrateinsoil
(mgNO2kg
-1
soild
-1
)
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
Cultivated soils
control
BH-residual
scenario-4
BH-residual
scenario-3
BH-residual
scenario-2
BH-residual
scenario-1
Characterization of residual BNI impact on NUE in maize systems
An agro-pastoral systems perspective
Ongoing
JIRCAS-CIAT partnership
Maize crop established in a high-BNI field by clearing B. humidicola
Field site – Taluma, Iianos, Colombia
JIRCAS – CIAT collaborative study – CIAT field site at Llanos
Ongoing
JIRCAS-CIAT partnership
120 kg N/ha 240 kg N/ha
B. humidicolafieldThe BH-BNI benefits on
Maize growth
Beneficial effects of BNI on subsequent maize crop
Land Management
0 1 2
Nitrificationrate
(mgNO2-Nkg-1soild-1)
0.00
0.02
0.04
0.06
0.08
0.10
0.12
Native savanna
BH
Cultivated fields
Maize
BNI-Field
Ongoing
JIRCAS-CIAT partnership
120 kg N ha-1
Beneficial effects of BNI on subsequent maize crop
A healthy maize crop in BNI-field with 120 kg N application
Land Management
0 1 2
Nitrificationrate
(mgNO2-Nkg-1soild-1)
0.00
0.02
0.04
0.06
0.08
0.10
0.12
Native savanna
BH
Cultivated fields
Maize
JIRCAS – CIAT collaborative study – CIAT field site at Llanos
BNI-Field
Ongoing
JIRCAS-CIAT partnership
120 kg N ha-1
Land Management
0 1 2
Nitrificationrate
(mgNO2-Nkg-1soild-1)
0.00
0.02
0.04
0.06
0.08
0.10
0.12
Native savanna
BH
Cultivated fields
Maize
JIRCAS – CIAT collaborative study – CIAT field site at Llanos
Non-BNI-Field
Beneficial effects of BNI on subsequent maize crop
A nitrogen-deficient maize crop in non-BNI-field with 120 kg N
application
Ongoing
JIRCAS-CIAT partnership
BNI-Field Non-BNI-Field
2012 Field study at Iianos, Colombia
Nitrogen fertilizer application (Kg ha-1
)
40 60 80 100 120 140 160 180 200 220 240 260
Maizegrainyield(tha
-1
)
0
1000
2000
3000
4000
5000
High nitrifying - cultivated fields
Low nitrifying - BH-BNI
Beneficial effects of BNI on subsequent maize grain yields
BNI is more effective on maize yields at low to moderate N applications but not high-N environments
BNI function is effective in improving NUE only under low- to moderate-N environments
and not at high-N environments
BNI-field
Non-BNI-field
Ongoing
JIRCAS-CIAT partnership
Maize plant tissues from various land-use systems
Ear Shoot Root
15N/14Nratioinplanttissues
4.5
5.0
5.5
6.0
6.5
BH-BNI
cont.Maize
Native savannah
Beneficial effects of BNI on N recovery by Maize
BNI is effective in improving N recovery by maize in the field (from 15N studies)
BNI-Field
Non-BNI-Field
Ongoing
JIRCAS-CIAT partnership
Land use treatments on Maize
BH-BNI cont.Maize Native savannah
15N/14Nratioinsoils(0-60cmsdepth)
0.35
0.40
0.45
0.50
0.55
Beneficial effects of BNI on soil-N retention
BNI is effective in improving soil-N retention after maize harvest (from 15N studies)
BNI-Field
Non-BNI-Field
Ongoing
JIRCAS-CIAT partnership
CONCLUDING REMARKS
175 Tg N
N-Fertilizer inputs
into Agriculture
53.5 Tg N
Plant protein from
Agriculture
3.5 Tg N
Animalprotein
from Livestock
0.27Tg N
Human system
N-retention
123.5 Tg N
LOST
(70%)
FromAgriculture
48.0 Tg N
LOST
(90%)
From Livestock
5.0 Tg N
LOST
(95%)
From Municipal
Sewage systems
N-Fertilizer inputs
into Agriculture
Plant
protein-N
Animal
protein-N
Human-N
Nitrogen flow in Human-centric Ecosystems
Annual
Nitrogen pollution epidemic in China
Nitrification facilitates movement of N from agricultural soils to water-bodies (ground
water, freshwater lakes, rivers and to oceans) and cause algal blooms
Second Green Revolution?
NH4
+
NO3
-
Plant
uptake
Soil-
microbial
uptake
Nitrification
SOM
Mineralization
N-Fertilizers
Microbial-N
Immobilization
Plant litter
and
Root exudates
Nitrification opens several pathways in N-cycle for
fertilizer-N to escape into the larger Environment
A fundamental shift
towards NH4
+-dominated
crop nutrition is possible?
Retention of soil-N in
agricultural soils is critical
for the sustainability of
production systems and to
prevent N from entering into
water-bodies
Nature 2013, 501:291
BNI function in plants should be exploited to facilitate retention of
soil-N within agricultural systems
We must develop new technologies to keep N to remain
and recycle within the agricultural systems and not
allow into water systems – Nitrification control is key
BNI function can be one such mechanism that can be
exploited from a breeding perspective and from a
system’s perspective
Take Home Message
Strategic Research Partner – CIAT
(Drs. IM Rao; Manabu Ishitani; John Miles; Joe Tohme; Jacobo Arango,
Marco Rondon; Maria Pilar Hurtado; Danillo Moreta; Gonzalo Borrero)
Other participating research institutes
ICRISAT (India)
CIMMYT (Mexico)
Tottori University (Japan)
Yokohama City University (Japan)
Scottish Crops Research Institute (UK)
Biogeochimie et ecologie des milieux continentaux (France)
CIAT
Tropical pastures-BNI
MAFF
GTZ
Forage-CRP(?)
JIRCAS
BNI Research
CIMMYT
Wheat-BNI
MAFF
Wheat-CRP
ICRISAT
Sorghum-BNI
MAFF (?)
Dryland cereals-CRP(?)
Thank you for the attention

Más contenido relacionado

La actualidad más candente

Soil management strategies to enhance carbon sequestration potential of degra...
Soil management strategies to enhance carbon sequestration potential of degra...Soil management strategies to enhance carbon sequestration potential of degra...
Soil management strategies to enhance carbon sequestration potential of degra...koushalya T.N
 
Microbial transformation of s,fe,mn.
Microbial transformation of s,fe,mn. Microbial transformation of s,fe,mn.
Microbial transformation of s,fe,mn. O.P PARIHAR
 
SOIL ENZYMES AND THEIR ACTIVITY
SOIL ENZYMES AND THEIR ACTIVITYSOIL ENZYMES AND THEIR ACTIVITY
SOIL ENZYMES AND THEIR ACTIVITYChaUhan Ar Shi
 
Benefits of Soil Organic Carbon - an overview
Benefits of Soil Organic Carbon - an overviewBenefits of Soil Organic Carbon - an overview
Benefits of Soil Organic Carbon - an overviewExternalEvents
 
Conservation Agriculture the base for a sustainable intensification of crop p...
Conservation Agriculture the base for a sustainable intensification of crop p...Conservation Agriculture the base for a sustainable intensification of crop p...
Conservation Agriculture the base for a sustainable intensification of crop p...FAO
 
Microbial Biomass in Soil
Microbial Biomass in SoilMicrobial Biomass in Soil
Microbial Biomass in Soilb.stev
 
Agroecology: Principles and Practices
Agroecology: Principles and PracticesAgroecology: Principles and Practices
Agroecology: Principles and PracticesQiqo Simbol
 
Unit 4 Bio Fertilizers, Vermicompost biogas.pptx
Unit 4 Bio Fertilizers, Vermicompost biogas.pptxUnit 4 Bio Fertilizers, Vermicompost biogas.pptx
Unit 4 Bio Fertilizers, Vermicompost biogas.pptxGovinda Raj Sedai
 
Climate change and its Impact on Insect Pest
Climate change and its Impact on Insect PestClimate change and its Impact on Insect Pest
Climate change and its Impact on Insect Pestpushpaento
 
Impacts of climate change on livestock sector and Kenya’s preparedness on the...
Impacts of climate change on livestock sector and Kenya’s preparedness on the...Impacts of climate change on livestock sector and Kenya’s preparedness on the...
Impacts of climate change on livestock sector and Kenya’s preparedness on the...ILRI
 

La actualidad más candente (20)

Soil management strategies to enhance carbon sequestration potential of degra...
Soil management strategies to enhance carbon sequestration potential of degra...Soil management strategies to enhance carbon sequestration potential of degra...
Soil management strategies to enhance carbon sequestration potential of degra...
 
Microbial transformation of s,fe,mn.
Microbial transformation of s,fe,mn. Microbial transformation of s,fe,mn.
Microbial transformation of s,fe,mn.
 
SOIL ENZYMES AND THEIR ACTIVITY
SOIL ENZYMES AND THEIR ACTIVITYSOIL ENZYMES AND THEIR ACTIVITY
SOIL ENZYMES AND THEIR ACTIVITY
 
Benefits of Soil Organic Carbon - an overview
Benefits of Soil Organic Carbon - an overviewBenefits of Soil Organic Carbon - an overview
Benefits of Soil Organic Carbon - an overview
 
Biochar
Biochar Biochar
Biochar
 
Metarhizium anisopliae
Metarhizium anisopliaeMetarhizium anisopliae
Metarhizium anisopliae
 
Conservation Agriculture the base for a sustainable intensification of crop p...
Conservation Agriculture the base for a sustainable intensification of crop p...Conservation Agriculture the base for a sustainable intensification of crop p...
Conservation Agriculture the base for a sustainable intensification of crop p...
 
Soil Organic Carbon
Soil Organic CarbonSoil Organic Carbon
Soil Organic Carbon
 
Microbial Biomass in Soil
Microbial Biomass in SoilMicrobial Biomass in Soil
Microbial Biomass in Soil
 
Agroecology: Principles and Practices
Agroecology: Principles and PracticesAgroecology: Principles and Practices
Agroecology: Principles and Practices
 
Biofertilizer Production and Application
Biofertilizer Production and ApplicationBiofertilizer Production and Application
Biofertilizer Production and Application
 
Agroecology
AgroecologyAgroecology
Agroecology
 
Unit 4 Bio Fertilizers, Vermicompost biogas.pptx
Unit 4 Bio Fertilizers, Vermicompost biogas.pptxUnit 4 Bio Fertilizers, Vermicompost biogas.pptx
Unit 4 Bio Fertilizers, Vermicompost biogas.pptx
 
Climate change and its Impact on Insect Pest
Climate change and its Impact on Insect PestClimate change and its Impact on Insect Pest
Climate change and its Impact on Insect Pest
 
Impacts of climate change on livestock sector and Kenya’s preparedness on the...
Impacts of climate change on livestock sector and Kenya’s preparedness on the...Impacts of climate change on livestock sector and Kenya’s preparedness on the...
Impacts of climate change on livestock sector and Kenya’s preparedness on the...
 
Silicon Importance on Aliviating Biotic and Abiotic Stress on Sugarcane
Silicon Importance on Aliviating Biotic and Abiotic Stress on SugarcaneSilicon Importance on Aliviating Biotic and Abiotic Stress on Sugarcane
Silicon Importance on Aliviating Biotic and Abiotic Stress on Sugarcane
 
PGPR
PGPRPGPR
PGPR
 
SOIL MICROORGANISMS AND THERE ROLE IN ABIOTIC STRESS MANAGEMENT
SOIL MICROORGANISMS AND THERE ROLE IN ABIOTIC STRESS MANAGEMENTSOIL MICROORGANISMS AND THERE ROLE IN ABIOTIC STRESS MANAGEMENT
SOIL MICROORGANISMS AND THERE ROLE IN ABIOTIC STRESS MANAGEMENT
 
IMPACT OF ORGANIC AMENDMENTS ON SOIL QUALITY, PLANT GROWTH AND YIELD OF CROP
IMPACT OF ORGANIC AMENDMENTS ON SOIL QUALITY, PLANT GROWTH AND YIELD OF CROP IMPACT OF ORGANIC AMENDMENTS ON SOIL QUALITY, PLANT GROWTH AND YIELD OF CROP
IMPACT OF ORGANIC AMENDMENTS ON SOIL QUALITY, PLANT GROWTH AND YIELD OF CROP
 
Ppt seminar
Ppt seminarPpt seminar
Ppt seminar
 

Similar a Current Status of BNI Research at JIRCAS

Physiological and Molecular basis of NUE
Physiological and Molecular basis of NUEPhysiological and Molecular basis of NUE
Physiological and Molecular basis of NUEShantanu Das
 
The potential value of legumes in farming systems - Bob Rees
The potential value of legumes in farming systems - Bob ReesThe potential value of legumes in farming systems - Bob Rees
The potential value of legumes in farming systems - Bob ReesSustainable Food Trust
 
Advances in biopurification system for pesticide degradation – chile – maria ...
Advances in biopurification system for pesticide degradation – chile – maria ...Advances in biopurification system for pesticide degradation – chile – maria ...
Advances in biopurification system for pesticide degradation – chile – maria ...ECOHUERTA
 
Manure happens: Altering the global nitrogen cycle by feeding about seven bil...
Manure happens: Altering the global nitrogen cycle by feeding about seven bil...Manure happens: Altering the global nitrogen cycle by feeding about seven bil...
Manure happens: Altering the global nitrogen cycle by feeding about seven bil...ILRI
 
Does fertilization practices increase residual nitrate nitrogen in soil irrig...
Does fertilization practices increase residual nitrate nitrogen in soil irrig...Does fertilization practices increase residual nitrate nitrogen in soil irrig...
Does fertilization practices increase residual nitrate nitrogen in soil irrig...IJEAB
 
Use of stable and radio isotopes to understand the plant physiological process
Use of stable and radio isotopes to understand the plant physiological processUse of stable and radio isotopes to understand the plant physiological process
Use of stable and radio isotopes to understand the plant physiological processRAHUL GOPALE
 
Effect of biochar on soil properties.
Effect of biochar on soil properties.Effect of biochar on soil properties.
Effect of biochar on soil properties.stanzinKhenrab
 
Kamil Presentation final
Kamil Presentation finalKamil Presentation final
Kamil Presentation finalKamil Sardar
 
Credit of peanut to subsequent wheat under desert farming conditions in prese...
Credit of peanut to subsequent wheat under desert farming conditions in prese...Credit of peanut to subsequent wheat under desert farming conditions in prese...
Credit of peanut to subsequent wheat under desert farming conditions in prese...IJAEMSJORNAL
 
Soil Organic Carbon Sequestration and Crop Production in China based on Long-...
Soil Organic Carbon Sequestration and Crop Production in China based on Long-...Soil Organic Carbon Sequestration and Crop Production in China based on Long-...
Soil Organic Carbon Sequestration and Crop Production in China based on Long-...ExternalEvents
 
Energy saving by the application of biosolids to sweet sorghum crop
Energy saving by the application of biosolids to sweet sorghum cropEnergy saving by the application of biosolids to sweet sorghum crop
Energy saving by the application of biosolids to sweet sorghum cropAndrew Karagiannis
 
An efficient incentive of Nitrate and Fluoride on Organic highland cropping s...
An efficient incentive of Nitrate and Fluoride on Organic highland cropping s...An efficient incentive of Nitrate and Fluoride on Organic highland cropping s...
An efficient incentive of Nitrate and Fluoride on Organic highland cropping s...IOSR Journals
 
Response of aquatic fern(Azolla), to watercontamination
Response of aquatic fern(Azolla), to watercontaminationResponse of aquatic fern(Azolla), to watercontamination
Response of aquatic fern(Azolla), to watercontaminationKavitha Cingam
 
Towards an Eco-efficient Livestock Production
Towards an Eco-efficient Livestock ProductionTowards an Eco-efficient Livestock Production
Towards an Eco-efficient Livestock ProductionTropical Forages Program
 
Zeolite effects on soil organic carbon and structure against erosion in viney...
Zeolite effects on soil organic carbon and structure against erosion in viney...Zeolite effects on soil organic carbon and structure against erosion in viney...
Zeolite effects on soil organic carbon and structure against erosion in viney...ExternalEvents
 

Similar a Current Status of BNI Research at JIRCAS (20)

Physiological and Molecular basis of NUE
Physiological and Molecular basis of NUEPhysiological and Molecular basis of NUE
Physiological and Molecular basis of NUE
 
The potential value of legumes in farming systems - Bob Rees
The potential value of legumes in farming systems - Bob ReesThe potential value of legumes in farming systems - Bob Rees
The potential value of legumes in farming systems - Bob Rees
 
Legume pastures can reduce N2O emissions intensity
Legume pastures can reduce N2O emissions intensityLegume pastures can reduce N2O emissions intensity
Legume pastures can reduce N2O emissions intensity
 
Advances in biopurification system for pesticide degradation – chile – maria ...
Advances in biopurification system for pesticide degradation – chile – maria ...Advances in biopurification system for pesticide degradation – chile – maria ...
Advances in biopurification system for pesticide degradation – chile – maria ...
 
Manure happens: Altering the global nitrogen cycle by feeding about seven bil...
Manure happens: Altering the global nitrogen cycle by feeding about seven bil...Manure happens: Altering the global nitrogen cycle by feeding about seven bil...
Manure happens: Altering the global nitrogen cycle by feeding about seven bil...
 
Does fertilization practices increase residual nitrate nitrogen in soil irrig...
Does fertilization practices increase residual nitrate nitrogen in soil irrig...Does fertilization practices increase residual nitrate nitrogen in soil irrig...
Does fertilization practices increase residual nitrate nitrogen in soil irrig...
 
Nitrogen Transformations in Aquaponic Systems
Nitrogen Transformations in Aquaponic SystemsNitrogen Transformations in Aquaponic Systems
Nitrogen Transformations in Aquaponic Systems
 
Use of stable and radio isotopes to understand the plant physiological process
Use of stable and radio isotopes to understand the plant physiological processUse of stable and radio isotopes to understand the plant physiological process
Use of stable and radio isotopes to understand the plant physiological process
 
Effect of biochar on soil properties.
Effect of biochar on soil properties.Effect of biochar on soil properties.
Effect of biochar on soil properties.
 
Kamil Presentation final
Kamil Presentation finalKamil Presentation final
Kamil Presentation final
 
Credit of peanut to subsequent wheat under desert farming conditions in prese...
Credit of peanut to subsequent wheat under desert farming conditions in prese...Credit of peanut to subsequent wheat under desert farming conditions in prese...
Credit of peanut to subsequent wheat under desert farming conditions in prese...
 
Soil Organic Carbon Sequestration and Crop Production in China based on Long-...
Soil Organic Carbon Sequestration and Crop Production in China based on Long-...Soil Organic Carbon Sequestration and Crop Production in China based on Long-...
Soil Organic Carbon Sequestration and Crop Production in China based on Long-...
 
Energy saving by the application of biosolids to sweet sorghum crop
Energy saving by the application of biosolids to sweet sorghum cropEnergy saving by the application of biosolids to sweet sorghum crop
Energy saving by the application of biosolids to sweet sorghum crop
 
An efficient incentive of Nitrate and Fluoride on Organic highland cropping s...
An efficient incentive of Nitrate and Fluoride on Organic highland cropping s...An efficient incentive of Nitrate and Fluoride on Organic highland cropping s...
An efficient incentive of Nitrate and Fluoride on Organic highland cropping s...
 
7- Analysis of Nitrogen
7- Analysis of Nitrogen7- Analysis of Nitrogen
7- Analysis of Nitrogen
 
Response of aquatic fern(Azolla), to watercontamination
Response of aquatic fern(Azolla), to watercontaminationResponse of aquatic fern(Azolla), to watercontamination
Response of aquatic fern(Azolla), to watercontamination
 
Characterization of N Dynamics and Soil Microbial Communities as a Result of ...
Characterization of N Dynamics and Soil Microbial Communities as a Result of ...Characterization of N Dynamics and Soil Microbial Communities as a Result of ...
Characterization of N Dynamics and Soil Microbial Communities as a Result of ...
 
Towards an Eco-efficient Livestock Production
Towards an Eco-efficient Livestock ProductionTowards an Eco-efficient Livestock Production
Towards an Eco-efficient Livestock Production
 
John williams
John williamsJohn williams
John williams
 
Zeolite effects on soil organic carbon and structure against erosion in viney...
Zeolite effects on soil organic carbon and structure against erosion in viney...Zeolite effects on soil organic carbon and structure against erosion in viney...
Zeolite effects on soil organic carbon and structure against erosion in viney...
 

Más de CIAT

Agricultura Sostenible y Cambio Climático
Agricultura Sostenible y Cambio ClimáticoAgricultura Sostenible y Cambio Climático
Agricultura Sostenible y Cambio ClimáticoCIAT
 
Resumen mesas trabajo
Resumen mesas trabajoResumen mesas trabajo
Resumen mesas trabajoCIAT
 
Impacto de las intervenciones agricolas y de salud para reducir la deficienci...
Impacto de las intervenciones agricolas y de salud para reducir la deficienci...Impacto de las intervenciones agricolas y de salud para reducir la deficienci...
Impacto de las intervenciones agricolas y de salud para reducir la deficienci...CIAT
 
Agricultura sensible a la nutrición en el Altiplano. Explorando las perspecti...
Agricultura sensible a la nutrición en el Altiplano. Explorando las perspecti...Agricultura sensible a la nutrición en el Altiplano. Explorando las perspecti...
Agricultura sensible a la nutrición en el Altiplano. Explorando las perspecti...CIAT
 
El rol de los padres en la nutrición del hogar
El rol de los padres en la nutrición del hogarEl rol de los padres en la nutrición del hogar
El rol de los padres en la nutrición del hogarCIAT
 
Scaling up soil carbon enhancement contributing to mitigate climate change
Scaling up soil carbon enhancement contributing to mitigate climate changeScaling up soil carbon enhancement contributing to mitigate climate change
Scaling up soil carbon enhancement contributing to mitigate climate changeCIAT
 
Impacto del Cambio Climático en la Agricultura de República Dominicana
Impacto del Cambio Climático en la Agricultura de República DominicanaImpacto del Cambio Climático en la Agricultura de República Dominicana
Impacto del Cambio Climático en la Agricultura de República DominicanaCIAT
 
BioTerra: Nuevo sistema de monitoreo de la biodiversidad en desarrollo por el...
BioTerra: Nuevo sistema de monitoreo de la biodiversidad en desarrollo por el...BioTerra: Nuevo sistema de monitoreo de la biodiversidad en desarrollo por el...
BioTerra: Nuevo sistema de monitoreo de la biodiversidad en desarrollo por el...CIAT
 
Investigaciones sobre Cadmio en el Cacao Colombiano
Investigaciones sobre Cadmio en el Cacao ColombianoInvestigaciones sobre Cadmio en el Cacao Colombiano
Investigaciones sobre Cadmio en el Cacao ColombianoCIAT
 
Cacao for Peace Activities for Tackling the Cadmium in Cacao Issue in Colo...
Cacao for Peace Activities for Tackling the Cadmium in Cacao Issue    in Colo...Cacao for Peace Activities for Tackling the Cadmium in Cacao Issue    in Colo...
Cacao for Peace Activities for Tackling the Cadmium in Cacao Issue in Colo...CIAT
 
Tackling cadmium in cacao and derived products – from farm to fork
Tackling cadmium in cacao and derived products – from farm to forkTackling cadmium in cacao and derived products – from farm to fork
Tackling cadmium in cacao and derived products – from farm to forkCIAT
 
Cadmium bioaccumulation and gastric bioaccessibility in cacao: A field study ...
Cadmium bioaccumulation and gastric bioaccessibility in cacao: A field study ...Cadmium bioaccumulation and gastric bioaccessibility in cacao: A field study ...
Cadmium bioaccumulation and gastric bioaccessibility in cacao: A field study ...CIAT
 
Geographical Information System Mapping for Optimized Cacao Production in Col...
Geographical Information System Mapping for Optimized Cacao Production in Col...Geographical Information System Mapping for Optimized Cacao Production in Col...
Geographical Information System Mapping for Optimized Cacao Production in Col...CIAT
 
Contenido de cadmio en granos de cacao
Contenido de cadmio en granos de cacaoContenido de cadmio en granos de cacao
Contenido de cadmio en granos de cacaoCIAT
 
Técnicas para disminuir la disponibilidad de cadmio en suelos de cacaoteras
Técnicas para disminuir la disponibilidad de cadmio en suelos de cacaoterasTécnicas para disminuir la disponibilidad de cadmio en suelos de cacaoteras
Técnicas para disminuir la disponibilidad de cadmio en suelos de cacaoterasCIAT
 
Cacao and Cadmium Research at Penn State
Cacao and Cadmium Research at Penn StateCacao and Cadmium Research at Penn State
Cacao and Cadmium Research at Penn StateCIAT
 
Aportes para el manejo de Cd en cacao
Aportes para el manejo de Cd en cacaoAportes para el manejo de Cd en cacao
Aportes para el manejo de Cd en cacaoCIAT
 
CENTRO DE INNOVACIÓN DEL CACAO PERÚ
CENTRO DE INNOVACIÓN DEL CACAO PERÚCENTRO DE INNOVACIÓN DEL CACAO PERÚ
CENTRO DE INNOVACIÓN DEL CACAO PERÚCIAT
 
Investigaciones sore Cadmio en el Cacao Colombiano
Investigaciones sore Cadmio en el Cacao ColombianoInvestigaciones sore Cadmio en el Cacao Colombiano
Investigaciones sore Cadmio en el Cacao ColombianoCIAT
 
Avances de investigación en cd en cacao
Avances de investigación en cd en cacaoAvances de investigación en cd en cacao
Avances de investigación en cd en cacaoCIAT
 

Más de CIAT (20)

Agricultura Sostenible y Cambio Climático
Agricultura Sostenible y Cambio ClimáticoAgricultura Sostenible y Cambio Climático
Agricultura Sostenible y Cambio Climático
 
Resumen mesas trabajo
Resumen mesas trabajoResumen mesas trabajo
Resumen mesas trabajo
 
Impacto de las intervenciones agricolas y de salud para reducir la deficienci...
Impacto de las intervenciones agricolas y de salud para reducir la deficienci...Impacto de las intervenciones agricolas y de salud para reducir la deficienci...
Impacto de las intervenciones agricolas y de salud para reducir la deficienci...
 
Agricultura sensible a la nutrición en el Altiplano. Explorando las perspecti...
Agricultura sensible a la nutrición en el Altiplano. Explorando las perspecti...Agricultura sensible a la nutrición en el Altiplano. Explorando las perspecti...
Agricultura sensible a la nutrición en el Altiplano. Explorando las perspecti...
 
El rol de los padres en la nutrición del hogar
El rol de los padres en la nutrición del hogarEl rol de los padres en la nutrición del hogar
El rol de los padres en la nutrición del hogar
 
Scaling up soil carbon enhancement contributing to mitigate climate change
Scaling up soil carbon enhancement contributing to mitigate climate changeScaling up soil carbon enhancement contributing to mitigate climate change
Scaling up soil carbon enhancement contributing to mitigate climate change
 
Impacto del Cambio Climático en la Agricultura de República Dominicana
Impacto del Cambio Climático en la Agricultura de República DominicanaImpacto del Cambio Climático en la Agricultura de República Dominicana
Impacto del Cambio Climático en la Agricultura de República Dominicana
 
BioTerra: Nuevo sistema de monitoreo de la biodiversidad en desarrollo por el...
BioTerra: Nuevo sistema de monitoreo de la biodiversidad en desarrollo por el...BioTerra: Nuevo sistema de monitoreo de la biodiversidad en desarrollo por el...
BioTerra: Nuevo sistema de monitoreo de la biodiversidad en desarrollo por el...
 
Investigaciones sobre Cadmio en el Cacao Colombiano
Investigaciones sobre Cadmio en el Cacao ColombianoInvestigaciones sobre Cadmio en el Cacao Colombiano
Investigaciones sobre Cadmio en el Cacao Colombiano
 
Cacao for Peace Activities for Tackling the Cadmium in Cacao Issue in Colo...
Cacao for Peace Activities for Tackling the Cadmium in Cacao Issue    in Colo...Cacao for Peace Activities for Tackling the Cadmium in Cacao Issue    in Colo...
Cacao for Peace Activities for Tackling the Cadmium in Cacao Issue in Colo...
 
Tackling cadmium in cacao and derived products – from farm to fork
Tackling cadmium in cacao and derived products – from farm to forkTackling cadmium in cacao and derived products – from farm to fork
Tackling cadmium in cacao and derived products – from farm to fork
 
Cadmium bioaccumulation and gastric bioaccessibility in cacao: A field study ...
Cadmium bioaccumulation and gastric bioaccessibility in cacao: A field study ...Cadmium bioaccumulation and gastric bioaccessibility in cacao: A field study ...
Cadmium bioaccumulation and gastric bioaccessibility in cacao: A field study ...
 
Geographical Information System Mapping for Optimized Cacao Production in Col...
Geographical Information System Mapping for Optimized Cacao Production in Col...Geographical Information System Mapping for Optimized Cacao Production in Col...
Geographical Information System Mapping for Optimized Cacao Production in Col...
 
Contenido de cadmio en granos de cacao
Contenido de cadmio en granos de cacaoContenido de cadmio en granos de cacao
Contenido de cadmio en granos de cacao
 
Técnicas para disminuir la disponibilidad de cadmio en suelos de cacaoteras
Técnicas para disminuir la disponibilidad de cadmio en suelos de cacaoterasTécnicas para disminuir la disponibilidad de cadmio en suelos de cacaoteras
Técnicas para disminuir la disponibilidad de cadmio en suelos de cacaoteras
 
Cacao and Cadmium Research at Penn State
Cacao and Cadmium Research at Penn StateCacao and Cadmium Research at Penn State
Cacao and Cadmium Research at Penn State
 
Aportes para el manejo de Cd en cacao
Aportes para el manejo de Cd en cacaoAportes para el manejo de Cd en cacao
Aportes para el manejo de Cd en cacao
 
CENTRO DE INNOVACIÓN DEL CACAO PERÚ
CENTRO DE INNOVACIÓN DEL CACAO PERÚCENTRO DE INNOVACIÓN DEL CACAO PERÚ
CENTRO DE INNOVACIÓN DEL CACAO PERÚ
 
Investigaciones sore Cadmio en el Cacao Colombiano
Investigaciones sore Cadmio en el Cacao ColombianoInvestigaciones sore Cadmio en el Cacao Colombiano
Investigaciones sore Cadmio en el Cacao Colombiano
 
Avances de investigación en cd en cacao
Avances de investigación en cd en cacaoAvances de investigación en cd en cacao
Avances de investigación en cd en cacao
 

Último

Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991RKavithamani
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpinRaunakKeshri1
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdfssuser54595a
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationnomboosow
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docxPoojaSen20
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfciinovamais
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdfQucHHunhnh
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 

Último (20)

Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
 
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpin
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communication
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docx
 
Staff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSDStaff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSD
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 

Current Status of BNI Research at JIRCAS

  • 1. Current Status of BNI Research at JIRCAS GV Subbarao JIRCAS, Japan A Collaborative effort with CIAT, ICRISAT and CIMMYT Collaborators CIAT CIMMYT ICRISAT Tottori University Scottish Crops Research Institute Colleagues contributed from JIRCAS 1. T. Ando 2. K. Nakahara 3. T. Yoshihashi 4. T. Watanabe 5. T. Ishikawa 6. Y. Yamanaka 7. H. Y. Wang (PDF) 8. S. Gopalakrishnan (PDF) 9. Stuart Pearse (PDF) 10. A.K.M. Hussain (PDF) 11. Yiyong Zhu (PDF) 12. Zhu Yiyong (PDF) 13. T. Tsehaye (PDF)
  • 2. Nearly 70% of the N fertilizer applied is lost to the environment Amounts to a direct annual economic loss of US$ 90 billion* [*based on - a) world annual N fertilizer production is 150 million Mg; b) 0.45 US$ kg-1 urea] Nitrogen fertilizer consumed in 1930s - < 1.0 Tg (million metric tons) Nitrogen fertilizer consumed in 1960s – 10 Tg Nitrogen fertilizer consumption worldwide in 2010 – 150 Tg (million metric tons) Energy cost of nitrogen fertilizer – 1.8 to 2 L diesel oil per kg N fertilizer To produce 150 million metric tons of Nitrogen fertilizer requires 1.70 billion barrels of diesel oil (energy equivalent) Nitrogen fertilizers – Some facts
  • 3. Year 1950 1960 1970 1980 1990 2000 2010 2020 Nitrogenefficiencyincerealproduction (megatonnescerealgrain/megatonnsfertilizerapplied) 20 30 40 50 60 70 80 Trends in N-fertilization efficiency in cereal production (annual global cereal production divided by annual global application of N-fertilizer) (Source: FAO 2012) Global food production has tripled during this period, but N-fertilizer applications have increased 10-fold (Tilman et al., 2001)
  • 4. Why NUE is <30% in most agricultural systems? Nitrification and denitrification processes associated with uncontrolled rapid nitrification are largely responsible for the massive N leakage (>70% of the N fertilizers) and for the low-NUE
  • 5. Nitrogen Cycle in Typical Agricultural Systems Soil OM Organic N NH4 + Microbial N NO3 - >95% of the total soil inorganic N pool Plant N uptake & Assimilation Mineralization Nitrification Inorganic N Crop Residues N Fertilizer
  • 6. Soil incubation period in days 0 10 20 30 40 Nitrification(%) 0 20 40 60 80 100 120 Intensively managed Alfisols Watersheds Conservatively managed Alfisols Alfisol fields at ICRISAT WS HP Nitrificationrate(gNO3 -g-1soild-1) 0 1 2 3 4 5 Alfisol fields at ICRISAT WS HP Nitrificationrate(gNO3 -g-1soild-1) 0 1 2 3 4 5 Conservatively managed Watershed Alfisols Intensively managed High-precision Alfisols Agricultural intensification led to acceleration of nitrification in intensively-managed production systems
  • 7. How to achieve low-nitrifying agricultural soils? Switch to low-nitrifying agricultural systems
  • 8. Ammonium (NH4 +) Nitrite (NO2 -)  Leaching Nitrate (NO3 -)  N2O, NO, N2  Greenhouse gases  Global warming  Nitrification OM mineralization  Denitrification Ammonia-oxidizing Bacteria Nitrite-oxidizing Bacteria Biological Nitrification Inhibition (BNI) Brachiaria spp. root-produced nitrification inhibitors Microbial Immobilization of NH4 + Low-Nitrifying Natural Ecosystems High-Nitrifying Modern Agricultural Systems BL BL BL BL BL BL BL BL BL BL BL NFertilizer BNI Function and its potential impacts to N-cycling
  • 9. How to detect and quantify nitrification inhibitors ? pHLUX20 9763 bp (Bg/II/ BamHl) kat Trrn Phao luxAB PstI (BamHI/Bg/II) PstI PstI BamHI Physical map of pHLUX20 (source: Iizumi et al. 1998) OM IM NH2OH + H2O NO2 - + 5H+ + 4e- NH3 + O2 HAO c554 c554 UQ UQH2 NAD(P)H + H+ NAD(P)+ FMNH2FMN H2O hv RCOOH RCHO O2 Luciferase NAD(P)+ reductase Cytaa3 oxidase NAD(P)H-FMN AMO oxidoreductase Hypothetical model of interaction between the electron transfer pathways and the luciferase reaction in N. europaea (source Iizumi et al. 1998) BNI activity is expressd in ‘ATU’ Inhibitory effect from 0.28 M AT is defined as one ATU
  • 10. Pasture grasses 0 1 2 3 4 5 6 7 BNI-activityreleasedfromroots (ATUg -1 rootdrywt.d -1 ) 0 2 4 6 8 10 12 14 16 18 1. B. humidicola 2. M. minutiflora 3. P. maximum 4. L. perenne 5. A. gayanus 6. B. brizantha BNI capacity of pastures JIRCAS-CIAT partnership
  • 11. Plants release two categories of BNIs Hydrophobic Hydrophilic BNI Activity Mostly confined to Rhizosphere May move out of Rhizosphere Plant -root produced nitrification inhibitors BL BL BL BL BL BL BL BL BL BL BL BL BL BLBL BL BL BL BL
  • 12. Plant Species BH Sorghum Wheat BNIactiviity(%oftotalBNIactivity) 0 20 40 60 80 100 Hydrophobic-BNI Hydrophilic-BNI Relative importance of hydrophobic- and hydrophilic- BNI activity in three plant species at 8 d old plants 40 d old plants 8 d old plants
  • 13. BNI activity added to the soil (AT g-1 soil) 0 5 10 15 20 25 NO3concentrationinsoil(ppm) 0 50 100 150 200 250 Threshold Releases about 200 to 400 ATU hydrophilic BNI d-1 BNIs provide stable inhibitory effect on soil nitrification 55 d soil incubation
  • 14. 14 A bioassay-guided purification of BNI activity led to isolation of Brachialactone, identified as the major nitrification inhibitor released from the roots of B. humidicola. Atricyclic terpenoid with a unique 5-8-5 ring system and a g-lactone ring Similar 5-8-5 ringsystem Fusicoccins are produced in some fungi (Geranylgeranyl diphosphate) Patented by JIRCAS GGDPis a precursorin thebiosynthesisof terpenoids;also thisis theprecursorfor thesynthesis ofcarotenoids, gibberllinsand chlorophylls in plants 11 Subbarao G V et al. PNAS 2009;106:17302-17307 ©2009 by National Academy of Sciences
  • 15. 0.0 2.5 5.0 7.5 10.0 12.5 15.0 min 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 uV sample: brachialactone standard (mixture of a and b), 75 μg column: TSK gel super ODS (4.6 x 100 mm) mobile phase: water (A) – acetonitrile (B) flow rate: 1.0 ml/min gradient program: 23% - 43%B (10 min), 43% - 48%B (8 min) Time (min) Detectorresponse Brachialactone b Purified Brachialactone HPLC chromatogram
  • 16. GC-MS-SIM based brachialactone quantification 16 Progesterone (IS:1 ppm) Brachialactone (48 ppm) 19.78min Identification: m/z 334 Quantification: m/z 137 18.65min Identification: m/z 314 Quantification: m/z 314 Quantification & identification was achieved. Brachialactone showed 2 peaks, which might be caused by keto-enol tautomerism. ‘Keto’form ‘Enol’form
  • 17. GC-MS-SIM based analytical methodology can have major implications to genetic improvement efforts directed at brachialactone-trait into root systems of Brachiaria sp. Brachialactone is detected in root tissues and quantification using GC- MS-SIM analysis could be a possibility in future Preliminary results suggest brachialactone concentration in root tissues can be as high as 0.27  0.01% (dry weight basis) Brachialactone levels in root tissues could be up to 10 times higher than in root exudates (i.e. about 10% of brachialactone in the root tissues may be released per day from exudation) GC-MS-SIM analysis improves the detection thresholds for brachialatone levels in the samples and may give better quantification in root tissues and root exudates.
  • 18. Brachialactone release is highly influenced by growing season Spring season in Japan appears to have a major influence on brachialactone release in B. humidicola 020004000600080001000012000 11.01.04(No.31) 11.01.18(No.32) 11.02.01(No.33) 11.02.14(No.34) 11.03.03(No.35) 11.03.23(No.36) 11.03.26(No.36… 11.04.01(A-1) 11.04.05… 11.04.11(A-3) 11.04.14(A-5) 11.04.18(A-6) 11.04.21(A-7) 11.04.25(A-8) 11.05.10(May-1) 11.05.17(May-2) 11.05.25(May-3) 11.06.07(No.37) 11.06.21(No.38) 11.07.06(No.39) 11.07.25(No.40) 11.08.08(No.41) 11.08.23(No.42) 11.09.08(No.43) 11.09.26(No.44) 11.10.11(No.45) 11.10.24(No.46) 11.11.07(No.47) 11.11.25(No.48) 11.12.05(No.49) 11.12.19(No.50) 12.01.04(No.51) 12.01.16(No.52) 12.01.30(No.53) 12.02.16(No.54) 12.02.27(No.55) 12.03.05(Marc… 12.03.14(Marc… 12.03.21(Marc… 12.03.26(Marc… 12.04.02(April-1) 12.04.09(April-2) 12.04.13(April-3) 12.04.18(April-4) 12.04.23(April-5) 12.05.8(May-1) 12.05.18(May-2) 12.05.29(May-3) 12.06.05(june-1) 12.06.05(june-2) 12.06.18(june-3) 12.06.25(june-4) 12.07.06(july-1) 12.07.24(july-2) 12.08.06(aug-1) 12.08.20(aug-2) 12.09.03(sep-1) 12.09.18(sep-2) 12.10.11(oct-1) 12.10.16(oct-2) 12.11.06(nov-1) 12.11.19(nov-2) 12.12.03(dec-1) 12.12.18(dec-2) 13.01.07(jan-1) 13.01.22(jan-2) 13.02.04(feb-1) 13.02.18(feb-2) 13.03.05(mar-1) 13.03.18(mar-2) 13.03.25(mar-3) 13.04.01(apr-1) 13.04.08(apr-2) 13.04.22(apr-3) 13.05.08(may-1) 13.05.20(may-2) 13.06.03(jun-1) 13.06.17(jun-2) 13.07.01(july-1) 13.07.16(july-2) 13.07.22(july-3) 13.08.20(aug-1) 13.09.03(sep-1) 13.09.17(sep-2) peakarea mAU*sec. date Annualfluctuationrootexdate standardBH highBNIBH 2011 20132012 We need to understand whether these seasonal influence on brachialactone release from root due to production in root tissues or only release from roots is influenced?
  • 19. Brachialactone’s mode of inhibitory action on Nitrosomonas Compound Concentration in the in vitro assay, mM AMO pathway HAO pathway Crude-root exudate (methanol extract) 63.4 + 0.8 63.8 + 0.8 Brachialactone 5.0 59.7 + 0.9 37.7 + 0.9 Nitrapyrin 3.0 82.3 + 1.5 8.1 + 1.2 Inhibition (%) Outer Membrane Inner Membrane Periplasm Nitrosomonas
  • 20. Regulating factors for the Release of BNIs from roots
  • 21. BNI synthesis and release from roots requires presence of NH4 + N treatment (NO3-N vs NH4-N grown plants) NO3-grown NH4-grown BNIactivityoftheroottissue(ATunitsg-1rootdrywt) 0 50 100 150 200 Root tissue from RE-water treatment Root tissue from RE-NH4 treatment Nitrogen treatment (i.e. NH4-N vs. NO3) of the plants NO3-grown NH4-grown TotalBNIactivityreleasedduring10dperiod(ATunits) 0 200 400 600 800 1000 RE-collected using distilled water RE-collected using 1 NH4Cl (1 mM)
  • 22. Functional link between NH4 +-uptake and BNI release A hypothesis NH4 + Cytoplasm pH >7 NH4 + NH4 + H+ H+ ATP ADP + Pi BNIn- BNIn- BNI Glutamine + H+ glutamate
  • 23. Is there potential for genetic improvement of BNI capacity in pastures? Genetic variability is the primary requirement for genetic improvement in trait/s of interest using traditional breeding
  • 24. Is there a genetic variability for BNI capacity? High-BNI and low-BNI genetic stocks in B. humidicola B. humidicola Accession BNI released ATU g-1 root dry wt. d-1 CIAT 26159 46.3 CIAT 26427 31.6 CIAT 26430 24.1 CIAT 679 17.5 CIAT 26438 6.5 CIAT 26149 7.1 CIAT 682 7.5 Panicum maximum 0.1 LSD (0.05) 6.0 Based on evaluation of 40 germplasm accessions in B.humidicola CIAT’s Collaboration Note 11 sexuals from a total of 40 germplasm accessions were evaluated for BNI capacity; Most sexuals evaluated have BNI capacity similar to the CIAT 679. A bi-parental population using high-BNI (CIAT 16888) and low-BNI (CIAT 26146) has been developed to identify genetic regions associated with BNI-function using a mapping population derived from crosse between apomictic and sexual germplasm accession of BH that differ in BNI-capacity – CIAT-JIRCAS ongoing collaboration
  • 25. Date of Root exudate collection during Spring 2012 2nd March 3rd March 4th March 1st April Brachialactonereleaseperplant (peakarea) 0 2000 4000 6000 8000 10000 12000 CIAT 679 CIAT 26159 CIAT26159 CIAT679 Genetic differences in Brachialactone release capacity High-BNI genotype releases several times higher brachialactone than standard cultivar 25
  • 26. Parental lines of RIL population PVK 801 296-B BNIactivity/Sorgoleonereleaseperplant 0 10 20 30 40 50 BNI activity (ATU) Sorgoleone (g) Total BNI activity and sorgoleone levels in root-DCM wash after 8 d growth in root boxes with hydroponic system (based on 6 times evaluation of 20 seed lings each over a 6 month period) Parental lines of RIL population characterization JIRCAS-ICRISAT partnership
  • 27. HPLC chromatogram of purified sorgoleone BNI activity detected only in this peak NO BNI activity detected in any of these peaks O O OH O Chemical structure of sorgoleone, Molecular Weight - 358 a P-benzoquinone exuded from sorghum roots BNI activity released from sorghum roots Hydrophobic BNIs Hydrophilic BNIs Isolation of the major BNI constituent of hydrophobic BNI activity ED80 = 1.0 ppm Adroplet of sorgoleone exuding from root tip
  • 28. 296B PVK 801 Sorgoleone-phenotyping system is now developed JIRCAS-ICRISAT partnership
  • 29. Bi-Parental Sorghum RIL population (PVK 801 x 296B) 0 50 100 150 200 Sorgoleoneproduced(gplant-1) 0 10 20 30 40 50 PVK801 296B RIL phenotyping for sorgoleone levels in root-DCM wash JIRCAS-ICRISAT partnership
  • 30. Introducing high-BNI capacity into wheat Is it possible or feasible? JIRCAS-CIMMYT partnership
  • 31. Plant species 0 1 2 3 4 BNIactivityreleasedfromroots (ATUg-1rootdrywt.d-1) 0 5 10 15 20 25 30 35 NH4-N grown NO3-N grown Nobeoka Chinese Spring L. racemosus Releases about 150 to 200 AT units of BNI da-1 under optimum conditions Wild-wheat has high-BNI capacity JIRCAS-CIMMYT partnership
  • 32. Leymus racemosus 2N=4X =28; genome Ns NsXmXm Triticum aestivum L. cv. Chinese Spring 2N=6X =42; genome AABBDD F1 hybrid Triticum aestivum L. cv. Chinese Spring 2N=6X =42; genome AABBDD BC1F1 hybrid BC7F1 hybrid Production of wheat-Leymus racemosus-addition lines Two Lr#n L. racemosus chromosomes in wheat detected by florescence in situ hybridization with probe of L. racemosus genomic DNA (green color) 3.9LSD (0.05) 4.97Lr-1-2DtA7Lr-1-2 6.47Lr-1-1DtA7Lr-1-1 6.65Lr-1DA5Lr-1 3.22Lr-1DA2Lr-1 3.7Lr-HDALr-H 4.1Lr-FDALr-F 5.5Lr-kDALr-k 6.4Lr-1DALr-1 13.0Lr-IDALr-I 13.5Lr-jDALr-j 24.6Lr-nDALr-n BNI released (ATU g-1 root dry wt d-1) L. racemosus chromosome introduced Genetic Stock 3.9LSD (0.05) 4.97Lr-1-2DtA7Lr-1-2 6.47Lr-1-1DtA7Lr-1-1 6.65Lr-1DA5Lr-1 3.22Lr-1DA2Lr-1 3.7Lr-HDALr-H 4.1Lr-FDALr-F 5.5Lr-kDALr-k 6.4Lr-1DALr-1 13.0Lr-IDALr-I 13.5Lr-jDALr-j 24.6Lr-nDALr-n BNI released (ATU g-1 root dry wt d-1) L. racemosus chromosome introduced Genetic Stock BNI released from Chromosome-addition lines derived from L. racemosus and cultivated wheat (Chinese Spring) Can the high-BNI capacity of wild-wheat be Transferred/Expressed in cultivated wheat? Would this be the first step to develop low-nitrifying and low-N2O emitting wheat production systems? BA JIRCAS-CIMMYT partnership
  • 33. Lr#nS.3BL Lr#nS.7BL Leymus chromosome ‘N’ The short-arm of the Leymus ‘N’ chromosome is translocated to either 7B or 3B wheat chromosome (short-arm) for BNI evaluations Short arm long arm centromere Courtesy - Kishi Courtesy - Kishi JIRCAS-CIMMYT partnership
  • 34. Lr#n addition Lr#nS.3BL Wheat-Leymus genetic stocks CS N - add N - sub-3A N - Tr-3B N - Tr-7B BNIactivityreleasedfromroots (ATUg-1rootdrywt.d-1) 0 100 200 300 400 500 RE-NH4 + BNI activity release from roots in the presence of NH4 + in the collection solutions Courtesy - Kishi Courtesy - Kishi BNI activity release is two-fold higher in Lr#N addition and Lr#N translocation line (on 3B wheat chromosome) compared to Chinese Spring The above results strongly confirm that BNI-capacity in Leymus is controlled by Lr#N and expressed in wheat background; further the BNI-trait is controlled by short-arm of Lr#n chromosome and its expression depends on the translocation position on wheat JIRCAS-CIMMYT partnership
  • 35. Can the BNI function be effective to control nitrification and nitrous oxide emissions under field conditions? JIRCAS-CIAT partnership
  • 36. Roots of B. humidicola release a powerful nitrification inhibitor Brachialactone Ammonium (NH4 +) Nitrite (NO2 -) Nitrate (NO3 -)Ammonia-oxidizing Bacteria Nitrite-oxidizing Bacteria BL BL BL BL Microbial-N Immobilization Mineralization By blocking the Nitrosomonas function, B. humidicola facilitates NH4 + to move into mocrobial pool and to remain in the soil system and act as a slow-releasing nitrogen source for Brachiaria growth
  • 37. Estimations for the BNIs release from B. humidicola • Active root biomass in a long-term BH pasture being 1.5 Mg ha-1 •(Root mass up to 9.0 Mg ha-1 has been reported in BH pastures) • BNI release rates can be 17 to 50 ATU g-1 root dry wt. d-1 • Estimated BNI activity release d-1 could be 2.6 x 106 to 7.5 x 106 ATU (CIAT 679) (CIAT 26159) •1 ATU being equal to 0.6 g of nitrapyrin • This amounts to an inhibitory potential equivalent to the application of 6.2 to 18 kg of nitrapyrin application ha-1 yr-1
  • 38. 38 Soil ammonium oxidation rates (mg of NO2− N per kg of soil per day) in field plots planted with tropical pasture grasses (differing in BNI capacity) and soybean (lacking BNI capacity in roots) [over 3 years from establishment of pastures (September 2004 to November 2007); for soybean, two planting seasons every year and after six seasons of cultivation] Brachiaria pastures suppressed soil ammonium oxidation Subbarao G V et al. PNAS 2009;106:17302-17307 ©2009 by National Academy of Sciences JIRCAS-CIATpartnership CIAT-Palmira field study 2004-2007 0 0.5 1 1.5 2 2.5 3 3.5 4 Control - Bare soil BH- 16888 ppmofnitrateproducedday-1 CIAT-Palmira field study 2013
  • 39. 39 Cumulative N2O emissions (mg of N2O N per m2 per year) from field plots of tropical pasture grasses (monitored monthly over a 3-year period, from September 2004 to November 2007) Subbarao G V et al. PNAS 2009;106:17302-17307 ©2009 by National Academy of Sciences Brachiaria pastures suppressed N2O emissions from the field Can BNI function in plants be exploited to develop low-N2O emitting systems then? JIRCAS-CIATpartnership
  • 40. BNI capacity of the species (ATU g-1 root dry wt. d-1) 0 10 20 30 40 50 60 CumulativeN2Oemission (mgN2O-Nm2y-1) 0 100 200 300 400 500 Con Soy PM BHM BH-679 BH-16888 High BNI capacity leads to low-N2O emitting systems? A 3-year field study with soybean and pasture grasses with varying BNI capacities Can we develop low-nitrifying and low-N2O emitting pasture-production systems through genetic exploitation of BNI trait? The new MAFF-BNI project (starts from 2014) will test this hypothesis further using genetic stocks of B. humidicola with diverse BNI capacity in root systems JIRCAS-CIATpartnership
  • 41. Photo: J. W. Miles Exploitation of BNI function in BH for the sustainable agro-pastoral systems? Characterization of residual effect of BNI from B. humidicola pasture on maize productivity and Nitrogen use efficiency Ongoing JIRCAS-CIAT partnership
  • 42. How long the BNI-suppressive effect on nitrification persists? Ongoing JIRCAS-CIAT partnership Land Management 0 1 2 Nitrificationrate (mgNO2-Nkg-1soild-1) 0.00 0.02 0.04 0.06 0.08 0.10 0.12 Native savanna BH Cultivated fields Maize BH-BNI effect Time in years 0 1 2 3 4 5 6 Ammoniumoxidationrateinsoil (mgNO2kg -1 soild -1 ) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 Cultivated soils control BH-residual scenario-4 BH-residual scenario-3 BH-residual scenario-2 BH-residual scenario-1
  • 43. Characterization of residual BNI impact on NUE in maize systems An agro-pastoral systems perspective Ongoing JIRCAS-CIAT partnership
  • 44. Maize crop established in a high-BNI field by clearing B. humidicola Field site – Taluma, Iianos, Colombia JIRCAS – CIAT collaborative study – CIAT field site at Llanos Ongoing JIRCAS-CIAT partnership
  • 45. 120 kg N/ha 240 kg N/ha B. humidicolafieldThe BH-BNI benefits on Maize growth Beneficial effects of BNI on subsequent maize crop Land Management 0 1 2 Nitrificationrate (mgNO2-Nkg-1soild-1) 0.00 0.02 0.04 0.06 0.08 0.10 0.12 Native savanna BH Cultivated fields Maize BNI-Field Ongoing JIRCAS-CIAT partnership
  • 46. 120 kg N ha-1 Beneficial effects of BNI on subsequent maize crop A healthy maize crop in BNI-field with 120 kg N application Land Management 0 1 2 Nitrificationrate (mgNO2-Nkg-1soild-1) 0.00 0.02 0.04 0.06 0.08 0.10 0.12 Native savanna BH Cultivated fields Maize JIRCAS – CIAT collaborative study – CIAT field site at Llanos BNI-Field Ongoing JIRCAS-CIAT partnership
  • 47. 120 kg N ha-1 Land Management 0 1 2 Nitrificationrate (mgNO2-Nkg-1soild-1) 0.00 0.02 0.04 0.06 0.08 0.10 0.12 Native savanna BH Cultivated fields Maize JIRCAS – CIAT collaborative study – CIAT field site at Llanos Non-BNI-Field Beneficial effects of BNI on subsequent maize crop A nitrogen-deficient maize crop in non-BNI-field with 120 kg N application Ongoing JIRCAS-CIAT partnership
  • 48. BNI-Field Non-BNI-Field 2012 Field study at Iianos, Colombia Nitrogen fertilizer application (Kg ha-1 ) 40 60 80 100 120 140 160 180 200 220 240 260 Maizegrainyield(tha -1 ) 0 1000 2000 3000 4000 5000 High nitrifying - cultivated fields Low nitrifying - BH-BNI Beneficial effects of BNI on subsequent maize grain yields BNI is more effective on maize yields at low to moderate N applications but not high-N environments BNI function is effective in improving NUE only under low- to moderate-N environments and not at high-N environments BNI-field Non-BNI-field Ongoing JIRCAS-CIAT partnership
  • 49. Maize plant tissues from various land-use systems Ear Shoot Root 15N/14Nratioinplanttissues 4.5 5.0 5.5 6.0 6.5 BH-BNI cont.Maize Native savannah Beneficial effects of BNI on N recovery by Maize BNI is effective in improving N recovery by maize in the field (from 15N studies) BNI-Field Non-BNI-Field Ongoing JIRCAS-CIAT partnership
  • 50. Land use treatments on Maize BH-BNI cont.Maize Native savannah 15N/14Nratioinsoils(0-60cmsdepth) 0.35 0.40 0.45 0.50 0.55 Beneficial effects of BNI on soil-N retention BNI is effective in improving soil-N retention after maize harvest (from 15N studies) BNI-Field Non-BNI-Field Ongoing JIRCAS-CIAT partnership
  • 52. 175 Tg N N-Fertilizer inputs into Agriculture 53.5 Tg N Plant protein from Agriculture 3.5 Tg N Animalprotein from Livestock 0.27Tg N Human system N-retention 123.5 Tg N LOST (70%) FromAgriculture 48.0 Tg N LOST (90%) From Livestock 5.0 Tg N LOST (95%) From Municipal Sewage systems N-Fertilizer inputs into Agriculture Plant protein-N Animal protein-N Human-N Nitrogen flow in Human-centric Ecosystems Annual
  • 53. Nitrogen pollution epidemic in China Nitrification facilitates movement of N from agricultural soils to water-bodies (ground water, freshwater lakes, rivers and to oceans) and cause algal blooms Second Green Revolution?
  • 55. A fundamental shift towards NH4 +-dominated crop nutrition is possible? Retention of soil-N in agricultural soils is critical for the sustainability of production systems and to prevent N from entering into water-bodies Nature 2013, 501:291 BNI function in plants should be exploited to facilitate retention of soil-N within agricultural systems
  • 56. We must develop new technologies to keep N to remain and recycle within the agricultural systems and not allow into water systems – Nitrification control is key BNI function can be one such mechanism that can be exploited from a breeding perspective and from a system’s perspective Take Home Message
  • 57. Strategic Research Partner – CIAT (Drs. IM Rao; Manabu Ishitani; John Miles; Joe Tohme; Jacobo Arango, Marco Rondon; Maria Pilar Hurtado; Danillo Moreta; Gonzalo Borrero) Other participating research institutes ICRISAT (India) CIMMYT (Mexico) Tottori University (Japan) Yokohama City University (Japan) Scottish Crops Research Institute (UK) Biogeochimie et ecologie des milieux continentaux (France) CIAT Tropical pastures-BNI MAFF GTZ Forage-CRP(?) JIRCAS BNI Research CIMMYT Wheat-BNI MAFF Wheat-CRP ICRISAT Sorghum-BNI MAFF (?) Dryland cereals-CRP(?) Thank you for the attention