SlideShare una empresa de Scribd logo
1 de 17
INGENIERIA DE SISTEMAS E INFORMATICA
IV CICLO
CURSO:
Física Electrónica
PROFESOR:
Rojas Reátegui Raúl
PRESENTADO POR :
Marlyn Peña Peña
Un semiconductor es un elemento material cuya conductividad eléctrica puede considerarse
situada entre las de un aislante y la de un conductor, considerados en orden creciente
Los semiconductores más conocidos son el silício (Si) y el germanio (Ge). Debido a que,
como veremos más adelante, el comportamiento del silício es más estable que el
germanio frente a todas las perturbaciones exteriores que pueden variar su respuesta
normal, será el primero (Si) el elemento semiconductor más utilizado en la fabricación de
los componentes electrónicos de estado solido. A él nos referiremos normalmente,
teniendo en cuenta que el proceso del germanio es absolutamente similar.
Como todos los demás, el átomo de silicio tiene tantas cargas positivas en el núcleo, como
electrones en las órbitas que le rodean. (En el caso del silicio este número es de 14). El
interés del semiconductor se centra en su capacidad de dar lugar a la aparición de una
corriente, es decir, que haya un movimiento de electrones. Como es de todos conocido,
un electrón se siente más ligado al núcleo cuanto mayor sea su cercanía entre ambos.
Por tanto los electrones que tienen menor fuerza de atracción por parte del núcleo y
pueden ser liberados de la misma, son los electrones que se encuentran en las órbitas
exteriores. Estos electrones pueden, según lo dicho anteriormente, quedar libres al
inyectarles una pequeña energía.
Un semiconductor es un componente que no
es directamente un conductor de corriente,
pero tampoco es un aislante. En un
conductor la corriente es debida al
movimiento de las cargas negativas
(electrones). En los semiconductores se
producen corrientes producidas por el
movimiento de electrones como de las
cargas positivas (huecos). Los
semiconductores son aquellos elementos
perteneciente al grupo IV de la Tabla
Periódica (Silicio, Germanio, etc.
Generalmente a estos se le introducen
átomos de otros elementos, denominados
impurezas, de forma que la corriente se deba
primordialmente a los electrones o a los
huecos, dependiendo de la impureza
introducida. Otra característica que los
diferencia se refiere a su resistividad,
estando ésta comprendida entre la de los
metales y la de los aislantes.
CORRIENTE DE SEMICONDUCTOR
La corriente que fluirá en un semiconductor intrínseco
consiste en corriente de ambos electrones y huecos.
Es decir, los electrones que han sido liberados de sus
posiciones en la red dentro de la banda de conducción,
se pueden mover a través del material.
Además, otros electrones pueden saltar entre las
posiciones de la red para llenar las vacantes dejadas
por los electrones liberados.
Este mecanismo adicional se llama conducción de
huecos, porque es como si los huecos estuvieran
emigrando a través del material en dirección opuesta
al movimiento de electrones libres.
El flujo de corriente en un semiconductor intrínseco está influenciado por la densidad
de estados de energía la cual a su vez, influencia la densidad de electrones en la banda
de conducción.
Esta corriente es dependiente altamente de la temperatura.
Se dice que un semiconductor es “intrínseco” cuando se encuentra en
estado puro, o sea, que no contiene ninguna impureza, ni átomos de otro
tipo dentro de su estructura. En ese caso, la cantidad de huecos que dejan
los electrones en la banda de valencia al atravesar la banda prohibida será
igual a la cantidad de electrones libres que se encuentran presentes en la
banda de conducción.
Cuando se eleva la temperatura de la red cristalina de un elemento
semiconductor intrínseco, algunos de los enlaces covalentes se rompen y
varios electrones pertenecientes a la banda de valencia se liberan de la
atracción que ejerce el núcleo del átomo sobre los mismos. Esos electrones
libres saltan a la banda de conducción y allí funcionan como “electrones de
conducción”, pudiéndose desplazar libremente de un átomo a otro dentro de
la propia estructura cristalina, siempre que el elemento semiconductor se
estimule con el paso de una corriente eléctrica.
Los elementos semiconductores por excelencia son el silicio y el germanio, aunque
existen otros elementos como el estaño, y compuestos como el arseniuro de galio
que se comportan como tales.
Tomemos como ejemplo el silicio
en su modelo bidimensional:
Vemos como cada átomo de silicio se rodea de sus 4 vecinos próximos con lo
que comparte sus electrones de valencia.
A 0ºK todos los electrones hacen su papel de enlace y tienen energías
correspondientes a la banda de valencia. Esta banda estará completa, mientras que
la de conducción permanecerá vacía. Es cuando hablamos de que el conductor es
un aislante perfecto.
ELECTRONES Y HUECOS
En un semiconductor intrínseco como el silicio a temperatura por encima del
cero absoluto, habrá algunos electrones que serán excitados, cruzarán la
banda prohibida y entrando en la banda de conducción, podrán producir
corriente. Cuando el electrón del silicio puro atraviesa la banda prohibida,
deja tras de sí un puesto vacante de electrones o "hueco" en la estructura
cristalina del silicio normal. Bajo la influencia de una tensión externa, tanto el
electrón como el hueco se pueden mover a través del material. En un
semiconductor tipo n, el dopante contribuye con electrones extras,
aumentando drásticamente la conductividad. En un semiconductor tipo p, el
dopante produce vacantes adicionales o huecos, que también aumentan la
conductividad. Sin embargo, el comportamiento de la unión p-n es la clave
para la enorme variedad de dispositivos electrónicos de estado sólido
SEMICONDUCTOR DOPADO
Si aplicamos una tensión al cristal de silicio, el positivo de la pila intentará
atraer los electrones y el negativo los huecos favoreciendo así la aparición de
una corriente a través del circuito
Ahora bien, esta corriente que aparece es de muy pequeño valor, pues son pocos
los electrones que podemos arrancar de los enlaces entre los átomos de silicio.
Para aumentar el valor de dicha corriente tenemos dos posibilidades:
Aplicar una tensión de valor superior.
Introducir previamente en el semiconductor electrones o huecos desde el exterior.
La primera solución no es factible pues, aún aumentando mucho el
valor de la tensión aplicada, la corriente que aparece no es de suficiente valor. La
solución elegida es la segunda.
En este segundo caso se dice que el semiconductor está "dopado".
El dopaje consiste en sustituir algunos átomos de silicio por átomos de otros
elementos. A estos últimos se les conoce con el nombre de impurezas.
Dependiendo del tipo de impureza con el que se dope al semiconductor puro o
intrínseco aparecen dos clases de semiconductores.
Semiconductor tipo P
Semiconductor tipo N
TIPO “N”
Se llama material tipo N al que posee átomos de impurezas que permiten la
aparición de electrones sin huecos asociados a los mismos. Los átomos de
este tipo se llaman donantes ya que "donan" o entregan electrones. Suelen
ser de valencia cinco, como el Arsénico y el Fósforo. De esta forma, no se ha
desbalanceado la neutralidad eléctrica, ya que el átomo introducido al
semiconductor es neutro, pero posee un electrón no ligado, a diferencia de
los átomos que conforman la estructura original, por lo que la energía
necesaria para separarlo del átomo será menor que la necesitada para
romper una ligadura en el cristal de silicio (o del semiconductor original).
Finalmente, existirán más electrones que huecos, por lo que los primeros
serán los portadores mayoritarios y los últimos los minoritarios. La cantidad
de portadores mayoritarios será función directa de la cantidad de átomos de
impurezas introducidos.
EJEMPLO
El siguiente es un ejemplo de dopaje de Silicio por el Fósforo (dopaje N). En el
caso del Fósforo, se dona un electrón.
TIPO “P”
Se llama así al material que tiene átomos de impurezas que permiten la
formación de huecos sin que aparezcan electrones asociados a los mismos,
como ocurre al romperse una ligadura. Los átomos de este tipo se llaman
aceptores, ya que "aceptan" o toman un electrón. Suelen ser de valencia
tres, como el Aluminio, el Indio o el Galio. Nuevamente, el átomo introducido
es neutro, por lo que no modificará la neutralidad eléctrica del cristal, pero
debido a que solo tiene tres electrones en su última capa de valencia,
aparecerá una ligadura rota, que tenderá a tomar electrones de los átomos
próximos, generando finalmente más huecos que electrones, por lo que los
primeros serán los portadores mayoritarios y los segundos los minoritarios. Al
igual que en el material tipo N, la cantidad de portadores mayoritarios será
función directa de la cantidad de átomos de impurezas introducidos.
EJEMPLO
El siguiente es un ejemplo de dopaje de Silicio por el Boro (P dopaje). En el
caso del boro le falta un electrón y, por tanto, es donado un hueco de
electrón.
S e m i c o n d u c t o r e s d e g r u p o I V :
P a r a l o s s e m i c o n d u c t o r e s d e l
g r u p o I V c o m o s i l i c i o , g e r m a n i o y
c a r b u r o d e s i l i c i o , l o s d o p a n t e s
m á s c o m u n e s s o n e l e m e n t o s d e l
g r u p o I I I o d e l g r u p o V . B o r o ,
a r s é n i c o , f ó s f o r o , y
o c a s i o n a l m e n t e g a l i o , s o n
u t i l i z a d o s p a r a d o p a r a l s i l i c i o .
BANDAS EN SEMICONDUCTORES
DOPADOS
La aplicación de la teoría de bandas a los semiconductores de tipo n y tipo p
muestra que los niveles adicionales se han añadido por las impurezas. En el
material de tipo n hay electrones con niveles de energía cerca de la parte
superior de la banda prohibida, de modo que pueden ser fácilmente
excitados hacia la banda de conducción. En el material de tipo p, los huecos
adicionales en la banda prohibida, permiten la excitación de los electrones de
la banda de valencia, dejando huecos móviles en la banda de valencia.
DOPAJE EN CONDUCTORES
ORGÁNICOS
Los polímeros conductores pueden ser dopados al agregar reactivos químicos
que oxiden (o algunas veces reduzcan) el sistema, para ceder electrones a las
órbitas conductoras dentro de un sistema potencialmente conductor.
Existen dos formas principales de dopar un polímero conductor, ambas mediante
un proceso de reducción-oxidación. En el primer método, dopado químico, se
expone un polímero, como la melanina (típicamente una película delgada), a un
oxidante (típicamente yodo o bromo) o a un agente reductor (típicamente se
utilizan metales alcalinos, aunque esta exposición es bastante menos común). El
segundo método es el dopaje electroquímico, en la cual un electrodo de trabajo,
revestido con un polímero, es suspendido en una solución electrolítica, en la cual
el polímero es insoluble, junto al electrodo opuesto, separados ambos. Se crea
una diferencia de potencial eléctrico entre los electrodos, la cual hace que una
carga (y su correspondiente ion del electrolito) entren en el polímero en la forma
de electrones agregados (dopaje tipo N) o salgan del polímero (dopaje tipo P),
según la polarización utilizada.
La razón por la cual el dopaje tipo N es mucho menos común es que la atmósfera
de la tierra, la cual es rica en oxígeno, crea un ambiente oxidante. Un polímero
tipo N rico en electrones reaccionaría inmediatamente con el oxígeno ambiental y
se desdoparía (o reoxidaría) nuevamente el polímero, volviendo a su estado
natural.
 http://www.monografias.com/trabajos1
1/semi/semi.shtml#ixzz2d6UHFznK
 http://www.asifunciona.com/fisica/ke_s
emiconductor/ke_semiconductor_4.ht
m
 http://www.profesormolina.com.ar/elect
ronica/componentes/semicond/teoria.h
tm
 http://www.buenastareas.com/ensayos/
Semiconductores-Intrinsecos-y-
Extrinsecos/3224982.html
 http://hyperphysics.phy-
astr.gsu.edu/hbasees/solids/dope.html
 http://es.wikipedia.org/wiki/Dopaje_%2
8semiconductores%29

Más contenido relacionado

La actualidad más candente

Semiconductores intrinsecos y dopados
Semiconductores intrinsecos y dopadosSemiconductores intrinsecos y dopados
Semiconductores intrinsecos y dopados
Héctor Chire
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
julca2014
 
Semiconductores intrinsecos y extrinsecos
Semiconductores intrinsecos y extrinsecosSemiconductores intrinsecos y extrinsecos
Semiconductores intrinsecos y extrinsecos
BasTH
 
Semiconductores juan villacorta
Semiconductores juan villacortaSemiconductores juan villacorta
Semiconductores juan villacorta
DSI Salud Perú
 
Semiconductores intrinsecos y dopados
Semiconductores intrinsecos y dopadosSemiconductores intrinsecos y dopados
Semiconductores intrinsecos y dopados
Rj69Vc19
 

La actualidad más candente (20)

Semiconductores intrínsecos y semiconductores dopados
Semiconductores intrínsecos y semiconductores dopadosSemiconductores intrínsecos y semiconductores dopados
Semiconductores intrínsecos y semiconductores dopados
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores intrinsecos y dopados
Semiconductores intrinsecos y dopadosSemiconductores intrinsecos y dopados
Semiconductores intrinsecos y dopados
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores febusca
Semiconductores febuscaSemiconductores febusca
Semiconductores febusca
 
Semiconductores erick
Semiconductores erickSemiconductores erick
Semiconductores erick
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores intrinsecos y extrinsecos
Semiconductores intrinsecos y extrinsecosSemiconductores intrinsecos y extrinsecos
Semiconductores intrinsecos y extrinsecos
 
Materiales semiconductores
Materiales semiconductoresMateriales semiconductores
Materiales semiconductores
 
Los semiconductores intrínsecos y los semiconductores dopados
Los semiconductores intrínsecos y los semiconductores dopadosLos semiconductores intrínsecos y los semiconductores dopados
Los semiconductores intrínsecos y los semiconductores dopados
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores juan villacorta
Semiconductores juan villacortaSemiconductores juan villacorta
Semiconductores juan villacorta
 
Semiconductores intrinsecos y dopados
Semiconductores intrinsecos y dopadosSemiconductores intrinsecos y dopados
Semiconductores intrinsecos y dopados
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Los semiconductores intrínsecos y los semiconductores extrínsecos (dopado)
Los semiconductores intrínsecos y los semiconductores  extrínsecos (dopado)Los semiconductores intrínsecos y los semiconductores  extrínsecos (dopado)
Los semiconductores intrínsecos y los semiconductores extrínsecos (dopado)
 
Semiconductores intrínsecos y semiconductores dopados
Semiconductores intrínsecos y semiconductores dopadosSemiconductores intrínsecos y semiconductores dopados
Semiconductores intrínsecos y semiconductores dopados
 
Semiconductores intrinsecos y semiconductores dopados
Semiconductores intrinsecos y semiconductores dopadosSemiconductores intrinsecos y semiconductores dopados
Semiconductores intrinsecos y semiconductores dopados
 

Similar a Semiconductores Intrinsecos y semiconductores dopados (20)

Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores Intrínsecos y Dopados
Semiconductores Intrínsecos y DopadosSemiconductores Intrínsecos y Dopados
Semiconductores Intrínsecos y Dopados
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores intrínsecos y los semiconductores dopados
Semiconductores intrínsecos y los semiconductores dopadosSemiconductores intrínsecos y los semiconductores dopados
Semiconductores intrínsecos y los semiconductores dopados
 
Semiconductores intrinsecos y dopados
Semiconductores intrinsecos y dopadosSemiconductores intrinsecos y dopados
Semiconductores intrinsecos y dopados
 
Semiconductor
SemiconductorSemiconductor
Semiconductor
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores intrísecos y dopados
Semiconductores intrísecos y dopadosSemiconductores intrísecos y dopados
Semiconductores intrísecos y dopados
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semicnoductores
SemicnoductoresSemicnoductores
Semicnoductores
 
Semicnoductores
SemicnoductoresSemicnoductores
Semicnoductores
 
Teoría de semiconductores
Teoría de semiconductoresTeoría de semiconductores
Teoría de semiconductores
 
Ingieneria de sistema e informatica semiconductores
Ingieneria de sistema e informatica semiconductoresIngieneria de sistema e informatica semiconductores
Ingieneria de sistema e informatica semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 

Último

Proyecto de aprendizaje dia de la madre MINT.pdf
Proyecto de aprendizaje dia de la madre MINT.pdfProyecto de aprendizaje dia de la madre MINT.pdf
Proyecto de aprendizaje dia de la madre MINT.pdf
patriciaines1993
 
2 REGLAMENTO RM 0912-2024 DE MODALIDADES DE GRADUACIÓN_.pptx
2 REGLAMENTO RM 0912-2024 DE MODALIDADES DE GRADUACIÓN_.pptx2 REGLAMENTO RM 0912-2024 DE MODALIDADES DE GRADUACIÓN_.pptx
2 REGLAMENTO RM 0912-2024 DE MODALIDADES DE GRADUACIÓN_.pptx
RigoTito
 
Concepto y definición de tipos de Datos Abstractos en c++.pptx
Concepto y definición de tipos de Datos Abstractos en c++.pptxConcepto y definición de tipos de Datos Abstractos en c++.pptx
Concepto y definición de tipos de Datos Abstractos en c++.pptx
Fernando Solis
 
Curso = Metodos Tecnicas y Modelos de Enseñanza.pdf
Curso = Metodos Tecnicas y Modelos de Enseñanza.pdfCurso = Metodos Tecnicas y Modelos de Enseñanza.pdf
Curso = Metodos Tecnicas y Modelos de Enseñanza.pdf
Francisco158360
 
5.- Doerr-Mide-lo-que-importa-DESARROLLO PERSONAL
5.- Doerr-Mide-lo-que-importa-DESARROLLO PERSONAL5.- Doerr-Mide-lo-que-importa-DESARROLLO PERSONAL
5.- Doerr-Mide-lo-que-importa-DESARROLLO PERSONAL
MiNeyi1
 

Último (20)

Proyecto de aprendizaje dia de la madre MINT.pdf
Proyecto de aprendizaje dia de la madre MINT.pdfProyecto de aprendizaje dia de la madre MINT.pdf
Proyecto de aprendizaje dia de la madre MINT.pdf
 
Feliz Día de la Madre - 5 de Mayo, 2024.pdf
Feliz Día de la Madre - 5 de Mayo, 2024.pdfFeliz Día de la Madre - 5 de Mayo, 2024.pdf
Feliz Día de la Madre - 5 de Mayo, 2024.pdf
 
Caja de herramientas de inteligencia artificial para la academia y la investi...
Caja de herramientas de inteligencia artificial para la academia y la investi...Caja de herramientas de inteligencia artificial para la academia y la investi...
Caja de herramientas de inteligencia artificial para la academia y la investi...
 
Supuestos_prácticos_funciones.docx
Supuestos_prácticos_funciones.docxSupuestos_prácticos_funciones.docx
Supuestos_prácticos_funciones.docx
 
BIOMETANO SÍ, PERO NO ASÍ. LA NUEVA BURBUJA ENERGÉTICA
BIOMETANO SÍ, PERO NO ASÍ. LA NUEVA BURBUJA ENERGÉTICABIOMETANO SÍ, PERO NO ASÍ. LA NUEVA BURBUJA ENERGÉTICA
BIOMETANO SÍ, PERO NO ASÍ. LA NUEVA BURBUJA ENERGÉTICA
 
Prueba de evaluación Geografía e Historia Comunidad de Madrid 4ºESO
Prueba de evaluación Geografía e Historia Comunidad de Madrid 4ºESOPrueba de evaluación Geografía e Historia Comunidad de Madrid 4ºESO
Prueba de evaluación Geografía e Historia Comunidad de Madrid 4ºESO
 
Prueba de evaluación Geografía e Historia Comunidad de Madrid 2º de la ESO
Prueba de evaluación Geografía e Historia Comunidad de Madrid 2º de la ESOPrueba de evaluación Geografía e Historia Comunidad de Madrid 2º de la ESO
Prueba de evaluación Geografía e Historia Comunidad de Madrid 2º de la ESO
 
PIAR v 015. 2024 Plan Individual de ajustes razonables
PIAR v 015. 2024 Plan Individual de ajustes razonablesPIAR v 015. 2024 Plan Individual de ajustes razonables
PIAR v 015. 2024 Plan Individual de ajustes razonables
 
Estrategia de prompts, primeras ideas para su construcción
Estrategia de prompts, primeras ideas para su construcciónEstrategia de prompts, primeras ideas para su construcción
Estrategia de prompts, primeras ideas para su construcción
 
Unidad 3 | Metodología de la Investigación
Unidad 3 | Metodología de la InvestigaciónUnidad 3 | Metodología de la Investigación
Unidad 3 | Metodología de la Investigación
 
2 REGLAMENTO RM 0912-2024 DE MODALIDADES DE GRADUACIÓN_.pptx
2 REGLAMENTO RM 0912-2024 DE MODALIDADES DE GRADUACIÓN_.pptx2 REGLAMENTO RM 0912-2024 DE MODALIDADES DE GRADUACIÓN_.pptx
2 REGLAMENTO RM 0912-2024 DE MODALIDADES DE GRADUACIÓN_.pptx
 
Procedimientos para la planificación en los Centros Educativos tipo V ( multi...
Procedimientos para la planificación en los Centros Educativos tipo V ( multi...Procedimientos para la planificación en los Centros Educativos tipo V ( multi...
Procedimientos para la planificación en los Centros Educativos tipo V ( multi...
 
origen y desarrollo del ensayo literario
origen y desarrollo del ensayo literarioorigen y desarrollo del ensayo literario
origen y desarrollo del ensayo literario
 
Tema 8.- PROTECCION DE LOS SISTEMAS DE INFORMACIÓN.pdf
Tema 8.- PROTECCION DE LOS SISTEMAS DE INFORMACIÓN.pdfTema 8.- PROTECCION DE LOS SISTEMAS DE INFORMACIÓN.pdf
Tema 8.- PROTECCION DE LOS SISTEMAS DE INFORMACIÓN.pdf
 
Tema 10. Dinámica y funciones de la Atmosfera 2024
Tema 10. Dinámica y funciones de la Atmosfera 2024Tema 10. Dinámica y funciones de la Atmosfera 2024
Tema 10. Dinámica y funciones de la Atmosfera 2024
 
OCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VS
OCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VSOCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VS
OCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VS
 
PINTURA DEL RENACIMIENTO EN ESPAÑA (SIGLO XVI).ppt
PINTURA DEL RENACIMIENTO EN ESPAÑA (SIGLO XVI).pptPINTURA DEL RENACIMIENTO EN ESPAÑA (SIGLO XVI).ppt
PINTURA DEL RENACIMIENTO EN ESPAÑA (SIGLO XVI).ppt
 
Concepto y definición de tipos de Datos Abstractos en c++.pptx
Concepto y definición de tipos de Datos Abstractos en c++.pptxConcepto y definición de tipos de Datos Abstractos en c++.pptx
Concepto y definición de tipos de Datos Abstractos en c++.pptx
 
Curso = Metodos Tecnicas y Modelos de Enseñanza.pdf
Curso = Metodos Tecnicas y Modelos de Enseñanza.pdfCurso = Metodos Tecnicas y Modelos de Enseñanza.pdf
Curso = Metodos Tecnicas y Modelos de Enseñanza.pdf
 
5.- Doerr-Mide-lo-que-importa-DESARROLLO PERSONAL
5.- Doerr-Mide-lo-que-importa-DESARROLLO PERSONAL5.- Doerr-Mide-lo-que-importa-DESARROLLO PERSONAL
5.- Doerr-Mide-lo-que-importa-DESARROLLO PERSONAL
 

Semiconductores Intrinsecos y semiconductores dopados

  • 1. INGENIERIA DE SISTEMAS E INFORMATICA IV CICLO CURSO: Física Electrónica PROFESOR: Rojas Reátegui Raúl PRESENTADO POR : Marlyn Peña Peña
  • 2. Un semiconductor es un elemento material cuya conductividad eléctrica puede considerarse situada entre las de un aislante y la de un conductor, considerados en orden creciente Los semiconductores más conocidos son el silício (Si) y el germanio (Ge). Debido a que, como veremos más adelante, el comportamiento del silício es más estable que el germanio frente a todas las perturbaciones exteriores que pueden variar su respuesta normal, será el primero (Si) el elemento semiconductor más utilizado en la fabricación de los componentes electrónicos de estado solido. A él nos referiremos normalmente, teniendo en cuenta que el proceso del germanio es absolutamente similar. Como todos los demás, el átomo de silicio tiene tantas cargas positivas en el núcleo, como electrones en las órbitas que le rodean. (En el caso del silicio este número es de 14). El interés del semiconductor se centra en su capacidad de dar lugar a la aparición de una corriente, es decir, que haya un movimiento de electrones. Como es de todos conocido, un electrón se siente más ligado al núcleo cuanto mayor sea su cercanía entre ambos. Por tanto los electrones que tienen menor fuerza de atracción por parte del núcleo y pueden ser liberados de la misma, son los electrones que se encuentran en las órbitas exteriores. Estos electrones pueden, según lo dicho anteriormente, quedar libres al inyectarles una pequeña energía.
  • 3. Un semiconductor es un componente que no es directamente un conductor de corriente, pero tampoco es un aislante. En un conductor la corriente es debida al movimiento de las cargas negativas (electrones). En los semiconductores se producen corrientes producidas por el movimiento de electrones como de las cargas positivas (huecos). Los semiconductores son aquellos elementos perteneciente al grupo IV de la Tabla Periódica (Silicio, Germanio, etc. Generalmente a estos se le introducen átomos de otros elementos, denominados impurezas, de forma que la corriente se deba primordialmente a los electrones o a los huecos, dependiendo de la impureza introducida. Otra característica que los diferencia se refiere a su resistividad, estando ésta comprendida entre la de los metales y la de los aislantes.
  • 4. CORRIENTE DE SEMICONDUCTOR La corriente que fluirá en un semiconductor intrínseco consiste en corriente de ambos electrones y huecos. Es decir, los electrones que han sido liberados de sus posiciones en la red dentro de la banda de conducción, se pueden mover a través del material. Además, otros electrones pueden saltar entre las posiciones de la red para llenar las vacantes dejadas por los electrones liberados. Este mecanismo adicional se llama conducción de huecos, porque es como si los huecos estuvieran emigrando a través del material en dirección opuesta al movimiento de electrones libres. El flujo de corriente en un semiconductor intrínseco está influenciado por la densidad de estados de energía la cual a su vez, influencia la densidad de electrones en la banda de conducción. Esta corriente es dependiente altamente de la temperatura.
  • 5. Se dice que un semiconductor es “intrínseco” cuando se encuentra en estado puro, o sea, que no contiene ninguna impureza, ni átomos de otro tipo dentro de su estructura. En ese caso, la cantidad de huecos que dejan los electrones en la banda de valencia al atravesar la banda prohibida será igual a la cantidad de electrones libres que se encuentran presentes en la banda de conducción. Cuando se eleva la temperatura de la red cristalina de un elemento semiconductor intrínseco, algunos de los enlaces covalentes se rompen y varios electrones pertenecientes a la banda de valencia se liberan de la atracción que ejerce el núcleo del átomo sobre los mismos. Esos electrones libres saltan a la banda de conducción y allí funcionan como “electrones de conducción”, pudiéndose desplazar libremente de un átomo a otro dentro de la propia estructura cristalina, siempre que el elemento semiconductor se estimule con el paso de una corriente eléctrica.
  • 6. Los elementos semiconductores por excelencia son el silicio y el germanio, aunque existen otros elementos como el estaño, y compuestos como el arseniuro de galio que se comportan como tales. Tomemos como ejemplo el silicio en su modelo bidimensional: Vemos como cada átomo de silicio se rodea de sus 4 vecinos próximos con lo que comparte sus electrones de valencia. A 0ºK todos los electrones hacen su papel de enlace y tienen energías correspondientes a la banda de valencia. Esta banda estará completa, mientras que la de conducción permanecerá vacía. Es cuando hablamos de que el conductor es un aislante perfecto.
  • 7. ELECTRONES Y HUECOS En un semiconductor intrínseco como el silicio a temperatura por encima del cero absoluto, habrá algunos electrones que serán excitados, cruzarán la banda prohibida y entrando en la banda de conducción, podrán producir corriente. Cuando el electrón del silicio puro atraviesa la banda prohibida, deja tras de sí un puesto vacante de electrones o "hueco" en la estructura cristalina del silicio normal. Bajo la influencia de una tensión externa, tanto el electrón como el hueco se pueden mover a través del material. En un semiconductor tipo n, el dopante contribuye con electrones extras, aumentando drásticamente la conductividad. En un semiconductor tipo p, el dopante produce vacantes adicionales o huecos, que también aumentan la conductividad. Sin embargo, el comportamiento de la unión p-n es la clave para la enorme variedad de dispositivos electrónicos de estado sólido
  • 8. SEMICONDUCTOR DOPADO Si aplicamos una tensión al cristal de silicio, el positivo de la pila intentará atraer los electrones y el negativo los huecos favoreciendo así la aparición de una corriente a través del circuito
  • 9. Ahora bien, esta corriente que aparece es de muy pequeño valor, pues son pocos los electrones que podemos arrancar de los enlaces entre los átomos de silicio. Para aumentar el valor de dicha corriente tenemos dos posibilidades: Aplicar una tensión de valor superior. Introducir previamente en el semiconductor electrones o huecos desde el exterior. La primera solución no es factible pues, aún aumentando mucho el valor de la tensión aplicada, la corriente que aparece no es de suficiente valor. La solución elegida es la segunda. En este segundo caso se dice que el semiconductor está "dopado". El dopaje consiste en sustituir algunos átomos de silicio por átomos de otros elementos. A estos últimos se les conoce con el nombre de impurezas. Dependiendo del tipo de impureza con el que se dope al semiconductor puro o intrínseco aparecen dos clases de semiconductores. Semiconductor tipo P Semiconductor tipo N
  • 10. TIPO “N” Se llama material tipo N al que posee átomos de impurezas que permiten la aparición de electrones sin huecos asociados a los mismos. Los átomos de este tipo se llaman donantes ya que "donan" o entregan electrones. Suelen ser de valencia cinco, como el Arsénico y el Fósforo. De esta forma, no se ha desbalanceado la neutralidad eléctrica, ya que el átomo introducido al semiconductor es neutro, pero posee un electrón no ligado, a diferencia de los átomos que conforman la estructura original, por lo que la energía necesaria para separarlo del átomo será menor que la necesitada para romper una ligadura en el cristal de silicio (o del semiconductor original). Finalmente, existirán más electrones que huecos, por lo que los primeros serán los portadores mayoritarios y los últimos los minoritarios. La cantidad de portadores mayoritarios será función directa de la cantidad de átomos de impurezas introducidos.
  • 11. EJEMPLO El siguiente es un ejemplo de dopaje de Silicio por el Fósforo (dopaje N). En el caso del Fósforo, se dona un electrón.
  • 12. TIPO “P” Se llama así al material que tiene átomos de impurezas que permiten la formación de huecos sin que aparezcan electrones asociados a los mismos, como ocurre al romperse una ligadura. Los átomos de este tipo se llaman aceptores, ya que "aceptan" o toman un electrón. Suelen ser de valencia tres, como el Aluminio, el Indio o el Galio. Nuevamente, el átomo introducido es neutro, por lo que no modificará la neutralidad eléctrica del cristal, pero debido a que solo tiene tres electrones en su última capa de valencia, aparecerá una ligadura rota, que tenderá a tomar electrones de los átomos próximos, generando finalmente más huecos que electrones, por lo que los primeros serán los portadores mayoritarios y los segundos los minoritarios. Al igual que en el material tipo N, la cantidad de portadores mayoritarios será función directa de la cantidad de átomos de impurezas introducidos.
  • 13. EJEMPLO El siguiente es un ejemplo de dopaje de Silicio por el Boro (P dopaje). En el caso del boro le falta un electrón y, por tanto, es donado un hueco de electrón.
  • 14. S e m i c o n d u c t o r e s d e g r u p o I V : P a r a l o s s e m i c o n d u c t o r e s d e l g r u p o I V c o m o s i l i c i o , g e r m a n i o y c a r b u r o d e s i l i c i o , l o s d o p a n t e s m á s c o m u n e s s o n e l e m e n t o s d e l g r u p o I I I o d e l g r u p o V . B o r o , a r s é n i c o , f ó s f o r o , y o c a s i o n a l m e n t e g a l i o , s o n u t i l i z a d o s p a r a d o p a r a l s i l i c i o .
  • 15. BANDAS EN SEMICONDUCTORES DOPADOS La aplicación de la teoría de bandas a los semiconductores de tipo n y tipo p muestra que los niveles adicionales se han añadido por las impurezas. En el material de tipo n hay electrones con niveles de energía cerca de la parte superior de la banda prohibida, de modo que pueden ser fácilmente excitados hacia la banda de conducción. En el material de tipo p, los huecos adicionales en la banda prohibida, permiten la excitación de los electrones de la banda de valencia, dejando huecos móviles en la banda de valencia.
  • 16. DOPAJE EN CONDUCTORES ORGÁNICOS Los polímeros conductores pueden ser dopados al agregar reactivos químicos que oxiden (o algunas veces reduzcan) el sistema, para ceder electrones a las órbitas conductoras dentro de un sistema potencialmente conductor. Existen dos formas principales de dopar un polímero conductor, ambas mediante un proceso de reducción-oxidación. En el primer método, dopado químico, se expone un polímero, como la melanina (típicamente una película delgada), a un oxidante (típicamente yodo o bromo) o a un agente reductor (típicamente se utilizan metales alcalinos, aunque esta exposición es bastante menos común). El segundo método es el dopaje electroquímico, en la cual un electrodo de trabajo, revestido con un polímero, es suspendido en una solución electrolítica, en la cual el polímero es insoluble, junto al electrodo opuesto, separados ambos. Se crea una diferencia de potencial eléctrico entre los electrodos, la cual hace que una carga (y su correspondiente ion del electrolito) entren en el polímero en la forma de electrones agregados (dopaje tipo N) o salgan del polímero (dopaje tipo P), según la polarización utilizada. La razón por la cual el dopaje tipo N es mucho menos común es que la atmósfera de la tierra, la cual es rica en oxígeno, crea un ambiente oxidante. Un polímero tipo N rico en electrones reaccionaría inmediatamente con el oxígeno ambiental y se desdoparía (o reoxidaría) nuevamente el polímero, volviendo a su estado natural.
  • 17.  http://www.monografias.com/trabajos1 1/semi/semi.shtml#ixzz2d6UHFznK  http://www.asifunciona.com/fisica/ke_s emiconductor/ke_semiconductor_4.ht m  http://www.profesormolina.com.ar/elect ronica/componentes/semicond/teoria.h tm  http://www.buenastareas.com/ensayos/ Semiconductores-Intrinsecos-y- Extrinsecos/3224982.html  http://hyperphysics.phy- astr.gsu.edu/hbasees/solids/dope.html  http://es.wikipedia.org/wiki/Dopaje_%2 8semiconductores%29