SlideShare una empresa de Scribd logo
1 de 16






Es un semiconductor puro. A temperatura ambiente
se comporta como un aislante porque solo tiene
unos pocos electrones libres y huecos debidos a la
energía térmica.
En un semiconductor intrínseco también hay flujos de
electrones y huecos, aunque la corriente total
resultante sea cero. Esto se debe a que por acción
de la energía térmica se producen los electrones
libres y los huecos por pares, por lo tanto hay tantos
electrones libres como huecos con lo que la
corriente total es cero.
La tensión aplicada en la figura forzará a los
electrones libres a circular hacia la derecha (del
terminal negativo de la pila al positivo) y a los huecos
hacia la izquierda.
En este applet podemos ver mediante una animación en que dirección
se mueven los electrones y los huecos en un semiconductor intrínseco.
Cuando los electrones libres llegan la
extremo derecho del cristal, entran al
conductor externo (normalmente un hilo de
cobre) y circulan hacia el terminal positivo
de la batería. Por otro lado, los electrones
libres en el terminal negativo de la batería
fluirían hacia el extremos izquierdo del cristal.
Así entran en el cristal y se recombinan con
los huecos que llegan al extremo izquierdo
del cristal. Se produce un flujo estable de
electrones libres y huecos dentro del
semiconductor.


Cuando el silicio se encuentra formado por átomos del tipo
explicado en el apartado anterior, se dice que se encuentra en
estado puro o más usualmente que es un semiconductor intrínseco



Una barra de silicio puro está formada por un conjunto de átomos
en lazados unos con otros según una determinada estructura
geométrica que se conoce como red cristalina



Si en estas condiciones inyectamos energía desde el
exterior, algunos de esos electrones de los órbitas externas dejarán
de estar enlazados y podrán moverse. Lógicamente si un electrón
se desprende del átomo, este ya no está completo, decimos que
está cargado positivamente, pues tiene una carga negativa
menos, o que ha aparecido un hueco. Asociamos entonces el
hueco a una carga positiva o al sitio que ocupaba el electrón.



El átomo siempre tendrá la tendencia a estar en su estado
normal, con todas sus cargas, por lo tanto en nuestro
caso, intentará atraer un electrón de otro átomo para rellenar el
hueco que tiene.
Toda inyección de energía exterior produce pues un proceso continuo
que podemos concretar en dos puntos:
Electrones que se quedan libres y se desplazan de un átomo a otro a lo
largo de la barra del material semiconductor de silicio.
Aparición y desaparición de huecos en los diversos átomos del
semiconductor.
Queda así claro que el único movimiento real existente dentro de un
semiconductores el de electrones. Lo que sucede es que al aparecer y
desaparecer huecos, "cargas positivas", en puntos diferentes del
semiconductor, parece que estos se mueven dando lugar a una
corriente de cargas positivas. Este hecho, movimiento de huecos, es
absolutamente falso,. Los huecos no se mueven, sólo parece que lo
hacen.
Ahora bien, para facilitar el estudio de los semiconductores
hablaremos de corriente de huecos (cargas positivas), pues nos resulta
más cómodo y los resultados obtenidos son los mismos que los reales.
En la producción de semiconductores, se denomina dopaje al proceso
intencional de agregar impurezas en un semiconductor extremadamente
puro (también referido como intrínseco) con el fin de cambiar sus
propiedades eléctricas. Las impurezas utilizadas dependen del tipo de
semiconductores a dopar. A los semiconductores con dopajes ligeros y
moderados se los conoce como extrínsecos. Un semiconductor altamente
dopado, que actúa más como un conductor que como un
semiconductor, es llamado degenerado.
El número de átomos dopantes necesitados para crear una diferencia en
las capacidades conductoras de un semiconductor es muy pequeña.
Cuando se agregan un pequeño número de átomos dopantes (en el orden
de 1 cada 100.000.000 de átomos) entonces se dice que el dopaje es bajo
o ligero. Cuando se agregan muchos más átomos (en el orden de 1 cada
10.000 átomos) entonces se dice que el dopaje es alto o pesado. Este
dopaje pesado se representa con la nomenclatura N+ para material de
tipo N, o P+ para material de tipo P.
Tipo N
Se llama material tipo N al que posee átomos de
impurezas que permiten la aparición de
electrones sin huecos asociados a los mismos. Los
átomos de este tipo se llaman donantes ya que
"donan" o entregan electrones. Suelen ser de
valencia cinco, como el Arsénico y el Fósforo. De
esta forma, no se ha desbalanceado la
neutralidad eléctrica, ya que el átomo
introducido al semiconductor es neutro, pero
posee un electrón no ligado, a diferencia de los
átomos que conforman la estructura original, por
lo que la energía necesaria para separarlo del
átomo será menor que la necesitada para
romper una ligadura en el cristal de silicio (o del
semiconductor original). Finalmente, existirán más
electrones que huecos, por lo que los primeros
serán los portadores mayoritarios y los últimos los
minoritarios. La
cantidad
de
portadores
mayoritarios será función directa de la cantidad
de átomos de impurezas introducidos.

El siguiente es un ejemplo de
dopaje de Silicio por el Fósforo
(dopaje N). En el caso del
Fósforo, se dona un electrón
Si en una red cristalina de silicio
(átomos de silicio enlazados entre
sí) ....

Enlace
covalente
de
átomos
de
germanio, obsérvese que cada átomo
comparte cada uno de sus electrones con otros
cuatro átomos
.... sustituimos uno de sus átomos (que como
sabemos tiene 4 electrones en su capa exterior) por
un átomo de otro elemento que contenga cinco
electrones en su capa exterior, resulta que cuatro
de esos electrones sirven para enlazarse con el
resto de los átomos de la red y el quinto queda
libre.

A esta red de silicio "dopado" con esta clase de impurezas se le
denomina "Silicio tipo N"
En esta situación hay mayor número de electrones que de huecos.
Por ello a estos últimos se les denomina "portadores minoritarios" y
"portadores mayoritarios" a los electrones
Las Impurezas tipo N más utilizadas en el proceso de dopado son el
arsénico, el antimonio y el fósforo

Está claro que si a un semiconductor dopado se le aplica tensión en
sus bornas, las posibilidades de que aparezca una corriente en el
circuito son mayores a las del caso de la aplicación de la misma
tensión sobre un semiconductor intrínseco o puro.


Se llama así al material que tiene
átomos de impurezas que permiten la
formación
de
huecos
sin
que
aparezcan electrones asociados a los
mismos, como ocurre al romperse una
ligadura. Los átomos de este tipo se
llaman aceptores, ya que "aceptan" o
toman un electrón. Suelen ser de
valencia tres, como el Aluminio, el Indio
o el Galio. Nuevamente, el átomo
introducido es neutro, por lo que no
modificará la neutralidad eléctrica del
cristal, pero debido a que solo tiene
tres electrones en su última capa de
valencia, aparecerá una ligadura
rota, que tenderá a tomar electrones
de los átomos próximos, generando
finalmente
más
huecos
que
electrones, por lo que los primeros
serán los portadores mayoritarios y los
segundos los minoritarios. Al igual que
en el material tipo N, la cantidad de
portadores mayoritarios será función
directa de la cantidad de átomos de
impurezas introducidos.

El siguiente es un ejemplo de dopaje de
Silicio por el Boro (P dopaje). En el caso
del boro le falta un electrón y, por tanto,
es donado un hueco de electrón
Los polímeros conductores pueden ser dopados al agregar reactivos químicos que oxiden (o
algunas veces reduzcan) el sistema, para ceder electrones a las órbitas conductoras dentro
de un sistema potencialmente conductor.
Existen dos formas principales de dopar un polímero conductor, ambas mediante un
proceso de reducción-oxidación. En el primer método, dopado químico, se expone un
polímero, como la melanina (típicamente una película delgada), a un oxidante
(típicamente yodo o bromo) o a un agente reductor (típicamente se utilizan metales
alcalinos, aunque esta exposición es bastante menos común). El segundo método es el
dopaje electroquímico, en la cual un electrodo de trabajo, revestido con un polímero, es
suspendido en una solución electrolítica, en la cual el polímero es insoluble, junto al
electrodo opuesto, separados ambos. Se crea una diferencia de potencial eléctrico entre
los electrodos, la cual hace que una carga (y su correspondiente ion del electrolito) entren
en el polímero en la forma de electrones agregados (dopaje tipo N) o salgan del polímero
(dopaje tipo P), según la polarización utilizada.
La razón por la cual el dopaje tipo N es mucho menos común es que la atmósfera de la
tierra, la cual es rica en oxígeno, crea un ambiente oxidante. Un polímero tipo N rico en
electrones reaccionaría inmediatamente con el oxígeno ambiental y se desdoparía (o
reoxidaría) nuevamente el polímero, volviendo a su estado natural.


El dopaje fue desarrollado originalmente
por John Robert Woodyard mientras
trabajaba para la Sperry Gyroscope
Company durante la Segunda Guerra
Mundial.1 La demanda de su trabajo sobre
el radar durante la guerra no le permitió
desarrollar
más
profundamente
la
investigación sobre el dopaje, pero durante
la posguerra se generó una gran demanda
iniciada por la companía Sperry Rand, al
conocerse su importante aplicación en la
fabricación de transistores.
Si aplicamos una tensión al
cristal de silicio, el positivo de
la pila intentará atraer los
electrones y el negativo los
huecos favoreciendo así la
aparición de una corriente a
través del circuito

Sentido del movimiento de un electrón y un hueco
en el silicio
Ahora bien, esta corriente que aparece es de muy
pequeño valor, pues son pocos los electrones que
podemos arrancar de los enlaces entre los átomos
de silicio. Para aumentar el valor de dicha corriente
tenemos dos posiblidades:
Aplicar una tensión de valor superior
Introducir previamente en el semiconductor
electrones o huecos desde el exterior
La primera solución no es factible pues, aún
aumentando mucho el valor de la tensión
aplicada, la corriente que aparece no es de
suficiente valor. La solución elegida es la segunda.
En este segundo caso se dice que el semiconductor
está "dopado".
El dopaje consiste en sustituir algunos átomos de
silicio por átomos de otros elementos. A estos últimos
se les conoce con el nombre de impurezas.
Dependiendo del tipo de impureza con el que se
dope al semiconductor puro o intrínseco aparecen
dos clases de semiconductores.
Semiconductor tipo P
Semiconductor tipo N
Si en una red cristalina de silicio
(átomos de silicio enlazados entre sí)
....
Enlace covalente de átomos de
germanio, obsérvese que cada
átomo comparte
cada uno de sus electrones con otros
cuatro átomos

átomo de otro elemento que contenga tres
electrones en su capa exterior, resulta que
estos tres electrones llenarán los huecos que
dejaron los electrones del átomo de
silicio, pero como son cuatro, quedará un
hueco por ocupar. Ósea que ahora la
sustitución de un átomo por otros provoca la
aparición de huecos en el cristal de silicio. Por
tanto ahora los "portadores mayoritarios" serán
los huecos y los electrones los portadores
minoritarios.
A esta red de silicio dopada con esta clase de
impurezas se le denomina "silicio tipo P"
CASO 1
Impurezas de valencia 5
(Arsénico, Antimonio, Fósforo).
Tenemos un cristal de Silicio dopado
con átomos de valencia 5.

Los átomo de valencia 5 tienen un electrón de
más, así con una temperatura no muy elevada
(a temperatura ambiente por ejemplo), el 5º
electrón se hace electrón libre. Esto es, como
solo se pueden tener 8 electrones en la órbita de
valencia, el átomo pentavalente suelta un
electrón que será libre.
Siguen dándose las reacciones anteriores. Si
metemos 1000 átomos de impurezas tendremos
1000 electrones más los que se hagan libres por
generación térmica (muy pocos).

A estas impurezas se les llama "Impurezas
Donadoras". El número de electrones libres se
llama n (electrones libres/m3).
CASO 2
Impurezas
de
valencia
3
(Aluminio, Boro, Galio). Tenemos un
cristal de Silicio dopado con átomos
de valencia 3.

Los átomo de valencia 3 tienen un
electrón de menos, entonces como
nos falta un electrón tenemos un
hueco. Esto es, ese átomo trivalente
tiene 7 electrones en la orbita de
valencia. Al átomo de valencia 3 se
le llama "átomo trivalente" o
"Aceptor".
A estas impurezas se les llama
"Impurezas Aceptoras". Hay tantos
huecos como impurezas de valencia
3 y sigue habiendo huecos de
generación térmica (muy pocos). El
número de huecos se llama p
(huecos/m3).







http://es.wikipedia.org/wiki/Dopaje_(semiconductores)
http://www.sc.ehu.es/sbweb/electronica/elec_basica/tema2/Paginas/Pagi
na5.htm
http://www.ifent.org/lecciones/semiconductor/tipo-P.asp
http://www.ifent.org/lecciones/semiconductor/tipo-N.asp
http://www.ifent.org/lecciones/semiconductor/dopado.asp
http://www.sc.ehu.es/sbweb/electronica/elec_basica/tema2/Paginas/Pagi
na5.htm

Más contenido relacionado

La actualidad más candente (20)

Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Trabajos de semiconductores
Trabajos de semiconductoresTrabajos de semiconductores
Trabajos de semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores trabajo
Semiconductores trabajoSemiconductores trabajo
Semiconductores trabajo
 
Semiconductores intrinsecos y los dopados
Semiconductores intrinsecos y los dopadosSemiconductores intrinsecos y los dopados
Semiconductores intrinsecos y los dopados
 
Semiconductores intrinsecos y semiconductores dopados
Semiconductores intrinsecos y semiconductores dopadosSemiconductores intrinsecos y semiconductores dopados
Semiconductores intrinsecos y semiconductores dopados
 
SEMICONDUCTORES
SEMICONDUCTORESSEMICONDUCTORES
SEMICONDUCTORES
 
Semiconductores intrínsecos y semiconductores dopados
Semiconductores intrínsecos y semiconductores dopadosSemiconductores intrínsecos y semiconductores dopados
Semiconductores intrínsecos y semiconductores dopados
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
SEMICONDUCTORES ELABORADO POR MARCO GUTIERREZ
SEMICONDUCTORES ELABORADO POR MARCO GUTIERREZSEMICONDUCTORES ELABORADO POR MARCO GUTIERREZ
SEMICONDUCTORES ELABORADO POR MARCO GUTIERREZ
 
Semiconductores intrinsecos y dopados
Semiconductores intrinsecos y dopadosSemiconductores intrinsecos y dopados
Semiconductores intrinsecos y dopados
 
Dispositivos semiconductores
Dispositivos semiconductoresDispositivos semiconductores
Dispositivos semiconductores
 

Similar a Semiconductor

Similar a Semiconductor (20)

Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores intrínsecos y los semiconductores dopados
Semiconductores intrínsecos y los semiconductores dopadosSemiconductores intrínsecos y los semiconductores dopados
Semiconductores intrínsecos y los semiconductores dopados
 
Ingieneria de sistema e informatica semiconductores
Ingieneria de sistema e informatica semiconductoresIngieneria de sistema e informatica semiconductores
Ingieneria de sistema e informatica semiconductores
 
Semi conoductores
Semi conoductoresSemi conoductores
Semi conoductores
 
Semiconductores intrinsecos y dopados
Semiconductores intrinsecos y dopadosSemiconductores intrinsecos y dopados
Semiconductores intrinsecos y dopados
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores febusca
Semiconductores febuscaSemiconductores febusca
Semiconductores febusca
 
Semiconductores Intrínsecos y Dopados
Semiconductores Intrínsecos y DopadosSemiconductores Intrínsecos y Dopados
Semiconductores Intrínsecos y Dopados
 
Semicnoductores
SemicnoductoresSemicnoductores
Semicnoductores
 
Semiconductores Intrinsecos y semiconductores dopados
Semiconductores Intrinsecos y semiconductores dopadosSemiconductores Intrinsecos y semiconductores dopados
Semiconductores Intrinsecos y semiconductores dopados
 
Semicnoductores
SemicnoductoresSemicnoductores
Semicnoductores
 
Teoría de semiconductores
Teoría de semiconductoresTeoría de semiconductores
Teoría de semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores INTRINSICO Y DOPADOS
Semiconductores INTRINSICO Y DOPADOSSemiconductores INTRINSICO Y DOPADOS
Semiconductores INTRINSICO Y DOPADOS
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 

Último

EXPECTATIVAS vs PERSPECTIVA en la vida.
EXPECTATIVAS vs PERSPECTIVA  en la vida.EXPECTATIVAS vs PERSPECTIVA  en la vida.
EXPECTATIVAS vs PERSPECTIVA en la vida.DaluiMonasterio
 
Informatica Generalidades - Conceptos Básicos
Informatica Generalidades - Conceptos BásicosInformatica Generalidades - Conceptos Básicos
Informatica Generalidades - Conceptos BásicosCesarFernandez937857
 
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOS
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOSTEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOS
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOSjlorentemartos
 
Heinsohn Privacidad y Ciberseguridad para el sector educativo
Heinsohn Privacidad y Ciberseguridad para el sector educativoHeinsohn Privacidad y Ciberseguridad para el sector educativo
Heinsohn Privacidad y Ciberseguridad para el sector educativoFundación YOD YOD
 
Planificacion Anual 2do Grado Educacion Primaria 2024 Ccesa007.pdf
Planificacion Anual 2do Grado Educacion Primaria   2024   Ccesa007.pdfPlanificacion Anual 2do Grado Educacion Primaria   2024   Ccesa007.pdf
Planificacion Anual 2do Grado Educacion Primaria 2024 Ccesa007.pdfDemetrio Ccesa Rayme
 
DE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.ppt
DE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.pptDE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.ppt
DE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.pptELENA GALLARDO PAÚLS
 
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyzel CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyzprofefilete
 
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...Carlos Muñoz
 
RETO MES DE ABRIL .............................docx
RETO MES DE ABRIL .............................docxRETO MES DE ABRIL .............................docx
RETO MES DE ABRIL .............................docxAna Fernandez
 
Factores ecosistemas: interacciones, energia y dinamica
Factores ecosistemas: interacciones, energia y dinamicaFactores ecosistemas: interacciones, energia y dinamica
Factores ecosistemas: interacciones, energia y dinamicaFlor Idalia Espinoza Ortega
 
Identificación de componentes Hardware del PC
Identificación de componentes Hardware del PCIdentificación de componentes Hardware del PC
Identificación de componentes Hardware del PCCesarFernandez937857
 
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIARAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIACarlos Campaña Montenegro
 
La Función tecnológica del tutor.pptx
La  Función  tecnológica  del tutor.pptxLa  Función  tecnológica  del tutor.pptx
La Función tecnológica del tutor.pptxJunkotantik
 
cortes de luz abril 2024 en la provincia de tungurahua
cortes de luz abril 2024 en la provincia de tungurahuacortes de luz abril 2024 en la provincia de tungurahua
cortes de luz abril 2024 en la provincia de tungurahuaDANNYISAACCARVAJALGA
 
6° SEM30 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
6° SEM30 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx6° SEM30 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
6° SEM30 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docxCeciliaGuerreroGonza1
 
Historia y técnica del collage en el arte
Historia y técnica del collage en el arteHistoria y técnica del collage en el arte
Historia y técnica del collage en el arteRaquel Martín Contreras
 
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptxSINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptxlclcarmen
 
Introducción:Los objetivos de Desarrollo Sostenible
Introducción:Los objetivos de Desarrollo SostenibleIntroducción:Los objetivos de Desarrollo Sostenible
Introducción:Los objetivos de Desarrollo SostenibleJonathanCovena1
 

Último (20)

EXPECTATIVAS vs PERSPECTIVA en la vida.
EXPECTATIVAS vs PERSPECTIVA  en la vida.EXPECTATIVAS vs PERSPECTIVA  en la vida.
EXPECTATIVAS vs PERSPECTIVA en la vida.
 
Informatica Generalidades - Conceptos Básicos
Informatica Generalidades - Conceptos BásicosInformatica Generalidades - Conceptos Básicos
Informatica Generalidades - Conceptos Básicos
 
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOS
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOSTEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOS
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOS
 
Heinsohn Privacidad y Ciberseguridad para el sector educativo
Heinsohn Privacidad y Ciberseguridad para el sector educativoHeinsohn Privacidad y Ciberseguridad para el sector educativo
Heinsohn Privacidad y Ciberseguridad para el sector educativo
 
Planificacion Anual 2do Grado Educacion Primaria 2024 Ccesa007.pdf
Planificacion Anual 2do Grado Educacion Primaria   2024   Ccesa007.pdfPlanificacion Anual 2do Grado Educacion Primaria   2024   Ccesa007.pdf
Planificacion Anual 2do Grado Educacion Primaria 2024 Ccesa007.pdf
 
DE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.ppt
DE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.pptDE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.ppt
DE LAS OLIMPIADAS GRIEGAS A LAS DEL MUNDO MODERNO.ppt
 
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyzel CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
 
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
 
RETO MES DE ABRIL .............................docx
RETO MES DE ABRIL .............................docxRETO MES DE ABRIL .............................docx
RETO MES DE ABRIL .............................docx
 
Factores ecosistemas: interacciones, energia y dinamica
Factores ecosistemas: interacciones, energia y dinamicaFactores ecosistemas: interacciones, energia y dinamica
Factores ecosistemas: interacciones, energia y dinamica
 
Identificación de componentes Hardware del PC
Identificación de componentes Hardware del PCIdentificación de componentes Hardware del PC
Identificación de componentes Hardware del PC
 
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIARAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
 
La Función tecnológica del tutor.pptx
La  Función  tecnológica  del tutor.pptxLa  Función  tecnológica  del tutor.pptx
La Función tecnológica del tutor.pptx
 
cortes de luz abril 2024 en la provincia de tungurahua
cortes de luz abril 2024 en la provincia de tungurahuacortes de luz abril 2024 en la provincia de tungurahua
cortes de luz abril 2024 en la provincia de tungurahua
 
6° SEM30 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
6° SEM30 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx6° SEM30 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
6° SEM30 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
 
Historia y técnica del collage en el arte
Historia y técnica del collage en el arteHistoria y técnica del collage en el arte
Historia y técnica del collage en el arte
 
Power Point: "Defendamos la verdad".pptx
Power Point: "Defendamos la verdad".pptxPower Point: "Defendamos la verdad".pptx
Power Point: "Defendamos la verdad".pptx
 
Repaso Pruebas CRECE PR 2024. Ciencia General
Repaso Pruebas CRECE PR 2024. Ciencia GeneralRepaso Pruebas CRECE PR 2024. Ciencia General
Repaso Pruebas CRECE PR 2024. Ciencia General
 
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptxSINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
 
Introducción:Los objetivos de Desarrollo Sostenible
Introducción:Los objetivos de Desarrollo SostenibleIntroducción:Los objetivos de Desarrollo Sostenible
Introducción:Los objetivos de Desarrollo Sostenible
 

Semiconductor

  • 1.
  • 2.    Es un semiconductor puro. A temperatura ambiente se comporta como un aislante porque solo tiene unos pocos electrones libres y huecos debidos a la energía térmica. En un semiconductor intrínseco también hay flujos de electrones y huecos, aunque la corriente total resultante sea cero. Esto se debe a que por acción de la energía térmica se producen los electrones libres y los huecos por pares, por lo tanto hay tantos electrones libres como huecos con lo que la corriente total es cero. La tensión aplicada en la figura forzará a los electrones libres a circular hacia la derecha (del terminal negativo de la pila al positivo) y a los huecos hacia la izquierda.
  • 3. En este applet podemos ver mediante una animación en que dirección se mueven los electrones y los huecos en un semiconductor intrínseco. Cuando los electrones libres llegan la extremo derecho del cristal, entran al conductor externo (normalmente un hilo de cobre) y circulan hacia el terminal positivo de la batería. Por otro lado, los electrones libres en el terminal negativo de la batería fluirían hacia el extremos izquierdo del cristal. Así entran en el cristal y se recombinan con los huecos que llegan al extremo izquierdo del cristal. Se produce un flujo estable de electrones libres y huecos dentro del semiconductor.
  • 4.  Cuando el silicio se encuentra formado por átomos del tipo explicado en el apartado anterior, se dice que se encuentra en estado puro o más usualmente que es un semiconductor intrínseco  Una barra de silicio puro está formada por un conjunto de átomos en lazados unos con otros según una determinada estructura geométrica que se conoce como red cristalina  Si en estas condiciones inyectamos energía desde el exterior, algunos de esos electrones de los órbitas externas dejarán de estar enlazados y podrán moverse. Lógicamente si un electrón se desprende del átomo, este ya no está completo, decimos que está cargado positivamente, pues tiene una carga negativa menos, o que ha aparecido un hueco. Asociamos entonces el hueco a una carga positiva o al sitio que ocupaba el electrón.  El átomo siempre tendrá la tendencia a estar en su estado normal, con todas sus cargas, por lo tanto en nuestro caso, intentará atraer un electrón de otro átomo para rellenar el hueco que tiene.
  • 5. Toda inyección de energía exterior produce pues un proceso continuo que podemos concretar en dos puntos: Electrones que se quedan libres y se desplazan de un átomo a otro a lo largo de la barra del material semiconductor de silicio. Aparición y desaparición de huecos en los diversos átomos del semiconductor. Queda así claro que el único movimiento real existente dentro de un semiconductores el de electrones. Lo que sucede es que al aparecer y desaparecer huecos, "cargas positivas", en puntos diferentes del semiconductor, parece que estos se mueven dando lugar a una corriente de cargas positivas. Este hecho, movimiento de huecos, es absolutamente falso,. Los huecos no se mueven, sólo parece que lo hacen. Ahora bien, para facilitar el estudio de los semiconductores hablaremos de corriente de huecos (cargas positivas), pues nos resulta más cómodo y los resultados obtenidos son los mismos que los reales.
  • 6. En la producción de semiconductores, se denomina dopaje al proceso intencional de agregar impurezas en un semiconductor extremadamente puro (también referido como intrínseco) con el fin de cambiar sus propiedades eléctricas. Las impurezas utilizadas dependen del tipo de semiconductores a dopar. A los semiconductores con dopajes ligeros y moderados se los conoce como extrínsecos. Un semiconductor altamente dopado, que actúa más como un conductor que como un semiconductor, es llamado degenerado. El número de átomos dopantes necesitados para crear una diferencia en las capacidades conductoras de un semiconductor es muy pequeña. Cuando se agregan un pequeño número de átomos dopantes (en el orden de 1 cada 100.000.000 de átomos) entonces se dice que el dopaje es bajo o ligero. Cuando se agregan muchos más átomos (en el orden de 1 cada 10.000 átomos) entonces se dice que el dopaje es alto o pesado. Este dopaje pesado se representa con la nomenclatura N+ para material de tipo N, o P+ para material de tipo P.
  • 7. Tipo N Se llama material tipo N al que posee átomos de impurezas que permiten la aparición de electrones sin huecos asociados a los mismos. Los átomos de este tipo se llaman donantes ya que "donan" o entregan electrones. Suelen ser de valencia cinco, como el Arsénico y el Fósforo. De esta forma, no se ha desbalanceado la neutralidad eléctrica, ya que el átomo introducido al semiconductor es neutro, pero posee un electrón no ligado, a diferencia de los átomos que conforman la estructura original, por lo que la energía necesaria para separarlo del átomo será menor que la necesitada para romper una ligadura en el cristal de silicio (o del semiconductor original). Finalmente, existirán más electrones que huecos, por lo que los primeros serán los portadores mayoritarios y los últimos los minoritarios. La cantidad de portadores mayoritarios será función directa de la cantidad de átomos de impurezas introducidos. El siguiente es un ejemplo de dopaje de Silicio por el Fósforo (dopaje N). En el caso del Fósforo, se dona un electrón
  • 8. Si en una red cristalina de silicio (átomos de silicio enlazados entre sí) .... Enlace covalente de átomos de germanio, obsérvese que cada átomo comparte cada uno de sus electrones con otros cuatro átomos .... sustituimos uno de sus átomos (que como sabemos tiene 4 electrones en su capa exterior) por un átomo de otro elemento que contenga cinco electrones en su capa exterior, resulta que cuatro de esos electrones sirven para enlazarse con el resto de los átomos de la red y el quinto queda libre. A esta red de silicio "dopado" con esta clase de impurezas se le denomina "Silicio tipo N" En esta situación hay mayor número de electrones que de huecos. Por ello a estos últimos se les denomina "portadores minoritarios" y "portadores mayoritarios" a los electrones Las Impurezas tipo N más utilizadas en el proceso de dopado son el arsénico, el antimonio y el fósforo Está claro que si a un semiconductor dopado se le aplica tensión en sus bornas, las posibilidades de que aparezca una corriente en el circuito son mayores a las del caso de la aplicación de la misma tensión sobre un semiconductor intrínseco o puro.
  • 9.  Se llama así al material que tiene átomos de impurezas que permiten la formación de huecos sin que aparezcan electrones asociados a los mismos, como ocurre al romperse una ligadura. Los átomos de este tipo se llaman aceptores, ya que "aceptan" o toman un electrón. Suelen ser de valencia tres, como el Aluminio, el Indio o el Galio. Nuevamente, el átomo introducido es neutro, por lo que no modificará la neutralidad eléctrica del cristal, pero debido a que solo tiene tres electrones en su última capa de valencia, aparecerá una ligadura rota, que tenderá a tomar electrones de los átomos próximos, generando finalmente más huecos que electrones, por lo que los primeros serán los portadores mayoritarios y los segundos los minoritarios. Al igual que en el material tipo N, la cantidad de portadores mayoritarios será función directa de la cantidad de átomos de impurezas introducidos. El siguiente es un ejemplo de dopaje de Silicio por el Boro (P dopaje). En el caso del boro le falta un electrón y, por tanto, es donado un hueco de electrón
  • 10. Los polímeros conductores pueden ser dopados al agregar reactivos químicos que oxiden (o algunas veces reduzcan) el sistema, para ceder electrones a las órbitas conductoras dentro de un sistema potencialmente conductor. Existen dos formas principales de dopar un polímero conductor, ambas mediante un proceso de reducción-oxidación. En el primer método, dopado químico, se expone un polímero, como la melanina (típicamente una película delgada), a un oxidante (típicamente yodo o bromo) o a un agente reductor (típicamente se utilizan metales alcalinos, aunque esta exposición es bastante menos común). El segundo método es el dopaje electroquímico, en la cual un electrodo de trabajo, revestido con un polímero, es suspendido en una solución electrolítica, en la cual el polímero es insoluble, junto al electrodo opuesto, separados ambos. Se crea una diferencia de potencial eléctrico entre los electrodos, la cual hace que una carga (y su correspondiente ion del electrolito) entren en el polímero en la forma de electrones agregados (dopaje tipo N) o salgan del polímero (dopaje tipo P), según la polarización utilizada. La razón por la cual el dopaje tipo N es mucho menos común es que la atmósfera de la tierra, la cual es rica en oxígeno, crea un ambiente oxidante. Un polímero tipo N rico en electrones reaccionaría inmediatamente con el oxígeno ambiental y se desdoparía (o reoxidaría) nuevamente el polímero, volviendo a su estado natural.
  • 11.  El dopaje fue desarrollado originalmente por John Robert Woodyard mientras trabajaba para la Sperry Gyroscope Company durante la Segunda Guerra Mundial.1 La demanda de su trabajo sobre el radar durante la guerra no le permitió desarrollar más profundamente la investigación sobre el dopaje, pero durante la posguerra se generó una gran demanda iniciada por la companía Sperry Rand, al conocerse su importante aplicación en la fabricación de transistores.
  • 12. Si aplicamos una tensión al cristal de silicio, el positivo de la pila intentará atraer los electrones y el negativo los huecos favoreciendo así la aparición de una corriente a través del circuito Sentido del movimiento de un electrón y un hueco en el silicio Ahora bien, esta corriente que aparece es de muy pequeño valor, pues son pocos los electrones que podemos arrancar de los enlaces entre los átomos de silicio. Para aumentar el valor de dicha corriente tenemos dos posiblidades: Aplicar una tensión de valor superior Introducir previamente en el semiconductor electrones o huecos desde el exterior La primera solución no es factible pues, aún aumentando mucho el valor de la tensión aplicada, la corriente que aparece no es de suficiente valor. La solución elegida es la segunda. En este segundo caso se dice que el semiconductor está "dopado". El dopaje consiste en sustituir algunos átomos de silicio por átomos de otros elementos. A estos últimos se les conoce con el nombre de impurezas. Dependiendo del tipo de impureza con el que se dope al semiconductor puro o intrínseco aparecen dos clases de semiconductores. Semiconductor tipo P Semiconductor tipo N
  • 13. Si en una red cristalina de silicio (átomos de silicio enlazados entre sí) .... Enlace covalente de átomos de germanio, obsérvese que cada átomo comparte cada uno de sus electrones con otros cuatro átomos átomo de otro elemento que contenga tres electrones en su capa exterior, resulta que estos tres electrones llenarán los huecos que dejaron los electrones del átomo de silicio, pero como son cuatro, quedará un hueco por ocupar. Ósea que ahora la sustitución de un átomo por otros provoca la aparición de huecos en el cristal de silicio. Por tanto ahora los "portadores mayoritarios" serán los huecos y los electrones los portadores minoritarios. A esta red de silicio dopada con esta clase de impurezas se le denomina "silicio tipo P"
  • 14. CASO 1 Impurezas de valencia 5 (Arsénico, Antimonio, Fósforo). Tenemos un cristal de Silicio dopado con átomos de valencia 5. Los átomo de valencia 5 tienen un electrón de más, así con una temperatura no muy elevada (a temperatura ambiente por ejemplo), el 5º electrón se hace electrón libre. Esto es, como solo se pueden tener 8 electrones en la órbita de valencia, el átomo pentavalente suelta un electrón que será libre. Siguen dándose las reacciones anteriores. Si metemos 1000 átomos de impurezas tendremos 1000 electrones más los que se hagan libres por generación térmica (muy pocos). A estas impurezas se les llama "Impurezas Donadoras". El número de electrones libres se llama n (electrones libres/m3).
  • 15. CASO 2 Impurezas de valencia 3 (Aluminio, Boro, Galio). Tenemos un cristal de Silicio dopado con átomos de valencia 3. Los átomo de valencia 3 tienen un electrón de menos, entonces como nos falta un electrón tenemos un hueco. Esto es, ese átomo trivalente tiene 7 electrones en la orbita de valencia. Al átomo de valencia 3 se le llama "átomo trivalente" o "Aceptor". A estas impurezas se les llama "Impurezas Aceptoras". Hay tantos huecos como impurezas de valencia 3 y sigue habiendo huecos de generación térmica (muy pocos). El número de huecos se llama p (huecos/m3).