SlideShare una empresa de Scribd logo
1 de 11
INTRÍNSECOSY DOPADOS
LUIS F. ARANCIBIA VELARDE
Se dice que un semiconductor es “intrínseco” cuando se
encuentra en estado puro, o sea, que no contiene ninguna
impureza, ni átomos de otro tipo dentro de su estructura. En ese
caso, la cantidad de huecos que dejan los electrones en la banda
de valencia al atravesar la banda prohibida será igual a la
cantidad de electrones libres que se encuentran presentes en la
banda de conducción.
Cuando se eleva la temperatura de la red cristalina de un
elemento semiconductor intrínseco, algunos de los enlaces
covalentes se rompen y varios electrones pertenecientes a la
banda de valencia se liberan de la atracción que ejerce el núcleo
del átomo sobre los mismos.
Esos electrones libres saltan a la banda de conducción y allí
funcionan como “electrones de conducción”, pudiéndose desplazar
libremente de un átomo a otro dentro de la propia estructura
cristalina, siempre que el elemento semiconductor se estimule con el
paso de una corriente eléctrica.
Es un cristal de silicio o Germanio que forma una
estructura tetraédrica similar a la del carbono mediante enlaces
covalentes entre sus átomos, en la figura representados en el
plano por simplicidad. Cuando el cristal se encuentra a
temperatura ambiente algunos electrones pueden absorber la
energía necesaria para saltar a la banda de conducción dejando
el correspondiente hueco en la banda de valencia (1). Las
energías requeridas, a temperatura ambiente, son de 0,7 eV y 0,3
eV para el silicio y el germanio respectivamente.
Obviamente el proceso inverso también se produce, de modo que
los electrones pueden caer, desde el estado energético
correspondiente a la banda de conducción, a un hueco en la
banda de valencia liberando energía. A este fenómeno se le
denomina recombinación. Sucede que, a una determinada
temperatura, las velocidades de creación de pares e-h, y de
recombinación se igualan, de modo que la concentración global
de electrones y huecos permanece invariable. Siendo "n" la
concentración de electrones (cargas negativas) y "p" la
concentración de huecos (cargas positivas), se cumple que: ni =
n = p
Siendo ni la concentración intrínseca del
semiconductor, función exclusiva de la temperatura y
del tipo de elemento. Los electrones y los huecos
reciben el nombre de portadores. En los
semiconductores, ambos tipos de portadores
contribuyen al paso de la corriente eléctrica. Si se
somete el cristal a una diferencia de potencial se
producen dos corrientes eléctricas. Por un lado la
debida al movimiento de los electrones libres de la
banda de conducción, y por otro, la debida al
desplazamiento de los electrones en la banda de
valencia, que tenderán a saltar a los huecos próximos
(2), originando una corriente de huecos con 4 capas
ideales y en la dirección contraria al campo eléctrico
cuya velocidad y magnitud es muy inferior a la de la
banda de conducción.
En la producción de semiconductores, se denomina dopaje al
proceso intencional de agregar impurezas en un semiconductor
extremadamente puro (también referido como intrínseco) con el
fin de cambiar sus propiedades eléctricas.
Las impurezas utilizadas dependen del tipo de semiconductores
a dopar. A los semiconductores con dopajes ligeros y
moderados se los conoce como extrínsecos.
Un semiconductor altamente dopado que actúa más como
un conductor que como un semiconductor es
llamado degenerado.
El número de átomos dopantes necesitados para
crear una diferencia en las capacidades conductoras
de un semiconductor es muy pequeña. Cuando se
agregan un pequeño número de átomos dopantes (en
el orden de 1 cada 100.000.000 de átomos) entonces
se dice que el dopaje es bajo o ligero.
Cuando se agregan muchos más átomos (en el orden
de 1 cada 10.000 átomos) entonces se dice que el
dopaje es alto o pesado. Este dopaje pesado se
representa con la nomenclatura N+ para material de
tipo N, o P+ para material de tipo P.
Tipo de Materiales Dopantes:Tipo N
Se llama material tipo N al que posee átomos de impurezas que permiten
la aparición de electrones sin huecos asociados a los mismos. Los
átomos de este tipo se llaman donantes ya que "donan" o entregan
electrones. Suelen ser de valencia cinco, como el Arsénico y el Fósforo.
De esta forma, no se ha desbalanceado la neutralidad eléctrica, ya que el
átomo introducido al semiconductor es neutro, pero posee un electrón no
ligado, a diferencia de los átomos que conforman la estructura original,
por lo que la energía necesaria para separarlo del átomo será menor que
la necesitada para romper una ligadura en el cristal de silicio (o del
semiconductor original
Tipo de Materiales Dopantes:Tipo N
Finalmente, existirán más electrones que huecos, por lo que los primeros
serán los portadores mayoritarios y los últimos los minoritarios. La
cantidad de portadores mayoritarios será función directa de la cantidad
de átomos de impurezas introducidos.
El siguiente es un ejemplo de dopaje de Silicio por el Fósforo (dopaje N).
En el caso del Fósforo, se dona un electrón.
Tipo de Materiales Dopantes:Tipo P
Se llama así al material que tiene átomos de impurezas que permiten la
formación de huecos sin que aparezcan electrones asociados a los
mismos, como ocurre al romperse una ligadura. Los átomos de este tipo
se llaman aceptores, ya que "aceptan" o toman un electrón. Suelen ser
de valencia tres, como el Aluminio, el Indio o el Galio.
Nuevamente, el átomo introducido es neutro, por lo que no modificará la
neutralidad eléctrica del cristal, pero debido a que solo tiene tres
electrones en su última capa de valencia, aparecerá una ligadura rota,
que tenderá a tomar electrones de los átomos próximos, generando
finalmente más huecos que electrones, por lo que los primeros serán los
portadores mayoritarios y los segundos los minoritarios.
Tipo de Materiales Dopantes:Tipo P
Al igual que en el material tipo N, la cantidad de portadores mayoritarios
será función directa de la cantidad de átomos de impurezas introducidos.
El siguiente es un ejemplo de dopaje de Silicio por el Boro (P dopaje). En
el caso del boro le falta un electrón y, por tanto, es donado un hueco de
electrón.

Más contenido relacionado

La actualidad más candente (18)

Semiconductores trabajo
Semiconductores trabajoSemiconductores trabajo
Semiconductores trabajo
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores intrinsecos y dopados
Semiconductores intrinsecos y dopadosSemiconductores intrinsecos y dopados
Semiconductores intrinsecos y dopados
 
Semiconductores febusca
Semiconductores febuscaSemiconductores febusca
Semiconductores febusca
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductor
SemiconductorSemiconductor
Semiconductor
 
SEMICONDUCTORES
SEMICONDUCTORESSEMICONDUCTORES
SEMICONDUCTORES
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semi conoductores
Semi conoductoresSemi conoductores
Semi conoductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semicnoductores
SemicnoductoresSemicnoductores
Semicnoductores
 
Semiconductores intrínsecos
Semiconductores intrínsecosSemiconductores intrínsecos
Semiconductores intrínsecos
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores fmgs
Semiconductores fmgsSemiconductores fmgs
Semiconductores fmgs
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores intrínsecos y extrínsecos
Semiconductores intrínsecos y extrínsecosSemiconductores intrínsecos y extrínsecos
Semiconductores intrínsecos y extrínsecos
 

Destacado (15)

História das Vacinas
História das VacinasHistória das Vacinas
História das Vacinas
 
"Ana gigante"
"Ana gigante""Ana gigante"
"Ana gigante"
 
Sewer Reticulation Layout-Model
Sewer Reticulation Layout-ModelSewer Reticulation Layout-Model
Sewer Reticulation Layout-Model
 
1° "A". Catálogo de Herramientas Digitales.
1° "A". Catálogo de Herramientas Digitales.1° "A". Catálogo de Herramientas Digitales.
1° "A". Catálogo de Herramientas Digitales.
 
Boominone
BoominoneBoominone
Boominone
 
June
JuneJune
June
 
Anastomosis porto cavas
Anastomosis porto cavasAnastomosis porto cavas
Anastomosis porto cavas
 
S4A: A1 Empezamos con S4a
S4A: A1 Empezamos con S4aS4A: A1 Empezamos con S4a
S4A: A1 Empezamos con S4a
 
KyM
KyMKyM
KyM
 
Transformadores
TransformadoresTransformadores
Transformadores
 
LECCIÓN 1
LECCIÓN 1 LECCIÓN 1
LECCIÓN 1
 
Arquitectura del computador
Arquitectura del computadorArquitectura del computador
Arquitectura del computador
 
Como conquistar rapido
Como conquistar rapidoComo conquistar rapido
Como conquistar rapido
 
Modulo de experiencias educativas 1
Modulo de experiencias educativas 1Modulo de experiencias educativas 1
Modulo de experiencias educativas 1
 
Prevenção de Incêndios
Prevenção de IncêndiosPrevenção de Incêndios
Prevenção de Incêndios
 

Similar a Semiconductores

Semiconductores intrínsecos y los semiconductores dopados
Semiconductores intrínsecos y los semiconductores dopadosSemiconductores intrínsecos y los semiconductores dopados
Semiconductores intrínsecos y los semiconductores dopadosLuis Lurita Giles
 
Semiconductores Intrínsecos y Dopados
Semiconductores Intrínsecos y DopadosSemiconductores Intrínsecos y Dopados
Semiconductores Intrínsecos y DopadosJavier Ruiz G
 
Semiconductores
SemiconductoresSemiconductores
SemiconductoresJhony_g
 
Semiconductores..
Semiconductores..Semiconductores..
Semiconductores..992145237
 
Semiconductores..
Semiconductores..Semiconductores..
Semiconductores..992145237
 
Semiconductores intrínsecos y semiconductores dopados
Semiconductores intrínsecos y semiconductores dopadosSemiconductores intrínsecos y semiconductores dopados
Semiconductores intrínsecos y semiconductores dopadosJulianne Grace Márquez Zapata
 
Semiconductores
SemiconductoresSemiconductores
Semiconductoresalex_5717
 
Semiconductores intrínsecos y dopados
Semiconductores intrínsecos y dopadosSemiconductores intrínsecos y dopados
Semiconductores intrínsecos y dopadosdenosorio
 
Semiconductores
SemiconductoresSemiconductores
Semiconductoresybenites
 
Semiconductores intrínsecos
Semiconductores intrínsecosSemiconductores intrínsecos
Semiconductores intrínsecosCarlos Davila
 
Teoría de semiconductores
Teoría de semiconductoresTeoría de semiconductores
Teoría de semiconductoresBella Misa
 
Semiconductores Intrinsecos y semiconductores dopados
Semiconductores Intrinsecos y semiconductores dopadosSemiconductores Intrinsecos y semiconductores dopados
Semiconductores Intrinsecos y semiconductores dopadosMarlyn Peña
 

Similar a Semiconductores (20)

Semiconductores intrínsecos y los semiconductores dopados
Semiconductores intrínsecos y los semiconductores dopadosSemiconductores intrínsecos y los semiconductores dopados
Semiconductores intrínsecos y los semiconductores dopados
 
Semiconductores Intrínsecos y Dopados
Semiconductores Intrínsecos y DopadosSemiconductores Intrínsecos y Dopados
Semiconductores Intrínsecos y Dopados
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semicnoductores
SemicnoductoresSemicnoductores
Semicnoductores
 
Semiconductores..
Semiconductores..Semiconductores..
Semiconductores..
 
Semiconductores..
Semiconductores..Semiconductores..
Semiconductores..
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores intrínsecos y semiconductores dopados
Semiconductores intrínsecos y semiconductores dopadosSemiconductores intrínsecos y semiconductores dopados
Semiconductores intrínsecos y semiconductores dopados
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores intrínsecos y dopados
Semiconductores intrínsecos y dopadosSemiconductores intrínsecos y dopados
Semiconductores intrínsecos y dopados
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Ingieneria de sistema e informatica semiconductores
Ingieneria de sistema e informatica semiconductoresIngieneria de sistema e informatica semiconductores
Ingieneria de sistema e informatica semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores intrínsecos
Semiconductores intrínsecosSemiconductores intrínsecos
Semiconductores intrínsecos
 
Teoría de semiconductores
Teoría de semiconductoresTeoría de semiconductores
Teoría de semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores Intrinsecos y semiconductores dopados
Semiconductores Intrinsecos y semiconductores dopadosSemiconductores Intrinsecos y semiconductores dopados
Semiconductores Intrinsecos y semiconductores dopados
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 

Semiconductores

  • 1. INTRÍNSECOSY DOPADOS LUIS F. ARANCIBIA VELARDE
  • 2. Se dice que un semiconductor es “intrínseco” cuando se encuentra en estado puro, o sea, que no contiene ninguna impureza, ni átomos de otro tipo dentro de su estructura. En ese caso, la cantidad de huecos que dejan los electrones en la banda de valencia al atravesar la banda prohibida será igual a la cantidad de electrones libres que se encuentran presentes en la banda de conducción. Cuando se eleva la temperatura de la red cristalina de un elemento semiconductor intrínseco, algunos de los enlaces covalentes se rompen y varios electrones pertenecientes a la banda de valencia se liberan de la atracción que ejerce el núcleo del átomo sobre los mismos.
  • 3. Esos electrones libres saltan a la banda de conducción y allí funcionan como “electrones de conducción”, pudiéndose desplazar libremente de un átomo a otro dentro de la propia estructura cristalina, siempre que el elemento semiconductor se estimule con el paso de una corriente eléctrica.
  • 4. Es un cristal de silicio o Germanio que forma una estructura tetraédrica similar a la del carbono mediante enlaces covalentes entre sus átomos, en la figura representados en el plano por simplicidad. Cuando el cristal se encuentra a temperatura ambiente algunos electrones pueden absorber la energía necesaria para saltar a la banda de conducción dejando el correspondiente hueco en la banda de valencia (1). Las energías requeridas, a temperatura ambiente, son de 0,7 eV y 0,3 eV para el silicio y el germanio respectivamente. Obviamente el proceso inverso también se produce, de modo que los electrones pueden caer, desde el estado energético correspondiente a la banda de conducción, a un hueco en la banda de valencia liberando energía. A este fenómeno se le denomina recombinación. Sucede que, a una determinada temperatura, las velocidades de creación de pares e-h, y de recombinación se igualan, de modo que la concentración global de electrones y huecos permanece invariable. Siendo "n" la concentración de electrones (cargas negativas) y "p" la concentración de huecos (cargas positivas), se cumple que: ni = n = p
  • 5. Siendo ni la concentración intrínseca del semiconductor, función exclusiva de la temperatura y del tipo de elemento. Los electrones y los huecos reciben el nombre de portadores. En los semiconductores, ambos tipos de portadores contribuyen al paso de la corriente eléctrica. Si se somete el cristal a una diferencia de potencial se producen dos corrientes eléctricas. Por un lado la debida al movimiento de los electrones libres de la banda de conducción, y por otro, la debida al desplazamiento de los electrones en la banda de valencia, que tenderán a saltar a los huecos próximos (2), originando una corriente de huecos con 4 capas ideales y en la dirección contraria al campo eléctrico cuya velocidad y magnitud es muy inferior a la de la banda de conducción.
  • 6. En la producción de semiconductores, se denomina dopaje al proceso intencional de agregar impurezas en un semiconductor extremadamente puro (también referido como intrínseco) con el fin de cambiar sus propiedades eléctricas. Las impurezas utilizadas dependen del tipo de semiconductores a dopar. A los semiconductores con dopajes ligeros y moderados se los conoce como extrínsecos. Un semiconductor altamente dopado que actúa más como un conductor que como un semiconductor es llamado degenerado.
  • 7. El número de átomos dopantes necesitados para crear una diferencia en las capacidades conductoras de un semiconductor es muy pequeña. Cuando se agregan un pequeño número de átomos dopantes (en el orden de 1 cada 100.000.000 de átomos) entonces se dice que el dopaje es bajo o ligero. Cuando se agregan muchos más átomos (en el orden de 1 cada 10.000 átomos) entonces se dice que el dopaje es alto o pesado. Este dopaje pesado se representa con la nomenclatura N+ para material de tipo N, o P+ para material de tipo P.
  • 8. Tipo de Materiales Dopantes:Tipo N Se llama material tipo N al que posee átomos de impurezas que permiten la aparición de electrones sin huecos asociados a los mismos. Los átomos de este tipo se llaman donantes ya que "donan" o entregan electrones. Suelen ser de valencia cinco, como el Arsénico y el Fósforo. De esta forma, no se ha desbalanceado la neutralidad eléctrica, ya que el átomo introducido al semiconductor es neutro, pero posee un electrón no ligado, a diferencia de los átomos que conforman la estructura original, por lo que la energía necesaria para separarlo del átomo será menor que la necesitada para romper una ligadura en el cristal de silicio (o del semiconductor original
  • 9. Tipo de Materiales Dopantes:Tipo N Finalmente, existirán más electrones que huecos, por lo que los primeros serán los portadores mayoritarios y los últimos los minoritarios. La cantidad de portadores mayoritarios será función directa de la cantidad de átomos de impurezas introducidos. El siguiente es un ejemplo de dopaje de Silicio por el Fósforo (dopaje N). En el caso del Fósforo, se dona un electrón.
  • 10. Tipo de Materiales Dopantes:Tipo P Se llama así al material que tiene átomos de impurezas que permiten la formación de huecos sin que aparezcan electrones asociados a los mismos, como ocurre al romperse una ligadura. Los átomos de este tipo se llaman aceptores, ya que "aceptan" o toman un electrón. Suelen ser de valencia tres, como el Aluminio, el Indio o el Galio. Nuevamente, el átomo introducido es neutro, por lo que no modificará la neutralidad eléctrica del cristal, pero debido a que solo tiene tres electrones en su última capa de valencia, aparecerá una ligadura rota, que tenderá a tomar electrones de los átomos próximos, generando finalmente más huecos que electrones, por lo que los primeros serán los portadores mayoritarios y los segundos los minoritarios.
  • 11. Tipo de Materiales Dopantes:Tipo P Al igual que en el material tipo N, la cantidad de portadores mayoritarios será función directa de la cantidad de átomos de impurezas introducidos. El siguiente es un ejemplo de dopaje de Silicio por el Boro (P dopaje). En el caso del boro le falta un electrón y, por tanto, es donado un hueco de electrón.