SlideShare una empresa de Scribd logo
1 de 671
Descargar para leer sin conexión
http://www.elsolucionario.blogspot.com


                        LIBROS UNIVERISTARIOS
                         Y SOLUCIONARIOS DE
                       MUCHOS DE ESTOS LIBROS

                         LOS SOLUCIONARIOS
                        CONTIENEN TODOS LOS
                         EJERCICIOS DEL LIBRO
                       RESUELTOS Y EXPLICADOS
                           DE FORMA CLARA

                           VISITANOS PARA
                         DESARGALOS GRATIS.
Solution Manual

                to accompany

Introduction to Electric Circuits, 6e




      By R. C. Dorf and J. A. Svoboda




                                        1
Table of Contents

Chapter 1 Electric Circuit Variables

Chapter 2 Circuit Elements

Chapter 3 Resistive Circuits

Chapter 4 Methods of Analysis of Resistive Circuits

Chapter 5 Circuit Theorems

Chapter 6 The Operational Amplifier

Chapter 7 Energy Storage Elements

Chapter 8 The Complete Response of RL and RC Circuits

Chapter 9 The Complete Response of Circuits with Two Energy Storage Elements

Chapter 10 Sinusoidal Steady-State Analysis

Chapter 11 AC Steady-State Power

Chapter 12 Three-Phase Circuits

Chapter 13 Frequency Response

Chapter 14 The Laplace Transform

Chapter 15 Fourier Series and Fourier Transform

Chapter 16 Filter Circuits

Chapter 17 Two-Port and Three-Port Networks




                                                                               2
Errata for Introduction to Electric Circuits, 6th Edition




            Errata for Introduction to Electric Circuits, 6th Edition
Page 18, voltage reference direction should be + on the right in part B:




Page 28, caption for Figure 2.3-1: "current" instead of "cuurent"

Page 41, line 2: "voltage or current" instead of "voltage or circuit"

Page 41, Figure 2.8-1 b: the short circuit is drawn as an open circuit.

Page 42, line 11: "Each dependent source ..." instead of "Each dependent sources..."

Page 164, Table 5.5-1: method 2, part c, one should insert the phrase "Zero all independent sources,
then" between the "(c)" and "Connect a 1-A source. . ." The edited phrase will read:

"Zero all independent sources, then connect a 1-A source from terminal b to terminal a. Determine Vab.
                                          Then Rt = Vab/1."

Page 340, Problem P8.3-5: The answer should be                                         .


Page 340, Problem P8.3-6: The answer should be                                     .



Page 341, Problem P.8.4-1: The answer should be



Page 546, line 4: The angle is                          instead of      .


Page 554, Problem 12.4.1 Missing parenthesis:


Page 687, Equation 15.5-2: Partial t in exponent:


 http://www.clarkson.edu/~svoboda/errata/6th.html (1 of 2)5/10/2004 7:41:43 PM
Errata for Introduction to Electric Circuits, 6th Edition



Page 757, Problem 16.5-7: Hb(s) = V2(s) / V1(s) and Hc(s) = V2(s) / Vs(s) instead of Hb(s) = V1(s) / V2
(s) and Hc(s) = V1(s) / Vs(s).




 http://www.clarkson.edu/~svoboda/errata/6th.html (2 of 2)5/10/2004 7:41:43 PM
Chapter 1 – Electric Circuit Variables
Exercises
Ex. 1.3-1
                    i (t ) = 8 t 2 − 4 t A
                                   t                             t                        8         t 8
                    q(t ) =    ∫   0
                                       i dτ + q(0) =     ∫   0
                                                                     (8τ 2 − 4τ ) dτ + 0 = τ 3 −2τ 2 = t 3 − 2 t 2 C
                                                                                          3         0 3
Ex. 1.3-3
                           t                                 t                          4             4         4
              q ( t ) = ∫ i (τ ) dτ + q ( 0 ) = ∫ 4sin 3τ dτ + 0 = −
                                                                                                 t
                                                                                          cos 3τ 0 = − cos 3 t + C
                           0                              0                             3             3         3

Ex. 1.3-4


                               0                        t <0
         dq ( t )              
i (t ) =              i (t ) = 2                        0< t < 2
          dt                       −2( t − 2 )
                               −2e                      t >2



Ex. 1.4-1
               i1 = 45 µA = 45 × 10-6 A < i2 = 0.03 mA = .03 × 10-3 A = 3 × 10-5 A < i3 = 25 × 10-4 A

Ex. 1.4-2
                                            ∆ q = i∆ t =               ( 4000 A )( 0.001 s )   = 4 C


Ex. 1.4-3
                                                       ∆ q 45 × 10−9
                                                  i=      =        −3
                                                                      = 9 × 10−6 = 9 µA
                                                       ∆t   5 × 10


Ex. 1.4-4
                  electron           −19 C                                            9 electron            −19    C 
   i = 10 billion
                      s     1.602 ×10 electron  =
                                                                                 10×10
                                                                                                s     1.602 × 10 electron 
                                                                                                                           
                                                                                                        electron     C
                                                                                 = 1010 × 1.602 ×10−19
                                                                                                            s     electron
                                                                                                C
                                                                                 = 1.602 × 10−9 = 1.602 nA
                                                                                                s


                                                                                                                             1-1
Ex. 1.6-1
                   (a) The element voltage and current do not adhere to the passive convention in
                       Figures 1.6-1B and 1.6-1C so the product of the element voltage and current
                       is the power supplied by these elements.
                   (b) The element voltage and current adhere to the passive convention in Figures
                       1.6-1A and 1.6-1D so the product of the element voltage and current is the
                       power delivered to, or absorbed by these elements.
                   (c) The element voltage and current do not adhere to the passive convention in
                       Figure 1.6-1B, so the product of the element voltage and current is the power
                       delivered by this element: (2 V)(6 A) = 12 W. The power received by the
                       element is the negative of the power delivered by the element, -12 W.
                   (d) The element voltage and current do not adhere to the passive convention in
                       Figure 1.6-1B, so the product of the element voltage and current is the power
                       supplied by this element: (2 V)(6 A) = 12 W.
                   (e) The element voltage and current adhere to the passive convention in Figure
                       1.6-1D, so the product of the element voltage and current is the power
                       delivered to this element: (2 V)(6 A) = 12 W. The power supplied by the
                       element is the negative of the power delivered to the element, -12 W.




Problems
Section 1-3 Electric Circuits and Current Flow

P1.3-1
                                                  d
                                       i (t ) =
                                                  dt
                                                          (       )
                                                     4 1 − e −5t = 20 e −5t A


P1.3-2
                                                                                                   4      4
                                                  (           )
                         t                       t                      t        t
              q ( t ) = ∫ i (τ ) dτ + q ( 0 ) = ∫ 4 1 − e −5τ dτ + 0 = ∫ 4 dτ − ∫ 4 e−5τ dτ = 4 t + e−5t − C
                         0                       0                      0        0                 5      5


P1.3-3
         t               t
q ( t ) = ∫ i (τ ) dτ = ∫ 0 dτ = 0 C for t ≤ 2 so q(2) = 0.
         −∞              −∞
         t                      t
q ( t ) = ∫ i (τ ) dτ + q ( 2 ) = ∫ 2 dτ = 2 τ 2 = 2 t − 4 C for 2 ≤ t ≤ 4. In particular, q(4) = 4 C.
                                             t
         2                     2
         t                     t
q ( t ) = ∫ i (τ ) dτ + q ( 4 ) = ∫ −1 dτ + 4 = − τ 4 + 4 = 8 − t C for 4 ≤ t ≤ 8. In particular, q(8) = 0 C.
                                                      t
         4                     4
         t                     t
q ( t ) = ∫ i (τ ) dτ + q ( 8 ) = ∫ 0 dτ + 0 = 0 C for 8 ≤ t .
         8                     8




                                                                                                          1-2
P1.3-4
                               C
          i = 600 A = 600
                               s
                                C            s         mg
          Silver deposited = 600 ×20 min×60     ×1.118    = 8.05×105 mg=805 g
                                s           min        C




Section 1-6 Power and Energy

P1.6-1
         a.) q =    ∫ i dt = i∆t = (10 A )( 2 hrs )( 3600s/hr ) = 7.2×10
                                                                           4
                                                                               C
         b.) P = v i = (110 V )(10 A ) = 1100 W
                      0.06$
         c.) Cost =         × 1.1kW × 2 hrs = 0.132 $
                      kWhr

P1.6-2
           P = ( 6 V )(10 mA ) = 0.06 W
                   ∆w   200 W⋅s
         ∆t =         =         = 3.33×103 s
                    P   0.06 W


P1.6-3
                                                     30
         for 0 ≤ t ≤ 10 s:    v = 30 V and i =          t = 2t A ∴ P = 30(2t ) = 60t W
                                                     15
                                        25
         for 10 ≤ t ≤ 15 s: v ( t ) = −    t + b ⇒ v (10 ) = 30 V ⇒ b = 80 V
                                         5
         v(t ) = −5t + 80 and i (t ) = 2t A ⇒ P = ( 2t )( −5t +80 ) = −10t 2 +160t W
                                                    30
         for 15 ≤ t ≤ 25 s: v = 5 V and i (t ) = −     t +b A
                                                    10
         i (25) = 0     ⇒ b = 75 ⇒ i (t ) = −3t + 75 A
         ∴ P = ( 5 )( −3t + 75 ) = −15t + 375 W




                                                                                         1-3
60t dt + ∫10 (160t −10t 2 ) dt + ∫15 ( 375−15t ) dt
                                             10                15                   25
              Energy = ∫ P dt =          ∫0
                                                          15                25
                                     + 80t 2 − 10 t 3 + 375t − 15 t 2 = 5833.3 J
                                10
                      = 30t 2
                                0               3 10            2 15


P1.6-4
         a.) Assuming no more energy is delivered to the battery after 5 hours (battery is fully
         charged).
                                                                               5( 3600 )
                       t          5 ( 3600 )       0.5 τ               0.5 2
          w = ∫ Pdt = ∫0 vi dτ = ∫0         2 11 +        dτ = 22 t + 3600 τ
                                                   3600                      0

                                                                        = 441× 103 J = 441 kJ




                               1 hr   10¢
         b.) Cost = 441kJ ×         ×     = 1.23¢
                              3600s kWhr


P1.6-5
                                              1                         1
                                     p (t ) =   ( cos 3 t )( sin 3 t ) = sin 6 t
                                              3                         6
                                                     1
                                         p ( 0.5 ) = sin 3 = 0.0235 W
                                                     6
                                                   1
                                         p (1) = sin 6 = −0.0466 W
                                                   6



                                                                                                        1-4
Here is a MATLAB program to plot p(t):

clear

t0=0;                                %   initial time
tf=2;                                %   final time
dt=0.02;                             %   time increment
t=t0:dt:tf;                          %   time

v=4*cos(3*t);                        % device voltage
i=(1/12)*sin(3*t);                   % device current

for k=1:length(t)
   p(k)=v(k)*i(k);                   % power
end

plot(t,p)
xlabel('time, s');
ylabel('power, W')



P1.6-6
                  p ( t ) = 16 ( sin 3 t )( sin 3 t ) = 8 ( cos 0 − cos 6 t ) = 8 − 8cos 6 t W

Here is a MATLAB program to plot p(t):

clear

t0=0;                                %   initial time
tf=2;                                %   final time
dt=0.02;                             %   time increment
t=t0:dt:tf;                          %   time

v=8*sin(3*t);                        % device voltage
i=2*sin(3*t);                        % device current

for k=1:length(t)
   p(k)=v(k)*i(k);                   % power
end

plot(t,p)
xlabel('time, s');
ylabel('power, W')




                                                                                                 1-5
P1.6-7
                                      (         )              (          )
                           p ( t ) = 4 1 − e −2 t × 2 e −2 t = 8 1 − e−2 t e −2t

Here is a MATLAB program to plot p(t):

clear

t0=0;                             %   initial time
tf=2;                             %   final time
dt=0.02;                          %   time increment
t=t0:dt:tf;                       %   time

v=4*(1-exp(-2*t));                % device voltage
i=2*exp(-2*t);                    % device current

for k=1:length(t)
   p(k)=v(k)*i(k);                % power
end

plot(t,p)
xlabel('time, s');
ylabel('power, W')


P1.6-8
            P = V I =3 × 0.2=0.6 W
            w = P ⋅ t = 0.6 × 5 × 60=180 J




                                                                                   1-6
Verification Problems

VP 1-1
Notice that the element voltage and current of each branch adhere to the passive convention. The
sum of the powers absorbed by each branch are:

(-2 V)(2 A)+(5 V)(2 A)+(3 V)(3 A)+(4 V)(-5 A)+(1 V)(5 A) = -4 W + 10 W + 9 W -20 W + 5 W
                                                             =0W
The element voltages and currents satisfy conservation of energy and may be correct.

VP 1-2
Notice that the element voltage and current of some branches do not adhere to the passive
convention. The sum of the powers absorbed by each branch are:

-(3 V)(3 A)+(3 V)(2 A)+ (3 V)(2 A)+(4 V)(3 A)+(-3 V)(-3 A)+(4 V)(-3 A)
                                                 = -9 W + 6 W + 6 W + 12 W + 9 W -12 W
                                                 ≠0W

The element voltages and currents do not satisfy conservation of energy and cannot be correct.




Design Problems

DP 1-1
The voltage may be as large as 20(1.25) = 25 V and the current may be as large as (0.008)(1.25)
= 0.01 A. The element needs to be able to absorb (25 V)(0.01 A) = 0.25 W continuously. A
Grade B element is adequate, but without margin for error. Specify a Grade B device if you trust
the estimates of the maximum voltage and current and a Grade A device otherwise.




                                                                                             1-7
DP1-2
                                    (         )                    (        )
                         p ( t ) = 20 1 − e −8 t × 0.03 e −8 t = 0.6 1 − e−8t e−8t

Here is a MATLAB program to plot p(t):

clear

t0=0;                              %    initial time
tf=1;                              %    final time
dt=0.02;                           %    time increment
t=t0:dt:tf;                        %    time

v=20*(1-exp(-8*t));                  % device voltage
i=.030*exp(-8*t);                      % device current

for k=1:length(t)
   p(k)=v(k)*i(k);                 % power
end

plot(t,p)
xlabel('time, s');
ylabel('power, W')

Here is the plot:




The circuit element must be able to absorb 0.15 W.




                                                                                     1-8
Chapter 2 - Circuit Elements
Exercises
Ex. 2.3-1
            m ( i1 + i 2 ) = mi1 + mi 2     ⇒ superposition is satisfied
            m ( a i1 ) = a ( mi1 ) ⇒ homogeneity is satisfied
            Therefore the element is linear.

Ex. 2.3-2
            m ( i1 + i 2 ) + b = mi1 + mi 2 + b ≠ ( mi1 + b ) + ( mi 2 + b ) ⇒ superposition is not satisfied
            Therefore the element is not linear.

Ex. 2.5-1
                                               v 2 (10 )
                                                              2

                                             P= =        =1 W
                                               R 100
Ex. 2.5-2
                                          v 2 (10 cos t ) 2
                                  P=         =              = 10 cos 2 t W
                                          R       10
Ex. 2.8-1




                                                 ic = − 1.2       A, v d = 24       V
                                                 id = 4 ( − 1.2) = − 4.8        A
            id and vd adhere to the passive convention so
                                     P = vd id = (24) (−4.8) = −115.2                   W
            is the power received by the dependent source




                                                                                                          2-1
Ex. 2.8-2




                                 vc = −2 V, id = 4 vc = −8 A and vd = 2.2 V
            id and vd adhere to the passive convention so
                                       P = vd id = (2.2) (−8) = −17.6 W
            is the power received by the dependent source. The power supplied by the
            dependent source is 17.6 W.

Ex. 2.8-3




                                ic = 1.25 A, vd = 2 ic = 2.5 V and id = 1.75 A
            id and vd adhere to the passive convention so
                                       P = vd id = (2.5) (1.75) = 4.375 W
            is the power received by the dependent source.




                                                                                       2-2
Ex. 2.9-1

                                                   θ = 45° , I = 2 mA, R p = 20 kΩ
                                                         θ         45
                                                   a=       ⇒ aR =    (20 kΩ) = 2.5 kΩ
                                                        360     p 360

                                                   vm = (2 ×10−3 )(2.5 ×103 ) = 5 V



Ex. 2.9-2
                                                                  µA
                                    v = 10 V, i = 280 µA, k = 1        for AD590
                                                                  °K

                                                i          °K 
                                    i = kT ⇒ T = = (280µA)1    = 280° K
                                                k          µA 
                                                              



Ex. 2.10-1
                            At t = 4 s both switches are open, so i = 0 A.

Ex. 2.10.2
             At t = 4 s the switch is in the up position, so v = i R = (2 mA)(3 kΩ) = 6V .

             At t = 6 s the switch is in the down position, so v = 0 V.



Problems
Section 2-3 Engineering and Linear Models

P2.3-1
The element is not linear. For example, doubling the current from 2 A to 4 A does not double the
voltage. Hence, the property of homogeneity is not satisfied.

P2.3-2
        (a) The data points do indeed lie on a straight line. The slope of the line is 0.12 V/A and
the line passes through the origin so the equation of the line is v = 0.12 i . The element is indeed
linear.
        (b) When i = 40 mA, v = (0.12 V/A)×(40 mA) = (0.12 V/A)×(0.04 A) = 4.8 mV
                                  4
        (c) When v = 4 V, i =        = 33 A = 33 A.
                                0.12


                                                                                                  2-3
P2.3-3
        (a) The data points do indeed lie on a straight line. The slope of the line is 256.5 V/A and
the line passes through the origin so the equation of the line is v = 256.5i . The element is indeed
linear.
        (b) When i = 4 mA, v = (256.5 V/A)×(4 mA) = (256.5 V/A)×(0.004 A) = 1.026 V
                                  12
        (c) When v = 12 V, i =          = 0.04678 A = 46.78 mA.
                                 256.5

P2.3-4
       Let i = 1 A , then v = 3i + 5 = 8 V. Next 2i = 2A but 16 = 2v ≠ 3(2i) + 5 = 11.. Hence,
the property of homogeneity is not satisfied. The element is not linear.


Section 2-5 Resistors

P2.5-1
                                           i = is = 3 A and v = Ri = 7 × 3 = 21 V
                                           v and i adhere to the passive convention
                                           ∴ P = v i = 21 × 3 = 63 W
                                           is the power absorbed by the resistor.


P2.5-2
                                             i = is = 3 mA and v = 24 V
                                                v      24
                                            R =    =         = 8000 = 8 k Ω
                                                 i   .003
                                            P = (3×10 −3 )× 24 = 72×10 −3 = 72 mW




P2.5-3
                                            v = vs =10 V and R = 5 Ω
                                                v    10
                                            i =    =    =2 A
                                                R     5
                                           v and i adhere to the passive convention
                                           ∴ p = v i = 2⋅10 = 20 W
                                           is the power absorbed by the resistor




                                                                                                 2-4
P2.5-4
                                            v = vs = 24 V and i = 2 A
                                                v 24
                                           R=      =    = 12 Ω
                                                i    2
                                            p = vi = 24⋅2 = 48 W


P2.5-5
                                                 v1 = v 2 = vs = 150 V;
                                                 R1 = 50 Ω; R2 = 25 Ω
                                                 v 1 and i1 adhere to the passive convention so
                                                    v 1 150
                                                 i1 =   =    =3 A
                                                    R 1 50
                                                             v      150
v2 and i 2 do not adhere to the passive convention so i 2 = − 2 = −     = −6 A
                                                             R2      25
The power absorbed by R1 is P = v1 i1 = 150 ⋅ 3 = 450 W
                             1



The power absorbed by R 2 is P 2 = − v 2i 2 = −150(−6) = 900 W


P2.5-6
                                            i1 = i 2 = is = 2 A ;
                                            R1 =4 Ω and R2 = 8 Ω
                                         v 1 and i 1 do not adhere to the passive convention so
                                            v 1 =− R 1 i 1 =−4⋅2=−8 V.
                                         The power absorbed by R 1 is
                                            P1 =−v 1i 1 =−(−8)(2) = 16 W.

v2 and i 2 do adhere to the passive convention so v2 = R 2 i 2 = 8 ⋅ 2 = 16 V .
The power absorbed by R 2 is P 2 = v 2i 2 = 16 ⋅ 2 = 32 W.


P2.5-7
          Model the heater as a resistor, then
                                      v2           v2    (250) 2
             with a 250 V source: P =    ⇒ R =        =          = 62.5 Ω
                                      R            P      1000
                                     v 2 (210) 2
             with a 210 V source: P = =          = 705.6 W
                                     R    62.5



                                                                                                  2-5
P2.5-8
                                                            P 5000 125
         The current required by the mine lights is: i =     =    =    A
                                                            v 120   3
         Power loss in the wire is : i 2 R
         Thus the maximum resistance of the copper wire allowed is
                               0.05P 0.05×5000
                            R=        =             = 0.144 Ω
                                 i2       (125/3) 2
         now since the length of the wire is L = 2×100 = 200 m = 20,000 cm
         thus R = ρ L / A    with ρ = 1.7×10−6 Ω⋅ cm from Table 2.5−1
                                 ρL       1.7×10−6 ×20,000
                            A=        =                    = 0.236 cm 2
                                 R             0.144


Section 2-6 Independent Sources

P2.6-1
                  v s 15
                           = 3 A and P = R i 2 = 5 ( 3 ) = 45 W
                                                        2
         (a) i =     =
                  R     5
         (b) i and P do not depend on is .
         The values of i and P are 3 A and 45 W, both when i s = 3 A and when i s = 5 A.

P2.6-2
                                             v 2 102
         (a) v = R i s = 5 ⋅ 2 = 10 V and P = =      = 20 W
                                             R    5
         (b) v and P do not depend on v s .
         The values of v and P are 10V and 20 W both when v s = 10 V and when v s = 5 V




                                                                                           2-6
P2.6-3
         Consider the current source:
         i s and v s do not adhere to the passive convention,
         so Pcs =i s v s =3⋅12 = 36 W
         is the power supplied by the current source.

         Consider the voltage source:
         i s and v s do adhere to the passive convention,
         so Pvs = i s vs =3 ⋅12 = 36 W
         is the power absorbed by the voltage source.
         ∴ The voltage source supplies −36 W.

P2.6-4
         Consider the current source:
         i s and vs adhere to the passive convention
         so Pcs = i s vs =3 ⋅12 = 36 W
         is the power absorbed by the current source.
         Current source supplies − 36 W.

         Consider the voltage source:
         i s and vs do not adhere to the passive convention
         so Pvs = i s vs = 3 ⋅12 =36 W
         is the power supplied by the voltage source.


P2.6-5
         (a) P = v i = (2 cos t ) (10 cos t ) = 20 cos 2 t mW
                                                                1
                  1          1                1 1         
         (b) w = ∫0 P dt = ∫0 20 cos t dt = 20 t + sin 2t  = 10 + 5 sin 2 mJ
                                      2

                                              2 4         0




                                                                                 2-7
Section 2-7 Voltmeters and Ammeters

P2.7-1
                                                v   5
                                      (a) R =     =   = 10 Ω
                                                i 0.5

                                      (b) The voltage, 12 V, and the
                                      current, 0.5 A, of the voltage
                                      source adhere to the passive
                                      convention so the power

                                           P = 12 (0.5) = 6 W

                                      is the power received by the
                                      source. The voltage source
                                      delivers -6 W.

P2.7-2
                                      The voltmeter current is zero
                                      so the ammeter current is
                                      equal to the current source
                                      current except for the
                                      reference direction:

                                                  i = -2 A

                                      The voltage v is the voltage of
                                      the current source. The power
                                      supplied by the current source
                                      is 40 W so

                                         40 = 2 v ⇒ v = 20 V




                                                                  2-8
Section 2-8 Dependent Sources

P2.8-1

                                                     vb 8
                                               r =     = =4 Ω
                                                     ia 2



P2.8-2
                                               ia 2       A
         vb = 8 V ; g v b = i a = 2 A ; g =      = = 0.25
                                               vb 8       V

P2.8-3
                                               i a 32    A
         i b = 8 A ; d i b = i a = 32A ; d =      =   =4
                                               ib   8    A

P2.8-4
                                               vb 8   V
         va = 2 V ; b va = vb = 8 V ; b =        = =4
                                               va 2   V



Section 2-9 Transducers

P2.9-1
                                                      θ               360 vm
                                                a=          ,   θ =
                                                      360              Rp I
                                                         (360)(23V)
                                                θ =                    = 75.27°
                                                      (100 kΩ)(1.1 mA)



P2.9-2
                                                                         µA
                                                          AD590 : k =1   °
                                                                             ,
                                                                         K
                                                          v =20 V (voltage condition satisfied)

                                                          4 µ A < i < 13 µ A 
                                                                             
                                                                      i         ⇒     4 ° K< T <13° K
                                                               T =           
                                                                     k       




                                                                                                   2-9
Section 2-10 Switches

P2.10-1
                                                           At t = 1 s the left switch is open and the
                                                           right switch is closed so the voltage
                                                           across the resistor is 10 V.

                                                                         v    10
                                                                    i=     =       = 2 mA
                                                                         R   5×103


At t = 4 s the left switch is closed and the right switch is open so the voltage across the resistor is
15 V.
                                              v    15
                                         i=     =       = 3 mA
                                              R   5×103

P2.10-2
               At t = 1 s the current in the resistor
               is 3 mA so v = 15 V.

               At t = 4 s the current in the resistor
               is 0 A so v = 0 V.




Verification Problems

VP2-1
        vo =40 V and i s = − (−2) = 2 A. (Notice that the ammeter measures − i s rather than i s .)
                           vo   40      V
          So                  =    = 20
                           is    2      A
        Your lab partner is wrong.


VP2-2
                                                   vs 12
        We expect the resistor current to be i =      =     = 0.48 A. The power absorbed by
                                                    R 25
        this resistor will be P = i vs = (0.48) (12) = 5.76 W.
        A half watt resistor can't absorb this much power. You should not try another resistor.




                                                                                                  2-10
Design Problems

DP2-1
              10               10
        1.)      > 0.04 ⇒ R <      = 250 Ω
              R               0.04

              102 1
        2.)      <   ⇒ R > 200 Ω
               R   2

        Therefore 200 < R < 250 Ω. For example, R = 225 Ω.

DP2-2
        1.) 2 R > 40 ⇒ R > 20 Ω
                               15
        2.) 2 2 R < 15 ⇒ R < = 3.75 Ω
                               4
        Therefore 20 < R < 3.75 Ω. These conditions cannot satisfied simultaneously.


DP2-3
        P = ( 30 mA ) ⋅ (1000 Ω ) = (.03) (1000 ) = 0.9 W < 1 W
                      2                  2
         1

        P2 = ( 30 mA ) ⋅ ( 2000 Ω ) = (.03) ( 2000 ) = 1.8 W < 2 W
                      2                  2



        P3 = ( 30 mA ) ⋅ ( 4000 Ω ) = (.03) ( 4000 ) = 3.6 W < 4 W
                      2                  2




                                                                                       2-11
Chapter 3 – Resistive Circuits
Exercises

Ex 3.3-1




Apply KCL at node a to get            2 + 1 + i3 = 0 ⇒ i3 = -3 A

Apply KCL at node c to get              2 + 1 = i4 ⇒ i4 = 3 A

Apply KCL at node b to get      i3 + i6 = 1 ⇒ -3 + i6 = 1 ⇒ i6 = 4 A

Apply KVL to the loop consisting of elements A and B to get

                                       -v2 – 3 = 0 ⇒ v2 = -3 V

Apply KVL to the loop consisting of elements C, E, D, and A to get

                                   3 + 6 + v4 – 3 = 0 ⇒ v4 = -6 V

Apply KVL to the loop consisting of elements E and F to get

                                        v6 – 6 = 0 ⇒ v6 = 6 V

Check: The sum of the power supplied by all branches is

-(3)(2) + (-3)(1) – (3)(-3) + (-6)(3) – (6)(1) + (6)(4) = -6 - 3 + 9 - 18 - 6 + 24 = 0




                                                                                         3-1
Ex 3.3-2
                                                                        Apply KCL at node a to
                                                                        determine the current in the
                                                                        horizontal resistor as shown.

                                                                        Apply KVL to the loop
                                                                        consisting of the voltages source
                                                                        and the two resistors to get

                                                                        -4(2-i) + 4(i) - 24 = 0 ⇒ i = 4 A

                                                                            2
Ex 3.3-3         −18 + 0 − 12 − va = 0 ⇒ va = −30 V and im =                  va + 3 ⇒ im = 9 A
                                                                            5

                                                      18
Ex 3.3-4         −va − 10 + 4va − 8 = 0 ⇒ va =           = 6 V and vm = 4 va = 24 V
                                                       3


Ex 3.4-1
                                                                From voltage division
                                                                          3 
                                                                v3 = 12       = 3V
                                                                         3+9 
                                                                then
                                                                     v
                                                                 i = 3 = 1A
                                                                     3




The power absorbed by the resistors is: (12 ) ( 6 ) + (12 ) ( 3) + (12 ) ( 3) = 12 W
The power supplied by the source is (12)(1) = 12 W.




                                                                                                        3-2
Ex 3.4-2
                                               P = 6 W and R1 = 6 Ω


                                                      P    6
                                               i2 =      =   = 1 or i =1 A
                                                      R1   6


                                               v0 = i R1 =(1) (6)=6V

                                              from KVL: − v+ i (2 + 4 + 6 + 2) = 0
                                                         s
                                              ⇒ v = 14 i = 14 V
                                                 s



                                         25
Ex 3.4-3    From voltage division ⇒ v =
                                     m 25+75
                                             (8) = 2 V

                                         25
Ex 3.4-4    From voltage division ⇒ v =
                                     m 25+75
                                             ( −8 ) = −2 V

Ex. 3.5-1

                         1         1     1  1  1  4                          103   1
                              =        + 3+ 3+ 3= 3          ⇒ R         =       =   kΩ
                     R               3
                                  10 10 10 10 10                    eq        4    4
                         eq
                                                                           1 -3      1
                     By current division, the current in each resistor =     (10 ) =   mA
                                                                           4         4




Ex 3.5-2
                                         10
            From current division ⇒ i =
                                     m 10+40
                                             ( −5 ) = − 1 A




                                                                                            3-3
Problems

Section 3-3 Kirchoff’s Laws

P3.3-1




Apply KCL at node a to get         2 + 1 = i + 4 ⇒ i = -1 A

The current and voltage of element B adhere to the passive convention so (12)(-1) = -12 W is
power received by element B. The power supplied by element B is 12 W.

Apply KVL to the loop consisting of elements D, F, E, and C to get

                               4 + v + (-5) – 12 = 0 ⇒ v = 13 V

The current and voltage of element F do not adhere to the passive convention so (13)(1) = 13 W
is the power supplied by element F.

Check: The sum of the power supplied by all branches is

         -(2)(-12) + 12 – (4)(12) + (1)(4) + 13 – (-1)(-5) = 24 +12 – 48 + 4 +13 –5 = 0




                                                                                               3-4
P3.3-2




Apply KCL at node a to get           2 = i2 + 6 = 0 ⇒ i2 = -4 A

Apply KCL at node b to get             3 = i4 + 6 ⇒ i4 = -3 A

Apply KVL to the loop consisting of elements A and B to get

                                      -v2 – 6 = 0 ⇒ v2 = -6 V

Apply KVL to the loop consisting of elements C, D, and A to get

                                   -v3 – (-2) – 6 = 0 ⇒ v4 = -4 V

Apply KVL to the loop consisting of elements E, F and D to get

                                    4 – v6 + (-2) = 0 ⇒ v6 = 2 V

Check: The sum of the power supplied by all branches is

-(6)(2) – (-6)(-4) – (-4)(6) + (-2)(-3) + (4)(3) + (2)(-3) = -12 - 24 + 24 + 6 + 12 – 6 = 0




                                                                                              3-5
P3.3-3
                                                     KVL : −12 − R 2 (3) + v = 0 (outside loop)
                                                                                          v − 12
                                                                 v = 12 + 3R 2 or R 2 =
                                                                                            3
                                                                      12
                                                     KCL         i+      − 3 = 0 (top node)
                                                                      R1
                                                                           12         12
                                                                  i = 3−      or R1 =
                                                                           R1         3−i

(a)
                                        v = 12 + 3 ( 3) = 21 V
                                                 12
                                        i = 3−      =1 A
                                                  6


(b)
                                   2 − 12    10          12
                            R2 =          = − Ω ; R1 =         =8Ω
                                     3        3        3 − 1.5

                                                                       (checked using LNAP 8/16/02)

(c)
                 24 = − 12 i, because 12 and i adhere to the passive convention.
                                        12
             ∴ i = − 2 A and R1 =            = 2.4 Ω
                                       3+ 2
                 9 = 3v,    because 3 and v do not adhere to the passive convention
                                        3 − 12
             ∴ v = 3V       and R 2 =          = −3 Ω
                                          3

The situations described in (b) and (c) cannot occur if R1 and R2 are required to be nonnegative.




                                                                                                   3-6
P3.3-4
                                                                  12
                                                              i =    =2A
                                                               1 6
                                                                   20
                                                            i =        = 5A
                                                             2      4
                                                            i = 3−i = − 2 A
                                                             3        2
                                                             i = i +i = 3A
                                                              4 2 3

Power absorbed by the 4 Ω resistor = 4 ⋅ i 2 = 100 W
                                           2
Power absorbed by the 6 Ω resistor = 6 ⋅ i 2 = 24 W
                                           1
Power absorbed by the 8 Ω resistor = 8 ⋅ i 2 = 72 W
                                          4                      (checked using LNAP 8/16/02)



P3.3-5
                                                                        v1 = 8 V
                                                                       v2 = −8 + 8 + 12 = 12 V
                                                                       v3 = 2⋅ 4 = 8 V
                                                                                   v2
                                                                      4Ω : P = 3 = 16 W
                                                                                   4
                                                                                      2
                                                                                    v2
                                                                      6Ω : P =          = 24 W
                                                                                     6
                                                                                   v2
                                                                       8Ω : P = 1 = 8 W
         (checked using LNAP 8/16/02)                                              8



P3.3-6

                                              P2 mA = − 3 × ( 2 ×10−3 )  = −6 × 10−3 = −6 mW
                                                                        

                                              P1 mA = −  −7 × (1× 10−3 )  = 7 × 10−3 = 7 mW
                                                                         


                                                                 (checked using LNAP 8/16/02)




                                                                                                 3-7
P3.3-7


            P2 V = +  2 × (1× 10−3 )  = 2 × 10−3 = 2 mW
                                     
         P3 V = + 3 × ( −2 × 10 )  = −6 × 10−3 = −6 mW
                  
                                 −3
                                    


                          (checked using LNAP 8/16/02)



P3.3-8


                  KCL: iR = 2 + 1 ⇒ iR = 3 A
                  KVL: vR + 0 − 12 = 0 ⇒ vR = 12 V
                           vR 12
                  ∴ R=        =   =4Ω
                           iR   3


                         (checked using LNAP 8/16/02)



P3.3-9


              KVL: vR + 56 + 24 = 0 ⇒ vR = −80 V
              KCL: iR + 8 = 0 ⇒ iR = −8 A
                       vR −80
              ∴ R=        =    = 10 Ω
                       iR   −8


                         (checked using LNAP 8/16/02)




                                                       3-8
P3.3-10




                  5.61 3.71 − 5.61 12 − 5.61           −1.9
KCL at node b:        =           +          ⇒ 0.801 =      + 1.278
                   7       R1          5                R1
                                                             1.9
                                               ⇒ R1 =                 = 3.983 ≈ 4 Ω
                                                        1.278 − 0.801

                 3.71 3.71 − 5.61 3.71 − 12                            −8.29
KCL at node a:       +           +          = 0 ⇒ 1.855 + ( −0.475 ) +       =0
                  2        4         R2                                 R2
                                                             8.29
                                                ⇒ R2 =                 = 6.007 ≈ 6 Ω
                                                         1.855 − 0.475



                                                         (checked using LNAP 8/16/02)




                                                                                       3-9
Section 3-4 A Single-Loop Circuit – The Voltage Divider

P3.4-1
                                                      6             6
                                               v =            12 =      12 = 4 V
                                                1 6+3+5+ 4         18
                                                   3                  5       10
                                               v =   12 = 2 V ; v =      12 =    V
                                                2 18             3 18          3
                                                   4      8
                                               v =   12 = V
                                                4 18      3


                                                             (checked using LNAP 8/16/02)


P3.4-2



                                                   (a) R = 6 + 3 + 2 + 4 = 15 Ω
                                                            28 28
                                                   (b) i =     =      = 1.867 A
                                                            R 15
                                                   ( c ) p = 28 ⋅ i =28(1.867)=52.27 W
                                                      (28 V and i do not adhere
                                                       to the passive convention.)



                                                             (checked using LNAP 8/16/02)




                                                                                         3-10
P3.4-3

                                                                i R2 = v = 8 V
                                                                  12 = i R1 + v = i R1 + 8
                                                                    ⇒ 4 = i R1




           8     8          4 4 ⋅ 100
(a)   i=      =      ; R1 = =          = 50 Ω
          R 2 100           i      8
          4      4          8 8 ⋅ 100
(b) i = =           ; R2 = =          = 200 Ω
          R1 100            i      4
                                    4           8
( c ) 1.2 = 12 i ⇒ i = 0.1 A ; R1 = = 40 Ω; R2 = = 80 Ω
                                    i           i
                                                                  (checked using LNAP 8/16/02)

P3.4-4
                                                          Voltage division
                                                                  16
                                                            v1 =        12 = 8 V
                                                                 16 + 8
                                                                  4
                                                           v3 =       12 = 4 V
                                                                 4+8

                                                          KVL: v3 − v − v1 = 0
                                                                v = −4 V



                                                                  (checked using LNAP 8/16/02)


P3.4-5
                                        100           v     
            using voltage divider: v =       ⇒ R = 50  s − 1
                                                    v
                                    0  100 + 2 R  s
                                                       v     
                                                         o 
             with v = 20 V and v > 9 V, R < 61.1 Ω 
                   s            0                   
                                                     R = 60 Ω
             with v = 28 V and v < 13 V, R > 57.7 Ω 
                   s            0                   




                                                                                             3-11
P3.4-6




     240 
a.)             18 = 12 V
     120 + 240 
           18     
b.) 18             = 0.9 W
        120 + 240 
     R 
c.)           18 = 2 ⇒ 18 R = 2 R + 2 (120 ) ⇒ R = 15 Ω
     R + 120 
             R
d.) 0.2 =            ⇒ ( 0.2 )(120 ) = 0.8 R ⇒ R = 30 Ω
          R + 120

                                                            (checked using LNAP 8/16/02)




                                                                                   3-12
Section 3-5 Parallel Resistors and Current Division

P3.5-1
                                                                   1
                                                                   6              1         1
                                                       i =                4=              4= A
                                                        1    1 + 1 + 1 +1    1+ 2 + 3 + 6   3
                                                             6 3 2 1
                                                                   1
                                                                   3          2
                                                       i =                4 = A;
                                                        2    1 + 1 + 1 +1     3
                                                             6 3 2 1
                                                                   1
                                                      i =          2      4 =1 A
                                                       3     1 + 1 + 1 +1
                                                             6 3 2 1
                                                                   1
                                                       i =                 4=2 A
                                                        4    1 + 1 + 1 +1
                                                             6 3 2


P3.5-2


                                                                  1 1 1 1 1
                                                           (a)      = + + = ⇒ R = 2Ω
                                                                  R 6 12 4 2
                                                           (b)   v = 6 ⋅ 2 = 12 V
                                                           (c)   p = 6 ⋅12 = 72 W



P3.5-3

                                                           8          8
                                                      i=      or R1 =
                                                           R1         i
                                                                                   8            8
                                                      8 = R 2 (2 − i ) ⇒ i = 2 −      or R 2 =
                                                                                   R2          2−i



                     8 4           8
         (a)   i = 2−  = A ; R1 =
                                  4
                                      =6Ω
                    12 3
                                    3
                   8 2           8
         (b)   i = = A ; R2 =
                                   2
                                      =6Ω
                  12 3         2−
                                   3


                                                                                          3-13
1
         ( c ) R1 = R 2   will cause i= 2 = 1 A. The current in both R1 and R 2 will be 1 A.
                                       2
               R1 R 2                              1
         2 ⋅              = 8 ; R1 = R 2 ⇒ 2 ⋅ R1 = 8 ⇒ R1 = 8 ∴ R1 = R 2 = 8 Ω
               R1 + R 2                            2

P3.5-4
                                                     Current division:

                                                           8
                                                       1 16 + 8 ( )
                                                      i =        −6 = −2 A


                                                         8
                                                      2 8+8( )
                                                     i =    −6 = −3 A


                                                      i = i −i    = +1 A
                                                           1 2


P3.5-5
                                                                    R  
                                           current division: i =     1  i and
                                                              2 R + R  s
                                                                  1   2

                                           Ohm's Law: v = i R yields
                                                        o     2 2
                                                           v  R + R 
                                                     i =  o  1     2
                                                      s    R  R     
                                                           2     1 
                                           plugging in R = 4Ω, v > 9 V       gives i > 3.15 A
                                                        1         o                 s
                                           and R = 6Ω, v < 13 V gives        i < 3.47 A
                                                1           o                 s
                                           So any 3.15 A < i < 3.47 A        keeps 9 V < v < 13 V.
                                                               s                          o




                                                                                               3-14
P3.5-6




                   24 
               a)           1.8 = 1.2 A
                   12 + 24 
                   R 
               b)          2 = 1.6 ⇒ 2 R = 1.6 R + 1.6 (12 ) ⇒ R = 48 Ω
                   R + 12 
                          R
               c) 0.4 =           ⇒ ( 0.4 )(12 ) = 0.6 R ⇒ R = 8 Ω
                        R + 12




Section 3-7 Circuit Analysis

P3.7-1


                                                                      48 ⋅ 24
                                                     (a)   R = 16 +           = 32 Ω
                                                                      48 + 24
                                                                   32 ⋅ 32
                                                     (b)   v = 32 + 32 24 = 16 V ;
                                                                     32 ⋅ 32
                                                                 8+
                                                                     32 + 32
                                                                 16 1
                                                              i=     = A
                                                                 32 2
                                                                   48      1  1
                                                     (c)   i2 =          ⋅ = A
                                                                 48 + 24 2    3




                                                                                  3-15
P3.7-2




              3⋅ 6
(a) R1 = 4 +       =6Ω
             3+ 6
      1       1 1 1
(b)        =     + + ⇒ R p = 2.4 Ω then       R 2 = 8 + R p = 10.4 Ω
      Rp     12 6 6
(c) KCL: i2 + 2 = i1 and − 24 + 6 i2 + R 2i1 = 0
         ⇒ −24+6 (i1 −2)+10.4i1 = 0
                 36
         ⇒ i1 =      =2.2 A ⇒ v1 =i1 R 2 =2.2 (10.4)=22.88 V
                16.4

                1
(d ) i2 =       6      ( 2.2 ) = 0.878 A,
           1 1 1
             + +
           6 6 12
     v2 = ( 0.878 ) (6) = 5.3 V
            6                          2
(e) i3 =        i2 = 0.585 A ⇒ P = 3 i3 = 1.03 W
           3+ 6




                                                                       3-16
P3.7-3
Reduce the circuit from the right side by repeatedly replacing series 1 Ω resistors in parallel with
a 2 Ω resistor by the equivalent 1 Ω resistor




This circuit has become small enough to be easily analyzed. The vertical 1 Ω resistor is
equivalent to a 2 Ω resistor connected in parallel with series 1 Ω resistors:




                                                                             1+1
                                                                   i1 =               (1.5 ) = 0.75 A
                                                                          2 + (1 + 1)




                                                                                                   3-17
P3.7-4
(a)             1   1  1 1                                         (10 + 8) ⋅ 9
                  =   + +  ⇒           R2 = 4 Ω      and    R1 =                = 6Ω
                R2 24 12 8                                         b     g
                                                                   10 + 8 + 9

(b)




               First, apply KVL to the left mesh to get −27 + 6 ia + 3 ia = 0 ⇒ ia = 3 A . Next,
               apply KVL to the left mesh to get 4 ib − 3 ia = 0 ⇒ ib = 2.25 A .
(c)




                 1
         i2 =    8    2.25 = 1125 A
                              .                      b gLM b10 +98g + 9 3OP = −10 V
                                         and v1 = − 10
               1 1 1
                + +
              24 8 12
                                                         N                Q




                                                                                            3-18
P3.7-5


                                                                 30
                                                                       v1 = 6 ⇒ v1 = 8 V
                                                               10 + 30




                                                 R2
                                                       12 = 8 ⇒ R2 = 20 Ω
                                               R2 + 10


                                             20 =
                                                       b
                                                     R1 10 + 30    g       ⇒ R1 = 40 Ω
                                                           b
                                                    R1 + 10 + 30       g
Alternate values that can be used to change the numbers in this problem:

meter reading, V    Right-most resistor, Ω    R1, Ω
        6                   30                 40
        4                   30                 10
        4                   20                 15
       4.8                  20                 30




                                                                                           3-19
P3.7-6




P3.7-7
                                                 24
                                1× 10−3 =                   ⇒ R p = 12 ×103 = 12 kΩ
                                            12 ×103 + R p


                                  12 × 10 = R p
                                            3
                                                  =
                                                     ( 21×10 ) R3

                                                                    ⇒ R = 28 kΩ
                                                    ( 21×10 ) + R
                                                            3




P3.7-8




                                          130 500        
         Voltage division ⇒ v = 50                         = 15.963 V
                                     130 500 + 200 + 20 
                                                         
                              100                   10 
                     ∴v = v 
                        h                = (15.963)   = 12.279 V
                              100 + 30              13 
                           v
                    ∴ i = h = .12279 A
                        h 100



                                                                                      3-20
P3.7-9




         3-21
P3.7-10




          15 ( 20 + 10 )
Req =                     = 10 Ω
         15 + ( 20 + 10 )
         60                30   60                    20 
ia = −       = −6 A, ib =          R  
                                             = 4 A, vc =           ( −60 ) = −40 V
         Req               30 + 15   eq               20 + 10 




P3.7-11        a)




                                                                                   (24)(12)
                                                                   Req = 24 12 =            =8Ω
                                                                                   24 + 12

                 b)                           from voltage division:
                                                                         100
                                                      20  100              5
                                              v = 40         =   V∴ i = 3 = A
                                               x      20 + 4   3     x 20 3


                                                                                  8    5
                                                from current division: i = i           =   A
                                                                               x 8+8
                                                                                       6




                                                                                                  3-22
P3.7-12
                                                                         9 + 10 + 17 = 36 Ω
                                                                                   36 (18 )
                                                                             a.)            = 12 Ω
                                                                                   36+18



                36 R
          b.)        = 18 ⇒ 18 R = (18 )( 36 ) ⇒ R = 36 Ω
                36+R


P3.7-13
                                                  2 R( R ) 2
                                          Req =           = R
                                                  2R + R 3
                                                    v 2 240
                                          Pdeliv. =     =    =1920 W
                                           to ckt   Req 2 R
                                                           3
                                          Thus R =45 Ω


P3.7-14




                   R = 2 + 1 + ( 6 12 ) + ( 2 2 ) = 3 + 4 + 1 = 8 Ω
                    eq
                         40 40
                  ∴i =       =   =5 A
                         Req   8
                          6 
                  i1 = i 
                          6 + 12 
                                     ( )
                                   = ( 5) 3 = 3 A
                                           1  5      from current division



                  i2 = i 
                           2 
                           2+2
                                    ( )
                                  = ( 5) 2 = 2 A
                                          1  5



                                                                                                 3-23
Verification Problems

VP3-1



                                                       KCL at node a: i = i + i
                                                                       3 1 2
                                                          − 1.167 = − 0.833 + ( −0.333)
                                                            − 1.167= − 1.166 OK
                                                       KVL loop consisting of the vertical
                                                       6 Ω resistor, the 3 Ω and4Ω resistors,
                                                       and the voltage source:
                                                            6i + 3i + v + 12 = 0
                                                              3    2
                                                       yields v = −4.0 V not v = −2.0 V




VP3-2




                  reduce circuit: 5+5=10 in parallel with 20 Ω gives 6.67Ω

                                            6.67 
                  by current division: i =             5 = 1.25 A
                                            20 + 6.67 
                 ∴Reported value was correct.



VP3-3
              320       
    v =
     o  320 + 650 + 230 
                           ( 24 ) = 6.4 V       ∴Reported value was incorrect.
                         




                                                                                           3-24
VP3-4


                                                      KVL bottom loop: − 14 + 0.1iA + 1.2iH = 0
                                                      KVL right loop: − 12 + 0.05iB + 1.2iH = 0
                                                      KCL at left node: iA + iB = iH
                                                     This alone shows the reported results were incorrect.
                                                     Solving the three above equations yields:
                                                     iA = 16.8 A          iH = 10.3 A
                                                     iB = −6.49 A
                                                     ∴ Reported values were incorrect.




VP3-5




                                      1      
Top mesh: 0 = 4 i a + 4 i a + 2  i a + − i b  = 10 ( −0.5 ) + 1 − 2 ( −2 )
                                      2      

Lower left mesh: vs = 10 + 2 ( i a + 0.5 − i b ) = 10 + 2 ( 2 ) = 14 V

Lower right mesh: vs + 4 i a = 12 ⇒ vs = 12 − 4 (−0.5) = 14 V

The KVL equations are satisfied so the analysis is correct.




                                                                                                    3-25
VP3-6
Apply KCL at nodes b and c to get:

                                                    KCL equations:

                                                    Node e: −1 + 6 = 0.5 + 4.5

                                                    Node a:      0.5 + i c = −1 ⇒ i c = −1.5 mA

                                                    Node d:      i c + 4 = 4.5 ⇒ i c = 0.5 mA

                                                    That's a contradiction. The given values of ia
                                                    and ib are not correct.




Design Problems

DP3-1
                                      Using voltage division:

                                                          R 2 + aR p                        R 2 + aR p
                                          vm =                                    24 =                     24
                                                 R1 + (1 − a ) R p + R 2 + aR p           R1 + R 2 + R p

                                      vm = 8 V when a = 0 ⇒
                                                                       R2             1
                                                                                  =
                                                                R1 + R 2 + R p        3
                                      vm = 12 V when a = 1 ⇒
                                                           R2 + R p                   1
                                                                                  =
                                                           R1 + R 2 + R p             2
The specification on the power of the voltage source indicates
                               242        1
                                        ≤    ⇒ R1 + R 2 + R p ≥ 1152 Ω
                          R1 + R 2 + R p 2
Try Rp = 2000 Ω. Substituting into the equations obtained above using voltage division gives
3R 2 = R1 + R 2 + 2000 and 2 ( R 2 + 2000 ) = R1 + R 2 + 2000 . Solving these equations gives
R1 = 6000 Ω and R 2 = 4000 Ω .

With these resistance values, the voltage source supplies 48 mW while R1, R2 and Rp dissipate
24 mW, 16 mW and 8 mW respectively. Therefore the design is complete.


                                                                                                            3-26
DP3-2
Try R1 = ∞. That is, R1 is an open circuit. From KVL, 8 V will appear across R2. Using voltage
             200
division,           12 = 4 ⇒ R 2 = 400 Ω . The power required to be dissipated by R2
          R 2 + 200
    82             1
is     = 0.16 W < W . To reduce the voltage across any one resistor, let’s implement R2 as the
   400             8
series combination of two 200 Ω resistors. The power required to be dissipated by each of these
              42           1
resistors is     = 0.08 W < W .
             200           8
Now let’s check the voltage:
                                     190                    210
                             11.88           < v < 12.12
                                   190 + 420    0        210 + 380

                                       3.700 < v0 < 4.314

                                   4 − 7.5% < v0 < 4 + 7.85%

Hence, vo = 4 V ± 8% and the design is complete.

DP3-3
         Vab ≅ 200 mV
                10                10
          v=          120 Vab =        (120) (0.2)
              10 + R            10 + R
                        240
        let v = 16 =          ⇒ R=5Ω
                      10 + R
               162
        ∴P=         = 25.6W
                10


DP3-4
                                                            N            N 1        1
                                                   i = G v = v where G = ∑       = N 
                                                        T   R         T
                                                                        n = 1 Rn     R
                                                     iR ( 9 )(12 )
                                             ∴N=        =          = 18 bulbs
                                                      v      6




                                                                                           3-27
28
Chapter 4 – Methods of Analysis of Resistive Circuits
Exercises

Ex. 4.3-1

                                        v    v −v
                                         a    a   b
                            KCL at a:      +        + 3 = 0 ⇒ 5 v − 3 v = −18
                                         3      2                a     b

                                        v −v
                                         b   a
                            KCL at b:          − 3 −1 = 0 ⇒ v − v = 8
                                           2                 b   a

                            Solving these equations gives:

                                              va = 3 V and vb = 11 V


Ex. 4.3-2
                                                 KCL at a:

                                                 v    v −v
                                                  a    a   b
                                                    +        + 3 = 0 ⇒ 3 v − 2 v = −12
                                                  4      2                a     b

                                                              v    v −v
                                                               b    a   b
                                                                 −        −4=0
                                                 KCL at a:     3      2
                                                                  ⇒ − 3 v + 5 v = 24
                                                                          a    b
                                                 Solving:
                                                             va = −4/3 V and vb = 4 V


Ex. 4.4-1
Apply KCL to the supernode to get

               v + 10 v
             2+ b    + b =5
                  20  30
Solving:

    v = 30 V and v = v + 10 = 40 V
     b            a b


                                                                                        4-1
Ex. 4.4-2

                     ( vb + 8) − ( −12) + vb = 3   ⇒ v = 8 V and v = 16 V
                            10           40           b           a


Ex. 4.5-1
Apply KCL at node a to express ia as a function of the node voltages. Substitute the result into
vb = 4 ia and solve for vb .
                    6 vb                        9 + vb 
                     +   =i       ⇒ v = 4i = 4          ⇒ v = 4.5 V
                    8 12 a           b    a     12         b
                                                       

Ex. 4.5-2
The controlling voltage of the dependent source is a node voltage so it is already expressed as a
function of the node voltages. Apply KCL at node a.

                             v −6 v −4v
                              a   + a    a = 0 ⇒ v = −2 V
                               20     15          a


Ex. 4.6-1




Mesh equations:
                       −12 + 6 i + 3  i − i  − 8 = 0 ⇒ 9 i − 3 i = 20
                                      1 2
                                1                         1     2


                        8 − 3  i − i  + 6 i = 0 ⇒ − 3 i + 9 i = −8
                               1 2
                                           2           1     2

Solving these equations gives:
                                        13            1
                                    i =    A and i = − A
                                     1 6          2   6

The voltage measured by the meter is 6 i2 = −1 V.


                                                                                                   4-2
Ex. 4.7-1




                                  3                                               −12
Mesh equation: 9 + 3 i + 2 i + 4  i +  = 0 ⇒    ( 3 + 2 + 4 ) i = −9 − 3   ⇒ i=       A
                                  4                                                9
The voltmeter measures 3 i = −4 V



Ex. 4.7-2




                                                                                 −33     2
Mesh equation: 15 + 3 i + 6 ( i + 3) = 0 ⇒   ( 3 + 6 ) i = −15 − 6 ( 3)   ⇒ i=       = −3 A
                                                                                  9      3

Ex. 4.7-3




                                                                3                    3
Express the current source current in terms of the mesh currents: = i1 − i 2 ⇒ i1 = + i 2 .
                                                                4                    4
                                                             3      
Apply KVL to the supermesh: −9 + 4i1 + 3 i 2 + 2 i 2 = 0 ⇒ 4  + i 2  + 5 i 2 = 9 ⇒ 9 i 2 = 6
                                                             4      
        2                                       4
so i 2 = A and the voltmeter reading is 2 i 2 = V
        3                                       3



                                                                                              4-3
Ex. 4.7-4




Express the current source current in terms of the mesh currents: 3 = i1 − i 2   ⇒ i1 = 3 + i 2 .
Apply KVL to the supermesh: −15 + 6 i1 + 3 i 2 = 0 ⇒ 6 ( 3 + i 2 ) + 3 i 2 = 15 ⇒ 9 i 2 = −3
                   1
Finally, i 2 = −     A is the current measured by the ammeter.
                   3




Problems

Section 4-3 Node Voltage Analysis of Circuits with Current Sources


P4.3-1

                                  KCL at node 1:

                                        v    v −v
                                         1    1 2      −4 − 4 − 2
                                   0=      +      +i =   +        + i = −1.5 + i ⇒ i = 1.5 A
                                        8      6       8     6




                                                                     (checked using LNAP 8/13/02)




                                                                                                    4-4
P4.3-2
         KCL at node 1:
                 v −v      v
                  1 2        1
                         +     + 1 = 0 ⇒ 5 v − v = −20
                   20       5                   1 2
         KCL at node 2:
           v −v          v −v
            1 2            2     3
                    +2=               ⇒ − v + 3 v − 2 v = 40
              20             10             1     2      3
         KCL at node 3:
                v −v           v
                  2    3         3
                         +1 =        ⇒ − 3 v + 5 v = 30
                   10          15             2     3
         Solving gives v1 = 2 V, v2 = 30 V and v3 = 24 V.

                                (checked using LNAP 8/13/02)

P4.3-3

         KCL at node 1:

             v −v   v
              1 2     1          4 − 15 4
                  +     =i ⇒ i =       +    = −2 A
               5    20 1      1    5     20

         KCL at node 2:

                 v −v      v −v
                  1 2        2     3
                      +i =
                   5    2     15
                             4 − 15  15 − 18
                     ⇒ i = −        +        =2A
                        2    5         15

                                (checked using LNAP 8/13/02)




                                                           4-5
P4.3-4




Node equations:
                                           v1 v1 − v2
                                 −.003 +      +       =0
                                           R1   500
                                     v1 − v2 v2
                                 −          +    − .005 = 0
                                      500     R2
When v1 = 1 V, v2 = 2 V
                           1    −1                     1
                    −.003 +  +      = 0 ⇒ R1 =                = 200 Ω
                           R1 500                         1
                                                  .003 +
                                                         500
                       −1 2                         2
                    −    +   − .005 = 0 ⇒ R2 =            = 667 Ω
                      500 R2                           1
                                               .005 −
                                                      500

                                                                (checked using LNAP 8/13/02)

P4.3-5
                                       Node equations:
                                                       v1    v − v 2 v1 − v3
                                                           + 1      +        =0
                                                      500     125      250
                                                      v − v2          v − v3
                                                    − 1      − .001 + 2      =0
                                                       125             250
                                                         v − v3 v1 − v3 v3
                                                       − 2      −      +     =0
                                                          250     250 500
                                       Solving gives:

                                             v1 = 0.261 V, v2 = 0.337 V, v3 = 0.239 V

                                       Finally, v = v1 − v3 = 0.022 V

                                                                (checked using LNAP 8/13/02)




                                                                                         4-6
Section 4-4 Node Voltage Analysis of Circuits with Current and Voltage Sources

P4.4-1




Express the branch voltage of the voltage source in terms of its node voltages:

                                     0 − va = 6 ⇒ va = −6 V
KCL at node b:

 va − vb    v −v            −6 − vb    v −v                   vb    v −v
         +2= b c       ⇒            +2= b c         ⇒ −1−        +2= b c      ⇒ 30 = 8 vb − 3 vc
    6         10              6          10                   6       10

                        vb − vc vc                                     9
KCL at node c:                 =       ⇒ 4 vb − 4 vc = 5 vc   ⇒ vb =     vc
                          10     8                                     4

                                      9 
Finally:                       30 = 8  vc  − 3 vc    ⇒ vc = 2 V
                                      4 
                                                                    (checked using LNAP 8/13/02)


P4.4-2




Express the branch voltage of each voltage source in terms of its node voltages to get:

                                     va = −12 V, vb = vc = vd + 8



                                                                                              4-7
KCL at node b:
           vb − va                   vb − ( −12 )
                   = 0.002 + i ⇒                  = 0.002 + i ⇒ vb + 12 = 8 + 4000 i
            4000                        4000

KCL at the supernode corresponding to the 8 V source:
                                     v
                             0.001 = d + i ⇒ 4 = vd + 4000 i
                                    4000
so                vb + 4 = 4 − vd ⇒ ( vd + 8 ) + 4 = 4 − vd ⇒ vd = −4 V
                                              4 − vd
Consequently vb = vc = vd + 8 = 4 V and i =          = 2 mA
                                              4000

                                                                   (checked using LNAP 8/13/02)

P4.4-3




Apply KCL to the supernode:
                        va − 10 va va − 8
                               +    +     − .03 = 0 ⇒ va = 7 V
                         100     100 100

                                                                   (checked using LNAP 8/13/02)


P4.4-4
                                                  Apply KCL to the supernode:

                                                       va + 8 ( va + 8 ) − 12 va − 12 va
                                                             +               +       +     =0
                                                        500        125         250     500

                                                  Solving yields
                                                                     va = 4 V

                                                                   (checked using LNAP 8/13/02)




                                                                                                4-8
P4.4-5




The power supplied by the voltage source is

                               v −v v −v         12 − 9.882 12 − 5.294 
          va ( i1 + i 2 ) = va  a b + a c  = 12            +           
                                4      6              4          6     

                                            = 12(0.5295 + 1.118) = 12(1.648) = 19.76 W

                                                                   (checked using LNAP 8/13/02)

P4.4-6
Label the voltage measured by the meter. Notice that this is a node voltage.

                                                    Write a node equation at the node at which
                                                    the node voltage is measured.

                                                          12 − v m  v m          v −8
                                                        −          +    + 0.002 + m    =0
                                                          6000  R                 3000

                                                    That is

                                                             6000                 6000
                                                         3 +       v m = 16 ⇒ R = 16
                                                              R                      −3
                                                                                    vm




(a) The voltage measured by the meter will be 4 volts when R = 6 kΩ.
(b) The voltage measured by the meter will be 2 volts when R = 1.2 kΩ.


                                                                                              4-9
Section 4-5 Node Voltage Analysis with Dependent Sources

P4.5-1
                                            Express the resistor currents in terms of the
                                            node voltages:

                                                    va − vc
                                                i 1=        = 8.667 − 10 = −1.333 A and
                                                       1
                                                    v −v      2 − 10
                                                i 2= b c =           = −4 A
                                                       2         2

                                            Apply KCL at node c:

                                            i1 + i 2 = A i1 ⇒ − 1.333 + ( −4 ) = A (−1.333)
                                                                       −5.333
                                                              ⇒   A=          =4
                                                                       −1.333

                                                              (checked using LNAP 8/13/02)


P4.5-2
                                           Write and solve a node equation:

                                           va − 6   v  v − 4va
                                                  + a + a      = 0 ⇒ va = 12 V
                                           1000 2000 3000

                                                              va − 4va
                                                       ib =            = −12 mA
                                                               3000

                                                              (checked using LNAP 8/13/02)


P4.5-3
                                            First express the controlling current in terms of
                                            the node voltages:
                                                                       2 − vb
                                                                i =
                                                                 a     4000
                                            Write and solve a node equation:

                                                2 − vb   v     2 − vb 
                                            −          + b − 5         = 0 ⇒ vb = 1.5 V
                                                4000 2000  4000 

                                                              (checked using LNAP 8/14/02)



                                                                                        4-10
P4.5-4
         Apply KCL to the supernode of the CCVS to get

             12 − 10 14 − 10 1
                    +       − + i b = 0 ⇒ i b = −2 A
                4       2    2

         Next
                     10 − 12     1
                ia =          =−         −2     V
                         4       2 ⇒ r =     =4
                                            1    A
                  r i a = 12 − 14 
                                         −
                                            2

                                   (checked using LNAP 8/14/02)

P4.5-5
         First, express the controlling current of the CCVS in
                                           v2
         terms of the node voltages: i x =
                                            2

         Next, express the controlled voltage in terms of the
         node voltages:
                                      v2        24
                 12 − v 2 = 3 i x = 3    ⇒ v2 =     V
                                      2         5

         so ix = 12/5 A = 2.4 A.

                                     (checked using ELab 9/5/02)




                                                           4-11
Section 4-6 Mesh Current Analysis with Independent Voltage Sources

P 4.6-1
                                                       2 i1 + 9 (i1 − i 3 ) + 3(i1 − i 2 ) = 0
                                                        15 − 3 (i1 − i 2 ) + 6 (i 2 − i 3 ) = 0
                                                       −6 (i 2 − i 3 ) − 9 (i1 − i 3 ) − 21 = 0
                                                  or
                                                              14 i1 − 3 i 2 − 9 i 3 = 0
                                                            −3 i1 + 9 i 2 − 6 i 3 = −15
                                                            −9 i1 − 6 i 2 + 15 i 3 = 21
                                                  so
                                                       i1 = 3 A, i2 = 2 A and i3 = 4 A.


                                                             (checked using LNAP 8/14/02)

P 4.6-2
                                                  Top mesh:
                                                       4 (2 − 3) + R(2) + 10 (2 − 4) = 0
                                                  so R = 12 Ω.

                                                  Bottom, right mesh:
                                                       8 (4 − 3) + 10 (4 − 2) + v 2 = 0
                                                  so v2 = −28 V.

                                                  Bottom left mesh
                                                       −v1 + 4 (3 − 2) + 8 (3 − 4) = 0
                                                  so v1 = −4 V.

                                                             (checked using LNAP 8/14/02)




                                                                                                  4-12
P 4.6-3
                                                                 −6
                                           Ohm’s Law: i 2 =         = −0.75 A
                                                                 8
                                           KVL for loop 1:
                                                R i1 + 4 ( i1 − i 2 ) + 3 + 18 = 0

                                           KVL for loop 2
                                              + (−6) − 3 − 4 ( i1 − i 2 ) = 0
                                                   ⇒ − 9 − 4 ( i1 − ( −0.75 ) ) = 0
                                                   ⇒ i 1 = −3 A
          R ( −3) + 4 ( −3 − ( −0.75 ) ) + 21 = 0 ⇒ R = 4 Ω
                                                     (checked using LNAP 8/14/02)

P4.6-4

                               KVL loop 1:

                               25 ia − 2 + 250 ia + 75 ia + 4 + 100 (ia − ib ) = 0
                               450 ia −100 ib = −2

                               KVL loop 2:

                               −100(ia − ib ) − 4 + 100 ib + 100 ib + 8 + 200 ib = 0
                               −100 ia + 500 ib = − 4
                                  ⇒ ia = − 6.5 mA , ib = − 9.3 mA

                                                     (checked using LNAP 8/14/02)

P4.6-5
                          Mesh Equations:

                                 mesh 1 : 2i1 + 2 (i1 − i2 ) + 10 = 0
                                 mesh 2 : 2(i2 − i1 ) + 4 (i2 − i3 ) = 0
                                 mesh 3 : − 10 + 4 (i3 − i2 ) + 6 i3 = 0
                          Solving:
                                                     5
                                      i = i2 ⇒ i = − = −0.294 A
                                                    17

                                                     (checked using LNAP 8/14/02)




                                                                                     4-13
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed
Solucionario   circuitos eléctricos - dorf, svoboda - 6ed

Más contenido relacionado

La actualidad más candente

Solucionario fisica sears vol 2
Solucionario fisica sears vol 2Solucionario fisica sears vol 2
Solucionario fisica sears vol 2
Karl Krieger
 
Solucionario Sadiku 3ra Edición Fundamentos de Circuitos Electricos.pdf
Solucionario Sadiku 3ra Edición Fundamentos de Circuitos Electricos.pdfSolucionario Sadiku 3ra Edición Fundamentos de Circuitos Electricos.pdf
Solucionario Sadiku 3ra Edición Fundamentos de Circuitos Electricos.pdf
SANTIAGO PABLO ALBERTO
 
Leyes de kirchhoff ejercicios resueltos 1
Leyes de kirchhoff ejercicios resueltos 1Leyes de kirchhoff ejercicios resueltos 1
Leyes de kirchhoff ejercicios resueltos 1
Luis Lopz
 
Problemas resueltos-transformadores
Problemas resueltos-transformadoresProblemas resueltos-transformadores
Problemas resueltos-transformadores
Moises Perez
 
problemas-de-teoria-de-circuitos
problemas-de-teoria-de-circuitosproblemas-de-teoria-de-circuitos
problemas-de-teoria-de-circuitos
desfaiter
 

La actualidad más candente (20)

electricidad y magnetismo ejercicios resueltos Capitulo 5
electricidad y magnetismo  ejercicios resueltos  Capitulo 5electricidad y magnetismo  ejercicios resueltos  Capitulo 5
electricidad y magnetismo ejercicios resueltos Capitulo 5
 
Resistencia estática y dinamica de diodos
Resistencia estática y dinamica de diodosResistencia estática y dinamica de diodos
Resistencia estática y dinamica de diodos
 
Solucionario fisica sears vol 2
Solucionario fisica sears vol 2Solucionario fisica sears vol 2
Solucionario fisica sears vol 2
 
Transformada de laplace (tablas)
Transformada de laplace (tablas)Transformada de laplace (tablas)
Transformada de laplace (tablas)
 
Circuitos con capacitores
Circuitos con capacitoresCircuitos con capacitores
Circuitos con capacitores
 
electricidad y magnetismo ejercicios resueltos Capitulo 6
electricidad y magnetismo  ejercicios resueltos  Capitulo 6electricidad y magnetismo  ejercicios resueltos  Capitulo 6
electricidad y magnetismo ejercicios resueltos Capitulo 6
 
Dinámica del movimiento rotacional
Dinámica del movimiento rotacionalDinámica del movimiento rotacional
Dinámica del movimiento rotacional
 
Solucionario Sadiku 3ra Edición Fundamentos de Circuitos Electricos.pdf
Solucionario Sadiku 3ra Edición Fundamentos de Circuitos Electricos.pdfSolucionario Sadiku 3ra Edición Fundamentos de Circuitos Electricos.pdf
Solucionario Sadiku 3ra Edición Fundamentos de Circuitos Electricos.pdf
 
Leyes de kirchhoff ejercicios resueltos 1
Leyes de kirchhoff ejercicios resueltos 1Leyes de kirchhoff ejercicios resueltos 1
Leyes de kirchhoff ejercicios resueltos 1
 
Solution manual for introduction to electric circuits
Solution manual for introduction to electric circuitsSolution manual for introduction to electric circuits
Solution manual for introduction to electric circuits
 
Teoremas de circuito eléctricos
Teoremas de circuito eléctricosTeoremas de circuito eléctricos
Teoremas de circuito eléctricos
 
Folletofsicac1erparcial 100918183753-phpapp02
Folletofsicac1erparcial 100918183753-phpapp02Folletofsicac1erparcial 100918183753-phpapp02
Folletofsicac1erparcial 100918183753-phpapp02
 
Metodo de cholesky
Metodo de choleskyMetodo de cholesky
Metodo de cholesky
 
Transistores
TransistoresTransistores
Transistores
 
Problemas resueltos-transformadores
Problemas resueltos-transformadoresProblemas resueltos-transformadores
Problemas resueltos-transformadores
 
Resolucion de ecuaciones diferenciales por medio de series
Resolucion de ecuaciones diferenciales por medio de seriesResolucion de ecuaciones diferenciales por medio de series
Resolucion de ecuaciones diferenciales por medio de series
 
Ejercicios resueltos del capítulo 1 del libro de Teoría de Circuitos y dispos...
Ejercicios resueltos del capítulo 1 del libro de Teoría de Circuitos y dispos...Ejercicios resueltos del capítulo 1 del libro de Teoría de Circuitos y dispos...
Ejercicios resueltos del capítulo 1 del libro de Teoría de Circuitos y dispos...
 
problemas-de-teoria-de-circuitos
problemas-de-teoria-de-circuitosproblemas-de-teoria-de-circuitos
problemas-de-teoria-de-circuitos
 
2 campos electrostaticos
2 campos electrostaticos2 campos electrostaticos
2 campos electrostaticos
 
Problemas resueltos y propuestos de redes basica
 Problemas resueltos y propuestos de redes basica Problemas resueltos y propuestos de redes basica
Problemas resueltos y propuestos de redes basica
 

Similar a Solucionario circuitos eléctricos - dorf, svoboda - 6ed

[E book] introduction to electric circuits 6th ed [r. c. dorf and j. a. svoboda]
[E book] introduction to electric circuits 6th ed [r. c. dorf and j. a. svoboda][E book] introduction to electric circuits 6th ed [r. c. dorf and j. a. svoboda]
[E book] introduction to electric circuits 6th ed [r. c. dorf and j. a. svoboda]
tensasparda
 
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...
Ansal Valappil
 
Solucionario circuitos eléctricos 6ta Edición Dorf Svoboda.pdf
Solucionario circuitos eléctricos 6ta Edición Dorf Svoboda.pdfSolucionario circuitos eléctricos 6ta Edición Dorf Svoboda.pdf
Solucionario circuitos eléctricos 6ta Edición Dorf Svoboda.pdf
SANTIAGO PABLO ALBERTO
 
ECE 342 Problem Set #9 Due 5 P.M. Wednesday, October 28.docx
ECE 342 Problem Set #9 Due 5 P.M. Wednesday, October 28.docxECE 342 Problem Set #9 Due 5 P.M. Wednesday, October 28.docx
ECE 342 Problem Set #9 Due 5 P.M. Wednesday, October 28.docx
jacksnathalie
 

Similar a Solucionario circuitos eléctricos - dorf, svoboda - 6ed (20)

Dorf svoboda-circuitos-elc3a9ctricos-6ta-edicion
Dorf svoboda-circuitos-elc3a9ctricos-6ta-edicionDorf svoboda-circuitos-elc3a9ctricos-6ta-edicion
Dorf svoboda-circuitos-elc3a9ctricos-6ta-edicion
 
[E book] introduction to electric circuits 6th ed [r. c. dorf and j. a. svoboda]
[E book] introduction to electric circuits 6th ed [r. c. dorf and j. a. svoboda][E book] introduction to electric circuits 6th ed [r. c. dorf and j. a. svoboda]
[E book] introduction to electric circuits 6th ed [r. c. dorf and j. a. svoboda]
 
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...
 
Solucionario circuitos eléctricos 6ta Edición Dorf Svoboda.pdf
Solucionario circuitos eléctricos 6ta Edición Dorf Svoboda.pdfSolucionario circuitos eléctricos 6ta Edición Dorf Svoboda.pdf
Solucionario circuitos eléctricos 6ta Edición Dorf Svoboda.pdf
 
PROBLEMAS RESUELTOS (87) DEL CAPÍTULO I DE LABORATORIO DE FÍSICA II - SEARS
PROBLEMAS RESUELTOS (87) DEL CAPÍTULO I DE LABORATORIO DE FÍSICA II - SEARSPROBLEMAS RESUELTOS (87) DEL CAPÍTULO I DE LABORATORIO DE FÍSICA II - SEARS
PROBLEMAS RESUELTOS (87) DEL CAPÍTULO I DE LABORATORIO DE FÍSICA II - SEARS
 
Capitulo 10, 7ma edición
Capitulo 10, 7ma ediciónCapitulo 10, 7ma edición
Capitulo 10, 7ma edición
 
Capitulo 10 7 ed
Capitulo 10 7 edCapitulo 10 7 ed
Capitulo 10 7 ed
 
Chapter5 carrier transport phenomena
Chapter5 carrier transport phenomenaChapter5 carrier transport phenomena
Chapter5 carrier transport phenomena
 
ECE 342 Problem Set #9 Due 5 P.M. Wednesday, October 28.docx
ECE 342 Problem Set #9 Due 5 P.M. Wednesday, October 28.docxECE 342 Problem Set #9 Due 5 P.M. Wednesday, October 28.docx
ECE 342 Problem Set #9 Due 5 P.M. Wednesday, October 28.docx
 
Topic 4 kft 131
Topic 4 kft 131Topic 4 kft 131
Topic 4 kft 131
 
Solucionario serway cap 27
Solucionario serway cap 27Solucionario serway cap 27
Solucionario serway cap 27
 
Sm chapter27
Sm chapter27Sm chapter27
Sm chapter27
 
TIME-VARYING FIELDS AND MAXWELL's EQUATIONS -Unit4- problems
 TIME-VARYING FIELDS AND MAXWELL's EQUATIONS -Unit4- problems TIME-VARYING FIELDS AND MAXWELL's EQUATIONS -Unit4- problems
TIME-VARYING FIELDS AND MAXWELL's EQUATIONS -Unit4- problems
 
Jee advanced-2014-question-paper1-with-solution
Jee advanced-2014-question-paper1-with-solutionJee advanced-2014-question-paper1-with-solution
Jee advanced-2014-question-paper1-with-solution
 
Ch2 slides-1
Ch2 slides-1Ch2 slides-1
Ch2 slides-1
 
Majority carrier diode
Majority carrier diodeMajority carrier diode
Majority carrier diode
 
Assignmentl3 solutions
Assignmentl3 solutionsAssignmentl3 solutions
Assignmentl3 solutions
 
Capitulo 6, 7ma edición
Capitulo 6, 7ma ediciónCapitulo 6, 7ma edición
Capitulo 6, 7ma edición
 
Solutions modern particlephysics
Solutions modern particlephysicsSolutions modern particlephysics
Solutions modern particlephysics
 
capt 38
capt 38capt 38
capt 38
 

Último

1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
QucHHunhnh
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
QucHHunhnh
 

Último (20)

Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and Modifications
 
Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POS
 
ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
Asian American Pacific Islander Month DDSD 2024.pptx
Asian American Pacific Islander Month DDSD 2024.pptxAsian American Pacific Islander Month DDSD 2024.pptx
Asian American Pacific Islander Month DDSD 2024.pptx
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentation
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
PROCESS RECORDING FORMAT.docx
PROCESS      RECORDING        FORMAT.docxPROCESS      RECORDING        FORMAT.docx
PROCESS RECORDING FORMAT.docx
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
Dyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptxDyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptx
 
Spatium Project Simulation student brief
Spatium Project Simulation student briefSpatium Project Simulation student brief
Spatium Project Simulation student brief
 
Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptx
 

Solucionario circuitos eléctricos - dorf, svoboda - 6ed

  • 1. http://www.elsolucionario.blogspot.com LIBROS UNIVERISTARIOS Y SOLUCIONARIOS DE MUCHOS DE ESTOS LIBROS LOS SOLUCIONARIOS CONTIENEN TODOS LOS EJERCICIOS DEL LIBRO RESUELTOS Y EXPLICADOS DE FORMA CLARA VISITANOS PARA DESARGALOS GRATIS.
  • 2. Solution Manual to accompany Introduction to Electric Circuits, 6e By R. C. Dorf and J. A. Svoboda 1
  • 3. Table of Contents Chapter 1 Electric Circuit Variables Chapter 2 Circuit Elements Chapter 3 Resistive Circuits Chapter 4 Methods of Analysis of Resistive Circuits Chapter 5 Circuit Theorems Chapter 6 The Operational Amplifier Chapter 7 Energy Storage Elements Chapter 8 The Complete Response of RL and RC Circuits Chapter 9 The Complete Response of Circuits with Two Energy Storage Elements Chapter 10 Sinusoidal Steady-State Analysis Chapter 11 AC Steady-State Power Chapter 12 Three-Phase Circuits Chapter 13 Frequency Response Chapter 14 The Laplace Transform Chapter 15 Fourier Series and Fourier Transform Chapter 16 Filter Circuits Chapter 17 Two-Port and Three-Port Networks 2
  • 4. Errata for Introduction to Electric Circuits, 6th Edition Errata for Introduction to Electric Circuits, 6th Edition Page 18, voltage reference direction should be + on the right in part B: Page 28, caption for Figure 2.3-1: "current" instead of "cuurent" Page 41, line 2: "voltage or current" instead of "voltage or circuit" Page 41, Figure 2.8-1 b: the short circuit is drawn as an open circuit. Page 42, line 11: "Each dependent source ..." instead of "Each dependent sources..." Page 164, Table 5.5-1: method 2, part c, one should insert the phrase "Zero all independent sources, then" between the "(c)" and "Connect a 1-A source. . ." The edited phrase will read: "Zero all independent sources, then connect a 1-A source from terminal b to terminal a. Determine Vab. Then Rt = Vab/1." Page 340, Problem P8.3-5: The answer should be . Page 340, Problem P8.3-6: The answer should be . Page 341, Problem P.8.4-1: The answer should be Page 546, line 4: The angle is instead of . Page 554, Problem 12.4.1 Missing parenthesis: Page 687, Equation 15.5-2: Partial t in exponent: http://www.clarkson.edu/~svoboda/errata/6th.html (1 of 2)5/10/2004 7:41:43 PM
  • 5. Errata for Introduction to Electric Circuits, 6th Edition Page 757, Problem 16.5-7: Hb(s) = V2(s) / V1(s) and Hc(s) = V2(s) / Vs(s) instead of Hb(s) = V1(s) / V2 (s) and Hc(s) = V1(s) / Vs(s). http://www.clarkson.edu/~svoboda/errata/6th.html (2 of 2)5/10/2004 7:41:43 PM
  • 6. Chapter 1 – Electric Circuit Variables Exercises Ex. 1.3-1 i (t ) = 8 t 2 − 4 t A t t 8 t 8 q(t ) = ∫ 0 i dτ + q(0) = ∫ 0 (8τ 2 − 4τ ) dτ + 0 = τ 3 −2τ 2 = t 3 − 2 t 2 C 3 0 3 Ex. 1.3-3 t t 4 4 4 q ( t ) = ∫ i (τ ) dτ + q ( 0 ) = ∫ 4sin 3τ dτ + 0 = − t cos 3τ 0 = − cos 3 t + C 0 0 3 3 3 Ex. 1.3-4 0 t <0 dq ( t )  i (t ) = i (t ) = 2 0< t < 2 dt  −2( t − 2 ) −2e t >2 Ex. 1.4-1 i1 = 45 µA = 45 × 10-6 A < i2 = 0.03 mA = .03 × 10-3 A = 3 × 10-5 A < i3 = 25 × 10-4 A Ex. 1.4-2 ∆ q = i∆ t = ( 4000 A )( 0.001 s ) = 4 C Ex. 1.4-3 ∆ q 45 × 10−9 i= = −3 = 9 × 10−6 = 9 µA ∆t 5 × 10 Ex. 1.4-4  electron   −19 C   9 electron   −19 C  i = 10 billion  s  1.602 ×10 electron  =   10×10  s  1.602 × 10 electron    electron C = 1010 × 1.602 ×10−19 s electron C = 1.602 × 10−9 = 1.602 nA s 1-1
  • 7. Ex. 1.6-1 (a) The element voltage and current do not adhere to the passive convention in Figures 1.6-1B and 1.6-1C so the product of the element voltage and current is the power supplied by these elements. (b) The element voltage and current adhere to the passive convention in Figures 1.6-1A and 1.6-1D so the product of the element voltage and current is the power delivered to, or absorbed by these elements. (c) The element voltage and current do not adhere to the passive convention in Figure 1.6-1B, so the product of the element voltage and current is the power delivered by this element: (2 V)(6 A) = 12 W. The power received by the element is the negative of the power delivered by the element, -12 W. (d) The element voltage and current do not adhere to the passive convention in Figure 1.6-1B, so the product of the element voltage and current is the power supplied by this element: (2 V)(6 A) = 12 W. (e) The element voltage and current adhere to the passive convention in Figure 1.6-1D, so the product of the element voltage and current is the power delivered to this element: (2 V)(6 A) = 12 W. The power supplied by the element is the negative of the power delivered to the element, -12 W. Problems Section 1-3 Electric Circuits and Current Flow P1.3-1 d i (t ) = dt ( ) 4 1 − e −5t = 20 e −5t A P1.3-2 4 4 ( ) t t t t q ( t ) = ∫ i (τ ) dτ + q ( 0 ) = ∫ 4 1 − e −5τ dτ + 0 = ∫ 4 dτ − ∫ 4 e−5τ dτ = 4 t + e−5t − C 0 0 0 0 5 5 P1.3-3 t t q ( t ) = ∫ i (τ ) dτ = ∫ 0 dτ = 0 C for t ≤ 2 so q(2) = 0. −∞ −∞ t t q ( t ) = ∫ i (τ ) dτ + q ( 2 ) = ∫ 2 dτ = 2 τ 2 = 2 t − 4 C for 2 ≤ t ≤ 4. In particular, q(4) = 4 C. t 2 2 t t q ( t ) = ∫ i (τ ) dτ + q ( 4 ) = ∫ −1 dτ + 4 = − τ 4 + 4 = 8 − t C for 4 ≤ t ≤ 8. In particular, q(8) = 0 C. t 4 4 t t q ( t ) = ∫ i (τ ) dτ + q ( 8 ) = ∫ 0 dτ + 0 = 0 C for 8 ≤ t . 8 8 1-2
  • 8. P1.3-4 C i = 600 A = 600 s C s mg Silver deposited = 600 ×20 min×60 ×1.118 = 8.05×105 mg=805 g s min C Section 1-6 Power and Energy P1.6-1 a.) q = ∫ i dt = i∆t = (10 A )( 2 hrs )( 3600s/hr ) = 7.2×10 4 C b.) P = v i = (110 V )(10 A ) = 1100 W 0.06$ c.) Cost = × 1.1kW × 2 hrs = 0.132 $ kWhr P1.6-2 P = ( 6 V )(10 mA ) = 0.06 W ∆w 200 W⋅s ∆t = = = 3.33×103 s P 0.06 W P1.6-3 30 for 0 ≤ t ≤ 10 s: v = 30 V and i = t = 2t A ∴ P = 30(2t ) = 60t W 15 25 for 10 ≤ t ≤ 15 s: v ( t ) = − t + b ⇒ v (10 ) = 30 V ⇒ b = 80 V 5 v(t ) = −5t + 80 and i (t ) = 2t A ⇒ P = ( 2t )( −5t +80 ) = −10t 2 +160t W 30 for 15 ≤ t ≤ 25 s: v = 5 V and i (t ) = − t +b A 10 i (25) = 0 ⇒ b = 75 ⇒ i (t ) = −3t + 75 A ∴ P = ( 5 )( −3t + 75 ) = −15t + 375 W 1-3
  • 9. 60t dt + ∫10 (160t −10t 2 ) dt + ∫15 ( 375−15t ) dt 10 15 25 Energy = ∫ P dt = ∫0 15 25 + 80t 2 − 10 t 3 + 375t − 15 t 2 = 5833.3 J 10 = 30t 2 0 3 10 2 15 P1.6-4 a.) Assuming no more energy is delivered to the battery after 5 hours (battery is fully charged). 5( 3600 ) t 5 ( 3600 )  0.5 τ  0.5 2 w = ∫ Pdt = ∫0 vi dτ = ∫0 2 11 +  dτ = 22 t + 3600 τ  3600  0 = 441× 103 J = 441 kJ 1 hr 10¢ b.) Cost = 441kJ × × = 1.23¢ 3600s kWhr P1.6-5 1 1 p (t ) = ( cos 3 t )( sin 3 t ) = sin 6 t 3 6 1 p ( 0.5 ) = sin 3 = 0.0235 W 6 1 p (1) = sin 6 = −0.0466 W 6 1-4
  • 10. Here is a MATLAB program to plot p(t): clear t0=0; % initial time tf=2; % final time dt=0.02; % time increment t=t0:dt:tf; % time v=4*cos(3*t); % device voltage i=(1/12)*sin(3*t); % device current for k=1:length(t) p(k)=v(k)*i(k); % power end plot(t,p) xlabel('time, s'); ylabel('power, W') P1.6-6 p ( t ) = 16 ( sin 3 t )( sin 3 t ) = 8 ( cos 0 − cos 6 t ) = 8 − 8cos 6 t W Here is a MATLAB program to plot p(t): clear t0=0; % initial time tf=2; % final time dt=0.02; % time increment t=t0:dt:tf; % time v=8*sin(3*t); % device voltage i=2*sin(3*t); % device current for k=1:length(t) p(k)=v(k)*i(k); % power end plot(t,p) xlabel('time, s'); ylabel('power, W') 1-5
  • 11. P1.6-7 ( ) ( ) p ( t ) = 4 1 − e −2 t × 2 e −2 t = 8 1 − e−2 t e −2t Here is a MATLAB program to plot p(t): clear t0=0; % initial time tf=2; % final time dt=0.02; % time increment t=t0:dt:tf; % time v=4*(1-exp(-2*t)); % device voltage i=2*exp(-2*t); % device current for k=1:length(t) p(k)=v(k)*i(k); % power end plot(t,p) xlabel('time, s'); ylabel('power, W') P1.6-8 P = V I =3 × 0.2=0.6 W w = P ⋅ t = 0.6 × 5 × 60=180 J 1-6
  • 12. Verification Problems VP 1-1 Notice that the element voltage and current of each branch adhere to the passive convention. The sum of the powers absorbed by each branch are: (-2 V)(2 A)+(5 V)(2 A)+(3 V)(3 A)+(4 V)(-5 A)+(1 V)(5 A) = -4 W + 10 W + 9 W -20 W + 5 W =0W The element voltages and currents satisfy conservation of energy and may be correct. VP 1-2 Notice that the element voltage and current of some branches do not adhere to the passive convention. The sum of the powers absorbed by each branch are: -(3 V)(3 A)+(3 V)(2 A)+ (3 V)(2 A)+(4 V)(3 A)+(-3 V)(-3 A)+(4 V)(-3 A) = -9 W + 6 W + 6 W + 12 W + 9 W -12 W ≠0W The element voltages and currents do not satisfy conservation of energy and cannot be correct. Design Problems DP 1-1 The voltage may be as large as 20(1.25) = 25 V and the current may be as large as (0.008)(1.25) = 0.01 A. The element needs to be able to absorb (25 V)(0.01 A) = 0.25 W continuously. A Grade B element is adequate, but without margin for error. Specify a Grade B device if you trust the estimates of the maximum voltage and current and a Grade A device otherwise. 1-7
  • 13. DP1-2 ( ) ( ) p ( t ) = 20 1 − e −8 t × 0.03 e −8 t = 0.6 1 − e−8t e−8t Here is a MATLAB program to plot p(t): clear t0=0; % initial time tf=1; % final time dt=0.02; % time increment t=t0:dt:tf; % time v=20*(1-exp(-8*t)); % device voltage i=.030*exp(-8*t); % device current for k=1:length(t) p(k)=v(k)*i(k); % power end plot(t,p) xlabel('time, s'); ylabel('power, W') Here is the plot: The circuit element must be able to absorb 0.15 W. 1-8
  • 14. Chapter 2 - Circuit Elements Exercises Ex. 2.3-1 m ( i1 + i 2 ) = mi1 + mi 2 ⇒ superposition is satisfied m ( a i1 ) = a ( mi1 ) ⇒ homogeneity is satisfied Therefore the element is linear. Ex. 2.3-2 m ( i1 + i 2 ) + b = mi1 + mi 2 + b ≠ ( mi1 + b ) + ( mi 2 + b ) ⇒ superposition is not satisfied Therefore the element is not linear. Ex. 2.5-1 v 2 (10 ) 2 P= = =1 W R 100 Ex. 2.5-2 v 2 (10 cos t ) 2 P= = = 10 cos 2 t W R 10 Ex. 2.8-1 ic = − 1.2 A, v d = 24 V id = 4 ( − 1.2) = − 4.8 A id and vd adhere to the passive convention so P = vd id = (24) (−4.8) = −115.2 W is the power received by the dependent source 2-1
  • 15. Ex. 2.8-2 vc = −2 V, id = 4 vc = −8 A and vd = 2.2 V id and vd adhere to the passive convention so P = vd id = (2.2) (−8) = −17.6 W is the power received by the dependent source. The power supplied by the dependent source is 17.6 W. Ex. 2.8-3 ic = 1.25 A, vd = 2 ic = 2.5 V and id = 1.75 A id and vd adhere to the passive convention so P = vd id = (2.5) (1.75) = 4.375 W is the power received by the dependent source. 2-2
  • 16. Ex. 2.9-1 θ = 45° , I = 2 mA, R p = 20 kΩ θ 45 a= ⇒ aR = (20 kΩ) = 2.5 kΩ 360 p 360 vm = (2 ×10−3 )(2.5 ×103 ) = 5 V Ex. 2.9-2 µA v = 10 V, i = 280 µA, k = 1 for AD590 °K i  °K  i = kT ⇒ T = = (280µA)1  = 280° K k  µA    Ex. 2.10-1 At t = 4 s both switches are open, so i = 0 A. Ex. 2.10.2 At t = 4 s the switch is in the up position, so v = i R = (2 mA)(3 kΩ) = 6V . At t = 6 s the switch is in the down position, so v = 0 V. Problems Section 2-3 Engineering and Linear Models P2.3-1 The element is not linear. For example, doubling the current from 2 A to 4 A does not double the voltage. Hence, the property of homogeneity is not satisfied. P2.3-2 (a) The data points do indeed lie on a straight line. The slope of the line is 0.12 V/A and the line passes through the origin so the equation of the line is v = 0.12 i . The element is indeed linear. (b) When i = 40 mA, v = (0.12 V/A)×(40 mA) = (0.12 V/A)×(0.04 A) = 4.8 mV 4 (c) When v = 4 V, i = = 33 A = 33 A. 0.12 2-3
  • 17. P2.3-3 (a) The data points do indeed lie on a straight line. The slope of the line is 256.5 V/A and the line passes through the origin so the equation of the line is v = 256.5i . The element is indeed linear. (b) When i = 4 mA, v = (256.5 V/A)×(4 mA) = (256.5 V/A)×(0.004 A) = 1.026 V 12 (c) When v = 12 V, i = = 0.04678 A = 46.78 mA. 256.5 P2.3-4 Let i = 1 A , then v = 3i + 5 = 8 V. Next 2i = 2A but 16 = 2v ≠ 3(2i) + 5 = 11.. Hence, the property of homogeneity is not satisfied. The element is not linear. Section 2-5 Resistors P2.5-1 i = is = 3 A and v = Ri = 7 × 3 = 21 V v and i adhere to the passive convention ∴ P = v i = 21 × 3 = 63 W is the power absorbed by the resistor. P2.5-2 i = is = 3 mA and v = 24 V v 24 R = = = 8000 = 8 k Ω i .003 P = (3×10 −3 )× 24 = 72×10 −3 = 72 mW P2.5-3 v = vs =10 V and R = 5 Ω v 10 i = = =2 A R 5 v and i adhere to the passive convention ∴ p = v i = 2⋅10 = 20 W is the power absorbed by the resistor 2-4
  • 18. P2.5-4 v = vs = 24 V and i = 2 A v 24 R= = = 12 Ω i 2 p = vi = 24⋅2 = 48 W P2.5-5 v1 = v 2 = vs = 150 V; R1 = 50 Ω; R2 = 25 Ω v 1 and i1 adhere to the passive convention so v 1 150 i1 = = =3 A R 1 50 v 150 v2 and i 2 do not adhere to the passive convention so i 2 = − 2 = − = −6 A R2 25 The power absorbed by R1 is P = v1 i1 = 150 ⋅ 3 = 450 W 1 The power absorbed by R 2 is P 2 = − v 2i 2 = −150(−6) = 900 W P2.5-6 i1 = i 2 = is = 2 A ; R1 =4 Ω and R2 = 8 Ω v 1 and i 1 do not adhere to the passive convention so v 1 =− R 1 i 1 =−4⋅2=−8 V. The power absorbed by R 1 is P1 =−v 1i 1 =−(−8)(2) = 16 W. v2 and i 2 do adhere to the passive convention so v2 = R 2 i 2 = 8 ⋅ 2 = 16 V . The power absorbed by R 2 is P 2 = v 2i 2 = 16 ⋅ 2 = 32 W. P2.5-7 Model the heater as a resistor, then v2 v2 (250) 2 with a 250 V source: P = ⇒ R = = = 62.5 Ω R P 1000 v 2 (210) 2 with a 210 V source: P = = = 705.6 W R 62.5 2-5
  • 19. P2.5-8 P 5000 125 The current required by the mine lights is: i = = = A v 120 3 Power loss in the wire is : i 2 R Thus the maximum resistance of the copper wire allowed is 0.05P 0.05×5000 R= = = 0.144 Ω i2 (125/3) 2 now since the length of the wire is L = 2×100 = 200 m = 20,000 cm thus R = ρ L / A with ρ = 1.7×10−6 Ω⋅ cm from Table 2.5−1 ρL 1.7×10−6 ×20,000 A= = = 0.236 cm 2 R 0.144 Section 2-6 Independent Sources P2.6-1 v s 15 = 3 A and P = R i 2 = 5 ( 3 ) = 45 W 2 (a) i = = R 5 (b) i and P do not depend on is . The values of i and P are 3 A and 45 W, both when i s = 3 A and when i s = 5 A. P2.6-2 v 2 102 (a) v = R i s = 5 ⋅ 2 = 10 V and P = = = 20 W R 5 (b) v and P do not depend on v s . The values of v and P are 10V and 20 W both when v s = 10 V and when v s = 5 V 2-6
  • 20. P2.6-3 Consider the current source: i s and v s do not adhere to the passive convention, so Pcs =i s v s =3⋅12 = 36 W is the power supplied by the current source. Consider the voltage source: i s and v s do adhere to the passive convention, so Pvs = i s vs =3 ⋅12 = 36 W is the power absorbed by the voltage source. ∴ The voltage source supplies −36 W. P2.6-4 Consider the current source: i s and vs adhere to the passive convention so Pcs = i s vs =3 ⋅12 = 36 W is the power absorbed by the current source. Current source supplies − 36 W. Consider the voltage source: i s and vs do not adhere to the passive convention so Pvs = i s vs = 3 ⋅12 =36 W is the power supplied by the voltage source. P2.6-5 (a) P = v i = (2 cos t ) (10 cos t ) = 20 cos 2 t mW 1 1 1 1 1  (b) w = ∫0 P dt = ∫0 20 cos t dt = 20 t + sin 2t  = 10 + 5 sin 2 mJ 2 2 4 0 2-7
  • 21. Section 2-7 Voltmeters and Ammeters P2.7-1 v 5 (a) R = = = 10 Ω i 0.5 (b) The voltage, 12 V, and the current, 0.5 A, of the voltage source adhere to the passive convention so the power P = 12 (0.5) = 6 W is the power received by the source. The voltage source delivers -6 W. P2.7-2 The voltmeter current is zero so the ammeter current is equal to the current source current except for the reference direction: i = -2 A The voltage v is the voltage of the current source. The power supplied by the current source is 40 W so 40 = 2 v ⇒ v = 20 V 2-8
  • 22. Section 2-8 Dependent Sources P2.8-1 vb 8 r = = =4 Ω ia 2 P2.8-2 ia 2 A vb = 8 V ; g v b = i a = 2 A ; g = = = 0.25 vb 8 V P2.8-3 i a 32 A i b = 8 A ; d i b = i a = 32A ; d = = =4 ib 8 A P2.8-4 vb 8 V va = 2 V ; b va = vb = 8 V ; b = = =4 va 2 V Section 2-9 Transducers P2.9-1 θ 360 vm a= , θ = 360 Rp I (360)(23V) θ = = 75.27° (100 kΩ)(1.1 mA) P2.9-2 µA AD590 : k =1 ° , K v =20 V (voltage condition satisfied) 4 µ A < i < 13 µ A   i  ⇒ 4 ° K< T <13° K T =  k  2-9
  • 23. Section 2-10 Switches P2.10-1 At t = 1 s the left switch is open and the right switch is closed so the voltage across the resistor is 10 V. v 10 i= = = 2 mA R 5×103 At t = 4 s the left switch is closed and the right switch is open so the voltage across the resistor is 15 V. v 15 i= = = 3 mA R 5×103 P2.10-2 At t = 1 s the current in the resistor is 3 mA so v = 15 V. At t = 4 s the current in the resistor is 0 A so v = 0 V. Verification Problems VP2-1 vo =40 V and i s = − (−2) = 2 A. (Notice that the ammeter measures − i s rather than i s .) vo 40 V So = = 20 is 2 A Your lab partner is wrong. VP2-2 vs 12 We expect the resistor current to be i = = = 0.48 A. The power absorbed by R 25 this resistor will be P = i vs = (0.48) (12) = 5.76 W. A half watt resistor can't absorb this much power. You should not try another resistor. 2-10
  • 24. Design Problems DP2-1 10 10 1.) > 0.04 ⇒ R < = 250 Ω R 0.04 102 1 2.) < ⇒ R > 200 Ω R 2 Therefore 200 < R < 250 Ω. For example, R = 225 Ω. DP2-2 1.) 2 R > 40 ⇒ R > 20 Ω 15 2.) 2 2 R < 15 ⇒ R < = 3.75 Ω 4 Therefore 20 < R < 3.75 Ω. These conditions cannot satisfied simultaneously. DP2-3 P = ( 30 mA ) ⋅ (1000 Ω ) = (.03) (1000 ) = 0.9 W < 1 W 2 2 1 P2 = ( 30 mA ) ⋅ ( 2000 Ω ) = (.03) ( 2000 ) = 1.8 W < 2 W 2 2 P3 = ( 30 mA ) ⋅ ( 4000 Ω ) = (.03) ( 4000 ) = 3.6 W < 4 W 2 2 2-11
  • 25. Chapter 3 – Resistive Circuits Exercises Ex 3.3-1 Apply KCL at node a to get 2 + 1 + i3 = 0 ⇒ i3 = -3 A Apply KCL at node c to get 2 + 1 = i4 ⇒ i4 = 3 A Apply KCL at node b to get i3 + i6 = 1 ⇒ -3 + i6 = 1 ⇒ i6 = 4 A Apply KVL to the loop consisting of elements A and B to get -v2 – 3 = 0 ⇒ v2 = -3 V Apply KVL to the loop consisting of elements C, E, D, and A to get 3 + 6 + v4 – 3 = 0 ⇒ v4 = -6 V Apply KVL to the loop consisting of elements E and F to get v6 – 6 = 0 ⇒ v6 = 6 V Check: The sum of the power supplied by all branches is -(3)(2) + (-3)(1) – (3)(-3) + (-6)(3) – (6)(1) + (6)(4) = -6 - 3 + 9 - 18 - 6 + 24 = 0 3-1
  • 26. Ex 3.3-2 Apply KCL at node a to determine the current in the horizontal resistor as shown. Apply KVL to the loop consisting of the voltages source and the two resistors to get -4(2-i) + 4(i) - 24 = 0 ⇒ i = 4 A 2 Ex 3.3-3 −18 + 0 − 12 − va = 0 ⇒ va = −30 V and im = va + 3 ⇒ im = 9 A 5 18 Ex 3.3-4 −va − 10 + 4va − 8 = 0 ⇒ va = = 6 V and vm = 4 va = 24 V 3 Ex 3.4-1 From voltage division  3  v3 = 12   = 3V  3+9  then v i = 3 = 1A 3 The power absorbed by the resistors is: (12 ) ( 6 ) + (12 ) ( 3) + (12 ) ( 3) = 12 W The power supplied by the source is (12)(1) = 12 W. 3-2
  • 27. Ex 3.4-2 P = 6 W and R1 = 6 Ω P 6 i2 = = = 1 or i =1 A R1 6 v0 = i R1 =(1) (6)=6V from KVL: − v+ i (2 + 4 + 6 + 2) = 0 s ⇒ v = 14 i = 14 V s 25 Ex 3.4-3 From voltage division ⇒ v = m 25+75 (8) = 2 V 25 Ex 3.4-4 From voltage division ⇒ v = m 25+75 ( −8 ) = −2 V Ex. 3.5-1 1 1 1 1 1 4 103 1 = + 3+ 3+ 3= 3 ⇒ R = = kΩ R 3 10 10 10 10 10 eq 4 4 eq 1 -3 1 By current division, the current in each resistor = (10 ) = mA 4 4 Ex 3.5-2 10 From current division ⇒ i = m 10+40 ( −5 ) = − 1 A 3-3
  • 28. Problems Section 3-3 Kirchoff’s Laws P3.3-1 Apply KCL at node a to get 2 + 1 = i + 4 ⇒ i = -1 A The current and voltage of element B adhere to the passive convention so (12)(-1) = -12 W is power received by element B. The power supplied by element B is 12 W. Apply KVL to the loop consisting of elements D, F, E, and C to get 4 + v + (-5) – 12 = 0 ⇒ v = 13 V The current and voltage of element F do not adhere to the passive convention so (13)(1) = 13 W is the power supplied by element F. Check: The sum of the power supplied by all branches is -(2)(-12) + 12 – (4)(12) + (1)(4) + 13 – (-1)(-5) = 24 +12 – 48 + 4 +13 –5 = 0 3-4
  • 29. P3.3-2 Apply KCL at node a to get 2 = i2 + 6 = 0 ⇒ i2 = -4 A Apply KCL at node b to get 3 = i4 + 6 ⇒ i4 = -3 A Apply KVL to the loop consisting of elements A and B to get -v2 – 6 = 0 ⇒ v2 = -6 V Apply KVL to the loop consisting of elements C, D, and A to get -v3 – (-2) – 6 = 0 ⇒ v4 = -4 V Apply KVL to the loop consisting of elements E, F and D to get 4 – v6 + (-2) = 0 ⇒ v6 = 2 V Check: The sum of the power supplied by all branches is -(6)(2) – (-6)(-4) – (-4)(6) + (-2)(-3) + (4)(3) + (2)(-3) = -12 - 24 + 24 + 6 + 12 – 6 = 0 3-5
  • 30. P3.3-3 KVL : −12 − R 2 (3) + v = 0 (outside loop) v − 12 v = 12 + 3R 2 or R 2 = 3 12 KCL i+ − 3 = 0 (top node) R1 12 12 i = 3− or R1 = R1 3−i (a) v = 12 + 3 ( 3) = 21 V 12 i = 3− =1 A 6 (b) 2 − 12 10 12 R2 = = − Ω ; R1 = =8Ω 3 3 3 − 1.5 (checked using LNAP 8/16/02) (c) 24 = − 12 i, because 12 and i adhere to the passive convention. 12 ∴ i = − 2 A and R1 = = 2.4 Ω 3+ 2 9 = 3v, because 3 and v do not adhere to the passive convention 3 − 12 ∴ v = 3V and R 2 = = −3 Ω 3 The situations described in (b) and (c) cannot occur if R1 and R2 are required to be nonnegative. 3-6
  • 31. P3.3-4 12 i = =2A 1 6 20 i = = 5A 2 4 i = 3−i = − 2 A 3 2 i = i +i = 3A 4 2 3 Power absorbed by the 4 Ω resistor = 4 ⋅ i 2 = 100 W 2 Power absorbed by the 6 Ω resistor = 6 ⋅ i 2 = 24 W 1 Power absorbed by the 8 Ω resistor = 8 ⋅ i 2 = 72 W 4 (checked using LNAP 8/16/02) P3.3-5 v1 = 8 V v2 = −8 + 8 + 12 = 12 V v3 = 2⋅ 4 = 8 V v2 4Ω : P = 3 = 16 W 4 2 v2 6Ω : P = = 24 W 6 v2 8Ω : P = 1 = 8 W (checked using LNAP 8/16/02) 8 P3.3-6 P2 mA = − 3 × ( 2 ×10−3 )  = −6 × 10−3 = −6 mW   P1 mA = −  −7 × (1× 10−3 )  = 7 × 10−3 = 7 mW   (checked using LNAP 8/16/02) 3-7
  • 32. P3.3-7 P2 V = +  2 × (1× 10−3 )  = 2 × 10−3 = 2 mW   P3 V = + 3 × ( −2 × 10 )  = −6 × 10−3 = −6 mW  −3  (checked using LNAP 8/16/02) P3.3-8 KCL: iR = 2 + 1 ⇒ iR = 3 A KVL: vR + 0 − 12 = 0 ⇒ vR = 12 V vR 12 ∴ R= = =4Ω iR 3 (checked using LNAP 8/16/02) P3.3-9 KVL: vR + 56 + 24 = 0 ⇒ vR = −80 V KCL: iR + 8 = 0 ⇒ iR = −8 A vR −80 ∴ R= = = 10 Ω iR −8 (checked using LNAP 8/16/02) 3-8
  • 33. P3.3-10 5.61 3.71 − 5.61 12 − 5.61 −1.9 KCL at node b: = + ⇒ 0.801 = + 1.278 7 R1 5 R1 1.9 ⇒ R1 = = 3.983 ≈ 4 Ω 1.278 − 0.801 3.71 3.71 − 5.61 3.71 − 12 −8.29 KCL at node a: + + = 0 ⇒ 1.855 + ( −0.475 ) + =0 2 4 R2 R2 8.29 ⇒ R2 = = 6.007 ≈ 6 Ω 1.855 − 0.475 (checked using LNAP 8/16/02) 3-9
  • 34. Section 3-4 A Single-Loop Circuit – The Voltage Divider P3.4-1 6 6 v = 12 = 12 = 4 V 1 6+3+5+ 4 18 3 5 10 v = 12 = 2 V ; v = 12 = V 2 18 3 18 3 4 8 v = 12 = V 4 18 3 (checked using LNAP 8/16/02) P3.4-2 (a) R = 6 + 3 + 2 + 4 = 15 Ω 28 28 (b) i = = = 1.867 A R 15 ( c ) p = 28 ⋅ i =28(1.867)=52.27 W (28 V and i do not adhere to the passive convention.) (checked using LNAP 8/16/02) 3-10
  • 35. P3.4-3 i R2 = v = 8 V 12 = i R1 + v = i R1 + 8 ⇒ 4 = i R1 8 8 4 4 ⋅ 100 (a) i= = ; R1 = = = 50 Ω R 2 100 i 8 4 4 8 8 ⋅ 100 (b) i = = ; R2 = = = 200 Ω R1 100 i 4 4 8 ( c ) 1.2 = 12 i ⇒ i = 0.1 A ; R1 = = 40 Ω; R2 = = 80 Ω i i (checked using LNAP 8/16/02) P3.4-4 Voltage division 16 v1 = 12 = 8 V 16 + 8 4 v3 = 12 = 4 V 4+8 KVL: v3 − v − v1 = 0 v = −4 V (checked using LNAP 8/16/02) P3.4-5  100  v  using voltage divider: v =  ⇒ R = 50  s − 1 v 0  100 + 2 R  s  v   o  with v = 20 V and v > 9 V, R < 61.1 Ω  s 0   R = 60 Ω with v = 28 V and v < 13 V, R > 57.7 Ω  s 0  3-11
  • 36. P3.4-6  240  a.)   18 = 12 V  120 + 240   18  b.) 18   = 0.9 W  120 + 240   R  c.)   18 = 2 ⇒ 18 R = 2 R + 2 (120 ) ⇒ R = 15 Ω  R + 120  R d.) 0.2 = ⇒ ( 0.2 )(120 ) = 0.8 R ⇒ R = 30 Ω R + 120 (checked using LNAP 8/16/02) 3-12
  • 37. Section 3-5 Parallel Resistors and Current Division P3.5-1 1 6 1 1 i = 4= 4= A 1 1 + 1 + 1 +1 1+ 2 + 3 + 6 3 6 3 2 1 1 3 2 i = 4 = A; 2 1 + 1 + 1 +1 3 6 3 2 1 1 i = 2 4 =1 A 3 1 + 1 + 1 +1 6 3 2 1 1 i = 4=2 A 4 1 + 1 + 1 +1 6 3 2 P3.5-2 1 1 1 1 1 (a) = + + = ⇒ R = 2Ω R 6 12 4 2 (b) v = 6 ⋅ 2 = 12 V (c) p = 6 ⋅12 = 72 W P3.5-3 8 8 i= or R1 = R1 i 8 8 8 = R 2 (2 − i ) ⇒ i = 2 − or R 2 = R2 2−i 8 4 8 (a) i = 2− = A ; R1 = 4 =6Ω 12 3 3 8 2 8 (b) i = = A ; R2 = 2 =6Ω 12 3 2− 3 3-13
  • 38. 1 ( c ) R1 = R 2 will cause i= 2 = 1 A. The current in both R1 and R 2 will be 1 A. 2 R1 R 2 1 2 ⋅ = 8 ; R1 = R 2 ⇒ 2 ⋅ R1 = 8 ⇒ R1 = 8 ∴ R1 = R 2 = 8 Ω R1 + R 2 2 P3.5-4 Current division: 8 1 16 + 8 ( ) i = −6 = −2 A 8 2 8+8( ) i = −6 = −3 A i = i −i = +1 A 1 2 P3.5-5  R  current division: i =  1  i and 2 R + R  s  1 2 Ohm's Law: v = i R yields o 2 2  v  R + R  i =  o  1 2 s  R  R   2  1  plugging in R = 4Ω, v > 9 V gives i > 3.15 A 1 o s and R = 6Ω, v < 13 V gives i < 3.47 A 1 o s So any 3.15 A < i < 3.47 A keeps 9 V < v < 13 V. s o 3-14
  • 39. P3.5-6  24  a)   1.8 = 1.2 A  12 + 24   R  b)   2 = 1.6 ⇒ 2 R = 1.6 R + 1.6 (12 ) ⇒ R = 48 Ω  R + 12  R c) 0.4 = ⇒ ( 0.4 )(12 ) = 0.6 R ⇒ R = 8 Ω R + 12 Section 3-7 Circuit Analysis P3.7-1 48 ⋅ 24 (a) R = 16 + = 32 Ω 48 + 24 32 ⋅ 32 (b) v = 32 + 32 24 = 16 V ; 32 ⋅ 32 8+ 32 + 32 16 1 i= = A 32 2 48 1 1 (c) i2 = ⋅ = A 48 + 24 2 3 3-15
  • 40. P3.7-2 3⋅ 6 (a) R1 = 4 + =6Ω 3+ 6 1 1 1 1 (b) = + + ⇒ R p = 2.4 Ω then R 2 = 8 + R p = 10.4 Ω Rp 12 6 6 (c) KCL: i2 + 2 = i1 and − 24 + 6 i2 + R 2i1 = 0 ⇒ −24+6 (i1 −2)+10.4i1 = 0 36 ⇒ i1 = =2.2 A ⇒ v1 =i1 R 2 =2.2 (10.4)=22.88 V 16.4 1 (d ) i2 = 6 ( 2.2 ) = 0.878 A, 1 1 1 + + 6 6 12 v2 = ( 0.878 ) (6) = 5.3 V 6 2 (e) i3 = i2 = 0.585 A ⇒ P = 3 i3 = 1.03 W 3+ 6 3-16
  • 41. P3.7-3 Reduce the circuit from the right side by repeatedly replacing series 1 Ω resistors in parallel with a 2 Ω resistor by the equivalent 1 Ω resistor This circuit has become small enough to be easily analyzed. The vertical 1 Ω resistor is equivalent to a 2 Ω resistor connected in parallel with series 1 Ω resistors: 1+1 i1 = (1.5 ) = 0.75 A 2 + (1 + 1) 3-17
  • 42. P3.7-4 (a) 1 1 1 1 (10 + 8) ⋅ 9 = + + ⇒ R2 = 4 Ω and R1 = = 6Ω R2 24 12 8 b g 10 + 8 + 9 (b) First, apply KVL to the left mesh to get −27 + 6 ia + 3 ia = 0 ⇒ ia = 3 A . Next, apply KVL to the left mesh to get 4 ib − 3 ia = 0 ⇒ ib = 2.25 A . (c) 1 i2 = 8 2.25 = 1125 A . b gLM b10 +98g + 9 3OP = −10 V and v1 = − 10 1 1 1 + + 24 8 12 N Q 3-18
  • 43. P3.7-5 30 v1 = 6 ⇒ v1 = 8 V 10 + 30 R2 12 = 8 ⇒ R2 = 20 Ω R2 + 10 20 = b R1 10 + 30 g ⇒ R1 = 40 Ω b R1 + 10 + 30 g Alternate values that can be used to change the numbers in this problem: meter reading, V Right-most resistor, Ω R1, Ω 6 30 40 4 30 10 4 20 15 4.8 20 30 3-19
  • 44. P3.7-6 P3.7-7 24 1× 10−3 = ⇒ R p = 12 ×103 = 12 kΩ 12 ×103 + R p 12 × 10 = R p 3 = ( 21×10 ) R3 ⇒ R = 28 kΩ ( 21×10 ) + R 3 P3.7-8  130 500  Voltage division ⇒ v = 50  = 15.963 V  130 500 + 200 + 20     100   10  ∴v = v  h  = (15.963)   = 12.279 V  100 + 30   13  v ∴ i = h = .12279 A h 100 3-20
  • 45. P3.7-9 3-21
  • 46. P3.7-10 15 ( 20 + 10 ) Req = = 10 Ω 15 + ( 20 + 10 ) 60  30   60   20  ia = − = −6 A, ib =  R   = 4 A, vc =   ( −60 ) = −40 V Req  30 + 15   eq   20 + 10  P3.7-11 a) (24)(12) Req = 24 12 = =8Ω 24 + 12 b) from voltage division: 100  20  100 5 v = 40  = V∴ i = 3 = A x  20 + 4  3 x 20 3  8  5 from current division: i = i = A x 8+8   6 3-22
  • 47. P3.7-12 9 + 10 + 17 = 36 Ω 36 (18 ) a.) = 12 Ω 36+18 36 R b.) = 18 ⇒ 18 R = (18 )( 36 ) ⇒ R = 36 Ω 36+R P3.7-13 2 R( R ) 2 Req = = R 2R + R 3 v 2 240 Pdeliv. = = =1920 W to ckt Req 2 R 3 Thus R =45 Ω P3.7-14 R = 2 + 1 + ( 6 12 ) + ( 2 2 ) = 3 + 4 + 1 = 8 Ω eq 40 40 ∴i = = =5 A Req 8  6  i1 = i   6 + 12  ( )  = ( 5) 3 = 3 A 1 5 from current division i2 = i   2   2+2 ( )  = ( 5) 2 = 2 A 1 5 3-23
  • 48. Verification Problems VP3-1 KCL at node a: i = i + i 3 1 2 − 1.167 = − 0.833 + ( −0.333) − 1.167= − 1.166 OK KVL loop consisting of the vertical 6 Ω resistor, the 3 Ω and4Ω resistors, and the voltage source: 6i + 3i + v + 12 = 0 3 2 yields v = −4.0 V not v = −2.0 V VP3-2 reduce circuit: 5+5=10 in parallel with 20 Ω gives 6.67Ω  6.67  by current division: i =   5 = 1.25 A  20 + 6.67  ∴Reported value was correct. VP3-3  320  v = o  320 + 650 + 230  ( 24 ) = 6.4 V ∴Reported value was incorrect.  3-24
  • 49. VP3-4 KVL bottom loop: − 14 + 0.1iA + 1.2iH = 0 KVL right loop: − 12 + 0.05iB + 1.2iH = 0 KCL at left node: iA + iB = iH This alone shows the reported results were incorrect. Solving the three above equations yields: iA = 16.8 A iH = 10.3 A iB = −6.49 A ∴ Reported values were incorrect. VP3-5  1  Top mesh: 0 = 4 i a + 4 i a + 2  i a + − i b  = 10 ( −0.5 ) + 1 − 2 ( −2 )  2  Lower left mesh: vs = 10 + 2 ( i a + 0.5 − i b ) = 10 + 2 ( 2 ) = 14 V Lower right mesh: vs + 4 i a = 12 ⇒ vs = 12 − 4 (−0.5) = 14 V The KVL equations are satisfied so the analysis is correct. 3-25
  • 50. VP3-6 Apply KCL at nodes b and c to get: KCL equations: Node e: −1 + 6 = 0.5 + 4.5 Node a: 0.5 + i c = −1 ⇒ i c = −1.5 mA Node d: i c + 4 = 4.5 ⇒ i c = 0.5 mA That's a contradiction. The given values of ia and ib are not correct. Design Problems DP3-1 Using voltage division: R 2 + aR p R 2 + aR p vm = 24 = 24 R1 + (1 − a ) R p + R 2 + aR p R1 + R 2 + R p vm = 8 V when a = 0 ⇒ R2 1 = R1 + R 2 + R p 3 vm = 12 V when a = 1 ⇒ R2 + R p 1 = R1 + R 2 + R p 2 The specification on the power of the voltage source indicates 242 1 ≤ ⇒ R1 + R 2 + R p ≥ 1152 Ω R1 + R 2 + R p 2 Try Rp = 2000 Ω. Substituting into the equations obtained above using voltage division gives 3R 2 = R1 + R 2 + 2000 and 2 ( R 2 + 2000 ) = R1 + R 2 + 2000 . Solving these equations gives R1 = 6000 Ω and R 2 = 4000 Ω . With these resistance values, the voltage source supplies 48 mW while R1, R2 and Rp dissipate 24 mW, 16 mW and 8 mW respectively. Therefore the design is complete. 3-26
  • 51. DP3-2 Try R1 = ∞. That is, R1 is an open circuit. From KVL, 8 V will appear across R2. Using voltage 200 division, 12 = 4 ⇒ R 2 = 400 Ω . The power required to be dissipated by R2 R 2 + 200 82 1 is = 0.16 W < W . To reduce the voltage across any one resistor, let’s implement R2 as the 400 8 series combination of two 200 Ω resistors. The power required to be dissipated by each of these 42 1 resistors is = 0.08 W < W . 200 8 Now let’s check the voltage: 190 210 11.88 < v < 12.12 190 + 420 0 210 + 380 3.700 < v0 < 4.314 4 − 7.5% < v0 < 4 + 7.85% Hence, vo = 4 V ± 8% and the design is complete. DP3-3 Vab ≅ 200 mV 10 10 v= 120 Vab = (120) (0.2) 10 + R 10 + R 240 let v = 16 = ⇒ R=5Ω 10 + R 162 ∴P= = 25.6W 10 DP3-4 N N 1 1 i = G v = v where G = ∑ = N  T R T n = 1 Rn  R iR ( 9 )(12 ) ∴N= = = 18 bulbs v 6 3-27
  • 52. 28
  • 53. Chapter 4 – Methods of Analysis of Resistive Circuits Exercises Ex. 4.3-1 v v −v a a b KCL at a: + + 3 = 0 ⇒ 5 v − 3 v = −18 3 2 a b v −v b a KCL at b: − 3 −1 = 0 ⇒ v − v = 8 2 b a Solving these equations gives: va = 3 V and vb = 11 V Ex. 4.3-2 KCL at a: v v −v a a b + + 3 = 0 ⇒ 3 v − 2 v = −12 4 2 a b v v −v b a b − −4=0 KCL at a: 3 2 ⇒ − 3 v + 5 v = 24 a b Solving: va = −4/3 V and vb = 4 V Ex. 4.4-1 Apply KCL to the supernode to get v + 10 v 2+ b + b =5 20 30 Solving: v = 30 V and v = v + 10 = 40 V b a b 4-1
  • 54. Ex. 4.4-2 ( vb + 8) − ( −12) + vb = 3 ⇒ v = 8 V and v = 16 V 10 40 b a Ex. 4.5-1 Apply KCL at node a to express ia as a function of the node voltages. Substitute the result into vb = 4 ia and solve for vb . 6 vb  9 + vb  + =i ⇒ v = 4i = 4   ⇒ v = 4.5 V 8 12 a b a  12  b   Ex. 4.5-2 The controlling voltage of the dependent source is a node voltage so it is already expressed as a function of the node voltages. Apply KCL at node a. v −6 v −4v a + a a = 0 ⇒ v = −2 V 20 15 a Ex. 4.6-1 Mesh equations: −12 + 6 i + 3  i − i  − 8 = 0 ⇒ 9 i − 3 i = 20  1 2 1   1 2 8 − 3  i − i  + 6 i = 0 ⇒ − 3 i + 9 i = −8  1 2   2 1 2 Solving these equations gives: 13 1 i = A and i = − A 1 6 2 6 The voltage measured by the meter is 6 i2 = −1 V. 4-2
  • 55. Ex. 4.7-1  3 −12 Mesh equation: 9 + 3 i + 2 i + 4  i +  = 0 ⇒ ( 3 + 2 + 4 ) i = −9 − 3 ⇒ i= A  4 9 The voltmeter measures 3 i = −4 V Ex. 4.7-2 −33 2 Mesh equation: 15 + 3 i + 6 ( i + 3) = 0 ⇒ ( 3 + 6 ) i = −15 − 6 ( 3) ⇒ i= = −3 A 9 3 Ex. 4.7-3 3 3 Express the current source current in terms of the mesh currents: = i1 − i 2 ⇒ i1 = + i 2 . 4 4 3  Apply KVL to the supermesh: −9 + 4i1 + 3 i 2 + 2 i 2 = 0 ⇒ 4  + i 2  + 5 i 2 = 9 ⇒ 9 i 2 = 6 4  2 4 so i 2 = A and the voltmeter reading is 2 i 2 = V 3 3 4-3
  • 56. Ex. 4.7-4 Express the current source current in terms of the mesh currents: 3 = i1 − i 2 ⇒ i1 = 3 + i 2 . Apply KVL to the supermesh: −15 + 6 i1 + 3 i 2 = 0 ⇒ 6 ( 3 + i 2 ) + 3 i 2 = 15 ⇒ 9 i 2 = −3 1 Finally, i 2 = − A is the current measured by the ammeter. 3 Problems Section 4-3 Node Voltage Analysis of Circuits with Current Sources P4.3-1 KCL at node 1: v v −v 1 1 2 −4 − 4 − 2 0= + +i = + + i = −1.5 + i ⇒ i = 1.5 A 8 6 8 6 (checked using LNAP 8/13/02) 4-4
  • 57. P4.3-2 KCL at node 1: v −v v 1 2 1 + + 1 = 0 ⇒ 5 v − v = −20 20 5 1 2 KCL at node 2: v −v v −v 1 2 2 3 +2= ⇒ − v + 3 v − 2 v = 40 20 10 1 2 3 KCL at node 3: v −v v 2 3 3 +1 = ⇒ − 3 v + 5 v = 30 10 15 2 3 Solving gives v1 = 2 V, v2 = 30 V and v3 = 24 V. (checked using LNAP 8/13/02) P4.3-3 KCL at node 1: v −v v 1 2 1 4 − 15 4 + =i ⇒ i = + = −2 A 5 20 1 1 5 20 KCL at node 2: v −v v −v 1 2 2 3 +i = 5 2 15  4 − 15  15 − 18 ⇒ i = − + =2A 2  5  15 (checked using LNAP 8/13/02) 4-5
  • 58. P4.3-4 Node equations: v1 v1 − v2 −.003 + + =0 R1 500 v1 − v2 v2 − + − .005 = 0 500 R2 When v1 = 1 V, v2 = 2 V 1 −1 1 −.003 + + = 0 ⇒ R1 = = 200 Ω R1 500 1 .003 + 500 −1 2 2 − + − .005 = 0 ⇒ R2 = = 667 Ω 500 R2 1 .005 − 500 (checked using LNAP 8/13/02) P4.3-5 Node equations: v1 v − v 2 v1 − v3 + 1 + =0 500 125 250 v − v2 v − v3 − 1 − .001 + 2 =0 125 250 v − v3 v1 − v3 v3 − 2 − + =0 250 250 500 Solving gives: v1 = 0.261 V, v2 = 0.337 V, v3 = 0.239 V Finally, v = v1 − v3 = 0.022 V (checked using LNAP 8/13/02) 4-6
  • 59. Section 4-4 Node Voltage Analysis of Circuits with Current and Voltage Sources P4.4-1 Express the branch voltage of the voltage source in terms of its node voltages: 0 − va = 6 ⇒ va = −6 V KCL at node b: va − vb v −v −6 − vb v −v vb v −v +2= b c ⇒ +2= b c ⇒ −1− +2= b c ⇒ 30 = 8 vb − 3 vc 6 10 6 10 6 10 vb − vc vc 9 KCL at node c: = ⇒ 4 vb − 4 vc = 5 vc ⇒ vb = vc 10 8 4 9  Finally: 30 = 8  vc  − 3 vc ⇒ vc = 2 V 4  (checked using LNAP 8/13/02) P4.4-2 Express the branch voltage of each voltage source in terms of its node voltages to get: va = −12 V, vb = vc = vd + 8 4-7
  • 60. KCL at node b: vb − va vb − ( −12 ) = 0.002 + i ⇒ = 0.002 + i ⇒ vb + 12 = 8 + 4000 i 4000 4000 KCL at the supernode corresponding to the 8 V source: v 0.001 = d + i ⇒ 4 = vd + 4000 i 4000 so vb + 4 = 4 − vd ⇒ ( vd + 8 ) + 4 = 4 − vd ⇒ vd = −4 V 4 − vd Consequently vb = vc = vd + 8 = 4 V and i = = 2 mA 4000 (checked using LNAP 8/13/02) P4.4-3 Apply KCL to the supernode: va − 10 va va − 8 + + − .03 = 0 ⇒ va = 7 V 100 100 100 (checked using LNAP 8/13/02) P4.4-4 Apply KCL to the supernode: va + 8 ( va + 8 ) − 12 va − 12 va + + + =0 500 125 250 500 Solving yields va = 4 V (checked using LNAP 8/13/02) 4-8
  • 61. P4.4-5 The power supplied by the voltage source is v −v v −v   12 − 9.882 12 − 5.294  va ( i1 + i 2 ) = va  a b + a c  = 12  +   4 6   4 6  = 12(0.5295 + 1.118) = 12(1.648) = 19.76 W (checked using LNAP 8/13/02) P4.4-6 Label the voltage measured by the meter. Notice that this is a node voltage. Write a node equation at the node at which the node voltage is measured.  12 − v m  v m v −8 − + + 0.002 + m =0  6000  R 3000 That is  6000  6000 3 +  v m = 16 ⇒ R = 16  R  −3 vm (a) The voltage measured by the meter will be 4 volts when R = 6 kΩ. (b) The voltage measured by the meter will be 2 volts when R = 1.2 kΩ. 4-9
  • 62. Section 4-5 Node Voltage Analysis with Dependent Sources P4.5-1 Express the resistor currents in terms of the node voltages: va − vc i 1= = 8.667 − 10 = −1.333 A and 1 v −v 2 − 10 i 2= b c = = −4 A 2 2 Apply KCL at node c: i1 + i 2 = A i1 ⇒ − 1.333 + ( −4 ) = A (−1.333) −5.333 ⇒ A= =4 −1.333 (checked using LNAP 8/13/02) P4.5-2 Write and solve a node equation: va − 6 v v − 4va + a + a = 0 ⇒ va = 12 V 1000 2000 3000 va − 4va ib = = −12 mA 3000 (checked using LNAP 8/13/02) P4.5-3 First express the controlling current in terms of the node voltages: 2 − vb i = a 4000 Write and solve a node equation: 2 − vb v  2 − vb  − + b − 5  = 0 ⇒ vb = 1.5 V 4000 2000  4000  (checked using LNAP 8/14/02) 4-10
  • 63. P4.5-4 Apply KCL to the supernode of the CCVS to get 12 − 10 14 − 10 1 + − + i b = 0 ⇒ i b = −2 A 4 2 2 Next 10 − 12 1 ia = =−  −2 V 4 2 ⇒ r = =4 1 A r i a = 12 − 14   − 2 (checked using LNAP 8/14/02) P4.5-5 First, express the controlling current of the CCVS in v2 terms of the node voltages: i x = 2 Next, express the controlled voltage in terms of the node voltages: v2 24 12 − v 2 = 3 i x = 3 ⇒ v2 = V 2 5 so ix = 12/5 A = 2.4 A. (checked using ELab 9/5/02) 4-11
  • 64. Section 4-6 Mesh Current Analysis with Independent Voltage Sources P 4.6-1 2 i1 + 9 (i1 − i 3 ) + 3(i1 − i 2 ) = 0 15 − 3 (i1 − i 2 ) + 6 (i 2 − i 3 ) = 0 −6 (i 2 − i 3 ) − 9 (i1 − i 3 ) − 21 = 0 or 14 i1 − 3 i 2 − 9 i 3 = 0 −3 i1 + 9 i 2 − 6 i 3 = −15 −9 i1 − 6 i 2 + 15 i 3 = 21 so i1 = 3 A, i2 = 2 A and i3 = 4 A. (checked using LNAP 8/14/02) P 4.6-2 Top mesh: 4 (2 − 3) + R(2) + 10 (2 − 4) = 0 so R = 12 Ω. Bottom, right mesh: 8 (4 − 3) + 10 (4 − 2) + v 2 = 0 so v2 = −28 V. Bottom left mesh −v1 + 4 (3 − 2) + 8 (3 − 4) = 0 so v1 = −4 V. (checked using LNAP 8/14/02) 4-12
  • 65. P 4.6-3 −6 Ohm’s Law: i 2 = = −0.75 A 8 KVL for loop 1: R i1 + 4 ( i1 − i 2 ) + 3 + 18 = 0 KVL for loop 2 + (−6) − 3 − 4 ( i1 − i 2 ) = 0 ⇒ − 9 − 4 ( i1 − ( −0.75 ) ) = 0 ⇒ i 1 = −3 A R ( −3) + 4 ( −3 − ( −0.75 ) ) + 21 = 0 ⇒ R = 4 Ω (checked using LNAP 8/14/02) P4.6-4 KVL loop 1: 25 ia − 2 + 250 ia + 75 ia + 4 + 100 (ia − ib ) = 0 450 ia −100 ib = −2 KVL loop 2: −100(ia − ib ) − 4 + 100 ib + 100 ib + 8 + 200 ib = 0 −100 ia + 500 ib = − 4 ⇒ ia = − 6.5 mA , ib = − 9.3 mA (checked using LNAP 8/14/02) P4.6-5 Mesh Equations: mesh 1 : 2i1 + 2 (i1 − i2 ) + 10 = 0 mesh 2 : 2(i2 − i1 ) + 4 (i2 − i3 ) = 0 mesh 3 : − 10 + 4 (i3 − i2 ) + 6 i3 = 0 Solving: 5 i = i2 ⇒ i = − = −0.294 A 17 (checked using LNAP 8/14/02) 4-13